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Currently available superconducting quantum processors with interconnected transmon qubits are
noisy and prone to various errors. The errors can be attributed to sources such as open quantum
system effects and spurious inter-qubit couplings (crosstalk). Static ZZ-coupling between qubits in
transmon architectures is always present and contributes to both coherent and incoherent crosstalk
errors. Its suppression is therefore a key step towards enhancing the fidelity of quantum computation
using transmons. Here we propose the use of dynamical decoupling to suppress the crosstalk, and
demonstrate the success of this scheme through experiments performed on several IBM quantum
cloud processors. In particular, we demonstrate improvements in quantum memory as well as the
performance of single-qubit and two-qubit gate operations. We perform open quantum system
simulations of the multi-qubit processors and find good agreement with the experimental results.
We analyze the performance of the protocol based on a simple analytical model and elucidate the
importance of the qubit drive frequency in interpreting the results. In particular, we demonstrate
that the XY4 dynamical decoupling sequence loses its universality if the drive frequency is not much
larger than the system-bath coupling strength. Our work demonstrates that dynamical decoupling
is an effective, practical and scalable way to suppress crosstalk and open system effects, thus paving
the way towards higher-fidelity logic gates in transmon-based quantum computers.

I. INTRODUCTION

Quantum computing is currently at a stage where noisy
gate-model devices with only a few dozens of qubits have
enabled an exploration of various algorithms and quan-
tum information protocols [1]. Among the leading im-
plementations in this field are superconducting transmon
qubits [2, 3], designed to have a suppressed sensitivity to
charge noise and thus possessing a higher coherence and
lifetime than most other superconducting qubit types [4].
Transmons have been used to demonstrate quantum in-
formation processing in a series of recent experiments [5–
15].

In order to construct a large scale quantum computer
(QC) capable of performing useful tasks it must be possi-
ble to both store and process quantum information with
sufficiently low error rates so as to perform fault-tolerant
quantum computation [16–18]. These requirements are
affected by different types of errors which afflict quan-
tum processors. Primary error sources are open quantum
system effects resulting in decoherence, and spurious cou-
pling between qubits, control lines, and readout appara-
tus, resulting in crosstalk. For fixed frequency transmon
processors, the ZZ-coupling between any two neighbor-
ing qubits is always present and contributes to both co-
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herent and incoherent errors, making the suppression of
ZZ-crosstalk one of the most important challenges for
such processors. Various schemes have been proposed
and demonstrated toward this end, e.g., combining a ca-
pacitively shunted flux qubit and a transmon qubit with
opposite-sign anharmonicity [19, 20], combining multi-
ple coupling paths and additional drive tones [21, 22], or
probabilistic error cancellation [23]. For qubits coupled
via tunable couplers, it is possible to adjust the coupler
frequency such that the ZZ interactions from each cou-
pler destructively interfere [24], or to detune neighbor-
ing qubits [25]. However, all these approaches require
extra calibration or circuit elements, and may be diffi-
cult to maintain in large systems. A simple and univer-
sal scheme for ZZ-crosstalk suppression based purely on
transmons is still lacking. Here we propose and experi-
mentally demonstrate such a scheme using three differ-
ent 5-qubit IBM Quantum Experience (IBMQE) proces-
sors [26]. Our scheme is based on dynamical decoupling
(DD) [27–30] – the simplest of all quantum error correc-
tion or suppression protocols [31].

We demonstrate that DD is highly effective at sup-
pressing ZZ-crosstalk, while at the same time also sup-
pressing unwanted system-bath interactions responsible
for decoherence. Previous work on the use of DD to pro-
tect transmon qubit states did not separate these two
different contributions to fidelity decay [32–34], and we
show here that fidelity oscillations that were previously
interpreted as a possible sign of a non-Markovian bath
are in fact attributable to crosstalk. We demonstrate
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these results experimentally and numerically, and pro-
vide an analytical basis for the choice of the pertinent DD
pulse sequences. We highlight the important role played
by gate calibration procedures in interpreting the out-
comes of our crosstalk suppression experiments. We then
use our DD scheme to improve the performance of both
single-qubit and two-qubit gate operations by suppress-
ing the crosstalk originating from the spectator qubits.
Since DD uses the well-calibrated single qubit gates al-
ready available in the native set of gates for any given
platform, it does not add any extra calibration complex-
ity and is a scalable approach that can be applied to
arbitrarily large quantum computers. Moreover, it can
be readily combined with quantum error correction to
reduce the resource requirements of the latter [35, 36].

II. EXPERIMENTAL RESULTS FOR STATE
PROTECTION

We consider Ramsey-like experiments, where we pre-
pare an initial state, let it evolve, and then undo the state
preparation. Our experiments were conducted on the
ibmq ourense (Ourense), ibmq 5 yorktown (Yorktown),
and ibmq lima (Lima) five-qubit IBMQE processors. In
each case we selected one “main” qubit and consider the
other four to be “spectator” qubits. We performed two
types of experiments: free and DD-protected evolution.

In both cases the main qubit was initialized in the |0〉
state, then an Ry(π/2) gate was applied to prepare it in

the |+〉 = (|0〉 + |1〉)/
√

2 state (other initial states are
discussed in Appendix B). All spectator qubits were ini-
tialized in the same state, which we varied. In the free
evolution case we then applied a series of identity gates
(separated by barriers) on all the qubits, followed by
Ry(−π/2) on the main qubit to undo the |+〉 state prepa-
ration. In the DD-protected case we applied the uni-
versal XY4 sequence [37–39] to all the spectator qubits,
but only identity gates to the main qubit. The ideal
XY4 sequence comprises repetitions of XfτY fτXfτY fτ ,
where fτ denotes free evolution for a duration of τ (in
our experiments τ = 71.1 ns), and X and Y are instan-
taneous π pulses about the x and y axes, respectively
(in reality, the pulses have a finite duration; we spaced
them without any delay, so τ is their peak-to-peak spac-
ing). This was done primarily in order to decouple the
ZZ-crosstalk term; it also suppresses undesired system-
bath interactions, as explained below. After each gate
sequence, we measured the main qubit in the computa-
tional (0/1) basis. Each circuit was repeated 8192 times
and we used the fraction of 0 outcomes on the main
qubit, F

(e)
+ , as the empirical fidelity measure (augmented

by bootstrapping; see Appendix A), i.e., as a proxy for
F+ ≡ Tr{Ry(−π/2)E [Ry(π/2)|0〉〈0|Ry(−π/2)]Ry(π/2)},
where E is the quantum map corresponding to either
free or DD-protected evolution of the main qubit. Ide-
ally Ry(π/2) |0〉 = |+〉 and E corresponds to the identity
channel; in reality Ry(π/2) prepares a slightly different

state due to gate errors, and E corresponds to a noisy
channel.

Fig. 1 shows the results of the free evolution and DD-
protected evolution experiments on Ourense (panel a)
and Yorktown (panel b). We plot the empirical fidelity

F
(e)
+ (t) of the |+〉 state of the main qubit for different

spectator qubits’ initial states {|j〉}j=0,1,+. The enve-
lope of the DD-protected evolution decays more slowly
than that of the free evolution, for both processors (see
also Appendix B). A glance at the Ourense and Yorktown
results reveals striking differences for two identical sets
of experiments. We explain below how these arise due to
the different choice of qubit drive frequency for the two
processors. Conversely, a striking qualitative similarity
between the two is that the DD-protected evolution es-
sentially erases the difference between the three different
spectator initial states, whereas the differences are pro-
nounced in the free evolution case.

Having confirmed that the DD protocol works as in-
tended to preserve single qubit coherence, we next pro-
vide a theoretical explanation for our findings. Addi-
tional confirmation of the efficacy and robustness of DD
in suppressing crosstalk is provided in Appendix B.

III. THEORETICAL ANALYSIS

A. Model

Consider for simplicity a system of just two nominally
uncoupled qubits which, however, have an undesired and
always on ZZ-coupling of strength J 6= 0, just like cou-
pled transmons. The generalization to n > 2 qubits is
straightforward and is considered in Appendix C. The
effective Hamiltonian can be written as

HS = −ωq1
2
Z1 −

ωq2
2
Z2 + JZZ (1)

where ωq1 and ωq2 are the qubit frequencies of the main
and the spectator qubit respectively, where Z2 ≡ IZ ≡
I ⊗ σz, etc. The ZZ-coupling term dresses the qubit
frequencies such that the frequency of the main qubit
changes and depends on the state of the spectator qubit.
Correspondingly, we define the eigenfrequencies of the
main qubit by the spectral gap of HS after fixing the
state of the spectator qubit to either |0〉, |1〉, or |+〉 (i.e.,
replacing the spectator qubit operators in HS by their
expectation values {−1, 1, 0}). This yields, respectively,
ω0

eig = ωq1−2J , ω1
eig = ωq1 +2J , and ω+

eig = ωq1 , which is
also the bare frequency of the main qubit. In Appendix
D we show that this conclusion is identical to one derived
from a first-principles model of transmons as multi-level
systems. We show below that these different eigenfre-
quencies explain the difference between the Ourense and
Yorktown processors seen in Fig. 1.

In the open system settings, the total Hamiltonian can
be written as H = HS +HSB, where we assume a general
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Yorktown

Ourense

FIG. 1. Fidelity of the |+〉 state of the main qubit, for different spectator qubits’ initial states {|0〉 , |1〉 , |+〉}, obtained
experimentally [(a) and (b)] and by solving the Redfield master equation [(c) and (d)]. (a) Results for Ourense. The free
evolution curves all exhibit oscillations with nearly equal periods but distinct amplitudes. These effects disappear under
the application of the XY4 sequence just to the spectator qubits, leaving only a common fidelity decay. (b) Results for
Yorktown. The free evolution curves range from monotonic to oscillatory. The differences disappear under DD applied to the
spectator qubits, leaving only a common damped oscillation. Error bars denote 95% confidence intervals. (c) Redfield equation
simulation results for a multi-qubit system with ωd = ωq1 . (d) Simulation results for ωd = ωq1 − 2J . All qualitative features
observed in (a) and (b) are reproduced in (c) and (d), respectively. The crosstalk strength considering a two-qubit model is (c)
J/2π = 51.55 KHz and (d) J/2π = 52.63 KHz, obtained by fitting the periods of (a) and (b).

system-bath interaction HSB =
∑
α,β∈{0,x,y,z} gαβσ

α ⊗
σβ ⊗ Bαβ , where σ0 = I, gαβ = g∗βα is the strength of
the coupling to the bath, and Bαβ are Hermitian bath
operators.

Let us now move to a rotating frame defined by
the number operator N̂ = I − 1

2 (Z1 + Z2) for the
main and spectator qubits. Ignoring the overall en-
ergy shift, we write the unitary transformation operator

U(t) = eiωdN̂t, where ωd 6= 0 is the drive frequency, as
U(t) = e−iωd(Z1+Z2)t/2. The rotating frame Hamiltonian

H̃(t) = UHU† + iU̇U† becomes

H̃(t) =

2∑
i=1

ΩiZi + JZZ + H̃SB(t) , Ωi ≡
ωd − ωqi

2
(2)

where H̃SB(t) =
∑
αβ gαβ

[
U(t)

(
σα ⊗ σβ

)
U†(t)

]
⊗

Bαβ . The free evolution unitary generated by

the rotating frame Hamiltonian is Ũf (tf , ti) =

T+ exp
(
−i
∫ tf
ti
dt H̃(t)

)
, with T+ denoting forward time-

ordering.

B. Free evolution and extraction of the crosstalk
frequency

The choice of ωd gives rise to different rotating frame
Hamiltonians. Consider the rotating frames correspond-
ing to the different eigenfrequencies mentioned above:
ωd ∈ {ω0

eig, ω
1
eig, ω

+
eig}. Let ∆ = ωq1 − ωq2 denote

the detuning between the two qubit frequencies, and
s ∈ {0, 1,+} (s for spectator) the rotating frame accord-
ing to the choice of ωd. Up to a constant, the system-only
Hamiltonians obtained from H̃(t) [Eq. (2)] in the two
frames that are experimentally realized in the IBMQE
devices we used are

H̃+
S = −(∆ + 2J)|01〉〈01| − 2J |10〉〈10| −∆|11〉〈11| (3a)

H̃0
S = −∆|01〉〈01|+ (4J −∆)|11〉〈11| (3b)

Let us furthermore assume a simple Markovian dephas-
ing model, with a Lindbladian of the form

Ls = −i[H̃s
S, ·] +

∑
α

γα(Lα · L†α −
1

2
{L†αLα, ·}) (4)
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where the Lindblad operators are {L1 = ZI, L2 =
IZ, L3 = ZZ}. Let γ = γ1 + γ3. Using Eq. (3), under
free evolution the probability ps+s′(t) of the main qubit’s
final state being |+〉 if its initial state is |+〉 (i.e., F+),
is, for the three different initial state |s′〉 s′ ∈ {+, 0, 1} of
the spectator qubit (see Appendix E):

p+
+s′(t) =

1

2

(
1 + e−2γt cos(2Jt)

)
∀s′ ∈ {+, 0, 1} (5a)

p0
+s′(t) =

1

2

(
1 + e−2γtfs′(t)

)
(5b)

f+(t) = cos2(2Jt) , f0(t) = 1 , f1(t) = cos(4Jt) (5c)

In the s = + frame we thus expect to observe damped
fidelity oscillations with a period of τ+ = 2π/2J for all
spectator states, consistent with our data in Fig. 1(a).
Likewise, in the s = 0 frame we expect no oscillations in
the |0〉 case, but damped fidelity oscillations with a pe-
riod of τ0 = 2π/4J when the spectator qubit is prepared
in the |1〉 or |+〉 states, consistent with Fig. 1(b). The
larger amplitude oscillations observed in Fig. 1(b) for the
|1〉 case are also in agreement with Eq. (5c). We thus con-
clude that the Ourense and Yorktown main qubit drive
frequencies are ωq1 and ωq1 − 2J , respectively, i.e., the
devices were calibrated with the spectator qubits in |+〉
and |0〉, respectively. Moreover, the oscillations predicted
by Eq. (5) are entirely crosstalk-induced (they disappear
when J = 0). In principle this coherent crosstalk could
be compensated for by keeping track of each spectator
state; however, this amounts to computing the outcome
of a quantum algorithm and so for large systems is com-
putationally infeasible. In other words, calibration by it-
self can never solve the problem of ZZ crosstalk and thus
DD is an essential alternative. Note that while Eq. (5a)
incorrectly predicts equal amplitude oscillations for all
three initial spectator states, this is remedied by includ-
ing a lowering operator |0〉〈1| as an additional Lindblad
operator; however, this model fails to capture the ob-
served ordering of the fidelity amplitudes (see Appendix
E).

C. Suppression of ZZ-crosstalk and system-bath
interactions using dynamical decoupling

Having established that crosstalk (and not environ-
mentally induced non-Markovian dynamics) suffices to
explain the fidelity oscillations observed in our free evo-
lution experiments, we now analyze its suppression using
DD. For simplicity, consider a DD sequence consisting
purely of ideal (i.e., zero-width) X-pulses of the form
iI ⊗ e−iπ2X = X2 (henceforth we ignore global phases)
applied just to the spectator qubit. In the rotating frame,
the time evolution at the end of one cycle of such a “pure-
X” DD sequence with pulse interval τ is given by

ŨX(2τ) = X2Ũf (2τ, τ)X2Ũf (τ, 0) (6)

Using UeAU† = eUAU
†

(A arbitrary, U†U = I), we may
write

X2Ũf (2τ, τ)X2 = T+ exp

(
−i
∫ 2τ

τ

dt X2 H̃(t)X2

)
(7)

Using the Magnus expansion (see, e.g., Refs. [35, 38]) one
can show that, to first order in τ , this sequence cancels
every term in H̃(t) that anticommutes with X2. Using
Eq. (2), we are thus left with

ŨX(2τ) = Ũ ′(2τ) +O(τ2) (8)

where

Ũ ′(2τ) = exp
[
− iτ(ωd − ωq1)Z1

− i
∫ τ

0

dt[H̃SB(t) +X2H̃SB(t+ τ)X2]
]

(9)

In the XY4 case, the integral also contains Y2H̃SB(t +

2τ)Y2 + Z2H̃SB(t + 3τ)Z2. As shown in Appendix F,
in both the pure-X and XY4 cases the integral always
vanishes for the terms Z2 and ZZ, as these terms anti-
commute with X2 both in the lab frame and the rotating
frame. I.e., it follows from the form of Ũ ′(2τ) that the
ZZ-crosstalk and the Z2 and ZZ bath-coupling terms are
all suppressed to O(τ) by both the ideal pure-X and XY4
sequences. This explains the suppression of crosstalk ob-
served in our experiments. The fact that in the s = +
frame ωd = ωq1 = ω+

eig means that the Z1 term in Ũ ′(2τ)
vanishes. This explains the absence of oscillations in the
Ourense DD results [Fig. 1(a)]. Likewise, the Z1 term in

Ũ ′(2τ) remains in the s = 0 frame, when ωd = ω0
eig. This

explains the remaining oscillations in the Yorktown DD
results [Fig. 1(b)]. Moreover, the suppression of the Z2

and ZZ bath-coupling terms explains, via its effect on
second and higher order terms in the Magnus expansion,
why the fidelity of the main qubit under DD is generally
higher than for free evolution, as can be seen in Fig. 1
(see also Appendix B). Any incoherent interaction which
couples via a Z2 term (or an X2 or Y2 term in the case of
XY4) will be suppressed, thus preserving the coherence
of the main qubit and therefore the fidelity.

Now note that a term in H that anticommutes with X2

(e.g., Y Y ) may transform to a term in H̃(t) that does not;
this causes many terms to not cancel to first order in τ
under pure-X DD. As a consequence the XY4 sequence
loses its exact universality in the rotating frame. This
may adversely affect the performance of DD sequences
which are designed for high-order cancellation [40, 41].
Since the pure-X sequence is shorter by a factor of 2,
it is preferred in the present setting. We explain the
reasons why the pure-X and XY4 sequences exhibit this
non-standard behavior in Appendices F-H, and discuss
the conditions under which the universality of XY4 can
be approximately recovered.

We emphasize that our DD protocol suppresses any
term involving a spectator qubit operator X2, Y2, or Z2
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(for an XY4 sequence; pure-X suppresses only Z2). Thus
we see suppression of both the coherent ZZ crosstalk and
any bath interactions (i.e. decoherence) mediated by a
spectator qubit operator. We thus see additional im-
provement in main qubit coherence and operation fidelity
(see below) beyond the cancellation of crosstalk.

D. Numerical results

The theoretical analysis above was oversimplified since
it missed features such as the unequal decay rates asso-
ciated with different initial spectator states [Eq. (5) pre-
dicts the same decay rate γ for all three such states], and
the fidelity amplitude ordering. Thus we now comple-
ment this analysis with a numerical study. We assume a
system-bath interaction with linear coupling terms:

HSB =

n−1∑
i=0

∑
α∈{x,y,z}

gασ
α
i ⊗Biα

with all n qubits independently coupled to Ohmic baths.
We simulated the transmon system (modeled as qubits)
via the Redfield master equation using the HOQST pack-
age [42]. Our open system model is described in detail
in Appendix C.

Figure 1 reveals that overall, our simulations are in
close qualitative agreement with the experimental re-
sults. The |+〉 curve has the smallest amplitude in our
experiments, which our simulations account for by set-
ting gz > gx, gy (see Appendix C). I.e., we conclude from
our simulations that dephasing dominates over the other
noise channels. This is consistent with the data docu-
mented in Appendix A, which shows that almost all spec-
tator qubits have T2 < T1. Our simulations qualitatively
reproduce the oscillation pattern of the free evolution of
the |+〉 initial state in Fig. 1(b). This required account-
ing for all of the spectator qubits coupled to the main
qubit (unlike in the phenomenological Lindblad model
with only one spectator). Thus, a multi-qubit description
of the system is needed to fully understand and charac-
terize the crosstalk in these devices. For more details see
Appendix C.

IV. DD FOR GATE OPERATIONS

Having established the efficacy of DD in state preser-
vation, we finally apply DD to counter crosstalk
and decoherence-induced errors during gate opera-
tions; we call the resulting gates “DD-protected gates”
(DDPGs) [35]. We focus on the CNOT gate (based
on cross resonance (CR) [43–45]) and present additional
free vs single-qubit DDPG results in Appendix B, which
demonstrate a significant improvement, namely, a reduc-
tion of the fidelity decay rate by more than a factor of
2. Here we use ibmq quito (Quito), a five qubit IBMQE
processor. We choose two qubits as control and target,

which we prepare in the |+, 0〉 state, and the remaining
three are the spectator qubits.

Significant effort has been put into suppressing ZZ in-
teractions between main qubits to improve CR gate fi-
delity [21, 22, 46–48]. Here we focus on suppressing
crosstalk from spectator qubits in CNOT gates. This
has previously been explored by dividing the CNOT gate
into 4 CR pulses (along with single qubit gates) and ap-
plying an X pulse on all spectators after the second CR
pulse [49, 50]. Here, we optimize spectator-induced error
suppression in CNOT gates by exploring a wide range of
pulse placements and DD sequences. We find that the
DDPG solution depicted in Fig. 2(a) significantly im-
proves performance, as evidenced in Fig. 2(b),(c). More
specifically, we apply an odd number of CNOT gates,
then perform quantum state tomography (QST) and
compute the fidelity with respect to the expected Bell
state (|00〉 + |11〉)/

√
2. We then compare to gates inte-

grating different types of DD sequences including XY4
(XYXY), palindromic XY4 (XYXYYXYX) and the 4th
order Uhrig DD sequence (UDD4) [41] on the spectator
qubits. Figures 2(b) and (c), respectively, show QST
results and the fidelity with and without DD. Clearly,
incorporation of XY4 yields a notable improvement in
CNOT performance, as a function of the number of con-
secutive CNOT gates. The results for palindromic XY4
and UDD4 are statistically indistinguishable from XY4
(see Appendix B). Note that, in contrast to other tech-
niques using DD to improve CNOT gates, our method
does not increase gate duration beyond the ordinary echo
CNOT gate. Thus we are not subject to additional deco-
herence during a prolonged gate, and we see only the ben-
efits of crosstalk cancellation. These QST-based results
suffice to establish the improvement of DD-protected
CNOT gates. While QST is resource-intensive, it is an
important check to confirm the validity of our method.
Now that we have strong evidence that our method can
improve gate fidelity, future work will more efficiently
quantify the improvement using advanced characteriza-
tion methods such as gate set tomography [51].

V. DISCUSSION

We have formulated and experimentally implemented
a simple, effective DD scheme to suppress ZZ-crosstalk
in a multi-qubit transmon processor, that unlike other
approaches [19, 20, 24] does not require any hardware
redesign. The same scheme also suppresses interactions
with the ambient bath, resulting in a significant improve-
ment in quantum memory and gate performance. Our
procedure provides a scalable method that uses only the
pre-existing set of gate operations. One might worry that
if there is non-negligible classical crosstalk between qubit
drive lines, then the DD pulses on one set of qubits will
appear as stray drive pulses on other nearby qubits. If the
pulses were not calibrated this would be a valid concern;
however, DD pulses are identical to ordinary gates, which
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(a) (b) (c)

FIG. 2. (a) Optimized pulse and DD sequence placement in the CR-based CNOT gate. D0-D4 denote drive channels for qubits
Q0-Q4 of IBMQ Quito processor. U3 represents CR pulses acting on Q1 at the Q3 frequency. The control and target qubits
are Q1 and Q3, respectively; the rest are the spectator qubits. We apply the XY4 (or palindromic XY4 or UDD4) sequence
to Q0 and Q2, and the pure-X sequence to Q4, with pulses placed in gaps between the CR pulses. Note that one X gate in
the DD sequence applied to Q0 and Q2 has been replaced by the pre-existing X gate on Q1. VZ denotes the virtual Z gate.
(b) QST results after applying 15 (top) and 19 (bottom) CNOT gates. Left: without DD. Right: with XY4. Clearly, the XY4
results are significantly closer to the expected Bell state, i.e., equal corner peaks of 0.25. (c) Fidelity of Bell state preparation
after a repeated odd number of up to 29 CNOT gates, averaged over 5 separate runs with the spectator qubits initialized in |0〉
(we checked and found the effect of different initial spectator states to be insignificant). Error bars represent 95% confidence
intervals. CNOT fidelity< 1 at 0 gates is due to preparation and measurement errors. CNOT with DD takes longer than
without DD since to avoid overlap we inserted delays to accommodate the two pure-X sequences on D4. The fidelity with DD is
statistically significantly higher than fidelity without DD for all DD sequences we tried after ∼ 3µs, or ∼ 9 consecutive CNOT
gates.

would already require calibration in any quantum proces-
sor. Therefore our method can be used in a large-scale
quantum processor without adding any extra calibration
overhead. While some residual classical crosstalk may re-
main, our approach trades off these (small) errors on far-
away qubits in exchange for much lower error on nearby
qubits. Given recent advances in classical crosstalk error
calibration and cancellation [52], we expect this tradeoff
to be favorable even for very large systems.

We note that the ZZ crosstalk we suppress is a coherent
effect and could, in principle, be eliminated by keeping
track of spectator qubits’ states and adjusting subsequent
gates accordingly. However, this would require predict-
ing the states of all qubits in a system at all points in
a calculation, a computation which is equivalent to clas-
sically simulating the quantum algorithm. Such a simu-
lation would be impractical in any large-scale quantum
processor. Our DD method requires no such simulation
and has the added advantage of suppressing decoherence
from 2-qubit bath interactions.

Our DD-based crosstalk cancellation method is com-
pletely general and can be applied to any gate-based
quantum processor where crosstalk is an issue. That is,
the method is not limited to transmon qubits, or even su-
perconducting qubits, but can be applied to almost any
qubit system. By reducing crosstalk, it becomes possible
to achieve higher quantum logic gate fidelities and ap-
proach the requirements for fault tolerant quantum com-
putation. We thus expect DD to play a significant role

in various quantum algorithms in the NISQ era.
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Appendix A: Data collection and analysis
methodology

The IBMQE devices used in this work are Ourense,
Yorktown, Lima, and Quito, whose layout is shown
schematically in Fig. 3. Figure 1 of the main text uses
qubit 1 (Q1) of Ourense and qubit 3 (Q3) of Yorktown
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FIG. 3. Schematics of the layout of the (a) Yorktown and
(b) Ourense, Lima, and Quito devices. Thin circles indicate
the main qubits used in our experiments. The other qubits
are spectators. For Fig. 2 of the main text we used qubit 1
(Q1) and qubit 3 (Q3) of the Quito as the control and target
qubits, respectively.

as the main qubit. Figure 2 of the main text uses qubit
1 (Q1) and qubit 3 (Q3) as the control and target qubits
of the Quito processor, respectively. For Fig. 6 below, we
used Q1 of Lima and Q3 of Yorktown. All four devices are
5-qubit processors consisting of superconducting trans-
mon qubits. Various calibration details and hardware
specifications relevant to the qubits and gates used in this
work are provided in Table I and Table II. Ourense and
Yorktown data was acquired on 1/18/21 and 1/19/21,
respectively. Quito data for Fig. 2 of the main text was
acquired on 11/30/2021.

For each dataset in Fig. 1 of the main text, we gener-
ated a series of circuits (one for each point on the corre-
sponding curve), all of which were sent to the processor
together in one job. We ensured that for each plot, all
the jobs (corresponding to various curves) were sent con-
secutively and within the same calibration cycle in order
to avoid charge-noise dependent fluctuations and varia-
tions in key features over different calibration cycles. We
generated 70 points on each curve (note that we show
only half of these points to avoid overcrowding) and thus
the number of circuits sent in one job was 70 (the maxi-
mum allowed number is 75) and each circuit was repeated
8192 times. The qubits were measured in the Z basis
and counts for both measurement outcomes (0/1) were
recorded in “dictionaries”. We define the empirical fi-
delity as the number of favorable measurement outcomes
(of 0) to the total number of experiments (8192). Error
bars were then generated using the standard bootstrap-
ping procedure, where we resample (with replacement)
counts out of the experimental counts dictionary and cre-
ate several new dictionaries. The final fidelity and error
bars are obtained by calculating the mean and standard
deviations over the fidelities of these new resampled dic-
tionaries. Using 10 such resampled dictionaries of the
counts was enough to give sufficiently small error bars.
We report the final fidelity with 2σ error bars, corre-
sponding to 95% confidence intervals.

In Fig. 1 of the main text all the single qubit gates—
including the X and Y gates which are part of the DD
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FIG. 4. Quantum state tomography measurements after ap-
plying 1 CNOT gate [(a) and (b)] and 7 CNOT gates [(c) and
(d)] on the |+, 0〉 state of the control and target qubit. The
fidelity with the ideal Bell state (|00〉+ |11〉)/

√
2 is 0.845 after

1 CNOT gate and 0.761 after 7 CNOT gates. Data acquired
on 11/30/2021.

sequences—are decomposed in terms of two sx (
√
σx)

gates and and three virtual rz(λ) = exp(−iσzλ/2) gates.
The latter are error-free and take zero time, as they cor-
respond to frame updates.

For Fig. 2 of the main text, we chose two main qubits,
i.e., a control and target qubit, leaving the remaining
three qubits as spectators. We used Q1 and Q3 of Quito
as the control and target qubits, such that two spectators
are coupled to the control qubit and only one spectator
is coupled to the target [see Fig. 3(b)]. We first applied a
Ry(π/2) gate to the control qubit, thus preparing the two
main qubits in the state |+, 0〉. We then applied a series
of CNOT gates (control to target) and performed QST
after every odd number of CNOT gates. The expected
state is then the Bell state (|00〉+ |11〉)/

√
2). An exam-

ple of a QST measurement is shown in Fig. 4 where we
show the measured density matrix after applying a single
CNOT gate and after applying 7 CNOT gates. We then
repeated the same experiment with DD incorporated into
the circuits and present the comparison between the two
cases in Fig. 2(b) of the main text. We explored different
types of DD sequences for the spectator qubits coupled
to both the control qubit and target qubit (Sec. B 2). In
Fig. 2(b) of the main text, all the DD pulses used consist
of only one x (σx) gate and two virtual rz(λ) gates. Since
both sx and x gates are available as calibrated backend
gates on the IBMQE processors and are of equal length
(35.556 ns), using x instead of sx gates as a basis gate for
DD pulses in Fig. 2(b) of the main text enables fitting
more DD pulses in parallel to the CNOT gates.
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Appendix B: Additional experimental results

1. State protection experiments

In Fig. 5 we present the same results as in Fig. 1 of the
main text, but averaged over all three spectator qubit ini-
tial states for each of the two IBMQE processors. This
shows clearly that the envelope of the DD-protected evo-
lution decays more slowly than that of the free evolution,
in both cases. This figure also highlights the quantitative
match between our numerical model and the experimen-
tal results.

In Fig. 6 we present results for the Yorktown and Lima
processors, for the main qubit initial states |±〉 , |±i〉, and
for the spectator qubit states {|0〉 , |1〉 , |+〉}. These re-
sults are for free evolution and DD-protected evolution
under the pure-X sequence (denoted XX in the figure). In
addition, we compare the XY4 and pure-X sequences, by
showing their fidelity differences. It is clear that the Lima
processor is calibrated similarly to Yorktown, i.e., with
the spectator qubits in the |0〉 state. In all cases the pure-
X sequence removes the differences between the spectator
initial states, as can be seen by the near overlap of the
three XX curves in each subfigure (for t > 10 µs, small
differences appear under DD). For both processors the fi-
delity differences between the XY4 and pure-X sequences
are negligible for sufficiently short times; the difference is
more noticeable for the Lima processor, where at longer
times XY4 appears to be somewhat better (though it is
hard to be certain since the advantage might have re-
turned to pure-X had we been able to collect data for
even longer times). We attribute this to stronger re-
laxation compared to dephasing on the Lima spectator
qubits relative to the other processors; this is explained
in more detail in Sec. F.

2. Single-qubit gates experiments

In our single-qubit gate experiments, we chose Q1 of
Quito as the main qubit and generated a series of cir-
cuits consisting of random sequences of gates of varying
length, where each of the gates is taken from the set
G = {Rx(±π/8), Rx(±π/4), Ry(±π/8), Ry(±π/4)} of 8
single qubit gates, where Rx/y(θ) represents a rotation
about the x/y-axis by an angle θ. We performed quan-
tum state tomography (QST) to construct the density
matrix at the end of each of the circuits. This involved
repeating the same experiment thrice, measuring each
time in a different Pauli basis. The results for each ba-
sis were again given as counts. We compared the density
matrix thus obtained with the expected state to calculate
the fidelity as a function of time or number of gates. We
used the bootstrap method by resampling with replace-
ment over the number of counts, as discussed above, to
create the resampled density matrix and thus an aver-
age fidelity for each of the circuits. In the DD-protected
gates (DDPGs) case, a DD sequence (XY4) was simul-

taneously applied to all the spectator qubits, in parallel
with the gates we applied to the main qubit. The DD
pulses occupy only the gap between each of the gates on
the main qubit; see the circuit diagram in Fig. 7. We used
this approach because the single qubit gates applied to
the main qubit can also behave as a DD sequence, which
could interfere with the DD sequence we apply to the
spectator qubits.

For the results shown in Fig. 8, we first prepare the
main qubit in the |+〉 state, and apply the above se-
quences of random gates with identity operations (or
delay) between any two consecutive gates, such that
the distance between the center of any two consecu-
tive gates is twice the total duration of the gates (see
Fig. 7). We choose the same random circuit and repeat
it for three different initial states of the spectator qubits:
{|0〉 , |1〉 , |+〉}. We repeat the whole experiment 100
times, with each run having its own random sequence of
gates, with and without DD on the spectators. Figure 8
shows the result of averaging over three spectator qubits
states and 100 experimental runs (each with a different
random gate sequence). We observe a clear and statisti-
cally significant improvement in fidelity for the DDPGs
case. In particular, the exponential decay rate decreases
by more than a factor of 2, from (0.0172 ± 0.0007) MHz
without DD, to (0.0081± 0.0002) MHz with DD.

3. Two-qubit gates experiments

We elaborate on the DD-protected CNOT gate results
reported in the main text. Recall that we initialized the
control and target qubits in the |+, 0〉 state, followed by
an odd number of applications of the CNOT gate. Ide-
ally this should return the Bell state (|00〉+|11〉)/

√
2 each

time. We tried different combinations of DD sequences
on the spectator qubits coupled to both the control qubit
and target qubit, which we now refer to as control spec-
tators and target spectators. We found that the effect of
the DD pulses depends on whether they are applied to
the control or target spectators. The Quito CNOT gate
is based on the “echo cross-resonance” (CR) gate [53],
which consists of two CR pulses on the control qubit,
two rotary pulses on the target qubit [45], and several
single qubit gates. We found that applying DD pulses
to the target spectators during the rotary pulses causes
the fidelity to drop, whereas applying DD pulses to the
control spectators during the CR pulses improves fidelity.
The former is unsurprising, since the rotary pulses can
be interpreted as being part of the DD sequence, and
in this sense another overlapping DD pulse on another
qubit can have an adverse effect. We therefore picked a
DD sequence where the target spectator DD pulses are
always separated from the target qubit pulses. We also
avoided any simultaneous single qubit gates (e.g., XX)
on the spectator qubits and the control or target qubit;
as shown in Fig. 9(a) and (b), we integrated single-qubit
pulses which are inherently part of the CNOT gate into
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FIG. 5. Results of Fig. 1 of the main text averaged over all the three spectator qubit states for Ourense (a) and Yorktown (b).
Note that the simulations did not account for state preparation and measurement errors.

the DD sequence. The reason is that XX commutes with
the ZZ cross-talk we set out to suppress.

Given all the constraints on avoiding overlap, we are
limited to only simple DD sequences on the target spec-
tator qubit (indicated by D4 in Fig. 9). We added an ad-
ditional delay before each CNOT gate to accommodate a
pure-X sequence on D4 at the beginning and between the
two CR rotary pulses, avoiding any direct overlap. This
gave the best results for any DD sequence we tried on the
target spectator. We explored different DD sequences for
the control spectator qubit D0. These include two rep-
etitions of XY4 (XYXY), one repetition of palindromic
XY4 (YXYXXYXY; a sequence known to result in theory
in higher order suppression than XY4 [35, 54]) and one
repetition of the 4th order Uhrig DD sequence (UDD4),
consisting of four X pulses with non-uniform intervals
(also known to yield higher order suppression in theory
than XY4 [41]). Figure 9 complements Fig. 2(a) in the
main text and shows the pulse schedule diagram of prepa-
ration of the control qubit in the |+〉 state, followed by a
single CNOT gate with palindromic XY4 (a) and UDD4
(b) applied to the control spectators (D0 and D2), and
two instances of pure-X applied to the target spectator
qubit (D4).

In Fig. 10(a), we present the fidelity results as a func-
tion of the number of CNOT gates, as obtained with
different DD sequences on the control spectator (always
with two instances of pure-X applied to the target specta-
tor qubit). This complements Fig. 2(c) of the main text,
which shows the same as a function of total time elapsed.
For all of the DD sequences presented here we observe a
statistically significant fidelity improvement over the no
DD case, that grows with the number of applied CNOT
gates (a), as well as with the actual elapsed time (b).
The different DD sequences (XY4, palindromic XY4, and
UDD4) applied to Q0 and Q2 do not have a statistically
significant effect.

To test the robustness of our DD scheme in enhanc-

ing the CNOT gate performance, we repeated the two-
qubit experiments over four different calibration cycles
of Quito (which usually takes place every 24 hours), and
plot the averaged results from 46 different experimen-
tal runs in Figs. 10(b) and 10(c). The effect of both
coherent and incoherent noise channels changes gradu-
ally over a period of several hours, and with each new
calibration cycle the fidelity of both the single and two
qubit gates changes. After averaging over four different
calibration cycles over a period of a week, Figs. 10(b)
and 10(c) still show a significant improvement for our
DD-protected CNOT gates, with the additional desir-
able effect of removing the fidelity oscillations present in
the no DD (standard CNOT) case. This additional data
strengthens our conclusion that DD provides a signifi-
cant advantage that is robust across different calibration
cycles.

Appendix C: Open quantum system model

Here we describe the noise model used and the proce-
dure to numerically simulate the open system dynam-
ics. We consider a system of n coupled qubits with
only the linear system-bath interaction given by HSB =∑n−1
i=0

∑
α∈{x,y,z} giασ

α
i ⊗ Biα where σαi and Biα repre-

sents the system and bath coupling operators and giα are
coupling strengths. In our simulations, we included the
main qubit and all the spectator qubits which are directly
coupled to the main qubit. Therefore, our simulations
of the Ourense device included four qubits (see Fig. 4,
where Q1 is the main qubit, coupled to three spectator
qubits), and similarly, we included only three qubits in
the Yorktown simulations, where Q3 is the main qubit.
The system Hamiltonian in this case is given by:

HS = −
n−1∑
i=0

ωqi
2
Zi +

n−1∑
j>i=0

JijZiZj . (C1)
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FIG. 6. Experimental results for different initial states {|±〉 = (|0〉 ± |1〉)/
√

2, |±i〉 = (|0〉 ± i |1〉)/
√

2} of the main qubit. The
spectator qubit states are {|0〉 , |1〉 , |+〉}, as denoted in the legend. XY4-XX denotes the fidelity difference between the XY4
and XX sequences. (a) Yorktown results averaged over 5 runs. Data acquired on 7/7/21. (b) Lima results averaged over 4
runs. Data acquired on 6/30/21.

We again move to a rotating frame defined by the number
operator N̂ given by

N̂ =
∑

i0,..,in−1∈{0,1}

(i0 + · · ·+in−1)|i0 . . . in−1〉〈i0 . . . in−1| ,

(C2)

and solve the Redfield (or TCL2) master equation [42,
56] for the rotated system Hamiltonian. Introducing a
superindex {m} instead of {iα}, we define the standard
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|0/1⟩

|0/1⟩

Main : |0⟩ U G1 I G2 I G3 I G4 I
No DD

Spectators : |0⟩ Si I I I I I I I I

Main : |0⟩ U G1 I G2 I G3 I G4 I
DD

Spectators : |0⟩ Si I X I Y I X I Y

FIG. 7. Circuit diagram for single qubit gate experiments. The top circuit shows a sequence of random gates of length 4
chosen from the set G = {Rx(±π/8), Rx(±π/4), Ry(±π/8), Ry(±π/4)} of 8 single qubit gates applied to the main qubit, and
a sequence of Identity operations applied to all the spectator qubits. U represents the gate applied to prepare any predefined
initial state on the main qubit. In Fig. 8, U = Ry(π/2) which prepares a |+〉 state on the main qubit. Si represents the gate
applied to prepare i = |0〉, |1〉 and |+〉 on all the spectator qubits, where S|0〉 = I (Identity). In the bottom circuit, the XY4
sequence is applied to the spectator qubits in the gaps between the gates applied to the main qubit.

bath correlation function:

Cmn(t− τ) = gmgnTr{UB(t− τ)BmU
†
B(t− τ)BnρB} ,

(C3)
where UB(t) = e−iHBt is the unitary generated by the
pure-bath Hamiltonian HB, and the reference state ρB is
the Gibbs state of HB:

ρB = e−βHB/Tr
(
e−βHB

)
, (C4)

where β = 1/T is the inverse temperature. Assuming
the bath operators Bm and Bn are uncorrelated, i.e.,
Cmn(t) = Cnm(t) = δmnCn(t), the Redfield equation is

∂ρS

∂t
= −i[HS, ρS] + L(ρS) , (C5)

where L is the Redfield Liouvillian

L(ρS) = −
∑
m

[Am,Λm(t)ρS(t)] + h.c. , (C6)

and

Λm(t) =

∫ t

0

Cm(t− τ)US(t, τ)AmU
†
S(t, τ)dτ , (C7)

where US(t) = e−iHSt is the unitary operator generated
by the system Hamiltonian HS. Note that the Am used
in our simulations are the coupling operators defined in
the rotating frame of the number operator N̂ [Eq. (C2)].

We choose the bath to be Ohmic, which means that
the noise spectrum,

γm(ω) =

∫ ∞
−∞

Cm(τ)eiωτdτ , (C8)

has the following form

γm(ω) = 2πηg2
m

ωe−|ω|/ωm

1− e−βω
, (C9)

where ωm = 2πfm is the cutoff frequency for bath oper-
ator Bm, and η is a positive constant with dimensions of
time squared that arises in the specification of the Ohmic
spectral function.

We work in units such that ~ = 1 and assume the bath
temperature T = 20 mK. For all the simulations shown
in Figs. 1(c) and (d) of the main text, we used

η = 10−4 GHz−2, fm = 2 GHz ∀m (C10a)

gi,σz = 0.1175 GHz (C10b)

gi,σx = gi,σy =

{
1
2gi,σz (Ourense)
3
4gi,σz (Yorktown)

∀i . (C10c)

For the Ourense device, the Jij are provided in the IB-
MQE device backend information ([57]) and take the fol-
lowing values:

J01 = 25.48 KHz, J12 = 18.24 KHz, J13 = 8.77 KHz.
(C11)

The Jij are not provided for the Yorktown device; there-
fore we assume that all the non-zero Jij are equal and
we extract Jij = 24.27 KHz by tuning it to match the
oscillations in Fig. 1(b) of the main text.

Finally, we remark that the values of the bath param-
eters reported here are chosen to provide a qualitative
agreement with the experimental data. A more rigorous
optimization scheme to fit the bath parameters in order
to obtain a quantitative match between theory and sim-
ulations with multi-qubit systems will be the subject of
a future publication.

We use the open system model described here to ob-
tain Fig. 1(c) and Fig. 1(d) of the main text. Figure 1(c)
shows the simulation results for the s = + frame. The
effect of the bath is to induce an overall exponential de-
cay envelope due to dephasing , as already suggested by
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Free: A = 0.466± 0.003, B = 0.0172± 0.0007, C = 0.519± 0.003

DD: A = 0.438± 0.005, B = 0.0081± 0.0002, C = 0.544± 0.005

FIG. 8. Experimental fidelity results for random sequences
of single qubit gates consisting of elements of the set G =
{Rx(±π/8), Rx(±π/4), Ry(±π/8), Ry(±π/4)}, averaged over
the three spectator states and 100 different experimental runs,
with the main qubit initialized in the |+〉 state. The fidelity
is shown as a function of time, with and without DD applied
to the spectator qubits. The exponential fit to both the free
and the DDPGs case shows a clear improvement in the de-
cay rate, by a factor of 0.0172/0.0081 = 2.12. Error bars
represent 2σ confidence intervals obtained by bootstrapping.
Data was acquired over a period of six days from 12/30/2021
to 01/02/2022 and from 01/07/2022 to 01/08/2022. See Ta-
ble II for device parameters.

Eq. (5a) of the main text. When DD is applied to the
spectator qubit, the ZZ-induced oscillations are entirely
suppressed, independently of the initial state of the spec-
tator qubit, as in the experimental data in Fig. 1(a) of the
main text. Additionally, the DD sequence can be seen to
suppress the coupling of the spectator qubit to the bath,
in the sense that the maximum amplitude for the |1〉 and
|+〉 spectator qubit states (at 10µs) is lower in the free
evolution case than in the DD case. The small but no-
ticeable difference between the DD-protected curves is
due to the fact that the DD sequence only generates first
order suppression.

Figure 1(d) shows the simulation results for the s = 0
frame. As already expected from Eq. (5) of the main
text, the oscillation period for the free evolution cases
with the spectator qubit prepared in the |1〉 or |+〉 states
is 2π/4J ≈ 5µs, while the |0〉 case exhibits no oscillations.
These results are entirely consistent with the experimen-
tal data in Fig. 1(b) of the main text. In the presence of
DD pulses applied to the spectator qubit the three cases
again collapse onto a single curve. However, this time
oscillations persist with a frequency of 2J . As we discuss
in the main text, these are due to the presence of the
uncanceled Z1 term in Ũ ′(2τ), with ωd = ωq1 − 2J . Cru-
cially, despite the dependence on J , this is a single-qubit
effect, and the goal of suppressing an unwanted two-qubit

term that would interfere with proper two-qubit gate op-
eration has been accomplished. Similar comments as in
the s = + frame apply to the effect of DD on suppressing
the effect of coupling to the bath; the envelope amplitude
of the |1〉 and |+〉 cases is higher in the presence of DD.
The |0〉 case is not helped by DD, since in this case there
is no relaxation of the spectator qubit.

Appendix D: Circuit model description of ZZ
coupling and its implications on rotating frame

analysis

In practice, transmons are not perfect two-level sys-
tems but anharmonic oscillators consisting of multiple
levels. Here we show how ZZ coupling arises in the
multi-level model of coupled transmons, and verify its
implications on free evolution, which was discussed in
the main text based on a simplified model of two-level
systems.

The energy level diagram in the lab frame of two ca-
pacitively coupled transmons with an always-on coupling
strength g is shown in Fig. 11 [44]. Because of the cou-
pling g, levels |1, 0〉 and |0, 1〉 are repelled and form the
dashed lines representing the eigenstates |1, 0〉 and |0, 1〉
with energies E|1,0〉 = ωq1 +g2/∆ and E|0,1〉 = ωq2−g2/∆

where ∆ = ωq1 − ωq2 and we have assumed g/∆ � 1.
Therefore, the main qubit eigenfrequency when the spec-
tator qubit is in |0〉 is:

ω0
eig = E|1,0〉 − E|0,0〉 = ωq1 +

g2

∆
. (D1)

Similarly, |1, 1〉 is pushed downward by |2, 0〉 and upward
by |0, 2〉. Therefore, we have:

E|1,1〉 = ωq1 + ωq2 −
2g2

∆− η +
2g2

∆ + η
, (D2)

where we have assumed that ηq1 = ηq2 = η. Thus, the
main qubit eigenfrequency when the spectator qubit is in
|1〉 is:

ω1
eig = E|1,1〉 − E|0,1〉 = ωq1 −

2g2

∆− η +
2g2

∆ + η
+
g2

∆
.

(D3)

Now the ZZ coupling strength can be defined as [44]:

2J = ωzz =
ω1

eig − ω0
eig

2
=

g2

∆ + η
− g2

∆− η . (D4)

Using Eqs. (D1) and (D3), we can also define the eigen-
frequency of the main qubit when the spectator qubit is
in |+〉 and is given as

ω̃+
eig =

ω0
eig + ω1

eig

2
= ωq1 +

g2

∆
− g2

∆− η +
g2

∆ + η
.

(D5)
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FIG. 9. Pulse schedule diagram for the two-qubit experimental circuit, consisting of state preparation on drive channel D1
corresponding to qubit 1 (Q1) by applying an Ry(π/2), followed by a CNOT gate between Q1 and Q3 (control and target,
respectively). The CNOT gate consists of two single qubit gates on Q1 (D1) and a single qubit gate on Q3 (D3), two CR
pulses on Q1 (D1) at the frequency of Q4 (here shown on a separate channel U3 but actually acting on the drive channel D1
corresponding to Q1), and two rotary pulses on Q3 (D3). The DD sequence used on target spectator qubit Q4 (D4) consists of
two instances of pure-X DD before the first rotary pulse and in between the two CR pulses. The DD sequence on the control
and spectator qubits Q0 (D0) and Q2 (D2) consists of two repetitions of XY4 (XYXY) in Fig. 2(a) of the main text, one
repetition of palindromic XY4 in (a), and one repetition of UDD4 in (b). Note that one X gate in each of the sequences applied
to D0 and D2 was replaced by the X gate on D1. These diagrams are obtained using schedule.draw() feature of qiskit [55].

Note that unlike the two-level system case discussed in
the main text, this eigenfrequency (ω̃+

eig) is not same
as the bare qubit frequency ωq1 , and this is one sense
in which the two-level system model is oversimplified.
We now choose the drive frequency as ωd = ω̃+

eig and
move into a rotating frame about the number operator
N̂ =

∑
k,l(k+ l)|k, l〉〈k, l|. With this choice, the eigenfre-

quencies of the main qubit for the spectator qubit in |0〉
and |1〉 are, respectively:

ω̃0
q1 = ω0

eig − ωd = −ωzz (D6)

ω̃1
q1 = ω1

eig − ωd = ωzz . (D7)

Therefore, in the s = + frame, we have oscillations with
frequency ωzz = 2J irrespective of the state of the spec-
tator qubit, which is exactly what we showed in the main
text for the simplified two-level system model. We can
similarly verify the results for the s = 0 and s = 1 frames.

Appendix E: Analysis of free evolution under
dephasing in the s = + and s = 0 frames

All the calculations reported in this sec-
tion are supported by a Mathematica pack-
age https://www.dropbox.com/s/ajsac2xjhj405op/
free-evolution-calcs.nb?dl=0, which can be used to
reproduce and test all the claims made below.

Consider the phenomenological Lindbladian

Ls = −i[H̃s
S, ·] +

∑
α

γα(Lα · L†α −
1

2
{L†αLα, ·}) (E1a)

L1 = ZI , L2 = IZ , L3 = ZZ (E1b)

specified in the main text, along with the Hamiltonians
H̃s

S given in Eq. (3) for the rotating frames s = + and
s = 0. The solution of

ρ̇ = Lsρ (E2)

is the joint density matrix ρ(t) of the main and specta-
tor qubits. We are interested in the main qubit state
ρs+s′(t) = Trspec[ρ(t)], where the partial trace is over the
spectator qubit, given the initial state ρ(0) = |+s′〉〈+s′|,
with s′ ∈ {+, 0, 1} denoting the three spectator qubit
initial states.

Since the Lindbladian Ls involves only diagonal op-
erators, solving Eq. (E2) is straightforward. Letting
γ = γ1 + γ3, we find, for the Hamiltonian [Eq. (3b)]:

ρ+
++(t) =

1

2

(
1 e−2γt cos(2Jt)

e−2γt cos(2Jt) 1

)
(E3a)

ρ+
+0(t) =

1

2

(
1 e−2γte2iJt

e−2γte−2iJt 1

)
= (ρ+

+1(t))∗ ,

(E3b)

https://www.dropbox.com/s/ajsac2xjhj405op/free-evolution-calcs.nb?dl=0
https://www.dropbox.com/s/ajsac2xjhj405op/free-evolution-calcs.nb?dl=0
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(a) (b) (c)

FIG. 10. Fidelity of standard and DD-protected CNOT gates, for different DD sequences. (a) This plot complements Fig.2(c)
in the main text, which shows the result as a function of actual time elapsed. The fidelity is shown here as a function of the
number of CNOT gates applied to the |+, 0〉 state of the control and target qubits (Q1 and Q3 of Quito) without DD and with
three different DD sequences (XY4, palindromic XY4 and UDD4) applied to the control spectator qubits in parallel to the
CNOT gate operation, averaged over five experimental runs. Since different DD sequences require a different delay between
subsequent CNOT gates, we obtain a different total time for the same number of CNOT gates, as in Fig. 2(c) in the main text.
Data was acquired on 11/30/2021. For (b) and (c) data was acquired over a period of four different calibration cycles from
01/18/2022 to 01/22/2022. (b) Same as (a), but averaged over the four different calibration cycles. (c) Same as (b), showing
instead the fidelity as a function of time, as in Fig.2(c) in the main text.

FIG. 11. Energy level diagram of two coupled transmons
with qubit frequencies ωq1 and ωq2 and anharmonicities ηq2
and ηq1 , coupled linearly with strength g. The solid lines
represent the bare energy levels and dashed lines represent
the eigenlevels. |k, l〉 represents levels k and l in the main
and spectator transmons, respectively. Only 6 levels of the
infinite-dimensional Hilbert space formed by both transmons
are shown.

and for the Hamiltonian [Eq. (3a)]:

ρ0
++(t) =

1

2

(
1 e−2γt 1+e−4iJt

2

e−2γt 1+e4iJt

2 1

)
(E4a)

ρ0
+0(t) =

1

2

(
1 e−2γt

e−2γt 1

)
(E4b)

ρ0
+1(t) =

1

2

(
1 e−2γte4iJt

e−2γte−4iJt 1

)
. (E4c)

We are interested in the probability of the main qubit
remaining in the |+〉 state, which is given by

ps+s′(t) = 〈+| ρs+s′(t) |+〉 . (E5)

Computing this quantity from Eqs. (E3) and (E4) di-
rectly yields Eq. (5) from the main text.

Focusing on the s = + case, we have also solved vari-
ations on Eq. (E1) with additional Lindblad operators.
Specifically, when including {L4 = XI,L5 = IX,L6 =
XX} in addition to {L1, L2, L3}, with corresponding
rates {γ4, γ5, γ6}, we find:

p+
+s′(t) =

1

2

[
1 + e−[2(γ1+γ3)+γ4+γ5]t× (E6a)(

cos(2J ′xt) +
γ4 + γ5

2J ′x
sin(2J ′xt)

)]
∀s′ ∈ {+, 0, 1}

2J ′x ≡
√

4J2 − (γ4 + γ5)2 . (E6b)

When, instead, we include {L7 = Y I, L8 = IY, L9 =
Y Y } in addition to {L1, L2, L3}, with corresponding
rates {γ7, γ8, γ9} (setting {γ4 = γ5 = γ6 = 0}), we find:

p+
+s′(t) =

1

2

[
1 + e−[2(γ1+γ3+γ9)+γ7+γ8]t× (E7a)(

cos(2J ′yt) +
γ8 − γ7

2J ′y
sin(2J ′yt)

) ∀s′ ∈ {+, 0, 1}

2J ′y ≡
√

4J2 − (γ8 − γ7)2 . (E7b)

Note that the Y Y rate appears in the overall decay rate
[γ9 in Eq. (E7a)], but the XX decay rate does not [γ6

is absent in Eq. (E6a)]. Also, note that the oscillation
frequency in both models is modified by the single-qubit
(X or Y ) rates, and is no longer simply 2J , but rather
2J ′x or 2J ′y.

However, since neither Eq. (E6a) nor Eq. (E7a) de-
pends on s′, neither one of these two models correctly
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predicts the different amplitudes observed for the three
different initial spectator states in Fig. 1(a) of the main
text, so they do not appear to correctly describe the
open system dynamics. If, instead we introduce sponta-
neous emission by including the lowering operator σ− =
|0〉〈1| via the Lindblad operators {L10 = σ− ⊗ I, L11 =
I ⊗ σ−, L12 = σ− ⊗ σ−} (setting {γi = 0}9i=4), we find
that the symmetry between the different initial spectator
states is broken:

p+
+0(t) =

1

2

(
1 + cos(2Jt)e−(2(γ1+γ3)+γ10/2)t

)
(E8a)

p+
+1(t) =

1

2

(
1 + e−t(2(γ1+γ3)+γ10/2)×[

(8J)2e−γdt/2 + γd(2γ11 + γ12e
−γdt/2)

(8J)2 + γ2
d

cos(2Jt)

+
16Jγ11(1 + e−γdt/2)

(8J)2 + γ2
d

sin(2Jt)

] (E8b)

p+
++(t) =

1

2
+

1

(8J)2 + γ2
d

e−t(2(γ1+γ3)+γ10/2)×[(
1 + e−tγd/2

)(1

4
cos(2Jt)(8J)2 + 4 sin(2Jt)Jγ11

)
+

1

4
cos(2Jt)γd

(
γ12e

−tγd/2 + 4γ11 + γ12

)]
(E8c)

γd ≡ 2γ11 + γ12 . (E8d)

The oscillation frequency is, for all three initial con-
ditions, again equal to 2J . We illustrate the prediction
of this model in Fig. 12. For all parameter values we
tried, we always find that the ordering of the fidelity os-
cillation amplitudes is correct for the s′ = 0 and s′ = 1
states, i.e., s′ = 0 has the larger amplitude. However,
the s′ = + amplitude is always intermediate between
the other two, whereas in our experiments this initial
state has the lowest amplitude. For this reason we con-
clude that the present model is also ultimately inade-
quate, which we attribute to the fact that in reality more
than one spectator qubit is directly coupled to the main
qubit (see Fig. 4). Our full numerical model, which in-
cludes all such spectator qubits, does predict the correct
ordering.

We note that in our numerical simulations the lowering
operator arises naturally as a consequence of the Kubo-
Martin-Schwinger (KMS) condition [56], which at the
simulated device temperature of 20 mK (much smaller
than the gap to the first excited state |1〉 of around 5
GHz) strongly favors thermal relaxation to the transmon
ground state |0〉.

FIG. 12. The fidelity expressions given in Eq. (E8) for
the following parameter values: J = 0.3, γ1 = 0.01, γ3 =
0.0025, γ10 = γ11 = γ12 = 0.01 (all in dimensionless units,
as is t). The ordering of fidelity oscillation amplitudes is pre-
served for all parameter values we tried for this dephasing
plus spontaneous emission model. Compare to Fig. 1(a) and
(c) of the main text.

Appendix F: Detailed analysis of DD in the rotating
frame

All the calculations reported in this section are
supported by a Mathematica package https://www.
dropbox.com/s/6h6zqjwor8ym76a/dd-calcs.nb?dl=0,
which can be used to reproduce and test all the claims
made below.

Let us first write U(t) = e−iωd(Z1+Z2)t/2 = UZ(t) ⊗
UZ(t), where UZ(t) = e−

1
2 iωdtZ . Then the system-only

terms of

H̃SB(t) =
∑
αβ

gαβ

[
U(t)

(
σα ⊗ σβ

)
U†(t)

]
⊗Bαβ (F1)

can be written as:

U(t)
(
σα ⊗ σβ

)
U†(t) = σα(t)⊗ σβ(t) . (F2)

Similarly,

X2U(t)
(
σα ⊗ σβ

)
U†(t)X2 = σα(t)⊗ σxβ(t) , (F3)

where

σα(t) = UZσ
αU†Z(t) (F4a)

σxβ(t) = U†Z(t)σxσβσxUZ(t)

= −(−1)δβxU†Z(t)σβUZ(t) , (F4b)

and where in Eq. (F4b) we used

X2(I ⊗ UZ(t))X2 = I ⊗ e− 1
2 iωdtXZX (F5a)

= I ⊗ e 1
2 iωdtZ = I ⊗ U†Z(t) . (F5b)

https://www.dropbox.com/s/6h6zqjwor8ym76a/dd-calcs.nb?dl=0
https://www.dropbox.com/s/6h6zqjwor8ym76a/dd-calcs.nb?dl=0
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Explicitly:

σx(t) =

(
0 e−itωd

eitωd 0

)
= [σxx(t)]∗ (F6a)

σy(t) =

(
0 −ie−itωd

ieitωd 0

)
= [σxy(t)]∗ (F6b)

σz(t) = −σxz(t) = σz . (F6c)

Recall that after one cycle of pure-X DD the unitary
evolution operator is Ũ(2τ) = Ũ ′(2τ)+O(τ2). Gathering
the terms in the exponent of

Ũ ′(2τ) = exp

[
−iτ(ωd − ωq1)Z1 − i

∫ τ

0

dt H̃SB(t)

−i
∫ 2τ

τ

dt X2H̃SB(t)X2

]
, (F7)

we thus have:

− i
∫ τ

0

dt H̃SB(t)− i
∫ 2τ

τ

dt X2H̃SB(t)X2 (F8a)

= −i
∑
αβ

gαβ

∫ 2τ

0

dt σα(t)⊗Gβ(t)⊗Bαβ (F8b)

where

Gβ(t) =

{
σβ(t) for t ∈ [0, τ ] (F9a)

σxβ(t) for t ∈ [τ, 2τ ] (F9b)

Using Eq. (F6a), the two integrals in Eq. (F8b) cancel
for the (α, β) = (0, z) and (α, β) = (z, z) cases:∫ 2τ

0

dt σ0(t)⊗Gz(t) =

∫ τ

0

dt Z2 −
∫ 2τ

τ

dt Z2 = 0

(F10a)∫ 2τ

0

dt σz(t)⊗Gz(t) =

∫ τ

0

dt ZZ −
∫ 2τ

τ

dt ZZ = 0 .

(F10b)

For ωd = 0 we recover the standard DD sequence proper-
ties in the Schrödinger frame, so the pure-X DD sequence
also eliminates the β = y, z cases.

For ωd 6= 0, consider first the (α, β) = (x, z) case. In
this case we need to calculate

Ixz ≡
∫ τ

0

dt σx(t)⊗σz(t)+

∫ 2τ

τ

dt σx(t)⊗σxz(t) . (F11)

Changing variables and using Eq. (F6c), we can rewrite
this as:

Ixz =

∫ τ

0

dt [σx(t)⊗ σz − σx(t+ τ)⊗ σz] , (F12)

which in general is nonzero. However, using Eq. (F6a)
we see that this vanishes when τ = 2π/ωd. In fact, in
this case each term integrates to 0 individually, so the

DD sequence is not strictly necessary to cancel XZ at
fine-tuned intervals.

Next, consider the (α, β) = (z, y) case. In this case we
need to calculate

Izy ≡
∫ τ

0

dt σz(t)⊗σy(t)+

∫ 2τ

τ

dt σz(t)⊗σxy(t) . (F13)

Again changing variables and using Eq. (F6c), we can
rewrite this as

Izy =

∫ τ

0

dt σz ⊗ [σy(t) + σxy(t+ τ)] . (F14)

Using Eq. (F6b), we see that the integral vanishes pro-
vided τ = 2π/ωd; again, the terms also integrate to 0
individually.

Similarly, we find by explicit calculation (not shown)
that:

• The pairs

(α, β) ∈{(0, x), (x, 0), (0, y), (y, 0),

(x, z), (z, x), (y, z), (z, y)} (F15)

cancel for pulse intervals τ that are integer multi-
ples of 2π/ωd both with and without the pure-X
DD sequence. Note that this implies that coupling
of the main qubit to the bath [e.g., the (x, 0) and
(y, 0) terms] is suppressed at these particular pulse
interval values, but since this happens also without
the DD sequence it is clear that this is an interfer-
ence effect that is not due to the application of DD
to the spectator qubit.

• The remaining cases

(α, β) ∈ {(0, 0), (x, x), (x, y), (y, x), (y, y), (z, 0)} (F16)

never perfectly cancel (the (0, 0) case is the pure-
bath term).

In other words, ωd determines the pulse interval τ
that leads to additional suppression of terms in H̃SB(t).
Namely, the following set of terms also cancels to first
order in τ that is an integer multiple of 2π/ωd:

{X1, X2, Y1, Y2, XZ,ZX, Y Z,ZY } . (F17)

In general these terms, when integrated, scale as
gαβ/ωd and so there is also approximate cancella-
tion in the limit ωd � gαβ . The remaining terms,
{Z1, XX,XY, Y X, Y Y } do not perfectly cancel for any
value of ωd, nor do they have the gαβ/ωd scaling (they
contain a leading term proportional to τ) and hence
are not suppressed even to first order in τ . Unfortu-
nately, we were unable to test the effect of fine-tuning
τ experimentally, since it requires a very precise knowl-
edge of the drive frequency, which appears to be difficult
to obtain even with access to OpenPulse [58]. In any
case we are deep in the limit ωd � gαβ (ωd ≈ 5 GHz
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and gαβ ≈ 0.1 GHz, where we have estimated ωd via
the two-qubit model which gives either ωd = ωq or
ωd = ωq ± 2J ; we also have ωq ≈ 5 GHz from Table I
and J/2π ≈ 50 KHz from fitting our simulations to the
experimental data), and so we expect approximate can-
cellation regardless of τ .

The same reasoning and calculations apply when the
DD sequence is replaced by ideal Y pulses instead of
X, with identical results if ωd is not fine-tuned. When
ideal Z pulses are used instead, they do not cancel the
(α, β) = (0, z) and (α, β) = (z, z) cases, since then the
pulses commute with the IZ and ZZ interactions. I.e.,
Z pulses act just like the identity operation on these in-
teractions.

The XY4 sequence XfτY fτXfτY fτ is equivalent to
(XfτX)(ZfτZ)(Y fτY )(IfτI). To first order in the pulse
interval τ , in the lab frame the XY4 sequence can thus
be represented as exp[−iτ(H +XHX +Y HY +ZHZ)],
but in the rotating frame we must break this up into a
sum over four integrals, similar to Eq. (F8a), and we end

up with
∫ τ

0
dt[H̃SB(t) + X2H̃SB(t + τ)X2 + Y2H̃SB(t +

2τ)Y2 + Z2H̃SB(t + 3τ)Z2], as mentioned in the main
text. Combining all this, we see that when ωd 6= 0 is
not fine-tuned its effect is identical to that of a pure-X or
pure-Y DD sequence, in the sense of exact cancellation.
If, on the other hand, we choose pulse intervals τ that
are integer multiples of 2π/ωd then the pure-X list of
suppressed terms [Eq. (F17)] grows in the XY4 case to
include everything except ZI (and II, of course).

Regarding approximate cancellation, now almost
all the integrals scale as gαβ/ωd (including for
{XX,XY, Y X, Y Y } where the terms that scale like τ
exactly cancel, unlike in the pure-X case) and so there
is also suppression of all terms except ZI and II in the
limit ωd � gαβ . This is the sense in which the XY4
sequence retains approximate universality.

Since using the XY4 sequence when ωd 6= 0 (except
fine-tuned values such as ωd = 2π/τ or large values
ωd � g) does not lead to additional cancellations in the
rotating frame of terms that anticommute with Y and
Z, using the pure-X DD sequence is preferred to XY4
in this case, as the former is shorter by a factor of two.
However, as we performed our experiment in the fast
drive (ωd � g) limit, we expect XY4 to perform better
when these couplings are present. Indeed, we see pure-X
and XY4 sequences perform similarly on most proces-
sors but XY4 performs somewhat better on Lima, where
relaxation of spectator qubits (likely indicating stronger
{XX,XY, Y X, Y Y }-type couplings to the bath) is signif-
icant. This is consistent with the relatively short T1 time
(compared to T2) seen for the Lima processor in Table I;
all other processors have T1 > T2 for all their qubits, with
one exception (Q2 of Yorktown on 1/19/2021).

Of course, when ωd = 0, i.e., when DD is performed in
the lab frame, the XY4 sequence is the usual universal
decoupling sequence that cancels all terms involving X,
Y , or Z on the qubit that the pulses are being applied
to, while the pure-X sequence only cancels the Y and Z

terms.

Finally, note that applying the DD sequence to the
main qubit has the identical effect except for switching
the suppressed Z2 system-bath coupling term to Z1. Ap-
plying the DD sequence to both qubits does not suppress
the crosstalk since [XX,ZZ] = 0.

Appendix G: Explanation of the non-standard
behavior of the pure-X and XY4 sequences in the

rotating frame

The analysis of DD sequences is usually carried out in
the “toggling frame”, i.e., the interaction picture defined
by the time-dependent Hamiltonian that generates the
pulses (see, e.g., Refs. [35, 59]. This is done for mathe-
matical convenience, and we perform such an analysis in
Sec. H to complement and complete the discussion of DD
performance. In this work we chose a different interac-
tion picture motivated by the physics of transmon-based
QCs, namely that defined by the uncoupled Hamiltonian
Hu = − 1

2

∑
i Zi, rotating at the frequency ωd, which we

identified with the main qubit eigenfrequency. In this
frame all operators that do not commute with Hu ac-
quire a time dependence, and their rotation frequency
is given by ωd [as in Eqs. (F6a)-(F6c)]. Below we ex-
plain the reason for this frame choice. But first, let us
note that it is this time dependence that prevents the
cancelation of terms that would ordinarily cancel under
the pure-X or XY4 sequences. For example, both Ixz

[Eq. (F12)] and Izy [Eq. (F14)] would ordinarily cancel,
since the Pauli operators acting on the spectator qubit in
HSB are Z and Y , respectively, which anticommute with
the X-type DD pulses addressed at this qubit. However,
in the Ixz case, the previously static X operator on the
main qubit now has a time dependence, and likewise in
the Izy case the previously static Y operator on the spec-
tator qubit now has a time dependence, which appears in
H̃SB . This prevents cancellation, except when the time-
dependent operators return to the origin, i.e., when τωd

is an integer multiple of 2π (we call this “fine-tuning τ”).
In this case the integral of each of the time-dependent op-
erators vanishes independently, as mentioned in Sec. F.
Similarly, when ωd is large compared to gαβ and 1/τ , the
operators rapidly oscillate and so approximately cancel
under the rotating wave approximation.

Let us now explain the reason for the particular frame
choice we have made. Consider a single qubit subject to
gates or pulses. In the lab frame the Hamiltonian is

Hlab(t) = −1

2
ωqZ + ε(t) sin(ωdt+ φ)X , (G1)

where ωd is the drive frequency and ε(t) is the pulse en-
velope. If we transform into a frame defined by UZ(t) =

e−
1
2 iωdtZ , then in this rotating frame the Hamiltonian
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becomes:

Hrf(t) = −1

2
(ωq − ωd)Z (G2a)

+ ε(t) sin(ωdt+ φ)[cos(ωdt)X + sin(ωdt)Y ]

≈ 1

2
(ωd − ωq)Z +

1

2
ε(t)[sin(φ)X + cos(φ)Y ] ,

(G2b)

where in Eq. (G2b) we made the rotating wave approxi-
mation (discarding terms with a frequency of ±2ωd).

In an analysis of DD that starts from first principles,
such as is common in the nuclear magnetic resonance
literature (see, e.g., Ref. [60]), one assumes that the drive
frequency is resonant with the qubit frequency, i.e., ωd =
ωq. Choosing the phase φ as π/2 or 0 generates an X
or Y pulse, respectively, provided one also chooses the

pulse width δ appropriately, i.e., such that
∫ δ

0
ε(t)dt = π.

One can then realize either a pure-X or an XY4 sequence
described by static pulses. Thus, in writing an expression
such as XfτY fτXfτY fτ describing the XY4 sequence,
one has implicitly assumed a transformation to the frame
defined by UZ(t), along with the resonance condition.

The situation is slightly more complicated in the pres-
ence of a second (spectator) qubit, since the latter can
shift the eigenfrequency of the first (main) qubit. This
is precisely what happens in the presence of crosstalk, as
we saw in the main text. If ωd is not exactly equal to
the main qubit’s eigenfrequency ω′q then the latter will
be subject to a Hamiltonian containing a term of the
form − 1

2 (ω′q − ωd)Z in a frame rotating with ωd. This
mismatch is indeed realized in our experiments, since the
gate drive frequency ωd is set once per device after a cali-
bration procedure, while the main qubit’s eigenfrequency
depends (due to crosstalk) on the state of the spectator
qubit. The main qubit is in our case subject to two gates
per circuit: a gate that prepares the initial state (|±〉 or
|±i〉), and a gate that undoes this preparation before the
qubit is measured in the Z-basis. The difference between
ωd and the main qubit’s eigenfrequency then manifests
as the oscillations observed in Fig. 1 of the main text,
whenever the main qubit’s eigenfrequency is shifted by
the spectator qubit’s initial state so as to be different
from ωd.

To sum up, our frame choice is motivated simply by the
observation that the drive frequency is calibrated to be
resonant with a particular eigenfrequency of the device’s
qubits, which depends on the state of the neighboring
qubits. Transforming into a frame that rotates with one
of these frequencies gets us as close as possible to remov-
ing the qubit frequency oscillations and hence being able
to describe the gates and pulses as static in the rotating
frame.

Next, let us discuss DD in this context. Recall that
our setting involves applying DD pulses to the spectator
qubits. The same considerations as above apply. Namely,
the drive frequency for the DD pulses is the same ωd as
for the main qubit, since the identification of main vs
spectator is an arbitrary one we have made. However,

the eigenfrequency ω′qi (i > 1) of the spectator qubits de-
pends on the state of the qubits they are coupled to [the
main qubit (i = 1), and possibly other spectator qubits].
This means that generally the resonance condition can-
not be satisfied: ωd 6= ω′qi for most or all i. Therefore, in
reality, due to crosstalk we cannot assume that the DD
sequence is described by static pulses, and an expression
such as ŨX(2τ) = X2Ũf (2τ, τ)X2Ũf (τ, 0) (which is at
the core of our analysis of DD in the main text), is an
approximation in the sense that the X2 operators should
really be replaced by Hrf(t) (with φ = π/2). The approx-
imation made in our analysis and simulations amounts
to assuming, as is common in the analysis of DD, that
the pulses are instantaneous, i.e., that the pulse envelope
ε(t) is a Dirac delta function. This is the sense in which

ŨX(2τ) can be written as X2Ũf (2τ, τ)X2Ũf (τ, 0), and it
is this approximation that is the reason that the specta-
tor qubit frequencies do not appear in our description of
DD. With this caveat in mind, the agreement between
our simulations and the experimental results shows that
the instantaneous pulse approximation works remarkably
well.

Now, our analysis in Sec. F has already shown that in
the relevant rotating frame, even subject to the instanta-
neous pulse approximation, the effect of the pure-X and
XY4 sequences applied to the spectator qubit is equiv-
alent in the sense of exact cancellation (unless τ is fine-
tuned): both cancel the Z2 and ZZ terms, but no others.
When ωd � gαβ , the XY4 sequence approximately can-
cels the XX,XY, Y X, Y Y terms that are not suppressed
even to first order in τ by the pure-X sequence. This
is also confirmed experimentally in Fig. 6, where we see
equal performance on a processor where dephasing and
ZZ couplings dominate, but improved performance from
XY4 on the Lima processor where relaxation is signifi-
cant. We thus conclude that pure-X DD may be prefer-
able in the circumstance where dephasing and ZZ cou-
plings are dominant, and that both pure-X and XY4 DD
should be fine-tuned or operated in the fast-drive limit
in order to optimize effectiveness.

Appendix H: Toggling frame analysis

In this section we perform a toggling frame analysis
after first transforming to the rotating frame we have
considered thus far. DD in the toggling frame is described
in terms of sign-switching functions, which lends itself
to a simpler interpretation. As our open system model
we consider a single qubit coupled to an external bath
described by the following Hamiltonian:

H = −1

2
ωqZ +HDD(t) +HB (H1a)

+ gxXBX + gyY BY + gzZBZ +HB , (H1b)
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where HDD(t) is the Hamiltonian generating the DD con-
trol pulses. We choose

HDD(t) = εX(t)(cos(ωdt)X − sin(ωdt)Y ) (H2a)

+ εY (t)(sin(ωdt)X + cos(ωdt)Y ) , (H2b)

where ωd is the drive frequency and εX(t) and εY (t) are
the pulse envelopes.

If we move to a rotating frame generated by − 1
2ωdZ+

HB (thus also including the pure-bath term in addition
to our standard rotating frame), then the interaction pic-
ture Hamiltonian becomes:

H̃(t) = −1

2
(ωq − ωd)Z + εX(t)X + εY (t)Y (H3a)

+ gxX(t)BX(t) + gyY (t)BY (t) + gzZBZ(t) , (H3b)

where

X(t) = cos(ωdt)X + sin(ωdt)Y (H4a)

Y (t) = cos(ωdt)Y − sin(ωdt)X (H4b)

Bi(t) = U†(t)BiU(t) , (H4c)

where U(t) = e−it(−
1
2ωdZ+HB). If the pulses are ideal, we

can approximate εX(t) and εY (t) by Dirac comb func-
tions:

εX(t) =
π

2

NX−1∑
i=0

δ(t− txi ) (H5a)

εY (t) =
π

2

NY −1∑
i=0

δ(t− tyi ) , (H5b)

where txi and tyi are the locations of the X and Y pulses
and NX and NY are the numbers of each pulse type.
Then we can move to the toggling frame [59] defined by
the pulse unitaries

UR(t) ∝


R, tr2i ≤ t < tr2i+1

I, tr2i+1 ≤ t < tr2i+2

I, t < t0

(H6)

up to a global phase. In the above expression, R ∈ [X,Y ]
and accordingly r ∈ [x, y]. If we assume txi 6= tyj for

all i, j, then [UX(t), UY (t)] = 0. The toggling frame is
defined by the unitary UX(t)UY (t).

The Hamiltonian in the toggling frame becomes:

H̃tog(t) = fX(t)fY (t)
[
− 1

2
(ωq − ωd)Z + gzZBZ(t)

]
+ gxfY (t)X(t)BX(t) + gyfX(t)Y (t)BY (t) ,

(H7)

where fX(t) and fY (t) are switching functions given by:

fR(t) =


−1, tr2i ≤ t < tr2i+1

1, tr2i+1 ≤ t < tr2i+2

1, t < t0

. (H8)

Next, we focus only on equidistant DD sequences. We
denote the pulse interval by τ and the length of a single
DD cycle by ∆t ∝ τ . Then we calculate the total unitary
evolution operator in the toggling frame from 0 to ∆t
using the first order Magnus expansion:

Utog(∆t) ≈ exp

[
− i
∫ ∆t

0

dtH̃tog(t)

]
= (H9a)

exp

[
− i
∫ ∆t

0

dt

(
fX(t)fY (t)

2
(ωd − ωq)Z (H9b)

+ fX(t)fY (t)gzZBZ(t) + gxfY (t)X(t)BX(t) (H9c)

+ gyfX(t)Y (t)BY (t)

)]
. (H9d)

We ignore the terms in line (H9b) because they describe
the closed-system dynamics. The remaining terms in the
exponential can be written as:∫ ∆t

0

dt[GX(t)X +GY (t)Y +GZ(t)Z] , (H10)

where

GX(t) = gxfY (t) cos(ωdt)BX(t)− gyfX(t) sin(ωdt)BY (t)
(H11a)

GY (t) = gxfY (t) sin(ωdt)BX(t) + gyfX(t) cos(ωdt)BY (t)
(H11b)

GZ(t) = gzfX(t)fY (t)BZ(t) . (H11c)

To achieve first order cancellation, we need to have∫ ∆t

0

GR(t)dt = 0 R ∈ [X,Y, Z] . (H12)

This is not always possible when ωd 6= 0, even for a
universal DD sequence such as XY4. A counterexample
is given in Sec. F. Recall that in Sec. G we argued that
in the limit of ωd � g, Eq. (H12) is still approximately
achievable.

We now derive an upper bound for Eq. (H10) under
two different assumptions. First, we consider the case
where the bath is constant, i.e., BR(t) = BR. In this

case it is easy to see that
∫∆t

0
GZ(t)dt (which has no

drive frequency dependence) can be exactly cancelled.
We bound the remaining terms by first using the triangle
inequality:∥∥∥∥∥∥

∑
R

R

∫ ∆t

0

GR(t)dt

∥∥∥∥∥∥
≤ |gx| ‖BX‖

∣∣∣∣∣
∫ ∆t

0

fY (t) cos(ωdt)dt

∣∣∣∣∣+ · · · . (H13)

Note that in the absence of the cos(ωdt) term the in-
tegral would vanish for any choice of ∆t that includes
an equal number of ±1 switches, as in standard DD. It
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is thus the presence of the drive frequency that causes
the imperfect cancellation, as we have argued above. On
the other hand, it is also clear that a sufficiently large
drive frequency can average the integral to zero. To show

this rigorously, terms such as
∣∣∣∫∆t

0
fY (t) cos(ωdt)dt

∣∣∣ can

be bounded by splitting the integral into intervals over
which the switching functions are constant:∣∣∣∣∣
∫ ∆t

0

fY (t) cos(ωdt)dt

∣∣∣∣∣ ≤∑
i

∣∣∣∣∣
∫ τi+1

τi

cos(ωdt)dt

∣∣∣∣∣ ≤ 2c′

ωd
,

(H14)

where c′ is the number of piece-wise constant intervals
of the function fY (t) in [0,∆t]. In the case of pure-X,
pure-Y, or XY4 sequences, it equals 2. Denoting

g = max
r∈{x,y}

|gr|, B = max
R∈{X,Y }

‖BR‖ , (H15)

we can add up all terms in Eq. (H13):∥∥∥∥∥∥
∑
R

R

∫ ∆t

0

GR(t)dt

∥∥∥∥∥∥ ≤ 16gB

ωd
. (H16)

We can see that the upper bound of the oscillating terms
scales as O(gB/ωd). This can also be understood using
the Riemann-Lebesgue lemma. Thus, when ωd � g, the
fast drive already offers some protection against the X
and Y coupling to the bath. The system bath coupling
along the Z direction becomes the dominant one, which
can be suppressed via pure-X, pure-Y, or XY4 sequences.

Second, let us consider the case where the bath is ro-
tating at the same frequency as the drive. In this case,
BR(t) can be written as a Fourier series with only a single
frequency component at ωd:

BR(t) = B′R cos(ωdt) +B′′R sin(ωdt). (H17)

Based on the same argument, the terms left in Eq. (H10)
that do not depend on ωd are

gxXB
′
X

2

∫ ∆t

0

fY (t)dt,− gyXB
′′
Y

2

∫ ∆t

0

fX(t)dt (H18a)

gxY B
′′
X

2

∫ ∆t

0

fY (t)dt,− gyY B
′
Y

2

∫ ∆t

0

fX(t)dt , (H18b)

while the other terms scale as O(gB/ωd). As a result,
the fast drive will suppress all the error terms to order
O(gB/ωd) except forXB′X , XB′′Y , Y B′′X and Y B′Y . How-
ever, the latter cancel (to first order in ∆t) by either X
or Y pulses, since the integrals in Eq. (H18) all vanish
for an appropriate choice of ∆t.

When the bath has different frequency components the
analysis become more complex. However, we expect the
results to hold for baths that are concentrated around
ω = 0 or ω = ωd. On the other hand, this analysis
shows that the rotating frame introduces an additional

non-vanishing order to any DD sequence. For universal
DD sequences such as XY4 with leading cancelling order
O(∆t), some error of the order O(gB/ωd) still remains.
This may dramatically affect the performance of DD se-
quences which are designed with more than first order
cancellation (such as CDD [40] or UDD [41]), because
the O(gB/ωd) terms will become comparable to high or-
der errors O(∆tn) when n is large enough.

Processor Ourense Yorktown Yorktown Lima

Date accessed 01/18/2021 01/19/2021 07/07/2021 06/30/2021

Q0

Qubit freq.(GHz) 4.8203 5.2828 5.2823 5.0298

T1 (µs) 117.7 38.0 54.7 125.9

T2 (µs) 79.4 23.1 22.6 134.0

sx gate error [10−2] 0.0310 0.1371 0.0204 0.0304

sx gate length (ns) 35.556 35.556 35.556 35.556

readout error [10−2] 1.60 2.92 10.99 2.48

Q1

Qubit freq.(GHz) 4.8902 5.2476 5.2475 5.1276

T1 (µs) 96.3 52.4 64.5 79.0

T2 (µs) 29.6 23.2 27.4 140.3

sx gate error [10−2] 0.0368 0.1563 0.0954 0.0205

sx gate length (ns) 35.556 35.556 35.556 35.556

readout error [10−2] 3.35 3.00 33.7 1.83

Q2

Qubit freq.(GHz) 4.7166 5.0335 5.0334 5.2474

T1 (µs) 117.1 63.1 70.3 135.1

T2 (µs) 114.5 87.6 36.9 174.0

sx gate error [10−2] 0.0668 0.0464 0.0522 0.0500

sx gate length (ns) 35.556 35.556 35.556 35.556

readout error [10−2] 1.76 7.68 9.72 1.55

Q3

Qubit freq.(GHz) 4.7891 5.2923 5.2920 5.3034

T1 (µs) 138.4 59.3 60.0 74.9

T2 (µs) 106.7 43.8 28.2 48.0

sx gate error [10−2] 0.0374 0.0388 0.0537 0.0599

sx gate length (ns) 35.556 35.556 35.556 35.556

readout error [10−2] 3.48 5.54 3.03 10.21

Q4

Qubit freq.(GHz) 5.0238 5.0785 5.0784 5.092

T1 (µs) 110.2 47.0 56.7 21.1

T2 (µs) 33.8 32.0 39.3 22.0

sx gate error [10−2] 0.0495 0.0703 0.0592 0.0802

sx gate length (ns) 35.556 35.556 35.556 35.556

readout error [10−2] 4.69 2.94 5.34 5.37

TABLE I. Specifications of the Ourense, Yorktown, and Lima
devices along with the access dates of our experiments. The
sx (
√
σx) gate forms the basis of all the single qubit gates and

any single qubit gate of the form U3(θ, φ, λ) is composed of
two sx and three rz(λ) = exp(−iλ

2
σz) gates (which are error-

free and take zero time, as they correspond to frame updates).
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[53] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A.
Smolin, M. Ware, J. Strand, B. L. T. Plourde, and
M. Steffen, Process verification of two-qubit quantum
gates by randomized benchmarking, Phys. Rev. A 87,
030301 (2013).

[54] K. Khodjasteh and D. A. Lidar, Performance of deter-
ministic dynamical decoupling schemes: Concatenated
and periodic pulse sequences, Phys. Rev. A 75, 062310
(2007).

[55] qiskit.pulse.schedule.draw[online] (2021).
[56] H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford: Oxford University Press,
2010).

[57] qiskit.providers.models.backendproperties (2021).
[58] L. Capelluto and T. Alexander, Openpulse: Software for

experimental physicists in quantum computing (2021).
[59] L. Viola, S. Lloyd, and E. Knill, Universal control of

https://doi.org/arXiv: 2106.00675
https://doi.org/arXiv: 2106.00675
https://doi.org/10.1103/PhysRevLett.127.130501
https://doi.org/arXiv:2201.09866
https://doi.org/10.1103/PhysRevApplied.12.054023
https://doi.org/10.1103/PhysRevApplied.12.054023
https://doi.org/10.1103/PhysRevApplied.16.054020
https://doi.org/10.1103/PhysRevApplied.16.054020
https://quantum-computing.ibm.com/
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.59.4178
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevA.84.012305
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevA.100.012301
https://doi.org/10.1103/PRXQuantum.1.020318
https://doi.org/10.1103/PhysRevLett.127.200502
https://doi.org/10.1103/PhysRevApplied.16.024037
https://doi.org/10.1103/PhysRevApplied.16.024037
https://doi.org/10.1103/PhysRevApplied.15.064074
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.22331/q-2021-10-05-557
https://doi.org/10.1103/PhysRevLett.126.230502
https://doi.org/10.1103/PhysRevLett.126.230502
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1103/PhysRevA.75.062310
https://doi.org/10.1103/PhysRevA.75.062310


23

decoupled quantum systems, Phys. Rev. Lett. 83, 4888
(1999).
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Date accessed 12/30/2021 12/31/2021 01/01/2022 01/02/2022 01/07/2022 01/08/2022 11/30/2021

Q0

Qubit freq. (GHz) 5.3006 5.3006 5.3006 5.3006 5.3006 5.3006 5.3006

T1 (µs) 55.8 84.6 96.7 79.8 114.7 95.2 85.7

T2 (µs) 87.3 137.4 77.1 178.6 118.2 112.7 149.6

sx gate error [10−2] 0.0336 0.0309 0.0363 0.0325 0.0370 0.0257 0.0275

sx gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

x gate error [10−2] 0.0336 0.0309 0.0363 0.0325 0.0370 0.0257 0.0275

x gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

readout error [10−2] 5.71 4.72 4.51 3.75 3.40 3.11 4.31

Q1

Qubit freq. (GHz) 5.0806 5.0806 5.0806 5.0806 5.0806 5.0806 5.0806

T1 (µs) 129.2 114.4 89.4 58.6 131.7 106.3 191.1

T2 (µs) 122.4 98.2 59.8 59.9 140.9 154.0 82.1

sx gate error [10−2] 0.04605 0.0597 0.0566 0.0283 0.0653 0.0247 0.0860

sx gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

x gate error [10−2] 0.04605 0.0597 0.0566 0.0283 0.0653 0.0247 0.0860

x gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

readout error [10−2] 2.80 3.83 3.80 1.54 3.00 2.30 7.91

Q2

Qubit freq. (GHz) 5.3222 5.3222 5.3222 5.3222 5.3221 5.3222 5.3221

T1 (µs) 90.0 87.8 76.9 120.9 94.2 114.2 77.0

T2 (µs) 143.9 170.5 129.2 158.8 26.6 121.9 103.3

sx gate error [10−2] 0.0370 0.0333 0.0452 0.0495 0.0371 0.1668 0.0352

sx gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

x gate error [10−2] 0.0370 0.0333 0.0452 0.0495 0.0371 0.1668 0.0352

x gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

readout error [10−2] 2.23 2.20 2.19 1.78 5.77 4.46 4.58

Q3

Qubit freq. (GHz) 5.1636 5.1636 5.1636 5.1636 5.1636 5.1636 5.1636

T1 (µs) 125.1 81.7 112.7 112.2 110.5 113.3 111.3

T2 (µs) 21.4 21.4 21.4 21.4 21.7 21.7 10.3

sx gate error [10−2] 0.0257 0.0278 0.0299 0.0260 0.0238 0.0241 0.0288

sx gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

x gate error [10−2] 0.0257 0.0278 0.0299 0.0260 0.0238 0.0241 0.0288

x gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

readout error [10−2] 2.60 2.04 2.52 2.24 2.60 2.44 2.73

Q4

Qubit freq. (GHz) 5.0524 5.0524 5.0524 5.0524 5.0524 5.0523 5.0524

T1 (µs) 145.2 106.1 117.4 104.9 87.5 97.4 104.8

T2 (µs) 171.5 187.9 113.4 160.2 110.6 180.7 203.5

sx gate error [10−2] 0.0412 0.0291 0.0381 0.0418 0.0396 0.0299 0.0405

sx gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

x gate error [10−2] 0.0412 0.0291 0.0381 0.0418 0.0396 0.0299 0.0405

x gate length (ns) 35.556 35.556 35.556 35.556 35.556 35.556 35.556

readout error [10−2] 2.23 2.15 2.28 2.01 2.19 1.87 2.19

CNOT (Q1→ Q3)

gate length (ns) 334.222

gate error [10−2] 0.90

TABLE II. Specifications of the Quito device along with the access dates of our experiments. Data for Fig. 8 was acquired over
a period of six days from 12/30/2021 to 01/02/2022 and from 01/07/2022 to 01/08/2022 and the data for Fig. 2 of the main
text was acquired on 11/30/2021.
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