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Magnetic skyrmions are nanometric spin textures characterized by a quantized topological in-
variant in magnets and often emerge in a crystallized form called skyrmion crystal in an external
magnetic field. We propose that magnets hosting a skyrmion crystal possess high potential for appli-
cation to reservoir computing, which is one of the most successful information processing techniques
inspired by functions of human brains. Our skyrmion-based reservoir exploits precession dynamics
of magnetizations, i.e., spin waves, propagating in the skyrmion crystal. Because of complex inter-
ferences and slow relaxations of the spin-wave dynamics, the skyrmion spin-wave reservoir attains
several important characteristics required for reservoir computing, e.g., the generalization ability,
the nonlinearity, and the short-term memory. We investigate these properties by imposing three
standard tasks to test the performances of reservoir, i.e., the duration-estimation task, the short-
term memory task, and the parity-check task. Through these investigations, we demonstrate that
magnetic skyrmion crystals are promising materials for spintronics reservoir devices. Because mag-
netic skyrmions emerge spontaneously in magnets via self-organization process under application of
a static magnetic field, the proposed skyrmion reservoir requires neither advanced nanofabrication
nor complicated manufacturing for production in contrast to other previously proposed magnetic
reservoirs constructed with fabricated spintronics devices. Our proposal is expected to realize a
breakthrough in the research of spintronics reservoirs of high performance.

PACS numbers:

INTRODUCTION

Reservoir computing [1–3] is one of the most successful
information processing techniques inspired by the nerve
system of human brains, which is composed of three sec-
tors, i.e., input layer, reservoir, and output layer [see
Fig. 1(a)]. Sequential information data are entered via
the input layer composed of one or more input nodes.
The input signals are transformed to different signals in
a nonlinear way through recursively propagating in a dy-
namical medium called reservoir. Through this nonlinear
transformation, the input data are mapped onto a higher-
dimensional information space. Reservoirs are composed
of many ingredients connected mutually via physical in-
teractions [1, 2] to achieve the nonlinear transformation
and are used as a black box in computing because the
connections among the ingredients are complicated and
usually unknown. The transformed signals are measured
at installed readout devices and are, subsequently, trans-
lated to outputs via a linear transformation with a weight
vector Wout. The weight vector Wout connects the read-
out nodes and the output node, which is optimized by
training so as to provide correct answers or desired out-
puts for a given problem. In the reservoir computing, we
only need to train the weight vector Wout in contrast to
another established brain-inspired information process-
ing technique called neural network computing [4, 5], in
which all the weight matrices Wres connecting nodes in
the multiple layers must be optimized.

A lot of physical reservoirs have been proposed and
demonstrated to date, which are based on, e.g., opti-
cal [6–9], mechanical [10–13], biological [14–17], elec-
tronic [18–21], and magnetic systems [22–32]. Among

them, the magnetic reservoirs have attracted a great deal
of research interest because they have numerous advan-
tages over other physical reservoirs. The advantages of
magnetic reservoirs are (1) nonvolatility [33], (2) dura-
bility against environmental agitations [34, 35], e.g., ra-
diations, heats, and mechanical shocks, (3) low energy
consumption [36], and (4) quick responses [23]. The for-
mer two advantages are pronounced in comparison with
reservoirs based on the optical systems and semiconduc-
tors, while the latter two advantages are pronounced in
comparison with the mechanical reservoirs.

Most of the previously proposed magnetic reservoirs
are based on series-connected spin-torque oscillators [22–
26]. A spin-torque oscillator is a micrometric or even
nanometric sized spintronics device that has a layered
nanopillar structure with soft and hard ferromagnetic
layers separated by a thin insulating layer. The magne-
tization in the soft ferromagnetic layer exhibits specific
resonant oscillations upon injection of spin-polarized cur-
rents or application of microwaves, while the magnetiza-
tion in the hard ferromagnetic layer is fixed and hardly
changes its orientation. The relative magnetization di-
rections between the soft and hard ferromagnetic layers
affect the electric resistance of currents tunneling through
the thin insulating layer, and thus the magnetization os-
cillations in the soft ferromagnetic layer can be detected
by the measurement of electric resistance. Spin-torque
oscillators in a reservoir interact magnetically via mag-
netic dipole-dipole interactions or electrically via circuit
connections to realize the reservoir functions. Several nu-
merical simulations [23, 26] have demonstrated that the
spin-torque oscillator reservoirs show high performances
in information processing. However, it is required to
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FIG. 1: (a) Architecture of the reservoir computing. The
weight vector Wout connecting the reservoir and the output
node is required to be optimized by training to produce de-
sired outputs for a given problem. (b) Proposed physical
reservoir exploiting spin waves propagating in a thin-plate
magnet hosting a magnetic skyrmion crystal. Single or mul-
tiple microwave generators are installed near the left edge
as input nodes where locally applied microwave fields corre-
sponding to the input data induce magnetization oscillations
in the skyrmion crystal. Single or multiple readout nodes
called detectors are installed near the right edge which mea-
sure local dynamics of magnetizations via an electric voltage
induced by the electromagnetic induction. The signals mea-
sured at the detectors are translated to outputs via a linear
transformation using the optimized weight matrix Wout.

fabricate a number of high-quality spin-torque oscilla-
tors of nanometric size with uniform characteristics to
realize the reservoir functions. Thereby, their produc-
tions require advanced nanofabrication techniques, com-
plicated manufacturing processes, and high costs. Under
these circumstances, high-performance magnetic reser-
voirs, which can be produced easily with low costs, are
demanded.

Recently, nanometric topological spin textures called
skyrmions are attracting a great deal of research inter-
est [37–41]. The concept of skyrmion was originally pro-
posed in 1960s as a mathematical model of baryon in par-
ticle physics [42, 43], which comprises vector fields point-
ing in all directions wrapping a sphere like a hedgehog.
In 1980s, it was theoretically predicted that skyrmions
can emerge in ferromagnets with broken spatial inversion
symmetry as a two-dimensional vortex-like spin texture,
which can be regarded as a stereo projection of the orig-
inal hedgehog-type skyrmion onto a plane [44–46]. They
also predicted that magnetic skyrmions often emerge in

a hexagonally crystallized form called skyrmion crystal.
In 2009, the magnetic skyrmion crystals were indeed dis-
covered in metallic chiral magnets by small-angle neu-
tron scattering measurements [47] and Lorentz transmis-
sion electron microscopies [48]. Skyrmions are character-
ized by a quantized topological invariant called skyrmion
number representing how many times the magnetiza-
tions wrap a sphere [38, 49]. This means that magnetic
skyrmions belong to a different topological class from
ferromagnetic and conical/helical states, and, thereby,
we cannot create and annihilate them in a uniform fer-
romagnetic state by continuous variation of the spatial
alignment of magnetizations [49]. Instead, a local rever-
sal of magnetization is required for their creation and
annihilation, which necessarily costs a large energy asso-
ciated with the ferromagnetic exchange interaction. Ow-
ing to the protection by this energy cost, the magnetic
skyrmions are robust against environmental agitations
and external stimuli [34].

It was theoretically revealed that a magnetic skyrmion
crystal exhibits peculiar spin-wave modes at microwave
frequencies, i.e., clockwise and counterclockwise rota-
tion modes active to in-plane microwave fields and
a single breathing mode active to out-of-plane mi-
crowave fields [50–52]. Magnetic skyrmions constituting
a skyrmion crystal uniformly rotate in the two rotation
modes, whereas they uniformly expand and shrink in an
oscillatory manner in the breathing mode. These modes
are similar to the collective modes of a magnetic vortex
confined in a magnetic nanodisk or nanopillar [53, 54].
In this sense, each skyrmion in a skyrmion crystal can be
regarded as a spin-oscillator device carrying the eigen-
mode spin oscillations. This fact indicates that a mag-
netic skyrmion crystal and even an assembly of randomly
aligned magnetic skyrmions can work as series-connected
spin-torque oscillators. It further comes up with an idea
of magnetic reservoirs exploiting the spin waves or collec-
tive magnetization dynamics of magnetic skyrmions. One
advantage of the usage of magnetic skyrmions for reser-
voirs is that neither advanced nanofabrication techniques
nor complicated manufacturing processes are required for
production in contrast to the previously proposed and
widely investigated spin-torque-oscillator reservoirs be-
cause magnetic skyrmions can be created simply by ap-
plication of static magnetic field to a plate-shaped sample
of chiral magnet or a magnetic bilayer system [48].

In this paper, we propose a magnetic reservoir de-
vice which exploits spin waves or magnetization dynam-
ics propagating in a plate-shaped magnet hosting mag-
netic skyrmions. We demonstrate that this skyrmion
spin-wave reservoir possesses several important charac-
teristics required for reservoir computing, e.g., the gen-
eralization ability [27], the nonlinearity [23, 26], and the
short-term memory [23, 26] owing to their complex in-
terferences and slow relaxations, by imposing three stan-
dard tasks to test the performances, i.e., the duration-
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estimation task, the short-term memory task, and the
parity-check task [23, 26]. Through these investigations,
we argue that magnetic skyrmions are promising ma-
terials for spintronics reservoirs. Because the proposed
skyrmion spin-wave reservoir has a lot of advantages over
other previously proposed magnetic reservoirs consisting
of fabricated spintronics devices, the present work will
necessarily mark a great progress in the research on the
reservoir computing.
In realistic systems, thermal fluctuations, disorder, de-

fects, and environmental noises exist. At first glance
they might cause negative effects by reducing the ro-
bustness of a physical reservoir. However, among the in-
terdisciplinary fields of science, including recurrent neu-
ral networks and condensed matter physics, there are
intriguingly growing studies revealing the constructive
role of noise to the system’s performance, such as the
noise-assisted recognition and permanence of informa-
tion or noise-assisted persistence of memory in neural
networks [55–58] and, in physical systems, e.g., the noise-
enhanced stability of superconducting state in graphene-
based and long Josephson junctions [59–62]. In addition
to noises, a rising consensus is also developed showing
that a dynamical system may achieve its best perfor-
mance on machine learning tasks when the model pa-
rameters are on the so-called “edge of chaos” in pa-
rameter space, which drive the system to locate near
the boundary between ordered and chaotic phases, at
which the highest nonlinearity manifests itself in the sys-
tem [63, 64]. This suggests that the disorder and defect
in the system can potentially enhance the performances.
In this work as a preliminary study of the performance
of our skyrmion spin-wave reservoir, we neglect the ef-
fects of noises, defects, thermal fluctuations, and study
the magnetization dynamics at zero temperature. For
the eventually practical applications, these aspects will
be our future investigations.

CONCEPT AND METHOD

Skyrmion Spin-Wave Reservoir

We first discuss the concept of our skyrmion spin-wave
reservoir as shown in Fig. 1(b). A key ingredient of this
reservoir is a thin-plate specimen of skyrmion-hosting
magnet. One or more devices called input nodes are fab-
ricated on the left side of the specimen to enter signals
as input data. The entered signals are transformed while
they propagate in the specimen recursively. Other de-
vices called readout nodes or detectors are fabricated on
the right side of the specimen to measure the transformed
signals.
The information processing with this skyrmion-based

reservoir system is performed as follows. We apply out-
of-plane microwave magnetic fields H

ω to enter the in-

put data, which are locally generated by injecting electric
currents jin to a metallic ring fabricated as an input node
on the specimen. More concretely, a series of input data
are entered after being translated to time-dependent am-
plitude and duration of the microwave pulses. The ap-
plied microwave pulses induce magnetization oscillations
in the skyrmions, and the induced oscillations propagate
in the specimen as spin waves, which exhibit nonlinear
or even chaotic behaviors because of complicated inter-
ferences due to the distorted configuration of hexagonal
skyrmion crystal. The magnetization oscillations even-
tually reach the area of readout nodes (detectors). The
magnetization dynamics within an area of each detector
are measured as time-profiles of induced electric currents
via the electromagnetic induction.
This skyrmion spin-wave reservoir has advantages over

the magnetic reservoirs based on the spin-torque oscilla-
tors. First, complicated nanofabrication is not required
because skyrmions are created spontaneously in magnets
by application of magnetic field [48]. We can prepare a
skyrmion crystal or an assembly of skyrmions by simply
applying a magnetic field or by attaching a ferromagnet
to a thin-plate chiral magnet. The created skyrmions are
expected to behave as spin-torque oscillators in a series
connection. Second, more intense readout signals can be
expected for the skyrmion spin-wave reservoirs because
the skyrmions directly interact via magnetic exchange in-
teractions and thus are strongly coupled with each other
as compared with the series-connected spin-torque oscil-
lators interacting via weak magnetic dipole-dipole inter-
actions or via indirect electric-circuit connections [23, 26].
In fact, a concept of spintronics reservoir using mag-

netic skyrmions was proposed in Refs. [29–31], which is
based on the electric-current injections to a skyrmion-
hosting metallic magnet, that is, the electric currents are
injected as input data, while variations of electric resis-
tance due to skyrmions are measured as readout signals.
On the contrary, our skyrmion reservoir is based on the
spin-wave propagations in the skyrmion-hosting magnet.
We expect that our skyrmion spin-wave reservoir can host
remarkable nonlinearity because of complicated interfer-
ences of spin waves. A pronounced short-term memory
effect can also be expected for our reservoir because of the
slow damping of magnetization dynamics. Furthermore,
we expect durability of the reservoir system because spin
waves do not drive magnetic skyrmions so much and thus
hardly affect their spatial positions [50], which might be
of practical importance to achieve stable computations.

Reservoir computing

We examine potentials of magnetic skyrmions for ap-
plication to reservoir computing by investigating several
characteristics required for physical reservoirs, i.e., (1)
the generalization ability [27], (2) the short-term mem-
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ory [23, 26], and (3) the nonlinearity [23, 26] in response.
In our skyrmion reservoir, these properties are carried by
spin waves, i.e., precession dynamics of magnetizations,
propagating in a thin-plate magnet hosting skyrmions.
In the present study, we deal with magnetic skyrmions
packed in a rectangular-shaped thin-plate magnet, which
form a distorted hexagonal lattice called skyrmion crys-
tal. It is known that magnetic skyrmions can appear
also in a random form depending on the magnetic-field
strength or the sample quality. We expect that such a
random configuration of skyrmions, which is referred to
as skyrmion fabrics in Refs. [29–31], also exhibit similar
reservoir functions.

A general procedure of computing with the skyrmion
spin-wave reservoir is as follows. We take a set of input
data for training, {strainin (k)} (k = 1, 2, · · · , Ltrain), which
can be either Boolean-type binary digits or continuous
variables. Each data is entered to a skyrmion-hosting
magnetic sample (reservoir) by an out-of-plane magnetic
field pulse to trigger dynamics of magnetizations consti-
tuting the skyrmions. The induced magnetization dy-
namics propagate recursively within the reservoir, and
after experiencing significant interferences, they finally
reach the readout nodes (detectors). Then, the magne-
tization dynamics at the N detectors are measured as
components of the N -dimensional reservoir-state vector
x(k), where

x(k) =











x1(k)
x2(k)

...
xN (k)











. (1)

The component xn(k) represents a signal measured at the
nth readout node by the kth measurement. The signals
meaured by the kth measurement are translated to the
kth output yout(k) by a linear transformation using the
N -dimensional weight vector Wout as,

yout(k) = Wout · x(k). (2)

The components ofWout are k-independent and are opti-
mized so as to output desired or correct values of yout(k)
for a given problem or task. This optimization is called
training or learning. More specifically, we optimize the
weight vector Wout by minimizing the mean squared er-
ror (MSE) between the outputs yout(k) and values de-
sired or expected to be correct for the problem called
targets ytarget(k). Note that this translation is based on
a linear transformation, and yout(k) is given by a linear
combination of xn(k) (n = 1, 2, · · · , N), while the non-
linear input-output transformation is thoroughly carried
by the reservoir.

The MSE is given by,

MSE =
1

Ltrain

Ltrain
∑

k=1

[ytarget(k)− yout(k)]
2

=
1

Ltrain

Ltrain
∑

k=1

[ytarget(k)−Wout · x(k)]2 . (3)

The optimized weight vector W
opt
out that minimizes the

MSE can be obtained using the pseudoinverse-matrix
method [65, 66] as,

W
opt
out = Y

T
targetX̂

+. (4)

Here Ytarget is the Ltrain-dimensional vector composed

of ytarget(k), and X̂
+ is the Ltrain × N pseudoinverse

matrix of the N × Ltrain matrix X̂ composed of vectors
xn(k) [65, 66]. They are respectively given by,

Ytarget =











ytarget(1)
ytarget(2)

...
ytarget(Ltrain)











, (5)

X̂ =











x1(1) x1(2) · · · x1(Ltrain)
x2(1) x2(2) · · · x2(Ltrain)

...
...

...
xN (1) xN (2) · · · xN (Ltrain)











. (6)

After the optimization of Wout by sufficient train-
ing, we input another set of data called testing data
{stestin (ℓ)} (ℓ = 1, 2, · · · , Ltest) into the skyrmion spin-
wave reservoir. We again measure induced response
signals at N readout nodes and construct the N -
dimensional reservoir-state vector x(ℓ) for the ℓth mea-
surement. We then translate it to the output yout(ℓ)
using the optimized weight vector W

opt
out , and compare

thus obtained outputs yout(ℓ) with targets ytarget(ℓ) to
check whether the reservoir can provide correct answers
and/or desired outputs.
To investigate three of the required properties of

reservoir, i.e., the generalization ability, the short-term
memory function, and the nonlinearity, we impose the
duration-estimation task, the short-term memory task,
and the parity-check task on our skyrmion spin-wave
reservoir, respectively. For each task, we choose appro-
priate magnetic-field pulses to represent the input data
{strainin (k)} and {stestin (ℓ)}. We also properly define the
reservoir-state vectors x(k) and the targets ytarget(k) as
argued in the following sections.

Skyrmion crystal

To describe a skyrmion crystal in the skyrmion spin-
wave reservoir, we employ a classical Heisenberg model
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FIG. 2: (a) Magnetization configuration of the skyrmion spin-
wave reservoir. Magnetic skyrmions are packed in a rect-
angular system of 128 × 64 sites described by the classical
Heisenberg model on a square lattice in Eq. (7). In-plane
magnetization vectors are presented by arrows at sites (ix,
iy) when the integer coordinates ix and iy satisfy conditions
mod(ix, 2)=1 and mod(iy, 2)=1, while the out-of-plane com-
ponents are presented by colors. A setup of the input and
readout nodes used for the duration-estimation task is also
shown. The red circle near the left edge indicates the input
area, and three green circles labeled by numbers 1, 2, and
3 near the right edge indicate the readout nodes (detectors),
each of which has a radius of 3 in units of the lattice constant
and contains 32 sites inside the area. Inset shows a magnified
view of a detector. (b) Procedure of the reservoir computing
for the duration-estimation task.

on a square lattice. The Hamiltonian contains the
nearest-neighbor ferromagnetic exchange interactions,
the Zeeman interactions, and the Dzyaloshinskii-Moriya
interactions (DMI) as,

H = −J
∑

〈i,j〉

mi ·mj −
∑

i

[H +H
ω(ri, t)] ·mi

+ D
∑

i

(mi ×mi+x̂ · x̂+mi ×mi+ŷ · ŷ), (7)

where mi is a classical magnetization vector at site i,
length of which is normalized to be unity (|mi| = 1).
For the Zeeman-interaction term, we consider two kinds
of magnetic fields, i.e., a DC magnetic field H and a

TABLE I: Unit conversion table when J = 1 meV.

Dimensionless

quantity

Corresponding value

with units

Exchange int. J = 1 1 meV

Time t = 1000 103 × ~/J = 0.66 ns

Frequency ω = 0.01 10−2 × J/2π~ = 2.41 GHz

Magnetic field H = 0.001 10−3 × J/~γ = 8.64 mT

time-dependent AC magnetic field H
ω(ri, t),

H = Hz ẑ, H
ω(ri, t) = Hω(ri) sin(ωt)ẑ. (8)

The DC magnetic field H is applied globally to the en-
tire system constantly, whereas the AC magnetic field
H

ω(ri, t) is applied locally to a restricted area regarded
as an input node (exciter). For a practical device of
the input node, we assume, for example, a micrometric
metallic ring to generate a time-dependent local magnetic
field within the ring via injecting a temporally varying
electric current [see Fig. 1(b)]. Both H and H

ω(ri, t)
fields are applied perpendicular to the thin-plate plane
of skyrmion-hosting magnet.

The position vector ri = (ix, iy) represents the inte-
ger coordinates of site i in units of the lattice constant.
We take J(≡ 1) as energy units and choose D = 0.36 for
the strength of DMI. According to the saddle-point equa-
tion of the total energy, this DMI parameter leads to a
skyrmion diameter of 2π/[tan−1(D/

√
2J)] ∼ 25 in units

of the lattice constant. In the following calculations,
strength of the DC magnetic field is fixed at Hz = 0.06,
while the amplitude and frequency of the AC magnetic
field are fixed at Hω(r) = 0.008 and ω = 0.12416, re-
spectively. Note that this DC magnetic field leads to a
stable skyrmion crystal in the ground state, while this
AC magnetic field efficiently excites a spin-wave mode of
skyrmion crystal called breathing mode when D = 0.36,
which are deduced from numerical calculation results for
D = 0.09 in Ref. [50] after the following scale transfor-
mations with a=4 [67],

D → aD ⇒ |H | → a2|H |, ω → a2ω. (9)

The unit conversions from natural units to SI units are
summarized in Table I, where γ ≡ gµB/~ is the gyromag-
netic ratio.

The magnetization dynamics induced by applied AC
magnetic fields are simulated by numerically solving the
Landau-Lifshitz-Gilbert (LLG) equation at zero temper-
ature using the fourth-order Runge-Kutta method [68].
The equation is given by,

dmi

dt
= − 1

1 + α2
G

[

mi ×H
eff
i + αGmi × (mi ×H

eff
i )

]

,

(10)
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where αG(= 0.1) is the dimensionless Gilbert-damping
constant. The effective local magnetic fields H

eff
i act-

ing on the magnetization mi are calculated by the mi-
derivative of the Hamiltonian as,

H
eff
i = − ∂H

∂mi

. (11)

First, we prepare an initial magnetization configu-
ration in the absence of AC magnetic field H

ω(ri, t)
by setting Hω(ri) = 0 in the Hamiltonian H. Fig-
ure 2(a) presents the magnetization configuration of a
distorted skyrmion crystal confined in a rectangular-
shaped square-lattice system of 128 × 64 sites with open
boundary conditions. This magnetization configuration
is obtained by the Monte Carlo thermalization with sim-
ulated annealing to low temperatures, followed by a fur-
ther relaxation under a sufficient time evolution in the
LLG equation. Taking this configuration as an initial
state of the reservoir, we apply local AC magnetic fields
as inputs for the reservoir computing. Specifically, the
AC magnetic field H

ω(ri, t) is applied to a small circu-
lar area designed as an input node shown as a red circle
in Fig. 2(a). The radius of the circle is 3, and its center is
located at (x, y) = (6.5, 32.5), both in units of the lattice
constant.
In this work we solve the LLG equation in Eq. (10)

at zero temperature [29]. In realistic situations, ther-
mal fluctuations might affect the results. However, in
the following tasks we have taken the out-of-plane mag-
netization responses averaged over the sites inside detec-
tor areas as the components of reservoir state vector [see
Eq. (13) and Eq. (21) below], with the assumption that
the isotropic thermal effect averages out in this proce-
dure. (In the generalization ability task, the spatially av-
eraged magnetizations are then averaged over a period of
time, as in Eq.(16), which may further reduce the thermal
effect.) Meanwhile, finite-temperature skyrmion lattices
in thin films have been observed by several works [69, 70],
which guarantee the stability of the system being consid-
ered here at finite temperatures. For the future practical
applications, thermal fluctuations, environmental noises,
and defects must be taken into account seriously to in-
vestigate the robustness or even possible enhancement of
the performances in our system. Clarifications of these
aspects are left for our future investigations.

RESULTS

Duration-estimation task

We first investigate the duration-estimation task. By
imposing this task, we examine whether the skyrmion
spin-wave reservoir can correctly estimate the durations
of input AC magnetic fields as a test for the ability to
evaluate unknown variables of input signals. For this

task, various durations Tdur,k of the AC magnetic field
are chosen as inputs sin(k) [see also Fig. 2(b)],

sin(k) = Tdur,k. (12)

We apply a pulse of AC magnetic field during a time
range of 0 ≤ t̄ < Tdur,k to a small circular area de-
signed as an input node, and, subsequently, turn it off
at t̄ = Tdur,k and let the magnetizations relax. We trace
the magnetization dynamics during this process by nu-
merically solving the LLG equation.
The detectors are three circular (green) areas labeled

by numbers n=1, 2, and 3 in Fig. 2(a). Their radii are 3 in
units of the lattice constant, and their centers are located
at (x, y) = (122.5, 40.5), (122.5, 32.5) and (122.5, 24.5),
respectively. We define t as time after turning off the AC
magnetic field (i.e., t ≡ t̄ − Tdur,k). At each detector,
we measure dynamics of local magnetizations. The time
profile of z-component magnetization averaged over sites
contained in the area of nth detector is given by,

Mz,n(Tdur,k, t) =
1

Ndetect

∑

i∈nth detector

mz,i(Tdur,k, t),

(13)

where Ndetect(= 32) is the number of lattice sites within
each detector area. We further subtract a steady compo-
nent Ms,n as,

∆Mz,n(Tdur,k, t) = Mz,n(Tdur,k, t)−Ms,n, (14)

where Ms,1 = Ms,3 = 0.9467 for Detectors 1 and 3, and
Ms,2 = 0.9412 for Detector 2.
Figure 3 shows simulated time profiles of

∆Mz,n(Tdur,k, t) for three different ranges of durations
Tdur,k, i.e., (a) shorter durations (Tdur,k=800-2000),
(b) intermediate durations (Tdur,k=2400-4000), and (c)
longer durations (Tdur,k=4200-5800) at Detectors 1, 2
and 3. The plots of ∆Mz,n(Tdur,k, t) exhibit temporal
oscillations at respective detectors. In these plots, the
behaviors of ∆Mz,n(Tdur,k, t) show clear dependence
on the duration Tdur,k. We now focus on the plots of
∆Mz,2(Tdur,k, t) at Detector 2 for intermediate dura-
tions in Fig. 3(b)-2. We find that as Tdur increases,
∆Mz,n(Tdur,k, t) monotonically increases in the time
range of 800 ≤ t ≤ 1300 (Range Ab), whereas it
monotonically decreases in the subsequent time range
of 1300 ≤ t ≤ 1750 (Range Bb). We also find that
the amplitudes of oscillation monotonically increase for
respective durations as time proceeds. Such behaviors
are observed also in Detectors 1 and 3. These facts in-
dicate that the time profiles of ∆Mz,n(Tdur,k, t) (n=1,2,
and 3) involve information of the duration Tdur,k of AC
magnetic field.
We adopt nine values of Tdur,k in the intermediate

duration range, i.e., Tdur,k = 2300 + 200k with k =
0, 1, 2, · · · , 8 as a set of input data for training. After



7

5

8

8

10

9

(a) Tdur,k = 800 - 2000 (b) Tdur,k = 2400 - 4000 (c) Tdur,k = 4200 - 5800

Duration of AC magnetic field, Tdur,k

8

6

7

8

10

9

8

10

12

14

8

10

9

8

6

7

10

12

14

8

6

7

9

11

13

15

D
e
te

c
to

r 
1

D
e
te

c
to

r 
2

D
e
te

c
to

r 
3

Time after turning off AC field 10-3 
t

1
0

5
 �

M
z
,1

1
0

5
 �

M
z
,2

1
0

5
 �

M
z
,3

0.50 1.0 1.5 2.0

Time after turning off AC field 10-3 
t

0.50 1.0 1.5 2.0

Time after turning off AC field 10-3 
t

0.50 1.0 1.5 2.0

Tdur,k=800
Tdur,k=1100

Tdur,k=1400
Tdur,k=1700
Tdur,k=2000

Tdur,k=4200

Tdur,k=4600

Tdur,k=5000
Tdur,k=5400
Tdur,k=5800

Tdur,k=2400

Tdur,k=2800

Tdur,k=3200
Tdur,k=3600
Tdur,k=4000

(a)-1 (b)-1 (c)-1

(a)-2 (b)-2 (c)-2

(a)-3 (b)-3 (c)-3

R
e
a
d
o
u
t 
n
o
d
e

Ab Bb

Ac Bc

9

FIG. 3: Selected time profiles of the site-averaged magnetizations ∆Mz,n(Tdur,k, t) at each detector after turning off the AC
magnetic field with duration of Tdur,k for various ranges of Tdur,k, i.e., (a) Tdur,k=800-2000, (b) Tdur,k=2400-4000, and (c)
Tdur,k=4200-5800, where t is time after turning off the AC magnetic field. In each duration range, three different detectors
labeled by n=1, 2, and 3 shown in Fig. 2(a) are examined. We define ∆Mz,n(Tdur,k, t) as ∆Mz,n(Tdur,k, t) ≡ Mz,n(Tdur,k, t)−
Ms,n where Mz,n(Tdur,k, t) =

∑
i
mz,i(Tdur,k, t)/Ndetect is the out-of-plane component of magnetization averaged over the sites

within the area of detector, and Ms,n is a steady component. Here Ndetect(=32) is the number of sites within the area of each
detector, while the values of Ms,n are chosen to be Ms,n = 0.9467 for Detectors 1 and 3, whereas Ms,n = 0.9412 for Detector 2.
Shaded areas in (b)-1 and (b)-3 indicate time ranges used to calculate the temporal averages of magnetization in the following
Fig. 4(a) for the duration-estimation task.

applying the AC magnetic field for a certain duration
of Tdur,k, we compute time-averages 〈∆Mz,1(Tdur,k)〉time

and 〈∆Mz,3(Tdur,k)〉time
at Detectors 1 and 3 over a time

range of 1000 ≤ t ≤ 2000 indicated by shaded areas
in Fig. 3(b)-1 and Fig. 3(b)-3. We regard these time-
averaged magnetizations as reservoir states. Figure 4(a)
presents a plot of these quantities as functions of Tdur,k

for Detectors 1 and 3. This plot shows nearly linear be-
haviors with respect to Tdur,k for both detectors, which
stem from the monotonic trends of ∆Mz,n(Tdur,k, t) with
respect to Tdur,k as argued above.

Inspired by this characteristic, we devise the following
polynomial form with respect to 〈∆Mz,1(Tdur,k)〉time

and

〈∆Mz,3(Tdur,k)〉time
for the output yout(k),

yout(k) = W0+

mmax
∑

m=1

[W2m−1x
m
1 (Tdur,k) +W2mxm

3 (Tdur,k)] ,

(15)
where

xn(Tdur,k) ≡ 〈∆Mz,n(Tdur,k)〉time
× 105 (n = 1, 3).

(16)
Here W0 is a constant bias, and mmax(= 3) is the
maximal power of this polynomial model. The coeffi-
cients of linear combination, W2m−1 and W2m (m =
1, 2, · · · ,mmax), are components of the weight vector
Wout. In total, there are 2mmax+1 components in Wout.

Recalling that the duration-estimation task requires
the reservoir to correctly estimate the durations of AC
magnetic fields, we set the desired outputs, i.e., the tar-
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FIG. 4: (a) Temporal averages of dynamical magnetizations
〈∆Mz,n(Tdur,k)〉time

at Detectors 1 and 3 (n=1 and 3) over
time ranges indicated by shaded areas in Fig. 3(b)-1 and
Fig. 3(b)-3 as functions of the duration of AC magnetic
field for the training dataset. We adopt a polynomial form
with respect to 〈∆Mz,1(Tdur,k)〉time

and 〈∆Mz,3(Tdur,k)〉time

in Eq. (15) for the output yout(k). (b) Results of the duration-
estimation task. The horizontal (vertical) axis labels the
actual (estimated) duration Tdur for both the training (red
squares) and testing (blue circles) datasets. The dashed line
with a slope of unity is the perfect estimation line for ref-
erence, indicating that amazingly accurate estimations are
achieved.

gets ytarget(k) to be the durations Tdur,k themselves as,

ytarget(k) = Tdur,k = sin(k). (17)

We substitute the outputs yout(k) in Eq. (15) and the
targets ytarget(k) in Eq. (17) into Eq. (3), and then
use Eq. (4) to obtain the optimal weight vector W

opt
out ,

which minimize the MSE for the training dataset. Af-
ter this training procedure, we plug W

opt
out into Eq. (15)

to estimate the durations Tdur,ℓ for ten testing data of
Tdur,ℓ = 2200 + 200ℓ with ℓ = 0, 1, · · · , 9 as well as
the nine training data of Tdur,k = 2300 + 200k with
k = 0, 1, · · · , 8.
In Fig. 4(b), we show a plot of the estimated durations

(outputs) versus the actual durations (inputs). Here the
dashed line with a slope of unity is the perfect-estimation
line. The plot shows amazingly accurate estimations for
both the training and testing datasets. Surprisingly, the
MSE turns out to be as small as 151.5 for the testing

dataset. Considering that the square of the input values
is in the order of ∼ 106, we find that this MSE value
is extremely small. We take the root mean square error
(RMSE) divided by the input average as a dimensionless
quantity to represent the accuracy of estimations. Since
the average of durations for the testing dataset is 3100,
this quantity is evaluated to be

√
151.5/3100 ∼ 0.004.

This value is one order of magnitude smaller than that
of another previously proposed spin-wave reservoir based
on a ferromagnetic garnet film [27]. In that work, it
was assumed that the spin waves are excited by locally
changing the uniaxial magnetic anisotropy and are ex-
ploited as reservoir states to estimate the durations of
anisotropy change. According to Fig. 10 in Ref. [27],
their RMSE divided by input average of this garnet-
based spin-wave reservoir can be roughly estimated to
be ∼ 0.08. The present result demonstrates that our
skyrmion spin-wave reservoir harbors a great generaliza-
tion ability to estimate the unknown AC-field durations
in the testing dataset and possesses high potential for
application to machine-learning information processing.

Now we discuss a possible limitation of our skyrmion
spin-wave reservoir in the generalization ability, that is,
it might be difficult to correctly estimate widely ranging
durations by our skyrmion system. More specifically, in
order to correctly evaluate a certain duration, the weight
vector Wout should be trained by using a set of training
data for the corresponding duration range. Namely, the
weight vector Wout trained by the data for intermediate
durations can correctly estimate intermediate durations,
but it might not be able to estimate longer or shorter du-
rations. This is because the duration dependence of the
behavior of magnetization dynamics varies depending on
the duration range. To see this aspect, we compare the
time profiles of ∆Mz,2(Tdur, t) for the longer durations
in Fig. 3(c)-2 and those for the intermediate durations
in Fig. 3(b)-2. The magnetization ∆Mz,2(Tdur, t) for the
longer durations in Fig. 3(c)-2 monotonically decreases
with increasing Tdur in the time range of 800 ≤ t ≤ 1300
(Range Ac), whereas it monotonically increases in the
subsequent time range of 1300 ≤ t ≤ 1750 (Range Bc).
These behaviors are opposite to the above-argued be-
haviors of ∆Mz,2(Tdur, t) for the intermediate durations
in Fig. 3(b)-2. Therefore, the weight vector Wout opti-
mized for the intermediate durations might not be able
to estimate the shorter or longer durations correctly. In
practical experiments, it might be required to presume
or restrict the range of durations.

We have numerically checked that also for other posi-
tions of the detectors, such as the nine detectors labeled
by 1 to 9 in Fig. 5(b), the out-of-plane magnetization re-
sponses show similar monotonic behaviors with respect to
the AC-field durations as in Fig. 3. Therefore, the highly
accurate prediction of AC-field durations is expected to
be achieved by different detectors set on the skyrmion
lattice in experiments.
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Short-term memory task and parity-check task

Next we examine the short-term memory (STM) task
and the parity-check (PC) task [23, 26]. By imposing
the STM task, we evaluate the short-term memory func-
tion of our skyrmion spin-wave reservoir, i.e., how long
the reservoir can memorize the information of past in-
put sequence. This property is crucially important to
analyze time-series data for, e.g., market forecasts, sen-
tence predictions, and voice/speech recognitions [1–3].
On the other hand, by imposing the PC task, we evalu-
ate the ability of our reservoir to nonlinearly transform
the input signals into readout signals. This property is
indispensable to solve linearly inseparable problems [1–
3, 71] through mapping the input data onto a higher-
dimensional information space for, e.g., pattern classifi-
cations and hand-written digit recognitions [71].
For both tasks, the input data sin(T ) are time-series

binary digits of “1” and “0”, each of which is chosen
randomly at every integer time T [Fig. 5(a)]. When the
input digit is “1” at time T , we locally apply a pulse of
three-period oscillations of AC magnetic field, duration
of which corresponds to 152 integration time steps of the
LLG equation. The magnetic field pulse is applied within
a red circular area labeled by 2 in Fig. 5(b), center of
which is located at (x, y) = (6.5, 32.5). On the other
hand, when the input digit is “0”, we turn off the AC
magnetic field and let the magnetizations relax for the
same duration of 152 integration time steps. Here the
integer time T is counted in units of this three-period
duration.
We define the desired outputs ytarget in Eq. (3) for

respective tasks as,

ySTM
target(T, Tdelay) = sin(T − Tdelay),

(18)

yPC
target(T, Tdelay) = mod [sin(T ) + sin(T − 1)

+ · · ·+ sin(T − Tdelay), 2] , (19)

where Tdelay is an integer variable that represents a given
delay time. The STM task examines to what extent the
input signal at a previous time T − Tdelay can be recon-
structed from the current reservoir states at time T . On
the other hand, the PC task examines to what extent
the reservoir can describe nonlinear functions by taking
parity of the sum of past binary inputs from current time
T to a previous time T − Tdelay as a typical example of
nonlinear functions. Mapping of the input data onto a
high-dimensional information space via nonlinear trans-
formations is a key function of the reservoir, and it must
be carried by the reservoir instead of the output layer
because the output layer in reservoir computing simply
produces outputs by a linear combination of the reservoir
states [1–3].
Here we consider only one readout node for both tasks.

In the reservoir computing, we need multiple readout

data for a certain input to construct a reservoir-state vec-
tor. In the examination of the duration-estimation task,
we have measured signals at multiple readout nodes, i.e.,
Detectors 1 and 3 [Fig. 2(a)] to prepare the multiple read-
out data. In the present examinations, instead of measur-
ing signals at multiple readout nodes, we measure signals
from a single readout node at multiple moments during
the interval from T to T + 1, and regard the measured
sequential data as the components of reservoir-state vec-
tor at time T . Specifically, we divide each unit interval
of pulse ∆T=1, i.e., a duration of the three-period os-
cillations of AC magnetic field, into Nvn moments with
equivalent intervals, which are referred to as virtual nodes
[Fig. 5(c)]. We simulate time evolutions of the magneti-
zations mi by solving the LLG equation and trace the
time profile of site-averaged z-component magnetization
Mz(T, τ) inside the readout node. Here the average is
taken over sites within the circular area of detector, and
the integer variable τ(= 1, 2, · · · , Nvn) is an index of the
virtual nodes. As a position of the single readout node,
we examine nine circular areas as its candidates to in-
vestigate possible dependence of the performance on the
position of readout node. The candidate positions are
labeled by 1 to 9 as shown in Fig. 5(b). Note that the
position labeled by 2 is assigned to both the input node
and a readout node. The radii of the circular detector
areas are all 3 in units of the lattice constant. The cen-
ter of Detector 5 is located at (x, y) = (64.5, 32.5), and
the centers of neighboring detectors are separated by dis-
tances of 58 and 26 in units of the lattice constant along
the x and y axes, respectively.

The reservoir computing procedures for the STM and
PC tasks are as follows [see also Fig. 5(d)]. We first
construct the reservoir-state vector x(T ) for each time
step T . The vector x(T ) is composed of signals Mz(T, τ)
measured at the readout node during the time interval
from T to T + 1 as,

x(T ) =















x0

Mz(T, 1)

Mz(T, 2)

· · ·
Mz(T,Nvn)















, (20)

with

Mz(T, τ) =
1

Ndetect

∑

i∈detector

mz,i(T, τ), (21)

where τ is the index of virtual nodes, and Ndetect(= 32)
is the number of sites inside the area of detector. A con-
stant bias x0 = 1 is included as the first component of the
vector x(T ). Thus the dimension of x(T ) is Nvn+1. The
constructed reservoir-state vectors are translated to the
output yout(T, Tdelay) for a given delay Tdelay by a linear



10

TimeT

TimeT

In
p
u
t

R
e

a
d
o
u
t

s
ig

n
a
l

0 1 2 43 5

ΔT=1

Nvn=8

unit
interval

1

0
0 5 10 15 20 25

=

unit pulse three-period

oscillations

pulse width

…

sin

ΔT=1 152 time steps

(a)

(c)

In
p
u
t 
d
ig

it

x

y

0

20

40

60

0 20 40 60 80 100 120

-1

0

1
miz

1

2

3

4

5

6

7

8

9

Input
layer

Reservoir
layer

Output
layer

Wout(Tdelay)

(d) Measured time-series signals

Input node
(Exciter)

Output node

Weight 
vector

Readout node
(Detector)

Time-series inputs

{yout(T,Tdelay)}
=yout(1, Tdelay),
yout(2, Tdelay),
yout(3, Tdelay),

 ...

Time-
series

outputs

(b)

{{x(T,t)}}
 {x(1,t)}=x(1,1), x(1,2), ..., x(1,Nvn),
 {x(2,t)}=x(2,1), x(2,2), ..., x(2,Nvn),
 {x(3,t)}=x(3,1), x(3,2), ..., x(3,Nvn),
 ... ...

=

{sin(T)}
=sin(1), 
sin(2), 
sin(3),

 ...

Time  T

FIG. 5: (a) Schematics of the random time-sequence of binary digits “1” and “0” as input signals used for the STM and
PC tasks. The input “1” is represented by a pulse of three-period oscillations of AC magnetic field, while the input “0” is
represented by turning off the AC magnetic field for the same duration. The duration of pulse is 152 integer time steps for
integration of the LLG equation, which is chosen as a unit of time. (b) Setup of the input node (red circle) and readout nodes
(red circle and green circles) on the skyrmion spin-wave reservoir used for the STM and PC tasks. Each node area has a radius
of 3 in units of the lattice constant and contains 32 sites inside it. For the readout nodes, nine different positions labeled by
numbers 1 to 9 are examined. The red circle labeled by 2 is assigned to both input and readout nodes. (c) Concept of the
virtual nodes. For each time T , the unit interval of ∆T = 1 from T to T +1 that corresponds to the pulse width is divided into
Nvn(=8 in the present figure) moments with equivalent intervals. The signals are measured at Nvn moments at the readout
node, which constitute the (Nvn+1)-dimensional reservoir-state vector x(T ). (d) Reservoir computing procedures for the STM
and PC tasks.

transformation with the weight vector Wout(Tdelay) as,

yout(T, Tdelay) = Wout(Tdelay) · x(T )
= W0 +W1Mz(T, 1) +W2Mz(T, 2)

+ · · ·+WNvn
Mz(T,Nvn). (22)

where

Wout(Tdelay) = (W0(Tdelay),W1(Tdelay), · · · ,WNvn
(Tdelay)) .

(23)

Note that the weight vectors Wout(Tdelay) differ among
the delay times Tdelay and among the nine detector posi-
tions. They are required to be trained independently for
each delay time and for each detector position.
Figures 6(a)-(i) show time profiles of the dynamical

magnetizations measured at Detectors 1-9 as responses
to the first 30 random sequence of 1/0 input digits,
which are respectively entered via the input node as
on/off of the AC-field pulse. The unit pulse consists

of three-period oscillations of AC magnetic field, dura-
tion of which corresponds to 152 time steps in the LLG
integration. The horizontal axis represents the integer
time T in units of the pulse width. The left vertical
axes represent the on-off of AC-field pulse for 1/0 input
digits. The right vertical axes represent rescaled mag-
netization ∆Mz(t) measured at each detector, which is
defined by ∆Mz(t) ≡ [Mz(t)−Mmin

z ]× 105. Here Mmin
z

is the minimum value of Mz(t) in initial 380 pulse units,
and Mz(t) ≡

∑

imzi(t)/Ndetect is the magnetization av-
eraged over the detector area.

In Fig. 6(b) for Detector 2, each shaded unit bar con-
tains three oscillations of ∆Mz(t) because Detector 2 is
also the input node to which the AC-field pulse is applied,
and the magnetizations in this area respond instanta-
neously to the applied AC magnetic field. In Figs. 6(a)
and (c) for Detectors 1 and 3, the magnetizations ∆Mz(t)
also respond almost instantaneously to the on/off of AC-
field pulses because locations of these detectors are also
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FIG. 6: (a)-(i) Time profiles of the dynamical magnetization ∆Mz(t) measured at Detectors 1-9 as responses to the first 30
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field, and its duration is chosen as a unit of time. The shaded rectangles and blanks in each panel indicate the time-series of
input digits “1” and “0” entered to the reservoir as on/off of the AC-field pulses.

close to the input node (Detector 2). On the contrary, in
Figs. 6(d)-(i) for distant Detectors 4-9, the magnetization
oscillations are weaker in amplitude and exhibit certain
delays with respect to the timing of input. For example,
in the first interval from T = 0 to T = 1, the magne-
tizations start oscillating only near the end of this time
interval, even though the AC-field pulse is applied to the
input node (Detector 2) from the beginning in this time
interval. It is also noteworthy that overall envelopes of
the magnetization oscillations at these distant detectors
are less correlated with the input sequence compared to
those at the close detectors to the input, i.e., Detectors
1-3.
The analyses of the STM [PC] task are done as follows.

The target ytarget(T, Tdelay) in Eq. (18) [Eq. (19)] and
the output yout(T, Tdelay) are plugged into the formula of
MSE in Eq. (3) and we optimize the weight matrix for
respective detectors by the pseudoinverse-matrix method
using a sequence of input data for training. After this
training procedure, a subsequent sequence of input data
for testing are entered to investigate the performances of
reservoir on the STM and PC tasks.
In Figs. 7(a)-(d), we compare the profiles of output

yout(T, Tdelay) (blue dashed lines) with those of target
ytarget(T, Tdelay) (red solid lines) for the STM task for
several choices of delay Tdelay, i.e., (a) Tdelay=1, (b)

Tdelay=2, (c) Tdelay=7, and (d) Tdelay=10. Here the pro-
files of targets are calculated using Eq. (18), and the
measurements of readout signals are performed at Detec-
tor 7 by setting the number of virtual nodes as Nvn=62.
We find that the outputs perfectly reproduce the targets
when the delay is as small as Tdelay=1 and Tdelay=2 in
Fig. 7(a) and Fig. 7(b), respectively. On the contrary,
when Tdelay is relatively large as Tdelay=7 and Tdelay=10,
the discrepancies are pronounced although the tenden-
cies of targets are reproduced to some extent [Figs. 7(c)
and 7(d)].

We also compare the profiles of output yout(T, Tdelay)
with those of target ytarget(T, Tdelay) for the PC task in
Figs. 8(a)-(c) for selected delays Tdelay, i.e., (a) Tdelay=1,
(b) Tdelay=2, and (c) Tdelay=7. Here the profiles of
target are calculated using Eq. (19), and the measure-
ments of readout signals are again performed by setting
Nvn=62. Figure 8(a) shows perfect coincidence between
the outputs and the targets when Tdelay=1. However,
discrepancy appears even when the delay is as small as
Tdelay=2 [Fig. 8(b)], and they become more significant
when Tdelay=7 [Fig. 8(c)].

To quantitatively evaluate the performances, we use
the standard squared correlation Corr2 between the tar-
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FIG. 7: Comparison between profiles of output yout(T, Tdelay)
(blue dashed lines) and those of target ytarget(T, Tdelay) (red
solid lines) for the STM task for various delays Tdelay, i.e., (a)
Tdelay=1, (b) Tdelay=2, (c) Tdelay=7, and (d) Tdelay=10. The
profiles of target are calculated by Eq. (18), and the analyses
are performed by measuring the magnetization data at De-
tector 7 and setting the number of virtual nodes as Nvn=62.

gets and the outputs defined by [23, 26, 72],

Corr2(Tdelay) =
Cov2[ytarget(T, Tdelay), yout(T, Tdelay)]

Var[ytarget(T, Tdelay)]Var[yout(T, Tdelay)]
,

(24)

with

Cov[A(T ), B(T )] =
1

NT

∑

T

(A(T )− Ā)(B(T )− B̄),

Var[A(T )] =
1

NT

∑

T

(A(T )− Ā)2, (25)

0.5

1.0

1.5

-0.5

0.0

0.0

0.5

1.0

y
o
u
t 
, 
y

ta
rg

e
t

P
.

P
.

T/2345 67

yout 89:;<:;>?
@A

ytarget (TBCDE;>?
@A T/2345 6F

GHI

JHG

0.0

4.73.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Time in KLMNO QR NST UKVOT WMXNS 7YZ[\

\/2345 6]

^_`

^b`

^c`

y
o
u
t 
, 
y

ta
rg

e
t

P
.

P
.

y
o
u
t 
, 
y

ta
rg

e
t

P
.

P
.

eTOKVNO QR NST fg N_Oh RQj kTNTbNQj 7 with Nvn 6lF

FIG. 8: Comparison between profiles of output yout(T, Tdelay)
(blue dashed lines) and those of target ytarget(T, Tdelay) (red
solid lines) for the PC task for various delays Tdelay, i.e., (a)
Tdelay=1, (b) Tdelay=2, and (c) Tdelay=7. The profiles of tar-
get are calculated by Eq. (19), and the analyses are performed
by measuring the magnetization data at Detector 7 and set-
ting the number of virtual nodes as Nvn=62.

where Cov and Var denote the covariance and variance,
respectively, Ā is the average of A(T ) over all T , and
NT is the number of time steps T . The standard squared
correlation Corr2 takes a value within a range of [0,1], and
a larger value indicates better coincidence of the outputs
with the targets. In the present analysis, this quantity is
calculated using a sequence of 90 binary digits for testing
after optimizing the weight matrix using a sequence of
350 binary digits for training. After calculating Corr2

as a function of Tdelay, we take their summation over
a specific range of Tdelay to evaluate a quantity called
capacity C for both the STM and PC tasks [23, 26, 72],

C =

Tmax
delay
∑

Tdelay=0

Corr2(Tdelay). (26)

A larger capacity indicates that a larger amount of mem-
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FIG. 9: Squared correlations, Corr2, of the STM (filled cir-
cles) and PC (open circles) tasks as functions of the delay
time Tdelay for Detector 7. Capacities of the STM and PC
tasks, CSTM and CPC, which correspond to areas below the
respective curves, quantify the performances of reservoir for
these tasks. The measurements of signals are performed by
setting the number of virtual nodes as Nvn=62.

ory or nonlinearity is stored in the current reservoir state.
Therefore, the capacity can quantify the performances of
reservoir for the STM and PC tasks.

Figure 9 presents the calculated squared correlations
Corr2 for the STM and PC tasks as functions of the de-
lay Tdelay for Detector 7. Here the examinations of both
tasks are done by setting the number of virtual nodes as
Nvn = 62. The Corr2 for the STM task takes nearly unity
from Tdelay=0 to Tdelay=6, in accordance with the nearly
perfect coincidence between the outputs and the targets
when Tdelay = 1 [Fig. 7(a)] and Tdelay=2 [Fig. 7(b)]. How-
ever, it starts decreasing from Tdelay=7 and gradually
decays as Tdelay increases in accordance with the appar-
ent discrepancy between the outputs and the targets at
Tdelay=7 [Fig. 7(c)] and Tdelay=10 [Fig. 7(d)]. The Corr2

for the STM task finally vanishes around Tdelay = 22.
We note that this fading memory property (also known
as the echo-state property [72]) is essential for a work-
able reservoir, since it indicates that the reservoir states
can be independent of the initial configuration of the
physical system, after the injection of a long enough in-
put sequence [1]. On the other hand, The Corr2 for
the PC task shows much steeper decrease. Namely, it
takes nearly unity only at Tdelay=0 and Tdelay=1 but be-
comes suppressed abruptly (∼0.8 at Tdelay=2 and ∼0.2
at Tdelay=3). This is consistent with the considerable
discrepancy between the outputs and the targets even at
Tdelay=2 in Fig. 8(b). The Corr2 for the PC task vanishes
at Tdelay=4.

Because the squared correlations Corr2 for the STM
and PC tasks decay as Tdelay increases and almost van-
ish above Tdelay=22 and Tdelay=4, respectively [Fig. 9],
we set Tmax

delay=30 in Eq. (26) to evaluate the capacities for
these tasks. Figure 10 shows the capacities for both STM
and PC tasks, CSTM and CPC, as functions of the num-

ber of virtual nodes Nvn for respective detectors. For
all the detectors, both CSTM and CPC increase nearly
monotonically as Nvn increases because larger Nvn en-
dows more degrees of freedom in the weight matrix to
describe the output data. Both capacities are saturated
to certain values. The largest CSTM and CPC are ∼12.8
and∼2.7, respectively. These values are comparable with
that of other previously proposed spintronics reservoirs
under similar number of virtual nodes [23, 26, 28], which
clearly demonstrate that the magnetic skyrmion system
is promising for application to physical reservoir.

To investigate possible detector-position dependence
of the performance, in Fig. 11 we compare the capacities
CSTM and CPC for different detectors by plotting the
data for specified numbers of virtual nodes, i.e., Nvn=1,
25, 50, 75, and 100, extracted from Fig. 10. We use sym-
bols of red, green, and blue colors to represent Detectors
1-3, 4-6, and 7-9, respectively, which are categorized in
terms of their positions. Specifically, Detectors 1-3 repre-
sented by the red symbols are located near the left edge
of the rectangular-shaped system and thus are close to
or exactly on the input node, whereas Detectors 7-9 rep-
resented by the blue symbols are located near the right
edge and thus are far from the input node. Detectors
4-6 represented by the green symbols are located in the
middle of the system with intermediate distances from
the input node. We find that there are apparent depen-
dencies on the detector position for both CSTM and CPC,
but their tendencies are opposite.
The plots in Fig. 11(a) show that the capacities

CSTM abruptly increase as Nvn increases from Nvn=1
to Nvn=25 and saturate to certain constant values above
Nvn=50 for all the detectors. We also find that there
is an apparent trend that the detectors distant from the
input node exhibit better performances on the STM task
as indicated by larger values of CSTM. Indeed, Detectors
7-9 located near the right edge (blue symbols) tend to
have larger CSTM, while Detectors 1-3 located near the
left edge (red symbols) tend to have smaller CSTM.

On the other hand, the capacities CPC show similar
abrupt increase and saturating behavior in Fig. 11(b).
However, the trend of the detector-position dependence
is opposite to that of CSTM. Apparently, the detectors
closer to the input node tend to exhibit better perfor-
mance with larger CPC for the PC task and thus can
achieve more significant nonlinearity in response. Indeed,
Detectors 1-3 (red symbols) have larger CPC than Detec-
tors 7-9 (blue symbols).

The observed opposite trends of the detector-position
dependence between the two capacities CSTM and
CPC seem to be consistent with an empirical law of
the memory-nonlinearity trade-off relation in dynamical
models [73, 74]. It was argued that the memory capacity
seems to be degraded by introducing nonlinearity into
the dynamics in reservoirs and vice versa. Clarification
of possible connection of the magnetic skyrmion system
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FIG. 10: Capacities of STM (filled circles) and PC (open circles) tasks, CSTM and CPC, as functions of the number of virtual
nodes Nvn for respective detectors. The capacities correspond to summations of the squared correlations, Corr2, over the range
of 0 ≤ Tdelay ≤ 30 for 90 testing data, after optimizing the weight matrix using 350 training data. For our skyrmion spin-wave
reservoir, the largest values of CSTM and CPC are 12.8 and 2.7, respectively.

with the dynamical systems are left for future studies.

We have investigated the performances of the skyrmion
spin-wave reservoir on the STM and PC tasks by tak-
ing the three-period AC-field pulse as an input unit.
To study possible pulse-width dependence of the perfor-
mances, we calculate the capacities CSTM and CPC using
pulses with different widths, i.e., single-period and five-
period AC-field pulses. We employ the same random se-
quence of binary inputs as that used in the examination
with the three-period AC-field pulses. For this compari-
son we use initial 150 binary data for training and sub-
sequent 50 binary data for testing. The capacities CSTM

and CPC are again calculated by summing up the squared
correlations Corr2 in the range of 0 ≤ Tdelay ≤ 30.

Figures 12(a) and (b) show the calculated pulse-width
dependencies of CSTM and CPC, respectively. Here the
number of virtual nodes is fixed atNvn = 50. The colored
symbols are assigned to respective detectors depending
on the distance from the input node in the same fashion
as in Fig. 11. According to this figure, the pulse-width
dependence also exhibits some characteristic behaviors.
For the capacity CSTM, the detectors relatively distant
from the input node, i.e., Detectors 4-7 (green and blue
symbols) tend to exhibit larger values than the close de-
tectors, i.e., Detectors 1-3. In particular, Detector 7 (blue
circles) exhibits the largest value of Cmax

STM ∼ 13, and De-
tector 4 (green circles) exhibits the second largest value
of Cmax

STM ∼ 12 when the pulse width is one period of the
AC magnetic field. However, the values for these two de-

tectors decrease as the pulse width increases, indicating
that we can obtain a better performance on the STM
task with a shorter pulse and a detector distant from the
input node.

However, we should note that detectors located distant
from the input node do not necessarily exhibit high per-
formances on the STM task. For example, Detectors 8
and 9 (blue triangles and squares) exhibit lower or com-
parable values of CSTM than Detectors 4 and 5 at the
intermediate distance when the pulse widths are one and
three periods. Moreover, Detector 6 exhibits almost the
lowest values when the pulse width is one period despite
it is located at the intermediate distance. We realize
that both Detectors 6 and 9 with low performances are
located near the bottom edge of the rectangular system,
whereas both Detectors 4 and 7 with high performances
are located near the upper edge. It is known that the
spin waves in magnetic skyrmions are subject to emer-
gent magnetic fields generated by the magnetizations of
topological skyrmion textures, which cause their trans-
verse propagation called topological magnon Hall effect.
Because of this effect, the propagation of spin waves in
the skyrmion spin-wave reservoir can be directional and
their amplitude distribution can be asymmetric, which
may lead to the observed distinct performances between
detectors near the upper edge and those near the bottom
edge.

On the other hand, the plots of CPC in Fig. 12(b) show
no significant dependence on the pulse width for Detec-
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for respective detectors, where Nvn is the number of virtual
nodes. (b) Nvn-dependence of the PC capacity CPC. Detec-
tors 1-9 are located at positions shown in Fig. 5(b). Colors of
the symbols categorize these detectors in terms of the distance
from the input node. Specifically, the red color is assigned to
Detectors 1-3 located near the left edge in Fig. 5(b) close to
the input node, whereas the blue color is assigned to Detec-
tors 7-9 located near the right edge distant from the input
node. The green color is assigned to Detectors 4-6 located in
the middle of the system where the distances from the input
node are intermediate. Dashed lines are guides for eyes.

tors 1-3 (red symbols) and Detectors 4-6 (green symbols).
The values are almost constant to be CPC =3-3.6 irre-
spective of the pulse width for these detectors. On the
contrary, the values are considerably small as CPC =0.5-
1.5 for Detectors 7-9 (blue symbols) when the pulse width
is short as one period. The performances of Detectors 7
and 9 for the PC task is remarkably low (CPC ∼0.5 when
the pulse width is one period). This fact seems to be
in sharp contrast to the case of the STM task discussed
above. Namely, the largest capacity of the STM task
(CSTM ∼13) is achieved by Detector 7 when the pulse
width is one period. The contrasting performances for
Detector 7 between the STM and PC tasks seem to be
consistent with the memory-nonlinearity trade-off rela-
tion in dynamical models again.
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FIG. 12: Pulse-width dependence of (a) STM capacity CSTM

and (b) PC capacity CPC. The pulse width in x-axis is in
units of the period of AC magnetic field, which is roughly
2π/0.12416 ≈ 50.6. For pulse widths equal to 1, 3, and 5, we
take integer time steps of 51, 152, and 254, respectively, for
the LLG integration. Detectors 1-9 are located at positions
shown in Fig. 5(b). The symbols are the same as those in
Fig. 11. Dashed lines are guides for eyes.

CONCLUSION

In this paper, we have proposed a concept of the
skyrmion spin-wave reservoir and have examined its
properties and performances. We have investigated three
of the required characteristics of reservoir, i.e., the gen-
eralization ability, the short-term memory function, and
the nonlinearity of our skyrmion spin-wave reservoir by
imposing three standard tasks, i.e., the duration-estimate
task, the short-term momory task, and the parity-check
task. Through these investigations, we have demon-
strated that the skyrmion spin-wave reservoir possesses
high abilities for information processing. Importantly,
magnetic skyrmions emerge spontaneously in magnetic
specimens with broken spatial inversion symmetry under
application of static magnetic field via self-organization
process. Therefore, the proposed skyrmion reservoir re-
quires neither advanced nanofabrication nor complicated
manufacturing for their production in contrast to other
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previously proposed magnetic reservoirs with elaborate
spintronics devices, e.g., spin-torque oscillators and mag-
netic tunnel junctions. Our proposal will necessarily pave
a way to the realization of practically useful spintronics
reservoirs of high performance.
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