
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Deep Reinforcement Learning for Quantum Hamiltonian
Engineering

Pai Peng (彭湃), Xiaoyang Huang, Chao Yin, Linta Joseph, Chandrasekhar Ramanathan, and
Paola Cappellaro

Phys. Rev. Applied 18, 024033 — Published 11 August 2022
DOI: 10.1103/PhysRevApplied.18.024033

https://dx.doi.org/10.1103/PhysRevApplied.18.024033


Deep reinforcement learning for quantum Hamiltonian engineering

Pai Peng (mC),1, ∗ Xiaoyang Huang,2, † Chao Yin,2 Linta

Joseph,3 Chandrasekhar Ramanathan,3 and Paola Cappellaro4, 2, ‡

1Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139

2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA

4Department of Nuclear Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: July 19, 2022)

Engineering desired Hamiltonians in quantum many-body systems is essential for applications
such as quantum simulation, computation and sensing. Many widely used quantum Hamiltonian
engineering sequences are designed using human intuition based on perturbation theory, which may
not describe the optimal solution and is unable to accommodate complex experimental imperfec-
tions. Here we numerically search for Hamiltonian engineering sequences using deep reinforcement
learning (DRL) techniques and experimentally demonstrate that they outperform celebrated decou-
pling sequences on a solid-state nuclear magnetic resonance quantum simulator. As an example,
we aim at decoupling strongly-interacting spin-1/2 systems. We train DRL agents in the presence
of different experimental imperfections and verify robustness of the output sequences both in sim-
ulations and experiments. Surprisingly, many of the learned sequences exhibit a common pattern
that had not been discovered before, to our knowledge, but has an meaningful analytical descrip-
tion. We can thus restrict the searching space based on this control pattern, allowing to search for
longer sequences, ultimately leading to sequences that are robust against dominant imperfections
in our experiments. Our results not only demonstrate a general method for quantum Hamiltonian
engineering, but also highlight the importance of combining black-box artificial intelligence with
understanding of physical system in order to realize experimentally feasible applications.

I. INTRODUCTION

Controllable quantum many-body systems hold great
promise not only to expand our understanding of funda-
mental physics, such as information scrambling and non-
equilibrium phases of matter, but also to yield revolution-
ary technologies in computation, simulation and sensing.
A core task of quantum control is to combine elementary
control units to engineer desired quantum Hamiltonians.
Although it is relatively easy to derive the (approximate)
Hamiltonian resulting from a given control sequence, the
inverse problem of designing optimal control sequences
for a target Hamiltonian is highly challenging. The prob-
lem was tackled in Nuclear Magnetic Resonance (NMR)
through the development of average Hamiltonian theory
(AHT) [1]. Many of the celebrated sequences in NMR
are designed from intuition and experience, based on low-
order expansions in AHT [2–11]. Unfortunately, simply
relying on intuition makes it difficult to find generaliza-
tions and capture higher-order effects and control imper-
fections that might be crucial in experiments. Conven-
tional numerical optimization methods, such as gradient
ascent pulse engineering [12] and chopped random ba-
sis [13], can yield optimal solutions, but are suitable for
optimizing single gates or short sequences where the con-
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trol landscape is smooth and does not contain too many
local optima. Therefore, they are more suitable for op-
timizing individual (continuous) pulse shapes or a short
composite pulse, rather than a pulse sequence containing
tens of pulses. While phase and amplitude modulated
continuous decoupling are amenable to gradient ascent
optimization [14], their experimental implementation has
been more limited than pulsed methods.

Recently, artificial intelligence, in particular reinforce-
ment learning (RL) with deep neural networks, has sur-
passed human intelligence in many complex tasks such as
Go [15] and StarCraft II [16]. As a subfield of Machine
Learning (ML), RL differs from (un)-supervised learning
by learning through exploration and exploitation based
on the reward of the result. In stark contrast to conven-
tional optimization methods, RL is a model-free method,
which only requires minimum knowledge to find the re-
ward. This matches closely the task of Hamiltonian en-
gineering where human intuition into the optimal pulse
sequence is limited and might be biased. Deep neural
networks (DNN) provide a versatile and powerful way
to reparametrize a large search space. Unlike linear opti-
mization, DNN are capable of doing both linear and non-
linear mathematical manipulation to turn the input into
the output (for RL and DNN, see recent reviews [17, 18]).
In the quantum physics context, RL has been shown to
provide successful strategies for quantum state prepara-
tion [19–24], quantum gate design [25–27], quantum com-
munication [28], quantum memory protection [29], quan-
tum error correction [30–32], quantum state transfer [33],
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and quantum sensing [34]. Although RL has in principle
demonstrated its advantages for quantum applications
via numerical studies, its practical implementation in ex-
periments is still challenging due to non-ideal conditions
arising from noise and control imperfections.

Here we apply RL with DNN [deep reinforcement
learning (DRL)] to quantum Hamiltonian engineering
and experimentally demonstrate its advantage in a non-
integrable system. We focus on the task of decoupling a
spin-1/2 system with dipolar interaction (i.e. the target
Hamiltonian is zero), which is directly useful for quan-
tum memories [35]; our method can be further applied to
other quantum engineering scenarios by simply replacing
the reward function. To avoid uncountably large parame-
ter space and for easier experimental implementation, we
restrict the control space by allowing the machine learner
to choose one of five actions at a time (no pulse or a π/2
pulse along one of 4 axes), with a fixed delay time be-
tween actions, until the maximum time is reached. We
then numerically calculate the unitary propagator of the
resulting pulse sequence, and use the fidelity with respect
to target propagator as the reward. The control is re-
stricted to experimentally feasible operations, while still
encompassing a wide range of target Hamiltonians that
can exhibit integrable, ergodic, localized or prethermal
behaviors [36–38]. The restriction leads to a complicated
and nonconvex control landscape [39], that would not be
amenable to conventional optimization. We thus utilize
DNN to reparametrize the control space and implement
a state-of-the-art gradient-free method to optimize the
neural networks [40].

We not only apply the DRL to the idealized scenario,
but also incorporate imperfections, such as pulse fre-
quency offset, on-site disordered field, pulse angle error
and finite pulse width, to mimic realistic experiments.
We test the performance of the DRL pulse sequences us-
ing solid-state nuclear spin systems, and the sequences in-
deed show the expected robustness even in experiments.
Surprisingly, although it is generally believed that sym-
metric sequences have better performance [41, 42], many
of the high-reward sequences found by DRL are not sym-
metric. Instead, they obey a common “yxx pattern”
which has not been found before. We analytically explain
the advantage of the yxx pattern using AHT. Further-
more, the restriction to pulse sequences exhibiting the
yxx pattern significantly reduces the search space, thus
enabling to find longer and more powerful sequences. As
a result, we discover sequences that are robust against
all relevant imperfections and outperform the previous
sequences decoupling sequence [3] in experiments [see
Fig. 1(a)], as well as other, more recently designed se-
quences [35, 43]. Our work demonstrates that some long-
established knowledge may not be optimal for quantum
Hamiltonian engineering, while pure black-box DRL is
also resource consuming. It is beneficial to combine both
human knowledge and artificial intelligence for practical
applications.

This paper is organized as follows. In Sec. II we ex-

plain how to model the Hamiltonian engineering task as
a RL problem and our learning algorithm. Sec. III intro-
duces our experimental system and average Hamiltonian
theory. The learned sequences together with their exper-
imental tests are presented in Sec. IV, before drawing our
conclusions.

II. REINFORCEMENT LEARNING

A. Modeling

We consider quantum Hamiltonian engineering in a
spin-1/2 system where the internal Hamiltonian H0 is
the secular dipolar interaction along the z-axis

H0 ≡ Dz =
1

2

N∑
j<k

Jjk

(
3SjzS

k
z − ~Sj ·~Sk

)
, (1)

where ~Sj = (Sjx, S
j
y, S

j
z)
T are spin-1/2 operators of the

j-th spin (j = 1, · · · , N) and Jjk the coupling strength
between spins j and k. Later we will also use Dx and
Dy defined in the similar way. In the training process we
consider a 1D spin chain with nearest coupling only, i.e.
Jjk = Jδj+1,k (δi,j is the Kronecker delta). This is con-
venient because 1D systems can be efficiently simulated
on a classical computer; still, experimental validations
are performed in 3D systems. We aim at decoupling the
spins, that is, the target Hamiltonian is zero. As we will
show, for decoupling purpose, the dimensionality does
not play a crucial role; instead the performance is mostly
determined by the symmetry of the Hamiltonian.

To decouple the interaction, it is sufficient to apply
global rotations to the system, which can be easily im-
plemented in experiments. We further restrict our con-
trol to π/2 global rotations along the x, y,−x or −y di-
rections. These controls are available to almost every
quantum platform and are known to be sufficient for de-
coupling, since they are the building blocks of many well-
known decoupling sequences such as WAHUHA [2] and
Cory48 [3]. We note that π pulses are instead the pre-
ferred building block for single-spin decoupling, but leave
invariant the homonuclear interactions, and we thus do
not include them as actions here (although it would be
an easy modification of our method). Experimentally, the
controls cannot be applied arbitrarily fast due to pulse
ring-down and apparatus dead-time. Instead, there is
usually a minimal delay time τ in between pulses.

The spin chain system and the control rules consti-
tute the environment of RL. We then need to set up
the RL agent that interacts with the environment. RL
works by building agents that choose a (sub)optimal ac-
tion at any given time based on the current state (which
collects all the previous actions). The action changes
the status of the environment and updates the state,
and the agents are optimized based on a reward deter-
mined by the environment, as shown in Fig. 1(b). We
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FIG. 1. (a) Quantum dynamics characterized by the decay of x-correlation, CXX = Tr(X(t)X)/2L with X =
∑
j S

j
x, under

free evolution (no pulses, blue curve), and with RF pulse sequences, Cory48 (grey curve) and yxx48 obtained from RL (purple
curve). Parameters can be found in Fig. 3 (b) High-level RL protocol for Hamiltonian engineering. The agent, realized as a
deep neural network, takes an action based on the current state. This action applies the corresponding control operation to
the spin chain. The interpreter updates the state based on the chosen action, and feeds it to the agent to take next action.
When the final time is reached, the interpreter calculates the reward, which is then used to optimize the agent. (c) States and
actions, and corresponding quantum operations, illustrated using the WAHUHA sequence [2], which can be discretized into 6
times steps. x, x̄, y, ȳ in the colored blocks denote π/2 pulses along x,−x, y,−y, respectively. d in the dashed blocks denotes
no pulse action (delay). The propagators of pulses shown in (c) correspond to infinitely short pulses (δ pulses). For a x pulse

with finite width tw, the propagator should be e−i
π
2
X−iH0tw , similar for pulses along other axes..

first discretize the time in steps of τ – we consider only
t = mτ with m = 0, 1, 2 · · · . At each discrete time
t = mτ , the agent chooses an action Am from a set of
five possible actions (no pulse or a π/2 pulse along the
±x,±y directions). The state S(m) is simply defined as
a list containing all previous actions and the integer m,
S(m) = [A0, A1, · · · , Am−1,m]. As an example, we show
the state and action at each time step of the WAHUHA
sequence in Fig. 1(c). The process ends when the final
time Mτ is reached. At this point the environment has
received M actions [A0, A1, · · · , AM−1] and undergone a
unitary evolution with propagator

U({Am}) = e−iH0τUAM−1
e−iH0τUAM−2

· · · e−iH0τUA0 ,
(2)

where UAm describes the evolution induced by the ac-
tion Am. If Am is “no pulse”, then UAm = 1; if Am is
a π/2 pulse, e.g. along x, then UAm = e−i(π/2)X with
X =

∑
j S

j
x being the collective spin-x operator. Later

we will also use Y =
∑
j S

j
y and Z =

∑
j S

j
z . To com-

pare pulse sequences of different lengths M , it is useful to

consider Uτ ({Am}) = [U({Am})]1/M the effective propa-
gator for t = τ . How close is the engineered propagator
Uτ ({Am}) to the target propagator Utgt is characterized

by the fidelity F ({Am}) = Tr|Uτ ({Am})U†tgt|/2N ∈ [0, 1],
where N is total number of spins. For the decoupling
task Utgt = 1. Since many good pulse sequences have
near unity fidelity, we define the reward function as
R({Am}) = − ln [1− F ({Am})] to emphasize the small
infidelity [44]. The fidelity also provides a lower bound
for observable correlations [38, 45, 46], which can be di-
rectly measured in experiments [37], and it is thus a good
metric to assess the sequence [19].

Imperfections can be easily incorporated into this
model by changing the free evolution propagator or the
pulse propagator. In this work we consider the following
imperfections that are most evident in our experiments
and frequently encountered in other systems: pulse fre-
quency offset, on-site disorder, pulse angle error and fi-
nite pulse width. A frequency offset exists when the pulse
frequency differs from spin resonance frequency. This can
be modeled by adding the offset Hamiltonian ∆Z to H0,
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FIG. 2. (a) Schematic of the RL algorithm. We keep a population of agents (in this cartoon the population size is Np = 5,
while in actual implementation the parameters are specified in Tab. I). Each agent is a DNN that generates the probability of
taking each action based on the current state. We evaluate the reward of all agents and choose the top P agents as parents (here
P = 3, see Tab. I for the actual implementation parameters). The top agent (Elite) is moved to the next generation without any
change, while the other parents are slightly mutated to generate the next generation of agents. (b) Illustration of the (reward)
control landscape for a 6-pulse dynamical decoupling sequence in the ideal scenario. For simplicity, here we only show the case
where the first four pulses are fixed to be {d, x,−y, d}, with d denoting the no pulse action. x and y-axis represent the 5th and
6th action.(c) Learning curve of DRL for 12-pulse dynamical decoupling in the ideal scenario. Here Np = 201, P = 21.

where ∆ is the amount of frequency offset. On-site disor-
der describes differences in the frequency of each spin; the
deviation from the (nominal) mean frequency is a random
variable. On-site disorder can be modeled by including
the disorder Hamiltonian

∑
j wjS

j
z in H0, with wj uni-

formly distributed in [−W,W ]. The disorder Hamilto-
nian is very similar to the frequency offset, so a sequence
that is robust against frequency offset is also typically
robust against disorder. Therefore, in the training pro-
cess we consider the frequency offset only, and in the
test process we verify the two are indeed closely related.
Angle errors happen when the rotation angle due to the
pulse deviates from π/2 by an amount ε. We assume
this deviation is the same for all pulses, and thus it can
modeled by changing all pulse propagators in the same
way. For example, a x pulse with an angle error is de-
scribed by the propagator e−i(π/2)X(1+ε). In experiments,
pulses are not instantaneous (delta-pulses) but have a fi-
nite width. During the pulse time tw the spins interact

with each other, yielding a propagator e−i(πX/2+H0tw)

for the x pulse, similarly for y and z pulses. Beyond
what we consider above, many other imperfections can
be included by just modifying the reward, as long as the
imperfection can be efficiently modeled.

We note that our optimization setup differs from the
ones commonly used in numerical pulse engineering,
where the time is discretized into tiny time steps and
each action only applies a small evolution to the sys-
tem [12, 19, 25]. Instead in our protocol, neither the free
evolution time τ nor the pulse rotation angle need to be
small. Two differences can yield an advantage in certain
experimental conditions: (i) π/2 pulses are usually avail-
able and well calibrated, while modulating the control
drive over short timescale poses challenges on the hard-
ware and is more difficult and inefficient to calibrate; (ii)
by taking a larger step per action, our method is more
suitable to finding long pulse sequences, while previous
methods are typically used to optimize single gates. Con-
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versely, the larger step is accompanied by a worse con-
trol landscape –the reward function is not smooth on the
space of final states, as shown in Fig. 2(b). However,
the deep neural network and gradient-free optimization
method successfully solve this issue, as we show in the
next subsection.

B. Algorithm

We first explain how the agent works [see the dashed
box in Fig. 2(a)]. The agent is a DNN that takes the state
as input and generates the next action as the output,
as introduced in Sec. II A. The agent DNN contains two
hidden linear layers, with the number of neurons in each
layer proportional to the input and output size. We use
rectified linear unit (ReLU) [47] as the activation func-
tion. At each step m, the agent takes the state S(m) as
the input and generates 5 positive numbers correspond-
ing to the probability of taking the 5 actions. Then the
action is chosen randomly according to the probabilities,
and the state now become S(m+1). We apply the above
procedure starting from m = 0 until the maximum step
M is reached, then we get an output sequence from the
agent.

Here we explain how we optimize the agents. The pro-
cess is illustrated in Fig. 2 (a). We start with Np agents,
and for each agent generate 3 sequences (note the selec-
tion of actions is a random process so the 3 sequences
may not be the be same [48]), and select the highest re-
ward among the 3 sequences as the reward of the agent.
The reward is obtained on a 3-spin system and we verify
that going to larger systems does not change our results.
Sorting the population of agents by the reward function
in descending order, we apply the truncation selection to
choose the top P individuals as the parents. Among the
parents, we further select the most promising parent, the
so-called Elite, from all the parents by regenerating a few
sequences (typically 5) and comparing their rewards. The
Elite will be included in the children generation without
any change. Every parent agent other than the Elite will
be mutated by adding a random Gaussian noise multi-
plying mutation power µ to all the DNN parameters to
generate (Np−1)/(P −1) children agents. The mutation
process plays the role of “exploration” (search in a large
space) in RL. Too much exploration (large µ) will result
in excessive randomness, making the process closer to a
pure random search; too little exploration instead (small
µ) might leave the RL stuck into a local minimum. In
practice, we decrease µ during the learning process (so
that in the beginning we explore a large space and later
we search near the good agents) following the function

µ(g) = µ0(1− g/G), (3)

where g = 1, ..., G denotes the agent generation. In this
paper, we empirically set µ0 = 0.05 and G = 100. We
repeat the process until the maximum number of gener-
ations G is reached.

With the truncation selection and mutation, we are
able to balance exploration (search in a large space) and
exploitation (focus on the promising area). One example
of the learning curve of DRL is shown in Fig. 2(c). After
20 generations, the Elite DNN starts showing a conver-
gent reward towards the optimal one (global minimum
for this case); after 40 generations, all the parent agents
(mean of parents) begin to converge; the entire agent
population converges after around 90 generation. When
approaching the end of learning, µ becomes small, mean-
ing little exploration but great exploitation. With little
random noise, children agents are able to reproduce the
optimal reward consistently, indicating the convergence
of the algorithm.

III. EXPERIMENTAL AND THEORETICAL
BACKGROUND

A. Experimental system

We use a solid-state NMR quantum simulator to ex-
perimentally test the performance of RL pulse sequences
in realistic conditions. Most of the experimental re-
sults presented in this work are obtained from a sin-
gle crystal of CaF2, where the 19F nuclear spins-1/2
form simple cubic structure. The sample is placed in
a strong magnetic field (7 T) at room temperature. The
nuclear spins interact via the secular dipolar interac-

tion Dz = 1
2

∑N
j<k Jjk

(
3SjzS

k
z − ~Sj ·~Sk

)
with Jjk =

~γ2F
3 cos(θjk)

2−1
|~rjk|3 , where γF is the gyromagnetic ratio of

19F nuclei, ~rjk is the displacement between spins j and
k, θjk is the angle between ~rjk and the magnetic field
(aligned with the z-axis). The maximum possible Jjk is
65.8 krad/s for CaF2 [49]. The relaxation time T1 of our
sample is T1 ≈ 14 s, much longer than the time scale we
explore here. The collective spin rotations are realized
by on-resonance RF pulses with a tw = 1.02 µs π/2 pulse
width. We can also artificially introduce and tune errors
in addition to intrinsic imperfections. We introduce an-
gle error by setting the pulse width to 1.02(1 + ε) µs. We
can also use off-resonance pulses to introduce a frequency
offset.

At room temperature and in a strong magnetic field
along the z axis, the initial state of an ensemble of
19F nuclear spins is described by the density matrix
ρ(0) ≈ (1−ε′Z)/2N , with N being the number of spins
and ε′ ∼ 10−5. The identity part of the density matrix
does not contribute to the NMR signal, so we only care
about the deviation from it, δρ = 4Z/N , which has been
normalized such that Tr(δρZ)/2N = 1. NMR experi-
ments measure the collective magnetization along the x
axis, i.e. the signal is Tr(δρ(t)X)/2N . If we regard the
density matrix δρ as an observable, this signal is math-
ematically equivalent to an infinite-temperature correla-
tion Tr(δρ(t)X)/2N ≡ 〈δρ(t)X〉β=0. Using collective RF
pulses, we can rotate the initial state and the observ-
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Name Sequence Training parameter
Ideal6 y, x, x, y, -x, -x ∆ = 0, ε = 0, tw = 0, Np = 201, P = 11

Offset48

−y,−y,−y,−x,−y,−y,−y,−y,−x,−x,−x,−y,
−x,−x,−y,−y,−y,−x,−x,−x,−y,−y,−y,−y,
−x,−x,−y,−x,−x,−x,−x,−x,−x,−y,−y,−y,
−x,−x,−x,−x,−x,−x,−y,−x,−x,−x,−y,−x

∆ = 0,±3J,±5J, ε = 0, tw = 0, Np = 3001, P = 31

Angle12 −y, x,−x, y,−x,−x,−y, x,−x, y, x, x ∆ = 0, ε = 0.05, tw = 0
and ∆ = 0, ε = 0, tw = 0.1τ,Np = 801, P = 21

PW12 −y,−x,−x, x, x, y,−x,−x,−y, y, x, x ∆ = 0, ε = 0, tw = 0.1τ,Np = 801, P = 21

yxx48

y,−x,−x, y,−x,−x,−y, x, x, y,−x,−x,
−y, x, x,−y, x, x, y,−x,−x, y,−x,−x,
−y, x, x, y,−x,−x,−y, x, x,−y, x, x,
y,−x,−x,−y, x, x, y,−x,−x,−y, x, x

∆ = J, ε = 0.05, tw = 0, Np = 801, P = 21,
with yxx restriction

yxx24
−y, x,−x, y,−x,−x, y,−x, x,−y, x, x,
y,−x, x,−y, x, x,−y, x,−x, y,−x,−x Built from Angle12

TABLE I. Representative DRL pulse sequences under different training conditions. Angle12 appears in two training conditions.
yxx24 is build from Angle12 using AHT analysis (see Appendix C).

able to be X,Y or Z. Therefore, we can measure the
three autocorrelations CXX(t) = 4〈X(t)X〉β=0/N and
CY Y (t), CZZ(t) defined in a similar way. Although in
principle to get the propagator fidelity we have to mea-
sure autocorrelations of all observables, in the Supple-
mentary Material we show that the geometric average of
these three autocorrelations, Cavg ≡ (CXXCY Y CZZ)1/3

already approximates the behavior of the propagator fi-
delity.

To experimentally investigate on-site disorder
[Fig. 6(a)], we work with 19F nuclear spins in fluora-
patite (FAp) [50]. The 31P nuclear spins-1/2 in the
crystal are randomly polarized, giving rise to a disorder
Hamiltonian Hdis =

∑
j hjS

j
z , with hj being a random

variable representing the disordered field at jth 19F nu-
cleus. Interaction between 19F nuclear spins is also given
by the secular dipolar interaction as in CaF2 but with
a lower maximum possible strength 32.7 krad/s. The
19F nuclei form a quasi-1D structure, as the interaction
along the z-direction is ∼ 40 times stronger than along
the other two directions. Although the quasi-1D nature
is not important in the context of this work, it is useful
for quantum simulation [36–38, 45]. The relaxation time
for the FAp crystal is T1 ≈ 0.8s, shorter than for the
CaF2 sample, but still much longer than the duration of
a single experiment.

B. Average Hamiltonian theory

AHT [1] is useful in understanding the performance
of different pulse sequences, so we briefly review it here.
A quantum system under a time-dependent control can
be generally described by the Hamiltonian H(t) = H0 +
Hc(t), with H0 the intrinsic Hamiltonian and Hc the con-
trol Hamiltonian. For the pulsed control case, Hc(t) is
piece-wise constant and nonzero only within the pulse
width. AHT starts by defining the toggling frame, an
interacting frame that rotates with Hc, i.e., Uc(t) =

T [e−i
∫ t
0
Hc(t

′)dt′ ], where T is the time-ordered opera-
tor. In the toggling frame the Hamiltonian is Htog(t) =
U†cH0Uc. At t = 0 the toggling frame coincides with
the lab frame. If after the pulse sequence the toggling
frame rotates back to the lab frame (as it is the case for
all decoupling sequences), then the toggling frame prop-

agator Utog(Mτ) = T [e−i
∫Nτ
0

Htog(t
′)dt′ ] coincides with

the lab frame propagator U({AM}). Although the tog-
gling frame Hamiltonian is still time-dependent, it does
not contain strong pulses and can be effectively approxi-
mated by a time-independent local Hamiltonian (the av-
erage Hamiltonian) HA satisfying Utog(Nτ) = e−iHANτ

[51]. HA can be found perturbatively using the Floquet-
Magnus expansion [52, 53]

HA =
1

Mτ

∫ Mτ

0

Htog(t)dt

− i

2Mτ

∫ Mτ

0

dt1

∫ t1

0

dt2[Htog(t1), Htog(t2)]

+O[(Mτ)2],

(4)

where the right-hand side of the first line is the zeroth-
order average Hamiltonian as it scales as (Mτ)0 and the
second line is the first-order average Hamiltonian. If the
average Hamiltonian is zero to certain order in 1D, it
remains zero for higher dimensions. For example, the
zeroth-order average Hamiltonian for the WAHUHA se-
quence is 2(Dx+Dy+Dz) = 0 regardless of dimensional-
ity. The dimensionality can affect the fidelity by chang-
ing the magnitude of the leading nonzero higher-order
Hamiltonian.

IV. RL PULSE SEQUENCES

We apply DRL to different scenarios and generate vari-
ous pulse sequences. Some representative ones are shown
in Table I. We first tackle the case where we introduce
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only one imperfection at a time, and we later consider
the case where several imperfections are present.

A. Single imperfections

Control sequences that tackle zero or single sources
of imperfections, Ideal6, Offset48, Angle12 and PW12,
are directly generated by RL without any human input,
trained with no error, offset, angle error and finite pulse
width, respectively. In the training process, we start with
a small M (short sequence) and increase M until we find
a high-reward sequence. As can be seen from Table I, all
the good sequence lengths are multiple of 6 [49]. This can
be understood via AHT: to cancel the zeroth-order aver-
age interaction Hamiltonian and rotate back the toggling
frame with the allowed operations, the sequence length
must be a multiple of 6. Moreover, when the dipolar
interaction dominates, the machine learns to cancel the
zeroth-order interaction Hamiltonian as quick as possi-
ble, i.e. in Idea6, Angle12 and PW12 the toggling frame
Hamiltonian averages to zero every 3τ . This coincides
with the discovery in Ref. [54]. The Offset48 sequence,
on the other hand, is trained under strong offset, thus
does not obey this rule. We also notice that the no-pulse
action is never chosen by DRL, in contrast to well-known
decoupling sequences such as Cory48 and WAHUHA. Al-
though the no pulse action is useful for some applications
that requires a long time window between pulses, such as
pulsed gradient generation and stroboscopic detection, it
is not advantageous for decoupling. This can also be un-
derstood from AHT: it is advantageous to apply pulses
as frequently as possible so that higher orders in the av-
erage Hamiltonian are suppressed. Previously several at-
tempts were made following this intuition, adding addi-
tional pulses in some of the 2τ window in WAHUHA-
like sequences, but they did not lead to better perfor-
mance [54, 55]. Here we find RL discovers a completely
different pattern that applies pulses as frequently as pos-
sible, and outperforms previous sequences (see next sub-
section) [41, 42]. In contrast, one of the most common
strategies in conventional sequence design is to first come
up with a sequence whose zeroth-order average Hamil-
tonian is the target Hamiltonian, and then symmetrize
the sequence to cancel all odd orders. Symmetrization is
achieved by following the original sequence by the same
sequence but in reversed order, and with a π phase shift.
For example, the sequence x, y,−x,−y is symmetrized
to x, y,−x,−y, y, x,−y,−x. Strikingly, many DRL se-
quences are not symmetric, e.g., Ideal6, Offset48. This
suggests that symmetrization is not optimal in some sce-
narios, also noted in [54].

Figure 3 shows the experimentally measured average
correlation at t = 72τ and numerically simulated infi-
delity 1−F of Angle12 and Offset48, in comparison with
Cory48 in various experimental conditions. The Cory48
sequence has commonly been used for benchmarking de-
coupling sequences [35, 43, 56, 57] and suspending time

evolution [58–63]. We will further compare our best se-
quence (see next subsection) to other, more recent decou-
pling sequences [35, 43]. Note that although Cory48 con-
tains only 48 pulses, its length is 72τ because it also con-
tains 24 no-pulse actions. Therefore, we explicitly denote
it as Cory48(72). The experiments are done with CaF2.
As our experimental apparatus is not ideal and does not
allow varying pulse width over a large range, we cannot
provide experimental tests of Ideal6 and PW12, but we
provide numerical results in [49]. Cavg(72τ) of Offset48
is not directly measurable because 72 is not a multiple
of 48. Instead, we plot the average of Cavg(48τ) and
Cavg(96τ), which is a good approximation of Cavg(72τ)
as shown in [49]. Fig. 3(b) shows that the fidelity of both
Angle12 and Offset48 have a worse scaling (Jτ)6 com-
pared with Cory48 (Jτ)10, because Cory48 cancels the
average interaction Hamiltonian to higher order. How-
ever, this higher-order effect is not evident in experi-
ments [Fig. 3(a)] due to experimental imperfections dom-
inating over higher order interaction Hamiltonian. With
the same robustness, a shorter sequence is usually prefer-
able, as concatenation and symmetrization of shorter se-
quences have been traditionally used to form longer se-
quences with more benign scaling of infidelity with er-
rors. Shorter sequences also allow a finer probing of the
time evolution (which is possible only at multiples of the
cycle time). As for the offset, the scaling of Offset48
and Cory48 are both quadratic in the small ∆ region
[Fig. 3(f)]. However, when the offset becomes larger, Off-
set48 outperforms Cory48, as shown both experimentally
and numerically [Fig. 3(e) and (f)]. This phenomenon
is beyond AHT and intrinsically nonperturbative. Not
surprisingly, Angle12 is not robust against offset, nor is
Offset48 against angle error.

B. Multiple imperfections and yxx pattern

DRL is successful in learning good pulse sequences in
the presence of a single imperfection. When two or more
imperfections exist simultaneously, the number of satis-
factory sequences is significantly reduced and the DRL is
unable to find one within reasonable time. Although this
may be solved by using more powerful computers or more
sophisticated algorithms, we take a physicist’s approach.
We learn from sequences DRL found in the presence of a
single imperfection and use our understanding to design
more powerful sequences. We notice that Ideal6, Angle12
and PW12 are all built from the 3-pulse block (±y±x±x)
or its equivalent form (±x± y ± y), which we refer to as
“yxx pattern”.

Figure 4 shows the toggling frame configuration and
toggling frame Hamiltonian for two consecutive yxx
blocks. The last pulse is rotated to the first position
for easier analysis, and we note that rotation of pulses
unitarily changes the Floquet propagator thus does not
change the fidelity [64]. We denote the dipolar interac-
tion along the α axis as Dα as defined in Eq. 1 with
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FIG. 3. Experimentally measured average correlation at t = 72τ on CaF2 (top panels) and numerically simulated propagator
infidelity 1−F (bottom panels) of DRL sequences and Cory48 for different τ (a-b), angle error (c-d) and frequency offset (e-f).
Dashed lines in (b) (d) and (f) show the scalings specified by nearby expression. We set Cavg = 0 if any of CXX , CY Y , CZZ is
smaller than zero. As 72 is not a multiple of 48, Cavg(72τ) of Offset48 is obtained as [Cavg(48τ) +Cavg(96τ)]/2. Imperfections
are set to zero unless specified by the horizontal axis, with the exception of Angle12 experimental data in (a) and (c), which
are taken at the optimal non-zero ∆ due to the presence of phase transient (see Appendix A for details). In (c) and (e), the
pulse center-to-center delay is τ = 5 µs. Jeff = 79.7 krad/s for the orientation of our sample [49]. Error bars of Cory48 and
Offset48 experimental data are determined from the noise in the free induction decay, which is smaller than the marker size
thus not shown. Angle12 has larger error bars in (a) and (c) due to the inaccuracy in finding the optimal ∆. In simulations we
assume the pulse width is infinitesimal. We use J = 32.7 krad/s as in FAp, N = 8, periodic boundary condition and assume
nearest-neighbor interactions. In (d) and (f) τ = 10 µs.
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FIG. 4. yxx-type sequence. Top: the pulse sequence. Mid-
dle: toggling frame transformation at each time. Arrows
mark the orientation of toggling frame axis in the lab frame,
where the yellow arrow highlights the axis overlapping with
lab frame z-axis. Bottom: the dipolar interaction in the tog-
gling frame at each time.

α = x, y, z. Because Dx +Dy +Dz = 0, in the ideal case
the xyx block cancels the zeroth-order interaction Hamil-
tonian and is the shortest sequence to do so. Although
the length of a solid echo is only 2τ [65], it does not qual-
ify as a decoupling sequences as defined here, because the
average Hamiltonian is Dy +Dz = −Dx and thus the se-
quence only protects the X state. The shortest known

decoupling sequence is WAHUHA, whose length is 6τ
though only contains 4 pulses [2]. The first-order aver-
age Hamiltonian of the first xyx block is −i[Dx, Dy]τ/6,
which is cancelled by the contribution from the second
block. Changing the signs of the pulses will not change
the toggling frame interaction Hamiltonian, as the dipo-
lar interaction is invariant under π rotation. Therefore,
the yxx pattern guarantees vanishing zeroth- and first-
order average interaction Hamiltonian in shortest possi-
ble timescale (6τ). This might also explain why DRL
chooses yxx pattern over symmetrization, which cancels
the first order terms only after the entire sequence, thus
leading to larger higher order terms.

With this understanding, we adopt two approaches to
construct longer sequences that are robust against mul-
tiple imperfections. First we can restrict our search to
sequences with yxx patterns only, so the agent only needs
to choose the plus or minus sign instead of five actions.
This significantly reduces the dimension of the search
space from 5N to 2N . In this way we find the yxx48
sequence shown in Table I. A second approach is to di-
rectly modify the RL sequences found above in order to
cancel the additional imperfections. As Angle12 is ro-
bust against both angle error and finite pulse width, we
double and modify it into the 24 pulse sequence shown
as yxx24 in Table I so that it is also robust against offset
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FIG. 5. Experimentally measured average correlation at t = 72τ on CaF2 (top panels) and numerically simulated propagator
infidelity 1−F (bottom panels) of DRL sequences and Cory48 for different τ (a-b), angle error (c-d) and frequency offset (e-f).
The inset of (f) shows the propagator infidelity versus disorder strength W averaged over 20 disorder realizations with error
bars showing one standard deviation of the average infidelity. The x and y axes ranges of the inset are the same as in the main
plot. Dashed lines in (b) (d) and (f) show the scalings specified by nearby expression. As 72 is not a multiple of 48, Cavg(72τ)
of yxx48 is obtained as [Cavg(48τ) + Cavg(96τ)]/2. Imperfections are set to zero unless specified by the horizontal axis. Error
bars of the experimental data are determined from the noise in the free induction decay which is smaller than the marker size
thus not shown. Other parameters are the same as in Fig. 3.

(See appendix C for further details.)

The performance of these two yxx sequences are shown
in Fig. 5. Again, the two yxx sequences have a worse scal-
ing with τ than Cory48 [(Jτ)6 versus (Jτ)6, Fig. 5(b)],
but this effect is barely seen in experiments, Fig. 5 (a).
Experimentally, the three sequences are all robust against
angle error as the average correlations remain close to 1
in a relatively large region of ε [Fig. 5(c)]. Although sim-
ulation shows Cory48 is better at small ε region, it is not
evident in experiment because in this region the angle
error is not the dominating effect. For the offset, both
yxx sequences show a better scaling compared to Cory48
[∆4 for yxx sequences versus ∆2 for Cory48, Fig. 5(f)].
In experiments we observe that the Cavg remain close
to 1 in ∆ ∈ [−12, 5] kHz for the yxx24 sequence and
∆ ∈ [−8, 0] kHz for the yxx48 sequence, but for Cory48
the average correlation drops significantly when deviat-
ing from the optimal ∆. The fact that the robust region
of yxx24 is wider than that of yxx48 might be a result of
unknown experimental imperfections that correlate with
frequency offset. As the frequency offset has the same
form as on-site disorder, we expect any pulse sequence
to show similar robustness against the two imperfections.
This is confirmed by comparing Fig. 5(f) and its inset (for
the yxx sequence, disorder and offset effects are equiva-
lent up to first-order AHT Appendix B).

Finally, we compare yxx sequences and Cory48 under
the best achievable experimental conditions with the two
experimental samples in the same apparatus. Data taken

with the disorder-free CaF2 sample are in Fig. 6(a) and
the disordered sample FAp is presented in Fig. 6(b). In
both samples, yxx24 and yxx48 protect the correlation to
significantly longer time than Cory48. In Appendix D,
we further show that our sequences also outperform more
recently discovered sequences [35, 43] in the disordered
sample. Results on a different sample and different ap-
paratus can be found in Appendix E.

V. CONCLUSION AND OUTLOOK

We designed robust decoupling sequences using DRL
and experimentally demonstrated that they lead to bet-
ter performance than some sequences that have been
widely used. We directly consider π/2 pulses as ac-
tions, enabling discovery of long sequences, and we use
a gradient-free optimization method together with deep
neural networks to tackle the complex control landscape.
DRL without any human insight is capable of dealing
with single imperfections. Surprisingly, many of the DRL
sequences are not symmetric, instead, we observe a yxx
pattern. Building on our understanding of the yxx pat-
tern, we then find sequences that are robust against all
dominant imperfections present in our experiments, lead-
ing to a better performance than the Cory48 sequence in
two different samples. Our work emphasizes the useful-
ness of both artificial intelligence and human knowledge
of the physical system in realistic applications.
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FIG. 6. Experimentally measured average correlation at
the best calibrated condition of CaF2 (a) and FAp (b) as a
function of time. Error bars of the experimental data are de-
termined from the noise in the free induction decay which is
smaller than the marker size thus not shown. Other parame-
ters are the same as in Fig. 3.

We conclude this paper by pointing to some future re-
search directions. (I) Although we focused on decoupling
interacting spin-1/2 systems, a task that has applications
in building spin-based quantum memories, our method is
completely general to other systems and applications, by
simply modifying the reward function to engineer the de-
sired Hamiltonian. It would be interesting to apply this
method to quantum simulation or quantum sensing. In
this work we train the machine learner in the context
of solid-state NMR, where the pulsed controls have been
developed and optimized for 50 years, yet RL still shows
an advantage. We expect our methods might yield even
more significant improvements in other quantum plat-
forms whose controls are developed more recently, such
as color centers in solids, cold atoms, trapped ions, and
superconducting circuits. (II) The DRL training in this
work was simply performed on a personal laptop, so there
is still large space for improvement on the computational
side, e.g. by using a supercomputer with GPU accel-
eration to tackle more complex control sequences. (III)
Further improvements could be obtained by a stronger
interface between machine learner and the physical sys-
tem. Here we trained the DRL purely using a classical
computer and tested the learned sequences on a quantum
simulator. Our method can be readily modified into a hy-
brid classical-quantum DRL process: the DRL agents on
a classical computer generate a sequence, which is then

applied in a quantum system; then one use an exper-
imental observable, such as the correlation decay rate,
as the reward to train the agents. In this way the the
modeling of system Hamiltonian and control imperfec-
tions is not required. While in our current learning pro-
cess simulating the spin-chain environment only takes a
small portion of the total CPU time, this could change
for different tasks that require simulating a many-body
non-integrable system. Then, we expect replacing the
classical simulation with quantum experiments will im-
prove the training time and open avenues for devising
quantum control protocols.
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Appendix A: Phase transient effects on Angle12
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FIG. 7. Experimental study of angle-12 for different offset
and τ . (a-d) show CXX , CY Y , CZZ and the average correla-
tion respectively. Different curves are obtained with τ from
5 µs to 9 µs, with a step of 1 µs and lighter color represent-
ing smaller τ . In (d), the plus sign marks the experimental
data point and the curve shows the parabolic fitting, whose
peak center and height are shown as the blue curve in (e) and
(f), respectively. The length of the error bars corresponds to
two standard deviation of the fitted results. In (e), the black
dashed line shows the peak center expected from first-order
AHT.

The effects of pulse phase transients are typically diffi-
cult to quantify, as they introduce difficult to characterize
time-dependent Hamiltonian terms. Still, here we show
it is still possible to capture their essence using a simple
model. In the future, we could even include phase tran-
sients into the reward function to design sequences that
are robust against them.
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FIG. 8. Experimental study of angle-12 for different offset
and angle error. (a-d) show CXX , CY Y , CZZ and the average
correlation respectively. Different curves are obtained with
angle error from -0.18 to 0.24 with a step of 0.06, with lighter
color representing smaller angle error. In (d), the plus sign
marks the experimental data point and the curve shows the
parabolic fitting, whose peak center and height are shown as
the blue curve in (e) and (f), respectively. The length of the
error bars corresponds to two standard deviation of the fitted
results. In (e), the black dashed line shows the peak center
expected from first-order AHT.

In Fig. 3(e) of the main text, we see that the optimal
performance point of the Angle12 sequence deviates from
∆ = 0 by a significant amount. Here we show that this is
due to the cancellation of phase transient error and offset
in Angle12. Since we do not include the phase transient
effect as an error source during the training process, we
should also minimize this effect in the experimental test-
ing. This can be realized by pinning the offset to ∆0

for Angle12. Other sequences happen to be sufficiently
robust to phase transient that they do not require any
special treatment.

We first explain the physics of phase transients. When
creating a RF square pulse along the x-axis, the lead-
ing and trailing edges are not sharp and they inevitably
generate a small y-component [42]. Although the exact
description of phase transient is not known, the simple
model introduced in Ref. [42] can qualitatively explain
experimental results. An x-pulse with a phase transient is
modeled by a propagator e−iα1Y e−i(π/2)Xe−iα2Y , where
α1 and α2 denote the strength of the y-component at
the trailing and leading edge, respectively. For pulses
along other axes, this model assumes that the addi-
tional component is always +π/2 phase shifted with re-
spect to the main component. Using AHT, we find
the zeroth-order average phase transient of Angle12 is
(α1 − α2)(−4X + 2Y )/(12τ). As the zeroth-order offset
of Angle12 is ∆(−4X+2Y )/12, the two cancel each other
out at the optimal offset ∆0 = (α2 − α1)/τ , leading to
the non-zero optimum point in Fig. 3(e).

We verify this relation in Fig. 7, where we show the
autocorrelations for different offsets and τ . Figure 7(a-c)

shows CXX , CY Y and CZZ , where each curve is taken for
a given τ and darker colors denote larger τ . For each τ ,
there is indeed a peak at ∆0. When the offset deviates
from ∆0, we see the decrease of CXX is not as significant
as that of CY Y and CZZ , because this deviation results
in an effective magnetic field ∝ 4X − 2Y , which is close
to the x direction. When τ increases, the peak center
∆0 shifts toward smaller offset (in absolute value) as ex-
pected from the AHT analysis above. To quantitatively
analyze this trend, we fit Cavg at a fixed τ to a parabolic
function, as shown in Fig. 7(d). In Fig. 7(e) we plot the
peak center ∆0 as a function of τ and compare it with
the zeroth-order AHT value ∆0 ∝ 1/τ . The two quanti-
ties show the same trend, with an imperfect match due
to the simplicity of the model. Because of the variation
of ∆0 with τ , it is not reasonable to use the same off-
set when testing Angle12’s robustness against τ , instead,
we use the fitted Cavg peak height in Fig. 3(a). We note
that our analysis does not artificially increase the robust-
ness of Angle12 compared to the ideal case without phase
transient. By choosing the optimal ∆0, we can at most
cancel zeroth-order effects of the phase transient, while
higher order terms and cross terms between phase tran-
sient and other Hamiltonian components still lead to the
degradation of the autocorrelations. Therefore, we still
underestimate the robustness of Angle12 even when we
are using the optimal ∆0.

When introducing the angle error, the optimal can-
cellation condition also changes. This can be seen
from the first-order AHT. The first-order cross term be-
tween angle error and phase transient leads to an ad-
ditional field (−2X − 2Y + 4Z)ε(α1 − α2)/(12τ); the
cross term between angle error and offset leads to a field
(−2X + 4Y − 4Z)ε∆/12. In other words, introducing an
angle error dresses the effective fields due to phase tran-
sient and offset, and now the two cannot exactly can-
cel each other. Still, there exists an optimal offset ∆0

where the residual field is the smallest. To first-order in
ε, ∆0 = (α2−α1)(1+ε)/τ . We experimentally verify this
relation in Fig. 8. In Fig. 8 (a-d) the darker color denotes
larger ε and we see that ∆0 decreases when increasing ε
(note that ∆0 < 0) as expected from the analysis above.
Again we fit Cavg to a parabolic function to get the peak
center and peak height. The peak center as a function
of ε is shown in Fig. 8(e) with the dashed line denoting
the theoretical value assuming the ∆0 at ε = 0 is exact.
Our experimental results do agree with the theoretical
expectations. The peak height is shown in Fig. 8(f) and
also Fig. 3(c).

In addition to the two verifications above, we also in-
crease the pulse width and observe ∆0 decreases (not
shown). This is because the phase transient becomes less
evident when using a lower RF power.
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Appendix B: Similarity between offset and disorder

We now consider two types of control imperfection:
magnetic field disorder and offset. Both interactions are
fields along the longitudinal z axis, so many of their prop-
erties are similar. Here we formally demonstrate that: (i)
any sequence with vanishing zeroth-order offset Hamilto-
nian must also have vanishing zeroth-order disorder and
vice-versa (ii) for yxx sequences this is also true to first-
order.

Consider the Hamiltonian H = Dz + Hz, where Dα

is the dipolar interaction in the α direction and Hα =
∆
∑
j S

j
α for the offset and Hα =

∑
j wjS

j
α for the dis-

order in the α direction. A uniform offset can be viewed
as a special disorder realization, so a vanishing average
Hamiltonian in the presence of disorder implies a van-
ishing average offset Hamiltonian. We then only need to
demonstrate the converse in the following.

The zeroth-order average Hamiltonian for single-body
Hamiltonians can be calculated by considering a repre-
sentative site. Thus the relative strength of the interac-
tion among sites does not matter, and a vanishing zeroth-
order offset is always equivalent to a vanishing zeroth-
order disorder.

The first-order average Hamiltonian contains
three parts: the interaction-interaction commu-
tator, which we can ignore for this discussion,
the imperfection-imperfection commutator and the
interaction-imperfection cross commutator. The
imperfection-imperfection commutator is a single-
site operator so it has the same first-order average
Hamiltonian for both disorder and offset. Then, the
difference between disorder and imperfection lies in
the interaction-imperfection cross commutator. Indeed,
due to symmetries, [Dα, Hα] = 0 for the offset (with
α = x, y, z), while this is not true for disorder. Still, we
can show that for yxx sequences, additional terms arising
from the disorder [Dα, Hα] commutator sum up to zero.
The detailed discussion is presented in [49], while here
we give two key factors. First, yxx sequences can be
divided into blocks of 3 intervals of duration τ , and
the zeroth-order average interaction within each block
is zero. This guarantees that there are no cross terms
between different blocks. Second, if the zeroth-order
offset vanishes, not only we have

∑
j H

j
z = 0 when we

sum over all time intervals, but also if we restrict the
sum to the first (or 2nd and 3rd) intervals inside each
block. In turns, this ensures that when summing over
all blocks, commutators of the form [Dα, Hα] add up to
zero. Thanks to the similarity between the offset and
disorder we were able to use the simpler form of the
offset Hamiltonian in the traning algorithm, and still
achieve robust sequences against disorder.

Appendix C: Physical intuition for the construction
of the yxx24 sequence

Here we explain how we design the yxx24 sequence
starting from the Angle12 sequence, as an example of how
human insight can lead to better control. First we ana-
lyze Angle12 using AHT and present the results in Fig. 9.
The zeroth-order angle error vanishes, while the zeroth-
order offset is proportional to 4X − 2Y (the zeroth-order
interaction term is zero as guaranteed by the yxx pat-
tern.) We notice that if we consider only the interaction
and offset, Angle12 is symmetric, because the second row
(“Lab z in tog.” denoting the orientation of interaction
and offset) in Fig. 9 is mirror-symmetric around the red
dashed line. In other words, we can “rotate” the sequence
to make it symmetric. Here by “rotating” we mean shift-
ing n actions from the beginning to the end. For exam-
ple, we can put the first 2 actions of Angle 12 at the end,
so that it becomes −x, y,−x,−x,−y, x,−x, y, x, x,−y, x,
which is symmetric with respect to the middle point.
This sequence, labeled symmetrized Angle12 in Fig. 9,
is equivalent (in terms of fidelity and leading order av-
erage Hamiltonian) to the original one found by DRL, if
the angle error is ignored. Indeed, the sequence rotation
induces a unitary rotation of the Floquet Hamiltonian
that for decoupling sequences (where the target evolu-
tion is the identity) does not change the fidelity [64]. As
the DRL agent only learns from the propagator fidelity,
it does not distinguish symmetric and rotated sequences.
This is in contrast to traditional sequence-finding meth-
ods that are based on the approximated Floquet-Magnus
expansion. Indeed, in the theoretical analysis it is con-
venient to consider the symmetric case as it reduces the
number of nonzero terms in AHT. In particular, the sym-
metrized Angle 12 sequence has zero first-order average
Hamiltonian if the pulses are perfect. The pulse error
term, on the other hand, is not symmetric, therefore the
sequence has a nonzero first order cross term between
pulse angle error and offset, and we can thus focus on
such terms [as listed in Fig. 9].

With the AHT analysis in hand, we first want to
modify the sequence such that it has vanishing zeroth-
order average Hamiltonian. Notice that under Angle12
the offset gives a zeroth-order Hamiltonian 4X − 2Y .
To cancel this contribution we need to change the tog-
gling frame offset Hamiltonian from X to −X in two
intervals and from −Y to Y in 1 interval, while keep-
ing the sequence symmetric. The toggling frame offset
orientation is shown in the row labeled “Lab z in tog.”
in Fig. 9. Therefore, we can cancel the zeroth-order offset
by adding a π phase shift to pulses within the blue box:
we name this sequence “modified Angle12”. The AHT
analysis of modified Angle12 is also shown in Fig. 9. Its
zeroth-order Hamiltonian is zero.

Now the dominant nonzero Hamiltonian comes from
the first-order cross terms between angle error and inter-
action, as well as between angle error and offset (since the
angle error is not mirror symmetric.) Once the zeroth-
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Pulse in lab -y x -x y -x -x y -x x -y x x y -x x -y x x -y x -x y -x -x

Lab z in tog. x y x z -y -z -x y -x -z -y z -x -y -x z y -z x -y x -z -y z

Pulse in tog. -y -z z y -x -x -y z -z y x x y -z z -y x x y z -z y -x -x

Pulse in lab -y x -x y -x -x -y x -x y x x

Lab z in tog. x y x z -y -z x -y x -z -y z

Pulse in tog. -y -z z y -x -x y z -z -y x x

• Angle12

Pulse in lab -y x -x y -x -x y -x x -y x x

Lab z in tog. x y x z -y -z -x y -x -z -y z

Pulse in tog. -y -z z y -x -x -y z -z y x x

• Modified Angle12

Angle 0th = 0
Offset 0th ∝ 4𝑋 − 2𝑌
Angle x interaction = 0
Angle x offset ∝ −𝑋 + 2𝑌 + 2𝑍

• yxx24

Angle 0th = 0
Offset 0th = 0
Angle x interaction ∝ [𝑌, 𝐷௭]
Angle x offset ∝ 𝑌

• Symmetrized Angle12

-x y -x -x -y x -x y x x -y x

z -y -x -z x -y -z -y x -z -x -y z

-x z y y z -x x -z -y -y -z x

Equivalent

Angle 0th = 0
Offset 0th = 0
Angle x interaction = 0
Angle x offset = 0

FIG. 9. Analysis of Angle12, symmetrized Angle12, modified Angle12 and yxx24. For each sequence, we specify three elements:
pulse in lab stands for the direction of pulse in lab frame; lab z in tog. stands for the direction of lab frame z axis in toggling
frame after the corresponding pulse; pulse in tog. stands for the direction of pulse in toggling frame. Lab z in tog. determines
the free evolution Hamiltonian (both interaction and offset) in toggling frame. For example, −y indicates the Hamiltonian is

Dy −Hy. Pulse in tog. gives the angle error term. For example, −y indicates the pulse unitary is ei(pi/2+ε)Y . AHT analysis
results of Angle12 (which is equivalent to symmetrized Angle12), modified Angle12 and yxx24 are shown to the left of the
tables. Modified Angle12 is obtained by π phase shifting the pulses in the blue box. If we consider only the interaction and
the offset, Angle12 and modified Angle12 are symmetric around the red dashed line. yxx24 is obtained from modified Angle12
by appending another modified Angle12 with π phase shift.

order average Hamiltonian is zero, we can double the se-
quence and use the symmetry to get rid of the first-order
corrections. Notice the two first-order corrections are an-
tisymmetric under a π rotation along the z-axis and thus
can be easily cancelled by combining the modified An-
gle12 and another modified Angle12 with a π phase shift.
We thus arrive at the yxx24 sequence, whose zeroth- and
first-order average Hamiltonian are all zero.

Appendix D: Comparison to other known sequences
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yxx48

FIG. 10. Experimentally measured average correlation at
the best calibrated condition for FAp as a function of time.
τ = 6µs, other parameters are the same as in Fig. 3.

In this section we compare yxx sequences to two

additional decoupling sequences on the FAp sample –
DROID-60 discovered in [43, 57] and CPMREV16 discov-
ered in [35]. The back-to-back π/2 pulse in DROID-60 is
implemented with 2.5 µs delay in between, the shortest
time required to switch pulse phase in our experimen-
tal setup. To accommodate that additional delay we use
τ = 6µs for all sequences. The original version of CPM-
REV16 in [35] has a π pulse between two consecutive
MREV16 sequences. Here we implement the π pulses as
a π phase shift of the last pulse in MREV16, which yields
better decoupling than a than a physical π as in the orig-
inal sequence. The results are shown in Fig. 10. The de-
coupling ranking according to Cavg decay rate is yxx24,
yxx48, Cory48, CPMREV, DROID60. There are other
decoupling sequences such as Lee-Golburg [66], Magic
echo [67] and DUMBO [14] that utilize continuous wave
irradiation instead of pulsed controls and thus are not
considered here. We note that many of these sequences
have been optimized to work together with magical angle
spinning, another decoupling technique we are also not
considering here.

Appendix E: Experiments on Adamantane

In order to ensure that the improved performance of
the yxx24 and yxx48 sequences in calcium fluoride and
fluorapatite shown in Figure 6 were not unique to the
spectrometer and probe used there, we also compared the
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performance of these sequences to the Cory48 sequence in
a powdered adamantane sample on a different 300 MHz
Bruker DSX spectrometer.

Adamantane (C10H16) is a plastic solid with a high
degree of internal motion. The proton (hydrogen nuclei)
dipolar linewidth is about (2π)13 krad/s [3] and the sys-
tem is often used to model a 3D spin system. The T1

relaxation time for the proton spins in adamantane at
room temperature was measured to be just under 1 s.

Figure 11 shows the comparison between the perfor-
mance of the Cory48, yxx24 and yxx48 as measured by
the average correlation metric introduced earlier. The
collective π/2 pulses used had a pulse width tw = 2
µs. The pulse center-to-center delay τ = 8µs. Sequence
performance degraded significantly as this duration was
decreased, likely due to finite stabilization times during
phase switching and the overlapping of pulse transients.

It should be noted that while the decay of the aver-
age correlation metric resembles the results of a single
line-narrowing experiment, care should be taken while
comparing them directly. The bi-exponential behavior of
the decays for the Cory48 sequence gives rise to effec-
tive linewidths of 823 Hz and 88 Hz respectively. The
effective linewidth is significantly broader than the 3.5
Hz obtained in [3] probably due to the longer π/2 pulse
and τ values used here. Similarly, the fidelity of the se-

quences shown here are seen to be slightly lower than
those obtained in Figure 6. Note that the plot shows
the data acquired after an even number of cycles, with a
maximum of 128 cycles.

The yxx24 and Cory48 sequences show almost identical
behavior at all timescales in these experiments. However,
while the fidelity of the yxx48 sequence is initially lower
than that of the other two, the performance at longer
timescales matches that of the other two.
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yxx24
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FIG. 11. Experimentally measured average correlation at
the best calibrated condition for adamantane as a function of
time. The solid curves are biexponential fits to the data. The
inset shows the same set of data in a log-log scale, with the y
axis being 1− Cavg(t).
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