
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thermal Emission of Spinning Photons from Temperature
Gradients

P.Y. Chen, C. Khandekar, R. Ayash, Z. Jacob, and Y. Sivan
Phys. Rev. Applied 18, 014052 — Published 21 July 2022

DOI: 10.1103/PhysRevApplied.18.014052

https://dx.doi.org/10.1103/PhysRevApplied.18.014052


Thermal emission of spinning photons from temperature
gradients

P. Y. Chen,1, ∗ C. Khandekar,2 R. Ayash,1 Z. Jacob,2 and Y. Sivan1

1School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev

2School of Electrical and Computer Engineering, Purdue University
(Dated: 6th July 2022)

1



Abstract
The fluctuational electrodynamic investigation of thermal radiation from non-equilibrium

or non-isothermal bodies remains largely unexplored because it necessarily requires
volume integration over the fluctuating currents inside the emitter which quickly becomes
computationally intractable. Here, we put forth a formalism combining fast calculations
based on modal expansion and fluctuational electrodynamics to accelerate research at
this frontier. We employ our formalism on a sample problem: a long silica wire held
under temperature gradient within its cross section. We discover that the far-field thermal
emission carries a nonzero spin which is constant in direction and sign, and interestingly,
is transverse to the direction of the power flow. We clearly establish the origin of this
transverse spin as arising from the nonequilibrium intermixing of the cylindrical modes of
the wire, and not from any previously studied or intuitively expected origins such as chiral
or nonisotropic materials and geometries, magnetic materials or fields, and mechanical
rotations. This finding of nonequilibrium spin texture of emitted heat radiation can prove
useful for advancing the noninvasive thermal metrology or infrared imaging techniques.

Keywords: thermal radiation; temperature gradients; photon spin; longitudinal and transverse spin;
modal expansion for computational electromagnetics; eigenpermittivity modes

I. INTRODUCTION

The field of thermal radiation initiated the quantum revolution at the beginning
of the twentieth century and spawned numerous technological applications such
as thermal energy harvesting, infrared imaging, metrology, gas sensing, and heat
management, among others [1–4]. One emerging research direction focuses on the
spin angular momentum or circular polarization of thermal radiation. The key
guiding principle for this research has been the photon-spin-resolved Kirchhoff’s
law, which equates emissivity with absorptivity separately for individual circular
polarization states of thermally emitted light. However, this law is derived and
applicable only to uniform-temperature reciprocal media [5–7]. While recent works
have explored the spin angular momentum of thermal radiation from time-reversal-
symmetry-broken nonreciprocal media [8–10], it remains an open question whether
nonuniform temperature profiles can lead to interesting effects on the circular
polarization of thermal emission.

In this work, we develop the theoretical and computational framework to
analyze the spin angular momentum of thermal radiation from bodies with non-
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uniform temperature profiles. As an experimentally-relevant example, we consider
a long cylindrical rod with a non-uniform temperature distribution across its cross-
section. Our analysis is performed by extending the recently developed techniques
for rapid simulation of Green’s function [11–13] to thermal radiation. Crucially, we
focus on the spin angular momentum rather than the radiative heat flux. Shown in
the left panel of Fig. 1, a long (silica, SiO2) rod is held under a linear temperature
gradient. We find that, in the far-field, the heat flux is radially outward, but there
also exists a non-zero spin angular momentum density parallel to the axis of the
cylinder and transverse to the emission direction. The left panel also shows the
sense of polarization rotation associated with the dimensionless spin, while the
right panel displays its magnitude, with blue/red indicating positive/negative
directionality. With detailed analysis, we prove that this transverse spin is uniquely
enabled by the non-uniform temperature distributions and arises from the intermix-
ing of contributions from different cylindrical modes. We also show numerically
that the spin magnitude diminishes with diminishing temperature gradient, falling
to zero for a uniform temperature profile (Figure 2).

Until recently, inquiries into the nature of spin arising from thermal radiation
were limited to reciprocal media, focusing on two major themes: far-field spin
from reciprocal chiral absorbers explored theoretically [14, 15] and experiment-
ally [16, 17], and the analysis of the degree of polarization in the near-field of
reciprocal media [18]. Recent exploration of this topic for non-reciprocal media
has revealed surprising phenomena, such as persistent equilibrium spin in the
near-field [19] and modified spin-resolved Kirchhoff’s laws for planar media [20].
Ref. [21] revealed an origin of far-field thermal-radiation spin: a nonequilibrium
system composed of a dimer of two coupled antennas held at unequal but uniform
or homogeneous temperatures. Along this vein, our work demonstrates a funda-
mental finding that even nonuniform temperature gradients inside a single thermal
emitter can cause thermal emission with a nonzero spin. Our specific example
system lacks all previously known aspects connected with the photon spin such
as geometric chirality (e.g. nonsymmetrical shapes), material chirality (e.g. chiral
or anisotropic materials), magnetic field or magnetic materials, and mechanical
rotations. By avoiding these aspects, our work clearly establishes a surprising con-
nection between the nonzero photon spin and the intrinsic temperature gradients.
We also note that, in contrast to all previous works reporting longitudinal spin, the
far-field spin emitted from the temperature gradient emitter is transverse in nature,
thus, making it measurable for greater ease; in fact, such transverse spin was so far
believed to be possible only in the near-field. We further highlight that the physical
origin of this spin is based on non-equilibrium intermixing of cylindrical modes
of different orders, which differs from that of Ref. [21], where it stems from the
near-field coupling between non-parallel dipole moments.
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Figure 1: (Left) An example geometry that can be treated by our formalism for
non-equilibrium fluctuation electrodynamics. A temperature gradient is

maintained across the cross-section of a circular silica rod, which extends infinitely
along the z-direction. Heat flux, characterized by Poynting’s vector, is generated

along the radial direction. More notably, spin fields are generated that are
in-plane, characterized by a spin vector which is perpendicular to both the plane
and the Poynting vector. The circular arrows representing the spin are an artistic

depiction rather than an actual indication of its magnitude.
(Right) The spin extends into the far-field, D � r, where r is the radius of the cylinder and
D is the radius of the far-field contour. The normalized quantity 〈Sz〉ω/〈W〉 converges to

the displayed non-zero values. The sign and the magnitude of the far-field spin vector
changes as a function of the in-plane polar angle, but does not substantially change at

scales of the order of the wavelength.

Fluctuation-electrodynamic (FE) simulations of thermal radiation from emitters
with non-uniform or continuously varying temperature/material profiles necessar-
ily require volume integrals over fluctuating currents, and precludes simplification
to surface integrals; the surface current formulations that apply to uniform tem-
perature/material profiles [22–24] are inapplicable here. Note also that there is no
Kirchhoff’s law for bodies with nonuniform temperature profiles. While Kirch-
hoff’s law can be generalized for differential subvolumes of reciprocal bodies [1], it
does not circumvent the need for volume integration for the calculation of the total
far-field thermal radiation spin from such nonisothermal emitters. For volume
currents, a formulation was recently developed for emitters with internal inhomo-
geneities [25], and a new approach to tailor the directionality and intensity of

4



thermal emission using temperature gradients was explored in Ref. [26]. These
works presented successful but specific numerical techniques. In the present work,
we instead aim to develop a general formalism for spatially-varying temperature
profiles that is compatible with any simulation method. There have been many
recent works on thermal radiation in systems of sub-wavelength particles where the
particles can be approximated as point dipoles, thus simplifying the FE simulations
and analysis [7, 27–29]. Our approach ventures beyond the dipolar regime, paving
the way for computationally challenging FE simulations of many-body non-dipolar
systems.

We employ a modal expansion approach that decomposes the radiation of
emitters via their resonator modes. The primary advantage is that once the modes
have been obtained using any readily available mode-solver, it is computationally
inexpensive to analyze the thermal radiation of any temperature profile. This
speed is conducive to complex heat-transfer simulations between bodies with non-
uniform temperature distributions requiring self-consistent analysis in presence of
other heat-transfer channels like conduction and convection. Furthermore, modal
expansion yields useful insights regarding spectral, geometric, and symmetry
properties. For example, we can deduce which combination of modes gives rise to
non-zero spin simply by considering the spatial overlap between the temperature
profile and modal fields. Such insights and design tools are not readily accessible
to purely numerical methods such as volume current formulations.

We note that modal expansion was recently used in the form of temporal
coupled mode theory (CMT) in Refs [30, 31] to engineer the directionality of
Poynting flux. Instead of the eigenfrequency modes employed by CMT, our
modal expansion uses eigenpermittivity modes, which offers several advantages.
Firstly, eigenpermittivity modes form a discrete set, which is simpler to treat
numerically compared with the continuum of frequency modes. Crucially, our
formalism can handle temperature inhomogeneities within the spatial extent of
a single mode, which is inaccessible to CMT utilizing a single effective mode
temperature [30, 31]. Furthermore, our formalism is suitable for direct simulation
of hybridized or strongly coupled modes in the context of many-body heat-transfer
simulations, which for the CMT formalism would require parameter extraction
based on numerical fitting beyond the weak-coupling regime. Another advantage
of our approach is that the frequencies used for the Planck factor (see Eq. (4)
below; the mean energy of an electromagnetic state) are real, thus, avoiding any
approximation necessary for complex frequency modes.
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II. FORMULATION

We now develop the formulation for the fields emitted by an arbitrary hot object
standing in an optically and thermally uniform background. We assume that the
object contains thermal emitters that create a fluctuating current density J(r′). The
total electric and magnetic fields at point r exterior to the object due to the current
J(r′) are

El(r) = ikZ0

∫
dr′GE

lq(r, r′)Jq(r′), Hl(r)/Z0 = ik
∫

dr′GH
lq (r, r′)Jq(r′), (1)

where Z0 =
√

µ0/ε0 is the free space impedance. The electromagnetic properties
of the medium are encoded within the Green’s tensors.

Our facile yet rigorous treatment of varying temperature profiles is enabled by
the expansions

¯̄GE(r, r′) =
1
k2 ∑

m

Em(r)⊗ Em,†(r′)
εm − εi

¯̄GH(r, r′) =
1
k2 ∑

m

Hm(r)⊗ Em,†(r′)
εm − εi

, (2)

where εm are the eigenpermittivities associated with the eigenmodes Em(r), and
εi is the permittivity of the object. Notice that the dependence on r and r′ has
been separated into the factors Em(r) and Em,†(r′), a key feature that we shall
later exploit. The above simple form differs from the expansion derived in earlier
eigenpermittivity formulations [11, 32], since it applies when the source co-ordinate
r′ is inside the object. The derivation of electric field part is given in Appendix A,
along with a short discussion, and the magnetic field part is obtained using
¯̄GH(r, r′) = 1

ik∇×
¯̄GE(r, r′). For simplifying later calculations, we also rescale the

magnetic field, such that H = Z0HSI, where HSI is the SI quantity.
We shall employ the Fluctuation-Dissipation Theorem (FDT) [33, 34] to calculate

the fields produced by ensemble averages of fluctuating currents; products of
fluctuating currents are correlated and satisfy

〈Jp(r′, ω′)J∗q (r
′′, ω′′)〉 = 4ωε0

π
Θ(ω, T) Im[ε(r′)]δ(r′ − r′′)δ(ω′ −ω′′)δpq, (3)

where
Θ(ω, T) =

h̄ω

eh̄ω/kBT − 1
, (4)

is the mean energy of an electromagnetic state at temperature T, and 〈〉 represents
ensemble averaging.

We aim to evaluate various field quantities such as the Poynting flux,

〈Pi(r, ω)〉 = 1
2Z0

εilp Re〈E∗l Hp〉, (5)
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rewritten using tensor notation, with εilp being the Levi-Civita symbol for the
cross-product, and the H field is rescaled. Two additional key quantities are the
spin momentum density,

〈Si(r, ω)〉 =
εilp

2Z0kc2 Im
{
〈E∗l Ep〉+ 〈H∗l Hp〉

}
, (6)

and the energy density,

〈W(R, ω)〉 =
δlp

2Z0c
{
〈E∗l Ep〉+ 〈H∗l Hp〉

}
, (7)

where δlp is the Kronecker delta. Other quantities such as Stokes’ parameters can
also be considered.

To treat this range of quantities, we consider the general tensor element 〈D∗l Fp〉,
where D∗l and Fp can represent either E or H. The result for cylinders of arbitrary
cross-section is derived in Appendix B, and is

〈D∗l Fp〉 =
2Z0ε′′i (ω)

π2k

∫ k

−k
dβ ∑

m,n
Dm,∗

l (R)Fn
p (R)

Vm,n

dm,n , (8)

defining the two quantities

Vm,n =
∫

dR′Θ(ω, T)Em,†,∗(R′) · En,†(R′), (9)

dm,n = (εm − εi)
∗ (εn − εi) . (10)

Equation (8) gives the fields radiated by thermal emission at ω per unit length of
a 2D geometry standing in free space. As an aside, the equivalent result for 3D
structures is displayed in Eq. (B4). The 3D result is simpler than Eq. (8), as no
integration along β is necessary since all information pertaining to field profiles is
captured by the modes themselves.

The product (8) can represent energy flux (5) or energy density (7), for example.
We choose to limit the integral over the longitudinal propagation constant β to
the propagating Fourier components, see Eq. (B5). The summations over indices
m and n run over the same set of modes, as per Eq. (B7). We see that Eq. (8)
is composed of three parts. First, the factor dm,n is due to the detuning of the
inclusion permittivity εi from the eigenpermittivities εm of each mode. Second, the
integral Vm,n over the electric fields of the eigenmodes Em,†,∗(R′) · En,†(R′) within
the interior of the inclusion is ultimately weighted by the temperature profile. The
variable R = (x, y) ranges over the 2D plane. Finally, the result is given by a sum
over the eigenmodal fields Dm,∗

l (R)Fn
p (R) in the region exterior to the inclusion.
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The computational advantage of Eq. (8) is that once the modes of the resonator
have been obtained, many quantities of interest regarding the radiation are available
by evaluating just the one set of overlap integrals. Even the difficult case of
non-uniform temperature profiles can be treated with relative ease. This greatly
facilitates any calculation that requires iteration over many temperature profiles,
such as self-consistent calculations.

When Eq. (8) is applied to find the Poynting vector (5), we obtain

〈P(R, ω)〉 =
ε′′i (ω)

π2k

∫ k

−k
dβ ∑

m,n
Re
{

Em,∗(R)× Hn(R)
Vm,n

dm,n

}
. (11)

The spin momentum density (6) is obtained by applying Eq. (8) twice,

〈S(R, ω)〉 =
ε′′i (ω)

π2k2c2

∫ k

−k
dβ ∑

m,n
Im
{
(Em,∗ × En + Hm,∗ × Hn)

Vm,n

dm,n

}
. (12)

Also, the energy density (7) is

〈W(R, ω)〉 =
ε′′i (ω)

π2kc

∫ k

−k
dβ ∑

m,n
(Em,∗ · En + Hm,∗ · Hn)

Vm,n

dm,n . (13)

The formalism developed above has been validated against other methods from
the literature [35]; see Appendix D.

III. RESULTS

We use the formalism in Section II to treat radiation from a long cylinder
with a temperature gradient. Though the geometry is simple, the radiated fields
nevertheless exhibit a non-trivial structure. Consider a circular SiO2 rod of radius
r = 4.5µm. We focus on its radiation at a wavelength of 9.4 µm, where SiO2 is at
resonance and has a permittivity of approximately −3.19+ 4.97i. The rod rests in a
vacuum background at zero temperature. For this geometry, the eigenmodes {Em}
are available analytically (see [11]), while their eigenvalues {εm} can be found via
a root search [12]. Thus, to use Eq. (8), we need only integrate over β and specify
a temperature profile. In the results that follow, we shall integrate over only the
propagating orders, where β < ω/c. This means that near-fields—within one or
two wavelengths of the cylinder—may be inaccurate.

When the cylinder is set to a uniform temperature of 300 K, the cylinder
produces rotationally invariant thermal radiation: a Poynting flux oriented in the
radial direction. All components of spin are zero, corresponding to the origin of
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Figure 2: The magnitude of the far-field spin generated by thermal emission is
approximately linearly proportional to the temperature gradient. Along the

horizontal axis, the size of ∆T varies, defined by the hottest and coldest points of
the rod in Figure 3. The vertical axis is the resulting normalized spin density.

Figure 2. When a linear temperature gradient is introduced, of the type shown in
Figure 3 (a), the profile of the radiated Poynting flux remains largely rotationally
invariant (Figure 5). However, a small but measurable axial component of spin
appears, oriented along the z-axis (Figure 1), which is transverse to the radial
energy flux. As such, this spin cannot be classified as circular polarization, since
the spin axis and Poynting vector do not align. In Figure 3 (b), we plot the spatial
profile of this spin, normalized by the energy density, 〈Sz〉ω/〈W〉. A plane of
symmetry exists in the spin profile, which originates from the symmetry of the
temperature profile. However, the sign of the spin is inverted about this plane,
since spin is a pseudovector. We also observe in Figure 3 (c) that this spin extends
into the far-field, where its strength remains undiminished.

These kinds of observations generalize to other temperature gradients. For
example, the temperature gradient of Figure 4 (a) contains two planes of symmetry.
A non-zero spin is produced (see Figure 4 (b)), containing these two planes of
symmetry. Once again, the spin extends into the far-field (Figure 4 (c)), but with a
smaller magnitude relative to the linear temperature gradient. Crucially, changes
to the temperature gradient induce both qualitative and quantitative changes
to the far-field spin pattern. By contrast, temperature gradients do not induce
any qualitative changes to the far-field Poynting flux, which remains circularly
symmetric to zeroth order, as evidenced by Figure 5. Thus, the far-field spin may
enable non-destructive measurement of an emitter’s temperature profile.
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Figure 3: Emission from a linear temperature gradient. (a) Temperature profile
across the cross-section of the rod standing in vacuum, featuring the same linear
gradient as Figure 1. (b) Axial spin generated by the radiating rod (Sz normalized
by W). In this xy-plane, there exists a plane of symmetry that coincides with the
temperature profile. A different view of the angular variation of Sz is presented in
Figure 1. (c) Axial spin (normalized by W), with a strength that does not diminish

into the far-field; the maximal values of the spin are obtained already about a
wavelength away from the rod center, so that the role of the evanescent modes
(which are not calculated) are expected to have, at most, a small effect on them.

The trajectory for the x-axis is along the dotted line of subfigure (b) (i.e.,
x < 0, y = 0). The plot domain changes drastically across the subfigures.

IV. DISCUSSION

In this paper, the modal formalism not only provides an efficient means of
calculating thermal radiation, especially from spatially varying temperature pro-
files, but also provides insight into its behaviour. For example, we can identify
the origins of the non-zero spin, yielding insights into symmetry and spectral
properties. From Eq. (12), the spin pattern is determined by products of pairs
of modes, each weighted by just two quantities: a geometric factor Vmn and a
detuning factor dmn. The former is the extent to which the modal pair is excited by
a particular temperature profile, while the latter is the combined detuning from the
resonances of both modes. Finally, the total spin is a sum over all pairs of modes.

We may apply this understanding to the spin radiation patterns of Figures 3
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Figure 4: As in Figure 3, but with a linear temperature profile with four lobes. (a)
Temperature profile over the rod cross-section. (b)–(c) Axial spin (normalized by

W).

and 4. In this case, cylindrical symmetry is present, so all modes can be assigned
an azimuthal variation exp(iMθ), for some integer M corresponding to the angular
quantum number. In terms of this cylindrical harmonic basis, we observe that if the
temperature profile is uniform, then the geometric factor Vmn will always vanish
for modal pairs with two different values of M. Since two modes with the same
M never generate spin when both positive and negative orders are considered,
uniform temperature profiles always yield a zero spin field. The same reasoning
implies that pure radial gradients of temperature also yield zero spin (not shown).

We now proceed to identify the values of M that do generate spin. In Figure 3,
the spin field resembles cos θ to lowest order, and is generated by a combination of
modes of orders M = 0 and M = ±1. In Figure 4, the spin pattern resembles cos 2θ,
and is generated by modes of orders M = 1 and M = −1. This difference may
mean that the resonance condition for the four-lobe temperature pattern is easier
to satisfy, since the resonances of M = ±1 orders are degenerate. Finally, we may
prove that the only component of spin allowed to be non-zero is the z-component.
This result holds for infinite rods of any cross-section and any cross-sectional
temperature profile, and is proven in Appendix C.
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V. OUTLOOK

The modal formalism presented here lays the groundwork for exploring a range
of more sophisticated physical scenarios. For example, objects with more complic-
ated shapes (e.g., wires with non-circular cross section, general 3D objects etc.),
anisotropy and/or permittivity non-uniformity caused by temperature inhomo-
geneities [36–38] can be treated using the mode calculation procedure described
in [13, 39, 40], known as re-expansion; the symmetry consideration discussed above
can be used to deduce the necessary temperature uniformity profile for which spin
emission can be realized. Our formulation is also applicable to bound modes below
the light line in order to determine the correct near-field emission. Together with
unique ability of permittivity mode expansion to treat the interactions between
multiple objects (see, e.g., [32, 41, 42]), this allows the thermal emission from
multiple interacting structures to be treated, and would be crucial for accurate
modelling of near-field heat transfer (see [43]). It would also be an efficient building
block in inverse design algorithms aimed at optimizing thermal emission. Finally,
our formulation can also be applied to other computationally-heavy problems,
such as FRET, quantum friction, and Casimir forces.

The spin emitted by the temperature gradient that we considered is transverse
to the Poynting vector. It cannot be measured by traditional approaches based on
quarter wave plates, which is only suitable for the measurement of longitudinal
spin. Therefore, the experimental detection of such transverse spin would require
new approaches such as the one recently proposed for measuring photonic spin
density using NV centers [44] or by measuring the resulting torque on levitating
nanoparticles [45]. The central result of this work has practical implications for
situations requiring non-contact depth-thermography (temperature measurement)
based on emitted IR radiation. By comparing the experimental measurements
of spin over different emission directions and prior simulation studies (made
faster by our modal expansion approach) of the same for various temperature
gradient profiles, one can potentially deduce gradient directions. In other words,
measurement of photon spin in addition to thermal radiation power can provide
valuable additional insight for nanoscale temperature metrology. Fundamentally,
the connection between thermal non-equilibria and photon spin is non-intuitive
and remains an exciting, unexplored research area.

Acknowledgements. The authors thank N. Shitrit for fruitful and illuminating
discussions. The authors acknowledge funding from the DARPA NLM program.
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Appendix A: Generalized Normal Mode Expansion (GENOME) of Green’s Tensor

The electromagnetic Green’s tensor ¯̄G(r, r′) gives the field radiated by a classical
dipole of any orientation at a given distance away from the source,

∇×
(
∇× ¯̄G

)
− k2ε(r) ¯̄G = ¯̄Iδ3(r− r′), (A1)

where r and r′ are the locations of the detector and source. The radiation occurs at
frequency ω = ck in the presence of a structure defined by ε(r). The Green’s tensor
of a closed resonator can be expanded using the normal modes of the resonator,
often capturing its behaviour with just a few eigenmodes.

In [11], a modal expansion of Green’s tensor was developed for open systems.
Its most notable feature is its use of true stationary states, which are more suitable
for simulations at real frequencies. For this reason, it was named Generalized
Normal Mode Expansion, as it recovers the simplicity and rigour of normal
mode expansion for closed systems. The generalized normal modes are based
on Lippmann-Schwinger equation, a commonly used formalism for scattering
calculations in many areas of physics. It can be derived from Maxwell’s equations
in the presence of a source distribution J,

∇× (∇× E)− k2ε(r)E = iωµ0 J, (A2)

where we assumed non-magnetic media and harmonic e−iωt time variation. By
assuming that the structure rests in a uniform background of permittivity εb, its
response can be split from the k2ε(r)E term and moved to the right hand side to
yield the differential form of the Lippmann-Schwinger equation,

∇× (∇× E)− k2εbE = k2(ε(r)− εb)E + iωµ0 J. (A3)

For simplicity, we assume that the inclusion is of uniform permittivity εi, simplify-
ing the term on the right hand side to k2(εi − εb)θ(r)E. The shape of the inclusion
is encoded by the indicator function θ(r), which equals one inside the inclusion
and is zero outside. Non-uniform inclusions [39] and inclusions with tensorial
permittivities [13] can also be treated, and the following formulation can readily
be generalized using the references provided.

An eigenvalue equation can then be defined for the generalized normal modes
by setting sources J to zero

∇× (∇× Em)− k2εbEm = smk2θ(r)Em, (A4)

where we have furthermore assumed that the inclusion is of uniform permittivity.
The eigenvalue sm corresponds to the permittivity εm of the inclusion which brings
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Figure 5: The radial flux associated with the temperature profiles of (a) Figure 3
and (b) Figure 4. The difference of the Poynting flux produced by the two

temperature profiles is quantitative rather than qualitative. For example, no new
nodes are introduced when the symmetry of the temperature profile is changed.

the system (A4) to resonance,

sm ≡
εb

εb − εm
. (A5)

The eigenvalue equation (A4) can be solved analytically for simple geometries
such as cylinders, yielding a transcendental equation for eigenvalues. Efficient and
reliable root search procedures are available for these equations [12].

We now formulate the expansion of the Green’s tensor (2) using the generalized
normal modes (A4). We expand ¯̄G(r, r′) via

¯̄G(r, r′) = ∑
m

Em(r)⊗ γm(r′), (A6)

where γm(r′) are as yet unknown coefficients that depend on the source location
r′. The procedure for evaluating these unknowns begins by inserting Eq. (A6) into
Eq. (2) so that

∑
m
[∇× (∇× Em(r))− k2εbEm(r)− k2θ(r)(εi − εb)Em(r)]⊗ γm(r′) = ¯̄Iδ3(r− r′).

(A7)

14



This can be simplified using the defining equation for the eigenmodes (A4) to yield

k2 ∑
m
(εm − εi) θ(r)Em(r)⊗ γm(r′) = ¯̄Iδ3(r− r′). (A8)

The unknowns can then be found by projecting onto an adjoint mode En,†(r),

k2 ∑
m
(εm − εi)

{∫
En,†(r) · θ(r)Em(r)dr

}
γm(r′) =

∫
Em,†(r)δ3(r− r′)dr′, (A9)

and simplifying using the orthonormality relation between modes,∫
En,†(r) · θ(r)Em(r)dr = δnm. (A10)

This relation has been proven elsewhere [11]. By inserting γm(r′) back into Eq. (A6),
we obtain the desired expansion, Eq. (2). Note the similarity of this expression to
the quasi-normal expansion of the Green’s tensor [46].

This expression is valid for our purposes, where the source is inside the inclusion.
When the source r′ is located in the background, a slightly more complex expression
is necessary [11]. In that expansion, the divergence of the Green’s function at the
source location is completely represented by a separate term. However, this
separate term is not necessary for our purposes here, since all sources are interior
to the resonator, where the set of eigenpermittivity modes are complete.

Appendix B: Derivation of Emitted Fields

We aim to calculate the tensor component 〈D∗l Fp〉, consisting of a product of
two fields, defined in Eq. (8). We begin by inserting a generalized form of Eq. (1),

〈D∗l Fp〉 =
〈[

ikZ0

∫
dr′GD

lq(r, r′)Jq(r′)
]∗ [

ikZ0

∫
dr′′GF

po(r, r′′)Jo(r′′)
]〉

= k2Z2
0

∫∫
dr′dr′′GD,∗

lq (r, r′)GF
po(r, r′′)〈J∗q (r′)Jo(r′′)〉.

(B1)

Thus, the field product reduces to

〈D∗l Fp〉 =
4k3Z0ε′′i (ω)

π

∫
dr′Θ(ω, T)GD,∗

lq (r, r′)GF
pq(r, r′), (B2)

assuming that the imaginary part of permittivity ε′′i remains uniform in the interior.
At this point, we insert a generalized form of Eq. (2),

GF
lq(r, r′) =

1
k2 ∑

m

Fm
l (r)Em,†

q (r′)
εm − εi

, (B3)
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where F can represent either the electric or magnetic field. This yields

〈D∗l Fp〉 =
4Z0ε′′i (ω)

kπ

∫
dr′Θ(ω, T)∑

m
∑
n

Dm,∗
l (r)En,†,∗

q (r′)
ε∗m − ε∗i

Fn
p (r)En,†

q (r′)
εn − εi

=
4Z0ε′′i (ω)

kπ ∑
m,n

Dm,∗
l (r)Fn

p (r)

∫
dr′Θ(ω, T)En,†,∗

q (r′)En,†
q (r′)

(εm − εi)∗(εn − εi)
,

(B4)

which concludes the derivation for 3D geometries.
In the main text, our numerical examples feature 2D inclusions with infinite

translational symmetry along one direction. In this case, the formulation differs
from Eq. (B4). For this derivation, we return to Eq. (B2), and take the Fourier
transform along the z-direction. We orient this direction along z, while the in-plane
coordinates are denoted by R = (x, y). In this case, the 3D Green’s tensor is related
to the 2D Green’s tensor, ¯̄G2D(R, R′, β),

GF
lq(r, r′) =

1
2π

∫ k

−k
dβ eiβ(z−z′)GF,2D

lq (R, R′, β). (B5)

Since we are interested in the radiation into the far-field, we can limit the range of
integration of β to the light cone, i.e., from −ω/c to ω/c. We proceed with

〈D∗l Fp〉 =
4k3Z0ε′′i (ω)

π

∫
dr′Θ(ω, T)GD,∗

lq (r, r′)GF
pq(r, r′)

=
4k3Z0ε′′i (ω)

π

∫∫
dR′dz′Θ(ω, T)

∫ k

−k

∫ k

−k

dβdβ′

(2π)2

ei(β′−β)(z−z′)GD,2D,∗
lq (R, R′, β)GF,2D

pq (R, R′, β′)

=
4k3Z0ε′′i (ω)

π

∫
dR′Θ(ω, T)

∫ k

−k

dβ

2π
GD,2D,∗

lq (R, R′, β)GF,2D
pq (R, R′, β)

=
2k3Z0ε′′i (ω)

π2

∫ k

−k
dβ
∫

dR′Θ(ω, T)GD,2D,∗
lq (R, R′, β)GF,2D

pq (R, R′, β).

(B6)

We have assumed that the temperature profile is not a function of z′, so the
integration over z′ allows the elimination of the integral over β′.

To complete the derivation, we need to use the specific expansions of 2D Green’s
tensors in terms the generalized normal modes (2), which in generalized form
reads

GF,2D
lq (R, R′, β) =

1
k2 ∑

m

Fm
l (R)Em,†

q (R′)
εm − εi

. (B7)
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The expansion (B7) is identical to Eq. (B3), meaning that the same expression
applies in 2D and 3D. The only distinction is whether the constituent modes are
2D or 3D. We have also suppressed the β dependence on the right hand side for
brevity. As a side note, this is always a sum over a discrete set in the GENOME
expansion, even for the radiating modes that we considered in Eq. (B5). This is
one of the advantages of designating permittivity to be the eigenvalue. Finally, we
substitute this generalized form into Eq. (B6) to give

〈D∗l Fp〉 =
2Z0ε′′i (ω)

π2k

∫ k

−k
dβ
∫

dR′Θ(ω, T)∑
m

∑
n

Dm,∗
l (R)Em,†,∗

q (R′)
ε∗m − ε∗i

Fn
p (R)En,†

q (R′)
εn − εi

=
2Z0ε′′i (ω)

π2k

∫ k

−k
dβ ∑

m,n
Dm,∗

l (R)Fn
p (R)

∫
dR′Θ(ω, T)Em,†,∗(R′) · En,†(R′)

(εm − εi)∗(εn − εi)
.

(B8)

Appendix C: Symmetry and Non-zero Components

We have assumed that the structure and temperature profiles in this manuscript
possess certain symmetries, which compels certain components of the thermal
fields to be zero. In particular, Eq. (8) and all subsequent results assume that both
the rod and the temperature profile are invariant along the infinite z-direction.
However, no assumptions were made regarding the cross-sectional profiles of the
rod or of temperature. Nevertheless, this forces the z-component of the Poynting
flux P to be zero, and the only component of spin S allowed to be non-zero is the
z-component.

The proof of these statements begins by noticing that the integrals in Eqs. (11)
and (12) run over both positive and negative β values, so cancellation occurs if
a given quantity is anti-symmetric with respect to β. A mode associated with
β is the mirror image of the corresponding mode at −β, specifically a reflection
about the xy-plane. This means that the Ez component of every mode flips sign,
while Ex and Ey do not. Meanwhile, Hz remains invariant under this reflection,
while Hx and Hy do change sign, since magnetic fields are pseudovectors. The
components of adjoint and complex conjugated modes also behave the same way
under reflection.

We may apply this knowledge to deduce that the z-component of P must be
zero by symmetry. The integrand in Eq. (11) is comprised of three components:
dm,n, Vm,n, and Em,∗(R)× Hn(R). Firstly, dm,n is a scalar, and is invariant under
reflection. Secondly, the quantity Vm,n ∝ Em,†,∗ · En,† is also invariant, since it is
composed of products such as Em,†,∗

x En,†
x where both components remain invariant,
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or the product Em,†,∗
z En,†

z which also remains invariant because both its components
acquire a minus sign. Since these two quantities are invariant under reflection, the
symmetry properties of P is entirely determined by Em,∗(R)× Hn(R). An analysis
of its components reveals that its r and θ components are invariant as β → −β,
so reflection symmetry does not impose any restrictions on these components.
However, z-component changes sign as β→ −β, so the two contributions cancel
and the z-component of P must be zero by symmetry.

Similar arguments can be applied to show that only the z-component of S is
allowed to be non-zero by symmetry. From Eq. (12), the integrand of S also consists
of the two invariant quantities dm,n and Vm,n. So S is determined by the symmetry
properties of Em,∗ × En + Hm,∗ × Hn, which can be analyzed as described above.

Appendix D: Validation of the Method

In the case of a circular cylinder, we may validate our results with analytic
results from the published literature [35]. Such results were obtained in a very
different way, via the reciprocity theorem and also cylindrical Mie theory, and
so offers a suitable comparison. This geometry also possesses infinite rotational
symmetry, and the fields of the eigenmode equation (A4) are available analytically,
while the eigenvalues can be found via a root search [12].

For a detailed comparison, we consider the individual Fourier components of
the radiated energy at a single frequency. In other words, we shall integrate the
radiated power (11) over all radiation directions,

Φ(ω) =
∮

dn̂ · 〈P(R, ω)〉 =
ε′′i (ω)

π2k

∫ k

−k
dβ Φβ(ω), (D1)

where n̂ is the unit normal to a closed contour in the 2D plane in R. Here, Φβ(ω)
is proportional to the power from all modes at a given β and ω. We thus plot the
integrand in Eq. (D1) along with its leading factors, i.e., ε′′i (ω)Φβ(ω)/π2k. Note
that the integral of Φ(ω) over all frequencies gives the power emitted per unit
length of the cylinder, so Φ(ω) has units of Wsm−1.

As a specific example, we calculate the emission at a single wavelength from a
cylinder of permittivity ε = 4.785 + 0.011i at temperature T = 300 K placed in a 0
K vacuum background. The radius of the cylinder as a ratio of the wavelength is
2πa/λ = 0.35. In Figure 6, we plot results for all propagation constants β from 0 to
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Figure 6: Emission from a uniform temperature gradient, as a function of the
propagation constant β along the cylinder axis. The result is calculated two

different ways: using the formalism developed in this manuscript (blue line with
dots) and the method of Ref. [35] based on the reciprocity theorem (red line).

k = ω/c. The results are seen to agree well with the previously published result.

[1] Jean-Jacques Greffet, Patrick Bouchon, Giovanni Brucoli, and Fran çois Marquier.
Light emission by nonequilibrium bodies: Local kirchhoff law. Phys. Rev. X, 8:021008,
Apr 2018.

[2] D. A. B. Miller, L. Zhu, and S. Fan. Universal modal radiation laws for all thermal
emitters. Proc. Nat. Acad. Sci. U.S.A, 114:4336–4341, 2017.

[3] W. Li and S. Fan. Nanophotonic control of thermal radiation for energy applications.
Optics Express, 26:15995–16021, 2018.

[4] D. G. Baranov, Y. Xiao, I. A. Nechepurenko, A. Krasnok, Andrea Alú, and M. A. Kats.
Nanophotonic engineering of far-field thermal emitters. Nature Materials, 18:920–930,
2019.

[5] Jean-Jacques Greffet and Manuel Nieto-Vesperinas. Field theory for generalized bid-
irectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s
law. JOSA A, 15(10):2735–2744, 1998.

19



[6] Andrew Resnick, Chris Persons, and George Lindquist. Polarized emissivity and
kirchhoff’s law. Applied optics, 38(8):1384–1387, 1999.

[7] S.-A. Biehs and P. Ben-Abdallah. Revisiting super-planckian thermal emission in the
far-field regime. Phys. Rev. B, 93:165405, 2016.

[8] R. M. Abraham Ekeroth, A. García-Martín, and J. C. Cuevas. Thermal discrete dipole
approximation for the description of thermal emission and radiative heat transfer of
magneto-optical systems. Phys. Rev. B, 95:235428, Jun 2017.

[9] Linxiao Zhu, Yu Guo, and Shanhui Fan. Theory of many-body radiative heat transfer
without the constraint of reciprocity. Phys. Rev. B, 97:094302, Mar 2018.

[10] X. Gao, C. Khandekar, Z. Jacob, and T. Li. Thermal equilibrium spin-torque: Near-
field radiative angular momentum transfer in magneto-optical media. Phys. Rev. B,
103:125424, 2021.

[11] P. Y. Chen, D. J. Bergman, and Y. Sivan. Generalizing normal mode expansion of
electromagnetic Green’s tensor to lossy resonators in open systems. Phys. Rev. Applied,
11:044018, 2019.

[12] P. Y. Chen and Y. Sivan. Robust location of optical fiber modes via the argument
principle method. Computer Physics Communications, 214:105–116, 2017.

[13] N. Kossowski, P. Y. Chen, Q. J. Wang, P. Genevet, and Y. Sivan. Generalized normal
modes of an anisotropic scatterer. J. Appl. Phys., 129:113104, 2021.

[14] Chihhui Wu, Nihal Arju, Glen Kelp, Jonathan A Fan, Jason Dominguez, Edward
Gonzales, Emanuel Tutuc, Igal Brener, and Gennady Shvets. Spectrally selective
chiral silicon metasurfaces based on infrared fano resonances. Nature communications,
5(1):1–9, 2014.

[15] SA Dyakov, VA Semenenko, NA Gippius, and SG Tikhodeev. Magnetic field free
circularly polarized thermal emission from a chiral metasurface. Physical Review B,
98(23):235416, 2018.

[16] Samuel L Wadsworth, Paul G Clem, Eric D Branson, and Glenn D Boreman. Broad-
band circularly-polarized infrared emission from multilayer metamaterials. optical
materials express, 1(3):466–479, 2011.

[17] Nir Shitrit, Igor Yulevich, Elhanan Maguid, Dror Ozeri, Dekel Veksler, Vladimir
Kleiner, and Erez Hasman. Spin-optical metamaterial route to spin-controlled photon-
ics. Science, 340(6133):724–726, 2013.

[18] Tero Setälä, Matti Kaivola, and Ari T Friberg. Degree of polarization in near fields of
thermal sources: effects of surface waves. Physical review letters, 88(12):123902, 2002.

[19] Chinmay Khandekar and Zubin Jacob. Thermal spin photonics in the near-field of
nonreciprocal media. New Journal of Physics, 21(10):103030, 2019.

[20] Chinmay Khandekar, Farhad Khosravi, Zhou Li, and Zubin Jacob. New spin-resolved
thermal radiation laws for nonreciprocal bianisotropic media. New Journal of Physics,

20



22(12):123005, 2020.
[21] Chinmay Khandekar and Zubin Jacob. Circularly polarized thermal radiation from

nonequilibrium coupled antennas. Phys. Rev. Applied, 12:014053, Jul 2019.
[22] Alejandro W. Rodriguez, M. T. H. Reid, and Steven G. Johnson. Fluctuating-surface-

current formulation of radiative heat transfer: Theory and applications. Phys. Rev. B,
88:054305, Aug 2013.

[23] Giuseppe Bimonte, Thorsten Emig, Mehran Kardar, and Matthias Krüger. Nonequi-
librium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and
force. Annual Review of Condensed Matter Physics, 8:119–143, 2017.

[24] Matthias Krüger, Giuseppe Bimonte, Thorsten Emig, and Mehran Kardar. Trace
formulas for nonequilibrium casimir interactions, heat radiation, and heat transfer for
arbitrary objects. Phys. Rev. B, 86:115423, Sep 2012.

[25] Athanasios G. Polimeridis, M. T. H. Reid, Weiliang Jin, Steven G. Johnson, Jacob K.
White, and Alejandro W. Rodriguez. Fluctuating volume-current formulation of elec-
tromagnetic fluctuations in inhomogeneous media: Incandescence and luminescence
in arbitrary geometries. Phys. Rev. B, 92:134202, Oct 2015.

[26] Weiliang Jin, Athanasios G. Polimeridis, and Alejandro W. Rodriguez. Temperature
control of thermal radiation from composite bodies. Phys. Rev. B, 93:121403, Mar 2016.

[27] P. Ben-Abdallah, S.-A. Biehs, and K. Joulain. Many-body radiative heat transfer theory.
Phys. Rev. Lett., 107:114301, 2011.

[28] A. Manjavacas and F. J. G. de Abajo. Radiative heat transfer between neighboring
particles. Physical Review B, 86:075466, 2012.

[29] S. Sanders, L. Zundel, W. J. M. Kort-Kamp, D. A. R. Dalvit, and A. Manjavacas.
Near-field radiative heat transfer eigenmodes. Physical Review Letters, 126:193601,
2021.

[30] L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk. Temporal coupled
mode theory for thermal emission from a single thermal emitter supporting either a
single mode or an orthogonal set of modes. Appl. Phys. Lett., 102:103104, 2013.

[31] M. Zhou, E. Khoram, D. Liu, B. Liu, S. Fan, M. L. Povinelli, and Z. Yu. Self-focused
thermal emission and holography realized by mesoscopic thermal emitters. ACS
Photonics, 8:497–504, 2021.

[32] D. J. Bergman and D. Stroud. Theory of resonances in the electromagnetic scattering
by macroscopic bodies. Phys. Rev. B, 22:3527–3539, 1980.

[33] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge University Press,
Cambridge, 2006.

[34] L. A. Sphaier, J. Su, R. M. Cotta, and F. A. Kulacki. Handbook of thermal science and
engineering. Springer, 2017.

[35] V. A. Golyk, M. Krüger, and M. Kardar. Heat radiation from long cylindrical objects.

21



Phys. Rev. E, 85, 2012.
[36] P.-T. Shen, Y. Sivan, C.-W. Lin, H.-L. Liu, C.-W. Chang, and S.-W. Chu. Temperature-

and -roughness dependent permittivity of annealed/unannealed gold films. Opt. Exp.,
24:19254, 2016.

[37] I. Gurwich and Y. Sivan. A metal nanosphere under intense continuous wave illu-
mination - a unique case of non-perturbative nonlinear nanophotonics. Phys. Rev. E,
96:012212, 2017.

[38] I. W. Un and Y. Sivan. The thermo-optic nonlinearity of single metal nanoparticles
under intense continuous-wave illumination. Phys. Rev. Mater., 4:105201, 2020.

[39] P. Y. Chen, Y. Sivan, and E. A. Muljarov. An efficient solver for the generalized normal
modes of non-uniform open optical resonators. J. Comp. Phys., 422:109754, 2020.

[40] P. Y. Chen and Y. Sivan. Resolving Gibbs phenomenon via a discontinuous basis in a
mode solver for open optical systems. J. Comp. Phys., 429:110004, 2021.

[41] C. Forestiere, G. Miano, G. Rubinacci, A. Tamburrino, R. Tricarico, and S. Ventre.
Volume integral formulation for the calculation of material independent modes of
dielectric scatterers. IEEE Trans. on Ant. and Propagation, 66:2505, 2018.

[42] G. Rosolen, P. Y. Chen, B. Maes, and Y. Sivan. Overcoming the bottleneck for quantum
computations of complex nanophotonic structures: Purcell and förster resonant
energy transfer calculations using a rigorous mode-hybridization method. Phys. Rev.
B, 101:155401, 2020.

[43] S. A. Biehs, R. Messina, P. S. Venkataram, J. C. Cuevas, A. W. Rodriguez, and P. Ben-
Abdallah. Near-field radiative heat transfer in many-body systems. Reviews of Modern
Physics, 93:025009, 2021.

[44] F. Kalhor, L.-P. Yang, L. Bauer, and Z. Jacob. Quantum sensing of photonic spin
density using a single spin qubit. Phys. Rev. Research, 3:043007, 2021.

[45] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li. Ultrasensitive torque detection with an
optically levitated nanorotor. Nature Nanotechnology, 15:89–93, 2020.

[46] P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin. Light interaction with
photonic and plasmonic resonances. Lasers and Photonics Review, 12:1700113, 2017.

22


