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We demonstrate the direct implementation of all basic logical operations utilizing a single bi-
stable system driven by nonlinearly transformed input signals, in the presence of noise. Exploiting
the hopping between the dynamical states of the bi-stable system, assisted by the noise floor, in
response to the transformed inputs, allows the implementation of the full set of logic operations. So
this idea can form the basis of the design of a dynamical computing element that can be rapidly
morphed to yield any desired logic gate by varying just a single control parameter. Further, the
results are verified in electronic circuit experiments, demonstrating the robustness of the concept
and the potential of this idea to be realized in wide-ranging systems.

I. INTRODUCTION

Nonlinear systems are renowned for the richness of
their dynamics that range from fixed points, limit cy-
cles of varying periodicities and to chaotic attractors. In
recent years using the behavioural richness of nonlinear
dynamical systems for computational tasks has offered
an important avenue of research, both from the concep-
tual as well as the applied point of view. Further, in
recent years it has become increasingly evident that the
interplay of noise and nonlinearity in a dynamical sys-
tems is critical in understanding how complex systems
evolve and give rise novel effects. Stochastic resonance
(SR) provides one such example wherein the cooperative
behavior between noise and dynamics produces interest-
ing physical phenomena that are often counter-intuitive
[1–4].

Recently, it has been shown that a noisy bi-stable
system, subjected to two square waves as inputs, pro-
duces a logical response in some optimal range of noise
[5–24]. The probability of getting such logic response
increases to unity with increasing noise intensity, and
then decreases for noise strengths exceeding the optimal
noise strength. This novel effect has been named Logical
Stochastic Resonance (LSR), and it has been experimen-
tally tested and used in different fields, including elec-
trical [25, 26], nanomechanical [27, 28], optical [29, 30],
chemical [31], biological systems [32–35], chaotic attrac-
tors [36] and strange nonchaotic attractors [37–39].

The LSR paradigm was conceived to explore the poten-
tial utility of system noise in the performance of compu-
tational devices. In particular, as computational devices
and platforms continue to shrink in size, we are increas-
ingly encountering fundamental noise characteristics that

cannot be suppressed or eliminated. The main feature
of LSR is its ability to exploit nonlinearity and noise,
to build a logic gate functionality by using a nonlinear
bistable system. So far, the concept of LSR has been
mainly utilized to realize stand-alone logic gate struc-
tures. However, reconfiguration of such logic gate struc-
tures to realize morphable all logic gates by varying a
single control parameter has not been studied. Here, we
investigate the response of a single nonlinear bistable sys-
tem (acts as a threshold detector) to nonlinearly tran-
formed input signals, consisting of two random square
waves. We find that, in an optimal band of noise, the
output is a morphable logical combination of the two in-
put signals by varying a single control parameter in the
nonlinear transformation of the inputs.

One of the most promising directions of this idea is the
ability to obtain all possible logic operations from a sin-
gle nonlinear system. In contrast to a conventional field
progammable gate array (FPGA) element, where recon-
figuration is implemented by switching between multiple
single-purpose gates, the operations of our proposed re-
configurable noise-assisted logic gates (RNLGs) can be
morphed simply through the varied patterns inherent in
the nonlinear transformation of the inputs. Thus archi-
tectures based on such elements may serve as ingredients
of a flexible computing device that can be optimized for
special applications or reconfigured on the fly in response
to varying operational demands.

The plan of the paper is as follows: Section II discusses
the general scheme for implementing two-input and a sin-
gle output morphable logical gate architecture by using
a single nonlinear bistable system. In section III, we con-
sider a proof-of-principle experimental demonstration of
RNLG using analog simulation circuits. Finally, in sec-
tion IV, we present a summary and discussion of our
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results.

II. SCHEME

Consider a general nonlinear dynamical system (shown
schematically in Fig. 1), given by [5]:

ẋ = g(x) + F (I) +Dη(t), (1)

where g(x) is a nonlinear function obtained as the gra-
dient of a bi-stable potential. F (I) is a nonlinear trans-
formation function, I is a low-amplitude external input
signal, and η(t) is an additive zero-mean Gaussian white
noise with unit variance and intensity parameter D. The
noise is considered to have correlation time smaller than
any other time scale in the system, and so that it may be
represented, theoretically, as delta correlated. For weak
noise intensity the motion is confined to either left-well
or right-well depending upon the initial conditions. At
an appropriate noise intensity switching between the two
wells is initiated[40].

Usually, a logical input-to-output correspondence can
be achieved by encoding N inputs by N square waves.
Specifically, for two logic inputs, the system is driven
with a small amplitude signal I, taken to be the sum or
two trains of aperiodic pulses: I1 + I2, with I1 and I2
encoding the two logic inputs. Since the logic inputs can
be either 0 or 1, they can combine to give four logic input
sets (I1, I2): (0, 0), (0, 1), (1, 0) and (1, 1). Since the
input sets (0, 1) and (1, 0) give rise to the same I, the four
input conditions (I1, I2) reduce to three distinct values
of I. Hence, the input signal I, generated by adding
two independent uncorrelated input signals, is a 3-level
aperiodic waveform.

FIG. 1. Schematic diagram of a logic unit comprised of a
nonlinear system forced by an input signal I = I1 + I2 and
noise, where I1 and I2 encode two logic inputs.

The output of the system can be considered as a logical
1 if it is in, say right-well, and logical 0 if it is in the left-
well. The output then toggles when the system switches
wells. The focus here is on the following question: Given
a set of inputs (I1, I2), can the state of the noisy nonlinear
system reflect a logical output, in accordance with the
truth tables of the basic logic operations shown in Table

TABLE I. Relationship between the two inputs and the one
output of the fundamental OR, AND, NOR, NAND, XOR
and XNOR logic operations, for the four distinct possible in-
put sets (0, 0), (0, 1), (1, 0) and (1, 1) [41].

Input Set OR AND NOR NAND XOR XNOR
(I1,I2)

(0,0) 0 0 1 1 0 1
(0,1) 1 0 0 1 1 0
(1,0) 1 0 0 1 1 0
(1,1) 1 1 0 0 0 1

I. The crucial result obtained in Ref. [5] was that the
hopping mirroring logic functions occurred consistently
and robustly only in a window of optimal noise. So, while
no consistent output was obtained for very small or large
noise, in a band of moderate noise the system produced
the desired logical outputs with remarkable consistency.

Specifically we now consider a noise-driven bi-stable
system given as:

ẋ = g(x) + F (I1 + I2 + I0) +Dη(t), (2)

where g(x) = 4x − 20x3, I0 is a control parameter and
F (I) is given by the following nonlinear transformation
function

F (I) = a2I(1 − I)(1 − aI(1 − I)) − c, (3)

where c = 0.5 and a = 4.0. The form of nonlinear trans-
formation F (I) is represented in Fig.2 and I is given by
I1 + I2 + I0.

FIG. 2. Nonlinear transformation function F (I) represented
by Eq. 3 for c = 0.0.

Thus the drive signals I1 and I2 are input streams that
encode the two binary inputs are nonlinearly transformed
by (cf. Eq. 3) and drives the nonlinear bi-stable system
(cf. Eq. 2). A constant bias I0 that acts as a single
control parameter is responsible for reconfigurability of
logic responses in the present scheme. We first present
some results obtained via numerical simulations of the
system (cf. Eq 2 and 3). With no loss of generality, we
consider the input signal strength to be 0.1, i.e. the two
(randomly switched) inputs I1 and I2 to take value −0.1
when the logic input is 0, and value 0.1 when logic input
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FIG. 3. Schematic showing the different logic patterns ob-
tained under varying I0, in the range [0.2:0.8], corresponding
to the system described by Eqs. 2 and 3, with all other pa-
rameters as given in Figs. 4-5..

TABLE II. Necessary and sufficient conditions, derived from
the logic truth tables, to be satisfied simultaneously by the
nonlinear dynamical element, in order for it to have the ca-
pacity to implement the logical operations, OR, AND, NOR,
NAND, XOR and XNOR logic operations (cf. Table I) with
the same system represented by Eq. 2, for the four distinct
possible input sets (0, 0), (0, 1), (1, 0) and (1, 1).

Input Set Logic Output Necessary
(I1,I2) Operation & sufficient

condition

(0,0) OR 0 x(t) < 0
(0,1)/(1,0) OR 1 x(t) > 0
(1,1) OR 1 x(t) > 0
(0,0) AND 0 x(t) < 0
(0,1)/(1,0) AND 0 x(t) < 0
(1,1) AND 1 x(t) > 0
(0,0) NOR 1 x(t) > 0
(0,1)/(1,0) NOR 0 x(t) < 0
(1,1) NOR 0 x(t) < 0
(0,0) NAND 0 x(t) < 0
(0,1)/(1,0) NAND 1 x(t) > 0
(1,1) NAND 1 x(t) > 0
(0,0) XOR 0 x(t) < 0
(0,1)/(1,0) XOR 1 x(t) > 0
(1,1) XOR 0 x(t) < 0
(0,0) XNOR 1 x(t) > 0
(0,1)/(1,0) XNOR 0 x(t) < 0
(1,1) XNOR 1 x(t) > 0

is 1, with the input signal I = I1 + I2 + I0 being a three-
level aperiodic square wave form. We observe that, under

optimal noise, interpreting the state x(t) < 0 as logic out-
put 0 and the state x(t) > 0 as logic output 1, the system
yields a clean logical responses as detailed in Table I and
II. It is important to note that these input signals can-
not cause a transition between potential wells on their
own and the the transitions are aided by the noise floor,
which is the phenomenon called logical stochastic reso-
nance (LSR). The time waveforms of the system variable
x(t) thus obtained for various values of I0, noise strength
D and constant bias value c are depicted in Figs. 4 and
5. More importantly, we demonstrate that changing the
reconfigurable parameter I0 offers a reliable control that
allows us to obtain all six fundamental logic operations
for an optimal noise intensity level D. So it is clearly ev-
ident that the nonlinear bi-stable system acts as a noise-
assisted threshold detector (logical stochastic resonator)
to extract a two-state logical output reliably, and I0 can
efficiently control the nature of the logic output, thereby
serving as an excellent logic reconfiguration parameter.

We can quantify the consistency (or reliability) of ob-
taining a given logic output by estimating the probability
of obtaining the desired logic output for different input
sets to Eq.(2) through numerical simulation. This prob-
ability, denoted by P (logic), is the ratio of the number
of correct logic outputs to the total number of runs, with
each run sampling over different permutations of the four
input sets (0,0),(0,1),(1,0) and (1,1). If the logic output,
as obtained from x(t), matches the logic output of the
truth table for all four input sets in the run, it is consid-
ered a success, and is deemed unsuccessful even if one of
the input sets does not yield a correct output. So this
is a stringent measure of reliability, and when P (logic) is
close to 1, the logic operation is obtained very reliably.
Using this quantifier we find that all the logic operations
can be obtained robustly in specific ranges of parameters.
We show the representative case of P (logic) for the fun-
damental logic operation NOR, in the parameter space
of the noise strength vs logic reconfiguration parameter
I0 in Fig. 6, and in the parameter space of the noise
strength and the amplitude of the logic input signal in
Fig. 7. Clearly the reliability of logic operations is close
to 1 in an optimal band of moderate noise.

Note that both the logic reconfiguration parameter I0
and the input signal strength have to be optimized to
get the best operational range. For certain operations,
such as XNOR, the robust operational range in parame-
ter I0 may be narrow for specific input signal strengths
(cf. Fig. 3, where the input signal strength is 0.1). How-
ever, for different input signal strengths one can find a
good operational range for XNOR as well (see Fig. 8 for
an illustrative example).

The interesting observation here is that these robust
logic operations are only realized, for sub-threshold in-
put signals, in the presence of noise. More specifically,
in relatively wide windows of moderate noise, the sys-
tem yields logic operations with near certain probability
i.e. P (logic) = 1, and so is robust to background fluctua-
tions. This effect is also observed for the case of paramet-
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ric perturbations, usually manifested as multiplicative or
state-dependent noise.

FIG. 4. Time series I(t) = I1 + I2, and x(t) associated
with the XOR logic operation using the nonlinear system (cf.
Eq. 2). The inputs I1 and I2, take value −0.1 when logic in-
put is 0 and value 0.1 when logic input is 1. The asymmetry
control parameter c is fixed at 0.5. The output x(t) is used to
extract logic operations for the logic reconfiguration parame-
ter I0 = 0.8. Panel (a) shows the signal I(t). Panels (b)-(d):
For low noise level D = 0.1 the input is not able to produce
reliable transitions between the two states. As the noise level
is increased, an optimal noise level is reached (D = 0.35) in
which the nonlinear bi-stable system switches synchronously
with the input, obtaining in this way a reliable XOR logic
response. Further increase of the noise level D=1.2 leads to
the occurrence of random switches, destroying the reliability
of the logic gate.

III. EXPERIMENTAL REALIZATION

In this Section, we will verify this concept in electronic
circuit analogs of the nonlinear system described by
Eq.(2), and ascertain its robustness in experiments[42].
The schematic of the circuit realization is shown in Fig. 9.
This type of system can also experimentally be imple-
mented with integrated circuits by combining CMOS
transistors and a set of linear resistors and capacitors
[25]. In Fig. 9, I(t) corresponds to logic input signal
(I1 +I2 +I0), where the logic input signals I1 and I2 take
value −100mV when logic input is 0 and value 100mV
when logic input is 1. The bias voltage c is set equal
to −500mV and noise intensity value D=1V. The recon-
figuration control parameter I0 is varied from 200mV to
800mV. The output node voltage x(t) of operational am-
plifier OA2 corresponds to state variable x(t) of Eq. (2).
The component values of this circuit are indicated in the
schematic (Fig. 9). A combination of op-amp adder, scale

FIG. 5. Time series I(t) = I1 + I2,and x(t) associated
with the reconfigurable logic operations using the nonlinear
bi-stable system (cf. Eq. 2). Here noise intensity D = 0.35
and the inputs I1 and I2, take value -0.1 when logic input is
0 and value 0.1 when logic input is 1. The asymmetry control
parameter c is fixed as 0.5. The output x(t) is used to extract
logic operations for various logic reconfiguration parameter I0.
Panel (a) shows the signal I(t) and panels (b)-(g), depict the
NAND, NOR, XNOR, AND, OR and XOR logic responses
for I0 = 0.3,0.4,0.5,0.6,0.75 and 0.8 respectively.

changer and multiplier circuits are used to produce the
nonlinear transformation signal F (I) from the op-amp
OA7. Further, the output F (I) is coupled to the bot-
tom circuit, again consisting op-amp summing amplifier,
scale changer, integrator and multipliers to produce the
dynamical state variable x(t). In the circuit, op-amps
are realized with AD712 or µA741. The multipliers are
realized with AD633. The noise signal was drawn from
Agilent or Keysight 33522A, Function/Arbitrary Wave-
form Generator. All oscilloscope trails were obtained us-
ing Agilent or Keysight DSOX2012A. The power supply
to op-amps and the bias voltage I0 and c were drawn
from Agilent or Keysight E3631A DC Power Supply. The
representative oscilloscope traces for various values of I0
from the circuit realization of Fig. 9 are displayed in
Fig. 10. A comparison with Fig. 5 clearly shows that
the same phenomenon is observed in these experiments.
That is, only with noise intensity D with moderate value,
equal to 1V, do we get the desired logic gate operation
reliably.

Though we have demonstrated our idea with the spe-
cific bi-stable system given in Eqn. 2, we can also obtain
all these reconfigurable logic operations in a similar fash-
ion, in the presence of a noise-floor, using any bi-stable
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FIG. 6. Density map of P (logic) for NOR logic operation,
as a function of the noise strength (x-axis) and the logic re-
configuration parameter I0 (y-axis), obtained from numerical
simulations. Here the input signal strength is 0.1. All other
control parameters are fixed as in Fig. 5.

FIG. 7. Density map of P (logic) for NOR logic operation,
as a function of the noise strength (x-axis) and input signal
strength (y-axis), obtained from numerical simulations. Here
I0 = 0.4 All other control parameters are fixed as in Fig. 5.

system, including a simple Schmitt trigger as the basic
bi-stable unit.

IV. CONCLUSIONS

In summary, we have demonstrated a scheme for the
direct and flexible implementation of all basic logic gates
utilizing nonlinear dynamics and the interplay of noise.
The richness of nonlinearity allows us to select out all
the different binary logic gate responses from the same
nonlinear (bi-stable) dynamical system by simply set-
ting suitable bias values and an optimal band of noise.
The reconfigurable bias values are known exactly from
theory and are thus available as a look-up table. This
scheme was implemented both through numerical simu-

FIG. 8. Density map of P (logic) for XNOR logic operation,
as a function of the noise strength (x-axis) and the logic re-
configuration parameter I0 (y-axis) obtained from numerical
simulations. Here the input signal strength is 0.17. All other
control parameters are fixed as in Fig.5.

FIG. 9. Analog circuit diagram of Eqs. 2 and 3. Here OA1 -
OA7 are operational amplifiers (µA 741 or AD712). M1 - M4
are analog multipliers (AD633). The resistor values are fixed
as R = R3 = R4 = R5 = R6 = R9 = R10 = R11 = R12 = R13
= R16 = R17 = R18 = R21 = 100 KΩ. R1 = R14 = R19 = 25
KΩ, R2 = 5 KΩ, R7 = 10 KΩ,R8 = 1 KΩ, R15 = R20 = 2.5
KΩ. The capacitor value is fixed as C1 = 0.01 µ-Farad. The
nonlinear transformation function F (I) generated by the top
circuit is used to drive the bottom circuit. The response state
variable x(t) is obtained from the op-amp integrator circuit
(OA2).

lations and electronic experiments. Thus our results sug-
gest the potential of exploiting nonlinear transformations
of inputs to implement flexible logic gates in the presence
of a noise floor. The ideas presented here, combining the
research directions of Chaos Computing[43–51] and Log-
ical Stochastic Resonance[5, 6], has potential to be real-
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FIG. 10. Experimental observation of different logic opera-
tions through the analog simulation circuit of Fig. 9. Panel
(a) depicts input signal I(t) = I1+I2. Here, I1 and I2 are two
logic input signals which take value -100mV when logic input
is 0 and value +100mV when logic input is 1; Panels (b to
g) show the wave forms of the output voltage x(t), for noise
amplitude D = 1V and bias value c = -500mV. Panels (b-
g), depict the NAND,NOR,XNOR,AND, OR and XOR logic
responses for I0 = 0.3V,0.4V,0.5V,0.6V, 0.75V and 0.8V re-
spectively. Both for low and high noise levels, no desired logic
output is observed. The noise signal is drawn from Agilent or
Keysight 33522A, Function/Arbitrary Waveform Generator.
The oscilloscope used is Agilent or Keysight DSOX2012A.
The power supply to op-amps and the bias voltage I0 and c
are drawn from Agilent or Keysight E3631A DC Power Sup-
ply. The scale of the traces are: 50ms/Div (X-axis). For panel
(a), the scale in the trace is: 500mV/Div (Y-axis), for panels
(b-g), the scale in the traces are: 2V/Div.

ized in wide-ranging systems, and denotes a direction in
exploiting noise assisted nonlinear dynamical systems to
design computational devices.

An open direction of research would be investigate
possible implementations of this idea on many-valued
logic, such as three-valued ternary logic, potentially using
multi-stable systems, rather than bi-stable ones. Further
the use of machine learning techniques to optimize the
system parameters in order to find the best operational
range of different gates, given a typical noise floor, will
be the next step to design the most optimal and robust
set of reconfigurable gates.

In conclusion, the ideas presented and explicitly
demonstrated through numerical simulations and proof-
of-principle circuit experiments here, can provide impe-
tus for further developments to optimize the basic idea,
as well as to implement it in a range of systems. So this
work offers ideas for an alternate computing platform,
that may potentially yield rich dividends in the future.
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