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We present a systematic method to implement a perturbative Hamiltonian diagonalization based
on the time-dependent Schrieffer-Wolff transformation. Applying our method to strong parametric
interactions we show how, even in the dispersive regime, full Rabi model physics is essential to
describe the dressed spectrum. Our results unveil several qualitatively new results including realiza-
tion of large energy-level shifts, tunable in magnitude and sign with the frequency and amplitude of
the pump mediating the parametric interaction. Crucially Bloch-Siegert shifts, typically thought to
be important only in the ultra-strong or deep-strong coupling regimes, can be rendered large even
for weak dispersive interactions to realize points of exact cancellation of dressed shifts (‘blind spots’)
at specific pump frequencies. The framework developed here highlights the rich physics accessible
with time-dependent interactions and serves to significantly expand the functionalities for control
and readout of strongly-interacting quantum systems.

I. INTRODUCTION

Time-dependent interactions provide a powerful
paradigm for the study of out-of-equilibrium quantum
matter. Though originally motivated by the interest in
the exploration of new phases in many-body quantum
systems, recent developments in this domain have largely
been triggered by studies of low-dimensional platforms,
such as trapped ions, cavity- and circuit-QED, where a
precise control of quantum dynamics is essential for real-
izing high-fidelity quantum information processing. How-
ever, the theoretical framework to describe the dynam-
ics in the presence of such time-dependent interactions
remains rudimentary, especially in the strong-coupling
regime relevant to most applications.

One approach to studying strongly coupled systems
is to derive a low-energy effective Hamiltonian by us-
ing a unitary transformation that decouples the high-
frequency (‘fast’) subspace from the low-energy (‘slow’)
subspace. A standard and widely used method to imple-
ment this is the Schrieffer-Wolff transformation (SWT)
[1] which develops the diagonalized Hamiltonian as a
perturbation series, whose radius of convergence is dic-
tated by the ratio of interaction strength (g) and the
gap between the low- and high-energy subspaces (∆). In
contrast to conventional Dyson series expansion, SWT
method gives direct access to effective Hamiltonian at
each order in perturbation series; inferring the effective
Hamiltonian from time-ordered matrix exponential de-
scribing the propagator is typically non-trivial, especially
because truncating the Dyson series does not preserve
unitarity, and is shown to fail for degenerate ground
states [2]

In this work, we present a generalization of the SWT
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for time-dependent strong interactions. While this exer-
cise has been attempted before in a few sporadic exam-
ples [3–6], our approach clarifies how the inertial term
generated due to the time-dependent generator of the
SWT (equivalent to an extra dynamical rotation of the
eigenbasis) can be accounted for at successive orders in
a perturbation series; this is especially crucial since its
inclusion magnifies the corrections arising from counter-
rotating terms that are typically neglected in the disper-
sive regime (g/∆� 1).

We emphasize that the approach we describe is very
general, and can be applied to a wide family of time-
dependent Hamiltonians. Here we demonstrate it for the
two archetypal examples of strong light-matter interac-
tion: the Rabi model and a Kerr oscillator coupled to
a linear oscillator by a parametrically-modulated inter-
action. Such periodic driving is of interest in a myriad
of applications, such as the realization of synthetic gauge
fields in optical lattices [7], simulation of topological [8, 9]
and dynamically localized phases [10, 11], implementa-
tion of fast entangling gates [12], tunable qubit readout
[13], and state stabilization [14, 15] and transfer [16, 17].

The paper is organized as follows: We begin with
a general description of the diagonalization procedure
employing a series of sequential SWT generators and
present the equation of motion for constructing time-
dependent SWT generator at a given order in pertur-
bation in Sec. II. Then, in Sec. III, we apply this method
to time-dependent Rabi Hamiltonian and explicitly de-
rive the condition for validity of dispersive approxima-
tion in the presence of a parametrically-mediated inter-
action in this system. We also derive analytical expres-
sions for leading-order dispersive shifts, and comment on
their unique features distinct from the ‘usual’ (but time-
dependent) Jaynes-Cummings case. We then discuss a
generalization of the parametric QED system to include
multi-level effects by considering the case of a Kerr oscil-
lator (a.k.a. transmon) parametrically coupled to a linear
oscillator and identify a ‘parametric straddling’ regime
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by studying the induced frequency shifts as a function of
pump frequency in Sec. IV. Sec. V is devoted to the dis-
cussion of induced dissipation in the systems studied in
Secs. III and IV. Finally, we conclude with a summary of
results and present potential directions along which the
current analysis can be extended in Sec. VI. Appendices
A-E include additional mathematical details and proofs.

II. TIME-DEPENDENT SCHRIEFFER-WOLFF
TRANSFORMATION (SWT)

For a system described by a time-dependent Hamilto-
nian H(t) = H0 + λV (t), an effective diagonal Hamilto-
nian at a given order M can be obtained by performing a
sequence of M − 1 successive time-dependent Schrieffer-
Wolff transformations (SWTs). To this end the aim is to

thus construct a unitary operator Û(t) perturbatively, as
a series of successive time-dependent rotations

Û(t) =

M−1∏
j=1

exp[Ŝ(j)(t)], (1)

where Ŝ(n)(t) ∼ O(λn) are the anti-Hermitian SWT gen-
erators. Under the action of U(t) the lab frame Hamil-

tonian Ĥ(t) ≡ Ĥ(1)(t) is transformed into Ĥ(M)(t),

Ĥ(M)(t) =Ĥ0 + V̂ (M)(t). (2)

Then, the effective diagonalized (‘low-energy’) Hamilto-
nian to order λM is given as,

Ĥ
(M)
eff (t) ≡ Ĥ0 + P0 • V̂ (M)(t) = Ĥ0 + V̂

(M)
D (t), (3)

where

P0 • Θ̂ =
∑
k

|ψk〉〈ψk|Θ̂|ψk〉〈ψk|, (4)

is the pinching channel in the eigenbasis {|ψk〉} of Ĥ0,
which defines the ‘low-energy’ subspace for the purpose
of diagonalization.

The off-diagonal part of the interaction Hamiltonian
contains terms of O(λM ) or higher, i.e.

V̂
(M)
OD (t) ≡ Q0 • V̂ (M)(t) =

∞∑
m=M

λmV̂
(M)
OD,m(t), (5)

where

Q0 • Θ̂ =
∑
j 6=k

|ψj〉〈ψj |Θ̂|ψk〉〈ψk|. (6)

projects onto the off-diagonal elements in the eigenbasis
of Ĥ0. Such a construction is achievable by finding the
operators Ŝ(j)(t) using the following theorem.

Theorem: At each order M in perturbation series, if
∃ Ŝ(M)(t) (M ≥ 1) satisfying the differential equation

i
∂Ŝ(M)(t)

∂t
+ [Ŝ(M)(t), Ĥ0] + λM V̂

(M)
OD,M (t) = 0, (7)

then ÛM (t) = exp[−Ŝ(M)(t)] can be used to eliminate

off-diagonal terms in Ĥ(M)(t) up to O(λM ), s.t.

Ĥ(M+1)(t) = Ĥ
(M)
eff (t) +O(λM+1), (8)

where Ĥ
(M)
eff (t) ≡ Ĥ0 + P0 • V̂ (M)(t) = Ĥ0 + V̂

(M)
D (t).

Here V̂
(M)
OD,M (t) denotes the leading off-diagonal term at

O(λM ) in the perturbation series, and includes the terms
generated by the action of lower-order time-dependent

transformations on V (t). Note that with Ĥ
(M)
eff (t) being

diagonal, the off-diagonal part and the remaining diag-
onal part of Ĥ(M+1)(t) are both O(λM+1). In this way,

M -th order of the off-diagonal part of Ĥ(M)(t) is elimi-

nated as it is transformed into Ĥ(M+1)(t), with

Ĥ(M+1)(t) = Û†M (t)Ĥ(M)(t)ÛM (t)− iÛ†M (t)
∂ÛM (t)

∂t
.

(9)
See appendix A for a detailed proof and a specific exam-
ple.

It is worthwhile to note that typical methods of per-
turbative diagonalization develop corrections at different
orders by expanding a single generator as a series in λ,

i.e. Ŝ(M)(t) = exp[
∑M−1
n=1 λnG(n)(t)], which leads to a set

of coupled differential equations for generators G(n)(t)
(n ≥ 3) for explicitly time-dependent interactions [5].
On the other hand, the construction presented here al-
lows cancellation of the derivative term at each order in
λ independently since the orders are tracked by updating
the off-diagonal contribution at each step, which greatly
simplifies the equations of motion for higher-order gen-
erators [see appendix A].

III. PARAMETRIC LIGHT-MATTER
INTERACTIONS

A. Rabi Hamiltonian

We now apply the sequential SWT construction de-
scribed in the previous section to a time-dependent
Rabi Hamiltonian describing a qubit-resonator system
(Fig. 1). The system Hamiltonian with time-dependent
transverse coupling is given by (~ = 1)

Ĥ(t) = −ωq
2
σ̂zq + ωa

(
â†â+

1

2

)
+ g(t)σ̂xq (â† + â) (10)

For a block off-diagonal interaction of the form in
Eq. (10), the first time-dependent unitary rotation in our
SWT series is described by the generator,

Ŝ(1)(t) = ξ
(1)
+ (t)σ̂+

q â
† − ξ(1)

− (t)σ̂−q â
† − h.c, (11)

where the time-dependence of V (1)(t) ≡ g(t)σ̂xq (â†+ â) is

ensconced in the solution of the coefficients ξ
(1)
± (t). These
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FIG. 1. Schematic representation of a bipartite system with
strong time-dependent coupling. For the qubit case we con-
fine ourselves to the lowest two levels, while for a multi-level
generalization, we consider the energy level ladder of a Kerr
oscillator with anharmonicity K.

can be evaluated using Eq. (7) for M = 1, which leads to
the following set of linear differential equations,

±iξ̇(1)
± (t)− (ωq ± ωa)ξ

(1)
± (t) + g(t) = 0. (12)

The time-dependent Hamiltonian correct to second-
order in gp, Ĥ

(2)(t) in the interaction picture, defined

w.r.t the time-independent Ĥ0, can then be obtained as

Ĥ(2)(t) =
1

2
[Ŝ(1)(t), V̂ (1)(t)] +O(g3

p)

= −g(t)
[
Re{ξ(1)

− (t)}+ Re{ξ(1)
+ (t)}

]
σ̂zq

(
â†â+

1

2

)
− g(t)

2

[(
ξ

(1)∗
− (t) + ξ

(1)∗
+ (t)

)
e−2iωatâ2σ̂zq + h.c.

]
+
g(t)

2

(
Re{ξ(1)

− (t)} − Re{ξ(1)
+ (t)}

)
+O(g3(t)).

(13)

Assuming the interaction time-dependence to be sinu-
soidal and decomposing it into distinct frequency com-
ponents:

g(t) =

K∑
p=1

[gp exp(−iωpt) + g∗p exp(+iωpt)], (14)

this leads to the solution for Eq. (12) as

ξ
(1)
± (t) =

K∑
p=1

[
gp

ωq ± ωa ∓ ωp
exp(−iωpt)

+
g∗p

ωq ± ωa ± ωp
exp(+iωpt)

]
.

(15)

For the special case of monochromatic parametric driving
(K = 1), Eq. (13) simplifies to

Ĥ(2)(t) = −2|gp|2
∑
±

[(
1

ω± + ωp
+

1

ω± − ωp

)(
â†â+

1

2

)
σ̂zq +

1

2

(
1

ω± + ωp
+

1

ω± − ωp

)]
cos2(ωpt+ φp)

−
[{

e−2iωat|gp|2
∑
±

(
1

ω± + ωp
+

1

ω± − ωp

)
+ e−2i(ωp+ωa)tg2

p

(
1

ω− − ωp
+

1

ω+ + ωp

)
+ e+2i(ωp−ωa)t

(
g∗p
)2( 1

ω− + ωp
+

1

ω+ − ωp

)}
â2 + h.c.

]
σ̂zq
2

+O(g3
p),

(16)

where φp = arg (gp) and ω± = ωq ± ωa, with +/− de-
noting the sum and difference of the qubit and the res-
onator frequencies respectively. The squeezing terms in
Eq. (16) are fast-rotating for pump frequencies near ω±
and their effect can hence be neglected as their time-
average vanishes. On the other hand, when ωp ∼ ±ωa
and the squeezing terms are nearly resonant, the effective
detuning is comparable to ωq which is in GHz; this makes
the effect of these terms negligible since |gp|/ωq � 1. By
a similar argument, cubic contributions towards χp from
g3
p can be neglected under the RWA. This order neces-

sarily involves terms of the form [Ŝ(1), [Ŝ(1), V̂ (1)]] , and
each term of this form contains an asymmetric number
of raising and lowering operators (â†, â) such that it can
only be rendered resonant for large detunings from para-

metric resonance.
Consequently, the diagonal part of the Hamiltonian in

Eq. (16) to order O(g2
p), Ĥ

(2)
eff (t) = P0 • 1

2 [Ŝ(1)(t), V̂ (1)(t)]
simplifies to its time-averaged form as,

Ĥ
(2)
eff = χ(2)

p

(
â†â+

1

2

)
σ̂zq + Ω(2)

p , (17)

with

χ(2)
p = −2|gp|2

(
ω−

ω2
− − ω2

p

+
ω+

ω2
+ − ω2

p

)
(18)

denoting the leading-order dispersive shift and

Ω(2)
p = |gp|2

(
ω−

ω2
− − ω2

p

− ω+

ω2
+ − ω2

p

)
. (19)
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FIG. 2. Comparison of analytical calculations for the lin-

ear dispersive shift, obtained from χpâ
†âσ̂z

q term in Ĥ
(2)
eff (t)

and Ĥ
(4)
eff (t) respectively, with exact results obtained from

numerically simulated resonator spectrum. All simulations
were performed with ωq = 2π × 5 GHz, ωa = 2π × 3 GHz,
ωp = 2π × 1.5 GHz, and κ = 2π × 1.5 MHz.

being the overall energy shift.
To eliminate O(g2

p) off-diagonal terms in Eq. (16),
we develop the next-order SWT generator as
Ŝ(2)(t) = ξ(2)(t)σ̂zq (â†)2 − h.c., where ξ(2)(t) is again
evaluated using Eq. (7) for M = 2. The resultant
effective Hamiltonians are [see appendix D for detailed
expressions of higher-order shifts]:

Ĥ
(3)
eff (t) = 0 (20)

Ĥ
(4)
eff (t) = P0 •

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t), [Ŝ(1)(t), V̂ (1)(t)]

]]
+P0 •

1

2

[
Ŝ(2)(t),Q0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
,

Figure 2 shows a comparison of dressed shifts predicted
from Eq. (20) with exact shifts estimated from a numeri-
cal simulation of the parametric Rabi Hamiltonian. Note
that for this specific case, the presence of the inertial term

significantly modifies the magnitude of |ξ(1)
± |, and hence

the condition for validity of the perturbative expansion

|ξ(1)
± | � 1 leads to

|gp| � ∆p; ∆p = min{|ω± ± ωp|}. (21)

This implies that the interaction strength needs to be
small compared to the detunings measured in a rotat-
ing frame defined w.r.t. the pump frequency ωp. This
presents an opportunity to realize large dressed shifts, in
excess of 10 MHz with |gp| of only a few tens of MHz,
as evident from the results presented in Fig. 2. For com-
parison, achieving a similar value of the shift with static
couplings would require an interaction strength of mag-
nitude comprable to the qubit-resonator detuning (i.e.
|gp| ∼ ω−). Both (i) the improvement of the radius of
convergence to as large as |gp/∆p| ∼ 0.4 upon including
the quartic contribution, and (ii) the reliable prediction
of dispersive shifts in tens of MHz from analytical the-
ory, confirm how the generalized SWT method developed
here provides a powerful framework to capture the effect
of time-dependent strong interactions.

While the example discussed here involves a monochro-
matic pump, the sequential SWT method can accommo-
date ‘colored’ pumps, arbitrary forms of g(t) via a decom-
position into a Fourier series, and frequency-modulation
of system frequencies [see appendix B]. A specific case,
relevant to experimental situations, is inclusion of resid-
ual or parasitic static coupling present due to practical
design limitations. The effect of such a static interaction
can be captured by including a zero-frequency component
in Eq. (14)

g(t) =
∑
j=p,s

[gj exp(−iωjt) + g∗j exp(+iωjt)]. (22)

Following the same procedure as outlined earlier, the
time-averaged dispersive shift is the sum of different fre-

quency components of the interaction, χ
(2)
p =

∑
j χ

(2)
j .

This provides a means to cancel out the net combined
shift by canceling the shift caused by the static coupling
against that caused by the parametric coupling. Note
that this can be accomplished even when |gp| < |gs|, so
long as a viable ωp can be found.

B. Validity of rotating-wave approximation

A crucial consideration for strong interactions is the
validity of the Hamiltonian derived under rotating-wave
approximation (RWA). This is especially relevant for
periodically-driven systems where, depending on the
choice of ωp, any (or even a combination) of the time-
dependent terms can be rendered resonant. Here we elu-
cidate how it is imperative to make the RWA after deriv-
ing the transformed Heff(t) to a given order, by contrast-
ing the results obtained with the full Rabi interaction to
the predictions for a parametrically-driven JC interac-
tion.

To delineate the importance of the counter-rotating
terms, σ̂+

q â
† + h.c., in the parametric-dispersive regime

[Eq. (21)], we now derive the dressed shifts for a
qubit-resonator system coupled via a parametrically-
mediated Jaynes Cumminngs (JC) interaction of the

form V̂
(1)
JC (t) = g(t)(σ̂+

q â+ σ̂−q â
†). In this case, unlike

Eq. (11), the time-dependent SWT generator includes
only the difference frequency components in line with the
JC Hamiltonian,

Ŝ
(1)
JC (t) = −ξ(1)

− (t)σ̂−q â
† − h.c (23)

The resultant leading-order effective Hamiltonian in the
interaction picture is given by

Ĥ
(2)
JC (t) = χ

(2)
JC(t)σ̂zq

(
â†â+

1

2

)
+ Ω

(2)
JC(t), (24)

where χ
(2)
JC(t) = −g(t)Re

[
ξ

(1)
− (t)

]
and the overall en-

ergy shift Ω
(2)
JC(t) = 1

2g(t)Re
[
ξ

(1)
− (t)

]
. Note that the
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FIG. 3. (a) Comparison of analytical results the resonator frequency shifts calculated using Eq. (18) (black) with the resonator
spectrum Saa[δ], for δ the detuning from ωa, obtained from exact numerical simulations (color) of the time-dependent Rabi
Hamiltonian. The resonator spectral density is shown as a function of the pump frequency ωp for qubit in the ground (blue)
and excited (red) state. Bottom panel shows the normalized resonator spectra for selected values of ωp demonstrating positive,
negative, and zero χp (‘blind spot’) for Rabi model. (b) Analogous comparison for Jaynes-Cummings Hamiltonian. Note that
no blind spot occurs in the absence of Bloch-Siegert contribution mediated by the sum frequency terms. All simulations were
performed with ωq = 2π × 5 GHz, ωa = 2π × 3 GHz, gp = 2π × 40 MHz, and κ = 2π × 1.5 MHz.

qubit-state-dependent squeezing component of the effec-
tive Hamiltonian present in the Rabi model case does not
appear for JC interaction. Considering a single-frequency
pump as before, it leads to a simple expression for the
time-averaged parametric disperive shift

χ
(2)
JC = −2|gp|2

ω−
ω2
− − ω2

p

. (25)

As evident, the dispersive shift for JC Hamiltonian lacks
the sum frequency contribution as a result of the missing
counter-rotating terms in the Hamiltonian, contrasting
the dispersive shift for Rabi Hamiltonian in Eq. (18.

Figure 3 presents a detailed comparison of analyti-
cally calculated qubit-induced dispersive shifts on the res-
onator frequency, as a function of modulation frequency
ωp, against the backdrop of exact resonator transmis-
sion spectrum obtained from a numerical simulation for
both the Rabi and JC Hamiltonians. As evident, para-
metric interactions support a unique ‘blind spot’ where
χp = 0, even for large gp/∆p, for an appropriate pump
frequency at the geometric average of the sum and the
difference frequencies ωBS = (ω+ω−)1/2 = (ω2

q − ω2
a)1/2.

(Note that no blind spot exists for ωq < ωa.) This decou-
pling is caused due to equal and opposite contributions
to the dressed energy-level shifts from the difference and
the sum frequency components of the Rabi Hamiltonian
at ωBS respectively. Note that no blind spot exists for
ωq < ωa. Such a cancellation at the two-level approxi-
mation is not possible with shifts estimated in Eq. (25)
with JC interaction, of which the profile of qubit-induced
shifts on the resonator frequency for various values of

ωp against the backdrop of exact resonator transmission
spectrum obtained from a numerical simulation is shown
in Figure 3(b).

In the same vein, the JC Hamiltonian fails to capture
the pole near the sum frequency ω+ entirely. This is
clear from Eq. (25), which unlike Eq. (18), lacks the
sum frequency contribution. In fact, the contribution
of the missing sum frequency terms can be significant
even at pump frequencies far detuned from ω+; this is
most strikingly evident at ωBS, where a non-zero value of
χJC persists due to the absence of Bloch-Siegert contribu-
tions. Thus, unlike the Rabi model, the JC interaction
does not support zero-contrast points with monochro-
matic driving. Both these aspects highlight how making
the rotating-wave approximation in the lab frame, before
the SWT is performed, can be problematic and lead to
erroneous results for time-dependent interactions.

IV. MULTI-LEVEL EFFECTS

To investigate the effect of higher excitations in time-
dependent settings, we next consider a multi-level gener-
alization of the Rabi model by replacing the qubit with a
Kerr oscillator. The Kerr oscillator provides an economi-
cal way to study the perturbative corrections for the case
of a multi-frequency spectrum, while introducing only
one additional parameter (anharmonicity K, with K > 0
assumed) to the problem. Further, it attracts consider-
able theoretical and practical interest since, besides be-
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ing a canonical example of a nonlinear quantum optical
system, it forms the cornerstone of many quantum infor-
mation platforms using Josephson junction-based super-
conducting circuits [18–20].

The system of a Kerr oscillator coupled to a linear
oscillator via a time-dependent transverse coupling can
be described by the Hamiltonian,

Ĥ(t) = ωbb̂
†b̂−K(b̂†b̂)2 + ωaâ

†â+ g(t)(b̂† + b̂)(â† + â),

where b̂† (â†), b̂ (â) are creation and annihilation opera-
tors, ωb (ωa) is the frequency of the Kerr (linear) oscil-
lator, and g(t) = 2gp cos(ωpt) as before. Following the
same procedure as done for the qubit, we can define an

SWT generator S1 of the form

Ŝ(1)(t) = gp
∑
±
e±iωpt

[(
Ω̂+[n̂b]± ωp

)−1

b̂†â†

+
(

Ω̂−[n̂b]± ωp
)−1

b̂†â

]
− h.c.,

(26)

where Ω̂±[n̂b] = (ωb +K)Î− 2Kn̂b ± ωaÎ with n̂b = b̂†b̂.
To leading order in gp, we find the resultant cross-Kerr

shift corresponding to the transition between the Fock
states {|nb − 1〉, |nb〉} of the Kerr oscillator as

χ(2)
p (nb − 1; nb) = g2

p

∑
±

(
n

Ω−(n)± ωp
+

n

Ω+(n)± ωp
− n+ 1

Ω−(n+ 1)± ωp
− n+ 1

Ω+(n+ 1)± ωp

)∣∣∣∣nb
nb−1

, (27)

where Ω±(nb) = 〈nb|Ω̂±[n̂b]|nb〉 denotes the number-
dependent sum and difference frequencies for the system
of coupled oscillators. Several observations are in order:

(i) The expression for the shift in Eq. (27) involves
eight terms as compared to the two terms in Eq. (18)
for the two-level qubit case; this is because each
state |nb〉 is coupled to neighboring states |nb ± 1〉,
each of which contribute to the net shift on the en-
ergy of a given state.

(ii) Given the distinct number-dependent transition fre-
quencies for the Kerr oscillator, the regime for valid-
ity of the perturbative diagonalization now depends
on the number of excitations, i.e. gp/|∆p(nb)| < 1,
where ∆p(nb) = min{Ω±(nb)± ωp}.

(iii) We develop the perturbation series with gp/|∆p(nb)|
as the small parameter. This is a crucial improve-
ment over some previous analyses, which treat the
Kerr term perturbatively [21, 22], since now the
shifts calculated using Eq. (27) hold for any value
of anharmonicity K relative to detuning from the
parametric resonance ∆p(nb).

To elucidate the last point, Fig. 4 shows the detailed

profile of calculated χ
(2)
p (0; 1) (the ‘transmon’ limit [23])

in two distinct regimes based on the magnitude of the K
relative to the detuning Ω−(0); in both cases we assume
weak anharmonicity s.t. K < ωa,b.

Case I: Ω−(0) < 0 or 0 < 2K < Ω−(0). As shown in
Fig. 4, either positive or negative shifts can be realized
depending on whether the ratio K/∆p(nb) is larger or
smaller than unity. In contrast, the sign of the static shift

χ
(2)
s (0; 1), ωp = 0 in Eq. (27), is fixed by the sign of the

anharmonicity K alone. Specifically, χ
(2)
p (0; 1) reverses

sign when Ω−(2) < ωp < Ω−(1) or Ω+(2) < ωp < Ω+(1).
This parametric-straddling regime [13], is reminiscent of

ωp/2π (GHz)
−9

−6

−3

0

3

6

9

χ
p

( 0
;1

)
/2
π

(M
H

z) Ω−(0) < 0

0 1 2 3 4
ωp/2π (GHz)

−9

−6

−3

0

3

6

9

χ
p

( 0
;1

)
/2
π

(M
H

z) 0 < Ω−(0) < 2K

−2 0 2
δ/2π (MHz)

0

1
S
a
a

[δ
]

FIG. 4. Parametric dispersive shifts of a resonator coupled
to a Kerr-oscillator for two distinct regimes of anharmonicity:
ωa = 2π × 2.0 GHz, ωb = 2π × 1.5 GHz (top) and ωa =
2π×1.5 GHz, ωb = 2π×2.0 GHz (bottom). Both simulations
use K = 2π × 300 MHz, gp = 2π × 10 MHz, and κ = 2π ×
0.5 MHz. The red circles are results from simulations of a
truncated three-level system, and the black is the result of the
analytical calculation based on Eq. (27). In both panels, the
gray regions correspond to the parametric straddling regimes,
where χp(0; 1) > 0 is realized. The hatched area in the bottom
panel corresponds to the region enclosing the blind spot. The
inset shows the normalized resonator spectrum at the blind
spot; note that while there is no state-dependent shift there
is an overall shift of the resonator frequency at the ωBS unlike
the qubit case [see appendix C].
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the static straddling regime achieved with fixed couplings
for ωb − 3K < ωa < ωb − K [24], except now the sign
reversal can be achieved by tuning the frequency ωp of
the coupling while keeping its magnitude gp fixed.

Case II: 0 < Ω−(0) < 2K. Here, in addition to
the sign reversal of induced frequency shifts between
parametric straddling and dispersive regimes, a blind

spot χ
(2)
p (0; 1) = 0 is realized for a pump frequency

ωBS ' (Ω−(1)|Ω−(2)|)1/2. Note that, unlike the two-
level qubit case, this does not result from the cancellation
of Bloch-Siegert (sum) and JC (difference) contributions,
but rather from the difference-frequency contributions to
χp(0; 1) corresponding to the lowest two transition fre-
quencies of the Kerr oscillator.

V. INDUCED DISSIPATION

In the presence of parametric interactions, the dis-
sipative interaction of the qubit with the environment
(through the resonator) also becomes tunable with the
pump frequency and amplitude, in sharp contrast with
the static scenario where the induced dissipation is fixed
[25]. Using a formal master equation construction [see
appendix E], we find that for |ωp − ω−| ∼ gp the dom-

inant process is qubit relaxation (σ̂−q ) at rate γ↓−, while

for |ωp−ω+| ∼ gp induced qubit heating (σ̂+
q ) at rate γ↑+

dominates, with the respective rates given by

γ↓− ≈
∑
±
κ(ωq ± ωp)

(
gp

ωq − ωa ± ωp

)2

, (28a)

γ↑+ ≈
∑
±
κ(−ωq ± ωp)

(
gp

ωq + ωa ± ωp

)2

. (28b)

Here κ(ω) denotes the rate proportional to the noise spec-
tral density of the environment at frequency ω. Similar
calculation for the case of the Kerr resonator leads to
a nb-dependent relaxation (heating) rate when the in-
teraction is driven near the difference (sum) frequency,
Ω±(nb), for the corresponding number-dependent transi-
tion [see appendix E]. Note that the ‘quantum heating’

rate γ↑+ is non-zero even when the resonator remains in
its ground state, since it is mediated through coupling-
induced amplification of vacuum fluctuations [26]. Cru-
cially, the induced dissipation rates do not null at the
blind spots unlike the coherent shifts; they remain highly
suppressed though since the corresponding pump fre-
quency is far detuned from both the sum and difference
frequencies, i.e. |ω± ± ωBS| � gp.

As evident from Eq. (28), a fixed frequency qubit
parametrically-coupled to an environment be employed
as a novel broadband noise sensor. The resultant qubit
relaxation or heating rates sample the environmental
density of states over a set bandwidth (set by Lorentzian
profile of resonator in QED setups), with the center of
this ‘filter function’ set by the choice of the pump fre-

quency mediating the interaction. Such pump-mediated
noise spectroscopy can be thought of as a continuous-
wave analogue of spin-locking with the baseband fre-
quency set by ωp in GHz, making it immune to low-
frequency fluctuations that typically limit conventional
protocols relying on variation of the drive amplitude [27].
It is also an attractive complement to dynamical decou-
pling protocols which characterize slow or quasi-static
noise [28], and can be used for sensing high-frequency
quantum noise which was shown to limit coherence in
recent qubit designs [29].

VI. CONCLUSIONS

We have presented an ab-initio framework for diag-
onalizing strong time-dependent interactions, based on
a time-dependent generalization of the Schrieffer-Wolff
transformation (SWT). The excellent quantitative agree-
ment between exact numerical simulations and our an-
alytical calculations for perturbative shifts and decay
of dressed states demonstrates how the SWT can be
used for developing a well-controlled perturbation se-
ries in time-dependent settings. The time-dependent
SWT method presents a complementary approach to ex-
act methods such as Floquet theory. Though exact, the
complexity of Floquet-based diagonalization grows ex-
ponentially with the number of driving fields making it
computationally demanding. On the other hand, while
perturbative, SWT-based expansion is more amenable in
terms of analytical tractability of the effective Hamilto-
nian thereby offering physically relevant insights. In fact,
recent works have used SWT-like techniques for block
diagonalization of the Floquet quasienergy operator in
order to gain a more intuitive picture about validity of
high-frequency approximations employed while truncat-
ing the Floquet Hilbert space [30].

Applying our analytical technique to parametric inter-
actions, we predict several unique features accessible with
parametric cavity- and circuit-QED systems. Most no-
tably tunable dispersive shifts in tens of MHz can be real-
ized with modest interaction strengths by simply tuning
the pump frequency sufficiently close to the sum or dif-
ference frequency, while maintaining large detuning be-
tween the physical subsystems. This is a particularly
attractive functionality for multi-qubit circuit-QED ar-
chitectures where frequency crowding becomes a limit-
ing issue [12]. Achieving such tunability in architectures
based on static coupling and tunable qubits necessarily
comes with trade-offs, such as flux noise-limited qubit co-
herence and enhanced crosstalk, leading to limited con-
trol flexibility. Further, our results show how the physics
of the Rabi model can be crucial even in the disper-
sive regime gp � |ω−| and leads to significant correc-
tions beyond the usual rotating-wave Jaynes-Cummings
model; these are crucial for predicting exact cancellation
points (‘blind spots’) of the induced energy shifts. We
note that these corrections to the dressed shift are dis-
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tinct from non-RWA corrections in the ultra-strong cou-
pling (g < ω− . ωa) [31] or the deep-strong coupling
(ω− < g ∼ ωa) [32] regime. In addition to their theoreti-
cal novelty, identifying and engineering such blind spots
is a topic of active interest in several applications, such
as protecting qubits against photon shot-noise induced
dephasing [33, 34] and mitigating ZZ-induced crosstalk
in two-qubit gates [35–38] in circuit-QED architectures.
Extending our analysis to weakly anharmonic systems,
we show how frequency-tunable interactions support a
rich structure of multi-level shifts, including switching
between parametric-dispersive and parametric-straddling
regimes via the choice of pump frequency. Previously,
such effects have been restricted to the purview of highly
nonlinear multi-level atoms with complicated selection-
rule engineering [39].

The parametric-QED regime presented here enables
several new and expeditious applications of the burgeon-
ing parametric quantum toolbox. In addition, they pro-
vide a natural starting point for several theoretical ex-
tensions, such as multi-pump generalizations, the multi-
photon Rabi model [40], and Hamiltonian engineering for
quantum simulation of non-trivial gauge structures [41],
that we hope to investigate in future work.
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Appendix A: Time-dependent Schrieffer-Wolff
Transformation (SWT)

The essence of constructing a sequence of successive
time-dependent SWTs that perturbatively diagonalizes
a general time-dependent Hamiltonian is to find appro-
priate choice of M -th order SWT generator Ŝ(M)(t) such
that the off-diagonal part of the interaction Hamiltonian
only contains terms of O(λM ) or higher, i.e.

V̂
(M)
OD (t) =

∞∑
m=M

λmV̂
(M)
OD,m(t). (A1)

The form of this generator can be calculated using Eq. (7)
presented in the main text; in this section we present a
detailed proof of this construction.

We construct this proof by following a process simi-
lar to mathematical induction. Without loss of gener-
ality, we begin by assuming that the lab frame interac-
tion Hamiltonian V̂ (t) ∼ O(λ), such that Ĥ(1)(t) satis-

fies Eq. (5) by construction. Then, assuming Ĥ(M)(t)

satisfies Eq. (5), we will now prove that Ĥ(M+1)(t) also

satisfies Eq. (5) as long as Ŝ(M)(t) satisfies Eq. (7).
Utilizing the Baker-Campbell-Hausdorff expansion and

the derivative of the exponential map, the unitary trans-
formation from Ĥ(M)(t) to Ĥ(M+1)(t) can be expressed

as, with ÛM (t) = exp[−Ŝ(M)(t)],

Ĥ(M+1)(t) = Û†M (t)Ĥ(M)(t)ÛM (t)− iÛ†M (t)
∂ÛM (t)

∂t

= Ĥ0 +

∞∑
n=0

1

(1 + n)!

(
adŜ(M)(t)

)n
[Ŝ(M)(t), Ĥ0] +

∞∑
n=0

1

n!

(
adŜ(M)(t)

)n
V̂ (M)(t)

+

∞∑
n=0

1

(1 + n)!

(
adŜ(M)(t)

)n(
i
∂Ŝ(M)(t)

∂t

)

= Ĥ0 +
1

1!
Ŵ (M)(t) +

(
1

1!
− 1

2!

)
[Ŝ(M)(t), V̂ (M)(t)] +

1

2!
[Ŝ(M)(t), Ŵ (M)(t)]

+

(
1

2!
− 1

3!

)
[Ŝ(M)(t), [Ŝ(M)(t), V̂ (M)(t)]] +

1

3!
[Ŝ(M)(t), [Ŝ(M)(t), Ŵ (M)(t)]]

+

(
1

3!
− 1

4!

)
[Ŝ(M)(t), [Ŝ(M)(t), [Ŝ(M)(t), V̂ (M)(t)]]] +

1

4!
[Ŝ(M)(t), [Ŝ(M)(t), [Ŝ(M)(t), Ŵ (M)(t)]]] + · · ·

= Ĥ0 + Ŵ (M)(t) +

∞∑
n=1

1

(n+ 1)!

(
adŜ(M)(t)

)n
Ŵ (M)(t) +

∞∑
n=1

n

(n+ 1)!

(
adŜ(M)(t)

)n
V̂ (M)(t),

(A2)
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where adŜ(M)(t)• ≡ [Ŝ(M)(t), •] denotes the adjoint ac-

tion, and

Ŵ (M)(t) = i
∂Ŝ(M)(t)

∂t
+ [Ŝ(M)(t), Ĥ0] + V̂ (M)(t). (A3)

Next, following the line of inductive reasoning we assume
that Ĥ(M) satisfies Eq. (5). Therefore, the interaction
Hamiltonian can be written as

V̂ (M)(t) = V̂
(M)
D (t) +

∞∑
m=M

λmV̂
(M)
OD,m(t)

= V̂
(M)
D (t) + λM V̂

(M)
OD,M (t) +

∞∑
m=M+1

λmV̂
(M)
OD,m(t),

(A4)

where we have singled out the lowest order off-diagonal

term λM V̂
(M)
OD,M (t) that we aim to eliminate. Given

Eq. (7) for Ŝ(M)(t), Eq. (A3) reduces to

Ŵ (M)(t) = i
∂Ŝ(M)(t)

∂t
+ [Ŝ(M)(t), Ĥ0] + V̂

(M)
D (t)

+ λM V̂
(M)
OD,M (t) +

∞∑
m=M+1

λmV̂
(M)
OD,m(t)

= V̂ (M)(t)− λM V̂ (M)
OD,M (t)

= V̂
(M)
D (t) +

∞∑
m=M+1

λmV̂
(M)
OD,m(t),

which is exactly the remainder of V̂ (M) without
its lowest order off-diagonal component. Note that
V̂ (M)(t), Ŵ (M)(t) are both at least of the order of

O(λn≥1), while Ŝ(M)(t) ∼ O(λM ) according to Eq. (7).
Thus

∞∑
n=1

1

(n+ 1)!

(
adŜ(M)(t)

)n
Ŵ (M)(t) ∼ O(λn≥M+1),

∞∑
n=1

n

(n+ 1)!

(
adŜ(M)(t)

)n
V̂ (M)(t) ∼ O(λn≥M+1)

(A5)

Substituting Eq. (A5, A5) in Eq. (A2), we arrive at the

desired expression for Ĥ(M+1)(t),

Ĥ(M+1)(t) =Ĥ0 + V̂
(M)
D (t) +O(λM+1). (A6)

Note that Ĥ(M+1)(t) lacks any O(λM ) order off-diagonal
term. Thus, by constructing a time-dependent Schrieffer-
Wolff generator using Eq. (7), Ĥ(M)(t) can be trans-

formed into Ĥ(M+1)(t) with the off-diagonal component
at M th order eliminated. Since this property of the trans-
formation is valid for any M ≥ 1, a sequence of successive

SWTs can be applied to eliminate the off-diagonal terms
up to any desired order in λ.

Note that although formally infinite num-
ber of terms are involved in the expression of
Ŵ (M)(t), V̂ (M)(t), Ŵ (M+1)(t), V̂ (M+1)(t) · · · , in practice
none of these calculations need to be done beyond the
desired order of diagonalization in λ, since they are
anyway neglected in the final outcome.

Example for Mmax = 5

As an illustrative example, we detail the procedure of
obtaining a diagonalized Hamiltonian correct to 5-th or-
der (i.e. Mmax = 5), obtained by eliminating off-diagonal
interaction terms to the O(λ4). To this end, without loss

of generality, we begin by assuming V̂
(1)
D = 0 and write

V̂ (1)(t) = λV̂
(1)
OD(t); (A7)

Using Eq. (A3), this leads to the following differential

equation for Ŝ(1)(t),

i
∂Ŝ(1)(t)

∂t
+ [Ŝ(1)(t), Ĥ0] + λV̂

(1)
OD(t) = 0. (A8)

Therefore,

Ŵ (1)(t) = i
∂Ŝ(1)(t)

∂t
+ [Ŝ(1)(t), Ĥ0] + V̂ (1)(t) = 0 (A9)

According to Eq. (A2)

V̂ (2)(t)

=
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+O(λ5).

(A10)

Next, following this procedure the second-order generator
Ŝ(2)(t) can be evaluated from

i
∂Ŝ(2)(t)

∂t
+ [Ŝ(2)(t), Ĥ0] + λ2V̂

(2)
OD,2(t) = 0. (A11)

where V̂
(2)
OD,2(t) is entirely generated from the off-diagonal

contribution due to action of the previous SWT on the
interaction, i.e.,

λ2V̂
(2)
OD,2(t) = Q0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
. (A12)

Substituting this in the expression for Ŵ (2), we obtain
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Ŵ (2) = i
∂Ŝ(2)(t)

∂t
+ [Ŝ(2)(t), Ĥ0] + V̂ (2)(t)

= i
∂Ŝ(2)(t)

∂t
+ [Ŝ(2)(t), Ĥ0] +Q0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+ P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+O(λ5)

= P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+O(λ5)

(A13)

Next, according to Eq. (A2),

V̂ (3)(t) = Ŵ (2)(t) +
1

2

[
Ŝ(2)(t), Ŵ (2)(t)

]
+

1

6

[
Ŝ(2)(t),

[
Ŝ(2)(t), Ŵ (2)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+

1

3

[
Ŝ(2)(t),

[
Ŝ(2)(t), V̂ (2)(t)

]]
+O(λ8)

' Ŵ (2)(t) +
1

2

[
Ŝ(2)(t), Ŵ (2)(t)

]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5)

= P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+

1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5),

where in the second step we drop the terms
[
Ŝ(2)(t),

[
Ŝ(2)(t), Ŵ (2)(t)

]]
,
[
Ŝ(2)(t),

[
Ŝ(2)(t), V̂ (2)(t)

]]
∼ O(λ6), since we

are only interested in elimination of off-diagonal terms up to O(λ4). This leads to the following differential equation

for third-order generator Ŝ(3)(t)

i
∂Ŝ(3)(t)

∂t
+ [Ŝ(3)(t), Ĥ0] + λ3V̂

(3)
OD,3(t) = 0. (A14)

where now the only off-diagonal terms at cubic order are obtained as

λ3V̂
(3)
OD,3(t) = Q0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
. (A15)

This leads to

Ŵ (3) = i
∂Ŝ(3)(t)

∂t
+ [Ŝ(3)(t), Ĥ0] + V̂ (3)(t)

= i
∂Ŝ(3)(t)

∂t
+ [Ŝ(3)(t), Ĥ0] + P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+Q0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+ P0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+

1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5)

= P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+ P0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+

1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5).

Noting that V̂ (3)(t), Ŵ (3)(t) ∼ O(λ2) and Ŝ(3)(t) ∼ O(λ3), we can ignore terms of the type
[
Ŝ(3)(t), Ŵ (3)(t)

]
,[

Ŝ(3)(t), V̂ (3)(t)
]

which are O(λ5), since we are interested in obtaining the diagonalized Hamiltonian to O(λ4). There-
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fore,

V̂ (4)(t) = Ŵ (3)(t) +
1

2

[
Ŝ(3)(t), Ŵ (3)(t)

]
+O(λ9) +

1

2

[
Ŝ(3)(t), V̂ (3)(t)

]
+O(λ8)

' Ŵ (3)(t) +O(λ5)

= P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+ P0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)

]]]
+

1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5)

(A16)

Next, the differential equation for Ŝ(4)(t) becomes

i
∂Ŝ(4)(t)

∂t
+ [Ŝ(4)(t), Ĥ0] + λ4V̂

(4)
OD,4(t) = 0. (A17)

where the three off-diagonal contributions at O(λ4) order are given as

λ4V̂
(4)
OD,4(t) =Q0 •

(
1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+

1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

])
.

(A18)

Therefore,

Ŵ (4)(t) = P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+ P0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+ P0 •

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+ P0 •

(
1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]])
+ P0 •

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5)

(A19)

and

V̂ (5)(t) = Ŵ (4)(t) +
1

2

[
Ŝ(4)(t), Ŵ (4)(t)

]
+

1

2

[
Ŝ(4)(t), V̂ (4)(t)

]
+O(λ10)

' Ŵ (4)(t) +O(λ6)

= P0 •
1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+ P0 •

1

3

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
+ P0 •

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+ P0 •

(
1

2

[
Ŝ(2)(t),P0 •

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]])
+ P0 •

1

2

[
Ŝ(2)(t), V̂ (2)(t)

]
+O(λ5)

(A20)

In the examples discussed in the main text,
[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]
and

[
Ŝ(2)(t),P0 •

[
Ŝ(1)(t), V̂ (1)(t)

]]
generate

no diagonal contributions, therefore,

V̂ (5)(t) = P0 •
(

1

2

[
Ŝ(1)(t), V̂ (1)(t)

]
+

1

8

[
Ŝ(1)(t),

[
Ŝ(1)(t),

[
Ŝ(1)(t), V̂ (1)(t)

]]]
+

1

2

[
Ŝ(2)(t), V̂ (2)(t)

])
+O(λ5).

(A21)

Appendix B: Time-dependent system frequency

Our framework can fully accommodate the case where
qubit frequency is time-dependent due to, say parametric
flux variation. To demonstrate this, we take the Rabi
model as an example and calculate only up to Ŝ(1)(t).

The total Hamiltonian now becomes Ĥ(t) = ĤTD
0 (t) +

V̂ (t), where ĤTD
0 (t) = −(ωq(t)/2)σ̂zq +ωa

(
â†â+ 1/2

)
. It

is more convenient to obtain the SWT generator by first
transforming into the interaction picture, where

V̂I(t) = exp

[
i

∫ t

0

ĤTD
0 (t′)dt′

]
V̂ (t) exp

[
−i
∫ t

0

ĤTD
0 (t′)dt′

]
,

(B1)
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and i∂Ŝ
(1)
I /∂t+ V̂I(t) = 0. We can then solve for

Ŝ
(1)
I (t) = ξ̃+(t)σ̂+

q â
† − ξ̃−(t)σ̂−q â

† − h.c., (B2)

where

ξ̃±(t) = ±i
∫ t

0

g(t′) exp

{
i

∫ t′

0

[±ωq(t′′) + ωa] dt′′

}
dt′.

(B3)

As a concrete example, we consider the frequently en-
countered case of parametric flux variation of the qubit
frequency, Φ(t) = Φ0+δΦ cos(ωdt) with |δΦ| � Φ0. Such
nonlinear modulation of the qubit frequency can be writ-
ten as

ωq[Φ(t)] = ωq cos[Φ0] + δΦ cos(ωdt)] ≈ ωq0 + ν cos(ωdt),

where ωq0 = ωq cos[Φ0] and ν = δΦ× ωq sin[Φ0]. Substi-
tuting this in Eq. (B3) and making use of Jacobi–Anger
expansion to resolve the exponent of the sinusoidal mod-
ulation, we obtain

ξ̃±(t) = ±i
∫ t

0

g(t′) exp

{
i

[
(±ωq0 + ωa) t′ ± ν

ωd
sin (ωdt

′)

]}
dt′

= ±
+∞∑

k=−∞

Jk(ν/ωd)
∑
p

{
gp

±ωq0 ± kωd + ωa − ωp
exp [i (±ωq0 ± kωd + ωa − ωp) t]

+
g∗p

±ωq0 ± kωd + ωa + ωp
exp [i (±ωq0 ± kωd + ωa + ωp) t]

}
,

(B4)

where we have assumed sinusoidal coupling as the main text Eq. (14). Here Jk(ν/ωd) is the Bessel function of of the
first kind, and k is an integer. The expression for the corresponding SWT generator in the Schrödinger picture,

Ŝ(1)(t) = ξ̃+(t) exp

{
−i
∫ t

0

[+ωq(t
′) + ωa] dt′

}
σ̂+
q â
† − ξ̃−(t) exp

{
−i
∫ t

0

[−ωq(t′) + ωa] dt′
}
σ̂−q â

† − h.c. (B5)

leads to

ξ±(t) = ±
+∞∑

k,k′=−∞

Jk(ν/ωd)Jk′(ν/ωd)
∑
p

{
gp

±ωq0 ± kωd + ωa − ωp
ei[±(k−k′)ωd−ωp]t

+
g∗p

±ωq0 ± kωd + ωa + ωp
ei[±(k−k′)ωd+ωp]t

}
.

(B6)

This can now be used in Ĥ(2)(t) = 1
2 [Ŝ(1)(t), V̂ (1)(t)] + O(g3

p) [Eq. (13)] to calculate the leading-order effective

Hamiltonian correct to O(g2(t)). For a single pump frequency ωp, the corresponding dispersive shift, when r ≡ 2ωp/ωd
is an integer, is

χ(2)
p = −|gp|2

+∞∑
k=−∞

J2
k (ν/ωd)

(
1

ωk,− − ωp
+

1

ωk,− + ωp
+

1

ωk,+ − ωp
+

1

ωk,+ + ωp

)

− 1

2
(g2
p + gp

∗2)

+∞∑
k=−∞

(
Jk(ν/ωd)Jk−r(ν/ωd)

ωk,− − ωp
+
Jk(ν/ωd)Jk+r(ν/ωd)

ωk,− + ωp

+
Jk(ν/ωd)Jk−r(ν/ωd)

ωk,+ − ωp
+
Jk(ν/ωd)Jk+r(ν/ωd)

ωk,+ + ωp

)
,

(B7)

where ω±,k = (ωq0 + kωd)± ωa. If r is not an integer,

χ(2)
p = −|gp|2

+∞∑
k=−∞

J2
k (ν/ωd)

(
1

ωk,− − ωp
+

1

ωk,− + ωp
+

1

ωk,+ − ωp
+

1

ωk,+ + ωp

)
. (B8)

Note that now in addition to qubit frequency ωq0 we get contributions to dressed shift at every order from sidebands
at ωq0 + kωd, weighted by Jk(ν/ωd) .
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FIG. 5. (Top) Shift of a resonator coupled to a three-level
system in its ground state, with ωa = 2π × 1.5 GHz, ωb =
2π × 2.0 GHz, K = 2π × 300 MHz, gp = 2π × 10 MHz,
and κ = 2π × 0.5 MHz. The blue circles are results from
simulations, and the black line is from Eq. C2 (Bottom) Shift
with ωa = 2π × 2.0 GHz, ωb = 2π × 1.5 GHz, and all other
parameters as before.

Appendix C: Multi-level shifts

The leading order diagonalized Hamiltonian for the
system of a Kerr oscillator parametrically-coupled to a
linear oscillator, is given by,

Ĥ
(2)
D = |gp|2n̂a

∑
±,±

[(
Ω̂±[n̂b]± ωp

)−1

n̂b

−
(

Ω̂±[n̂b + 1]± ωp
)−1

(n̂b + 1)

]
,

(C1)

where Ω̂±[n̂b] = (ωb +K)Î− 2Kn̂b ± ωaÎ.

In addition to cross-Kerr shift reported in the maint
text, the dispersive shift induced by the Kerr oscillator
“ground-state” can be calculated from the matrix ele-
ment

χ(2)
p (0) = 〈na, nb = 0|Ĥ(2)

D |na, nb = 0〉. (C2)

Fig. 5 shows a profile of χp(0) for the two regimes of
nonlinearity discussed in the main text. It is interesting
to note that even at the ‘blind spot’ realized in the regime
0 < Ω−(0) < 2K, χp(0) 6= 0 [see the inset of Fig. 4 in
the main text]; this is in contrast to the qubit case where
the cancellation happens at zero detuning from the bare
resonance of the linear oscillator.

Appendix D: Higher-order corrections

The higher-order contributions in λ can be devel-
oped using the prescription given in appendix A. Here
we report the next order contribution in the sys-
tems we consider in the main text, which appears
at quartic order in the coupling g4

p for the purely
block off-diagonal interactions considered. Notably,
there are two contributions at quartic order: (i) the
diagonal term generated by the action of the first-
order generator on the first-order off-diagonal interac-
tion 1

8 [Ŝ(1)(t), [Ŝ(1)(t), [Ŝ(1)(t), V̂ (t)]]], and (ii) the diago-
nal term generated by the second-order generator on the

second-order off-diagonal interaction, 1
2 [Ŝ(2)(t), V̂

(2)
OD(t)]

[see Eq. (A12)]. It is worth noting that the contribution
of type (ii) does not appear for the JC interaction, as the

source of the non-zero V̂
(2)
OD(t) are the squeezing terms.

Here we report the terms generated for both these in-
teractions post-RWA for both the qubit and the Kerr
resonator cases.

1. Qubit case

The two terms that appear in the diagonalized Hamit-
lonian at quartic order are

1

8
[Ŝ(1)(t), [Ŝ(1)(t), [Ŝ(1)(t), V̂ (t)]]]

= |gp|4
[∑
±

(
1

ω± + ωp
+

1

ω± − ωp

)3

−
∑
±

(
1

ω± + ωp

)2(
1

ω± − ωp

)
−
∑
±

(
1

ω± − ωp

)2(
1

ω± + ωp

)

+2
∑
±

(
1

ω± + ωp
+

1

ω± − ωp

)(
1

ω∓ + ωp
+

1

ω∓ − ωp

)2

−2
∑
±

(
1

ω± + ωp

)(
1

ω∓ + ωp

)(
1

ω∓ − ωp

)

−2
∑
±

(
1

ω± − ωp

)(
1

ω∓ − ωp

)(
1

ω∓ + ωp

)]
σ̂zq

[
(â†â)2 + â†â+

1

2

]
(D1)
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and

1

2
[Ŝ(2)(t), V̂

(2)
OD(t)] = −|gp|4

 1

ωa

(∑
±,±

1

ωb ± ωa ± ωp

)2

+
1

ωa + ωp

(
1

ωb + ωa + ωp
+

1

ωb − ωa − ωp

)2

+
1

ωa − ωp

(
1

ωb − ωa + ωp
+

1

ωb + ωa − ωp

)2
]

2â†â− 1

4
. (D2)

2. Kerr resonator case

For the Kerr resonator case, recall that χ
(2)
p (0; 1),

which is quadratic in gp, exhibits poles at detunings of
−K and −3K from the difference frequency ω− [Fig. 3
of the main text]; these correspond to the ‘single-photon’
parametric resonances for the |0〉 → |1〉 and |1〉 → |2〉

transitions of the Kerr resonator respectively. The next
order corrections, quartic in gp, describe the ‘two-photon’
parametric resonances corresponding to the |1〉 → |3〉
transition of the Kerr resonator, thus manifesting as poles

in χ
(4)
p (0; 1) at −5K and +K detunings from the differ-

ence frequency. The resultant dispersive shifts can be
read off from the prefactor of the n̂an̂b term in the SWT
Hamiltonian diagonalized to fourth order, as

χ(4)
p (0; 1)

=− 1

4
|gp|4

∑
±

[
−18

(
1

Ω−(3)± ωp

)(
1

Ω−(3)± ωp

)(
1

Ω−(2)± ωp

)
+ 36

(
1

Ω−(2)± ωp

)(
1

Ω−(3)± ωp

)(
1

Ω+(2)± ωp

)
+ 54

(
1

Ω+(2)± ωp

)(
1

Ω−(3)± ωp

)(
1

Ω+(2)± ωp

)
+ 6

(
1

Ω−(0)± ωp

)(
1

Ω−(2)± ωp

)(
1

Ω+(1)± ωp

)
+ 4

(
1

Ω+(0)± ωp

)(
1

Ω−(1)± ωp

)(
1

Ω+(1)± ωp

)]
,

(D3)

where we have considered the pump to be near the dif-
ference frequency. Note that the dressed shifts to cubic
order in gp are zero under RWA, since diagonal contri-

butions to shifts require a balanced number of b̂† and

b̂.
Crucially, the degree of each pole in the expression

for the dispersive shift is connected to the order of the
n-photon process. For instance, for ωp = Ω−(3), the

pole near 5K manifests as a peak in χ
(4)
p (0; 1) which is

symmetric in detuning, since it corresponds to a pole of
degree 2 [first line of Eq. (D3)]. This can be distinguished
from the quadratic contribution to the dispersive shift

χ
(2)
p (1; 2) due to the |2〉 → |3〉 transition, which leads to

a pole at the same value of ωp, but with a peak lineshape
which is asymmetric in detuning as it is a pole of degree
1.

Appendix E: Parametrically-Induced Purcell decay
and quantum heating

To investigate the induced dissipation on the qubit
or Kerr oscillator in the presence of a time-dependent
interaction with a dissipative linear oscillator, in this

section we construct a Lindblad-form quantum master
equation. To this end, we transform the system-bath
interaction using the same generator as that used to im-
plement the time-dependent Schrieffer-Wolff transforma-
tion on the system Hamiltonian. Since this master equa-
tion construction is based on a second-order Dyson se-
ries expansion of the system-bath interaction, we restrict
ourselves to the lowest-order operator transformations
O(gp/∆p(nb)).

We present the results for the Kerr oscillator here since
the qubit-case is a specific limit of the multi-level physics
of this system. Specifically, our focus is obtaining the
rate of induced, or Purcell, decay on a given transition
of the Kerr oscillator, as well as the onset of dissipative
terms mediated by the parametric coupling such as quan-
tum heating. To this end, we assume the linear resonator
is coupled to an environment modelled as a collection of
harmonic oscillators. ĤE =

∑
α ναγ̂

†
αγ̂α, with an inter-

action of the form

ĤSE =
∑
α

µα(γ̂†α + γ̂α)(â† + â) (E1)

Under the action of the SWT, ĤSE in the interaction
frame transforms as,
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ĤSW
SE (t) = eŜ(t)ĤSEe

−Ŝ(t)

'
∑
α

µα
(
γ̂†αe

iναt + γ̂αe
−iναt

)
×
[
e−iωat

{
â− gp

(
Ω̂−1

+−e
iΩ̂+−tb̂† − b̂ Ω̂−1

−+e
−iΩ̂−+t

)
−g∗p

(
Ω̂−1

++e
iΩ̂++tb̂† − b̂ Ω̂−1

−−e
−iΩ̂−−t

)}
+ h.c.

]
,

(E2)

where we have introduced the operator Ω̂±±[n̂b] =

Ω̂±[n̂b] ± ωpI, with Ω±±(nb) ≡ 〈nb|Ω̂±±|nb〉, for brevity
of notation. Note that if gp/|Ω±±(nb)|〉 � 1, the corre-

sponding terms in Eq. (E2) are highly suppressed. Tak-
ing the zero-temperature limit and considering a contin-
uous density of states Γ(ν) for the bath modes leads to
the following form of the master equation,

∂

∂t
ρ̂I(t) = (âρ̂I(t)â

† − â†âρ̂I(t))
∞∫

0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e−iωa(t′−t) + h.c.

+ (â†ρ̂I(t)â− ââ†ρ̂I(t))
∞∫

0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e+iωa(t′−t) + h.c.

+ (b̂ρ̂I(t)b̂
† − b̂†b̂ρ̂I(t))

∑
±

g2
p

|Ω−±(nb + 1)|2

∞∫
0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e−i(ωa+Ω−±(nb+1))(t′−t) + h.c.

+ (b̂†ρ̂I(t)b̂− b̂b̂†ρ̂I(t))
∑
±

g2
p

|Ω−±(nb)|2

∞∫
0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e+i(ωa+Ω−±(nb))(t
′−t) + h.c.

+ (b̂ρ̂I(t)b̂
† − b̂†b̂ρ̂I(t))

∑
±

g2
p

|Ω+±(nb + 1)|2

∞∫
0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e+i(ωa−Ω+±(nb+1))(t′−t) + h.c.

+ (b̂†ρ̂I(t)b̂− b̂b̂†ρ̂I(t))
∑
±

g2
p

|Ω+±(nb)|2

∞∫
0

dν

∞∫
0

dt′ Γ(ν)|µ|2eiν(t′−t)e−i(ωa−Ω+±(nb))(t
′−t) + h.c.

(E3)

Before proceeding, it is worth clarifying the shorthand
notation of Eq. (E3). As an example, we explicitly write
out the following term in Eq. (E3)

b̂ρ̂I(t)b̂
† g2

p

|Ω−+(nb)|2

=
∑
nb

nbg
2
p

|Ω−+(nb)|2
|nb − 1〉〈nb|ρ̂I(t)|nb〉〈nb − 1|,

(E4)

which shows that there are distinct disspiative rates for
each Fock-state transition nb → nb − 1. To obtain the
“diagonal” form of Eq. (E4) we have made a RWA to
drop terms of the form |nb − 1〉〈nb|ρ̂I(t)|mb〉〈mb − 1|
for nb 6= mb during the master equation derivation.
These terms would have a time-dependent phase factor
exp{−i [Ω−+(nb)− Ω−+(mb)] t} in the interaction frame,
which for Ω−+(nb) − Ω−+(mb) = 2K(mb − nb) is fast
oscillating. Note that we have a shifted transition fre-
quency corresponding to (nb + 1) excitations in the Kerr

oscillator for b̂ • b̂† due to non-commutation of Ω̂±± with

(b̂, b̂†), namely,

b̂†Ω̂±± = (Ω̂±± + 2K I)b̂†, b̂Ω̂±± = (Ω̂±± − 2K I)b̂.
(E5)

Finally, the master equation can be written in a more
compact form as

∂

∂t
ρ̂I(t) =

[
κ(ωa)D[â]

+
∑
nb

([
γ↓−(nb) + γ↓+(nb)

]
D [|nb − 1〉〈nb|]

+
[
γ↑−(nb) + γ↑+(nb)

]
D [|nb〉〈nb − 1|]

)]
ρ̂I(t)

(E6)

where D[Ô]• = Ô • Ô† − 1
2 Ô
†Ô • − 1

2 • Ô†Ô, and κ(ω) =

2πΓ(ω)|µ(ω)|2, with γ↓ and γ↑ representing relaxation-
type and heating-type dissipators respectively. The Kerr
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oscillator dissipative rates are given by

γ↓−(nb) =
∑
±
κ[ωa + Ω−±(nb)]

g2
p

|Ω−±(nb)|2
,

γ↑−(nb) =
∑
±
κ[−ωa − Ω−±(nb)]

g2
p

|Ω−±(nb)|2
,

γ↓+(nb) =
∑
±
κ[−ωa + Ω+±(nb)]

g2
p

|Ω+±(nb)|2
,

γ↑+(nb) =
∑
±
κ[+ωa − Ω+±(nb)]

g2
p

|Ω+±(nb)|2
.

(E7)

Typically, under the assumption that the bath modes re-
main in vacuum only the relaxation process is present;
however, for parametric pumping, heating is possible
even with a zero-temperature environment due to am-
plification of the zero-point fluctuations. Note that if
the pump detuning from either the sum or difference fre-
quency is large compared to gp, i.e. Ω±±(nb)� gp, then
the corresponding dissipative rates are highly suppressed
due to a large denominator in the respective prefactor.
We focus on two distinct cases, depending on choice of
pump frequency to be near the sum or difference fre-
quency of the transmon-resonator system:

Case I: ωp ≈ |ω−|
In this limit, depending on the detuning of the pump
frequency, either Ω−−(nb) or Ω−+(nb) is comparable in
magnitude to gp, such that the corresponding rate dom-
inates. Further, Ω−±(nb) � ωa, such that the corre-

sponding κ(−ωa − 〈Ω̂−±〉) ∼ κ(−ωa) = 0, since the bath
spectrum has no negative frequency components. The
result of this is that the prefactor for the corresponding

heating term, D[b̂†], is zero. Thus, whichever decay term
is made non-negligible by the pump will have its counter-

part heating term exactly zero. On the other hand, for
whichever of Ω−±(nb) is not comparable to gp, we have
that Ω−± � gp, such that the corresponding decay term
is highly suppressed, while its counterpart heating term
can be potentially non-zero but nonetheless still highly
suppressed. For both the sum frequency components we
have that Ω+±(nb)� gp, and thus, both the correspond-
ing decay and heating rates are negligible. In summary,
the dominant contribution to the dissipation comes from
the parametrically-induced relaxation rate, which leads
to the master equation

∂

∂t
ρ̂I(t) '

[
κ(ωa)D[â] +

∑
nb

γ↓−(nb)D[|nb − 1〉〈nb|]
]
ρ̂I(t).

(E8)

Case II: ωp ≈ ω+

Following a similar analysis to the preceding discussion,
in this regime parametrically-induced quantum heating
dominates the dissipative dynamics, with the master
equation taking the form

∂

∂t
ρ̂I(t) '

[
κ(ωa)D[â] +

∑
nb

γ↑+(nb)D[|nb〉〈nb − 1|]
]
ρ̂I(t).

(E9)

As a final point, we emphasize that in either the qubit
or the Kerr oscillator case, if the pump frequency is at
the blind-spot frequency, the system still experiences in-
duced decay and heating, even though the effective co-
herent coupling is exactly cancelled. Nonetheless, since
the blind-spot frequency, ωp = ωBS , is far detuned from
either the sum or difference frequency, both Purcell de-
cay and heating effects, though non-zero, are highly sup-
pressed due to |gp/Ωp| � 1 where Ωp = min{Ω±±(nb)}.
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