
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Implementation of a Binary Neural Network on a Passive
Array of Magnetic Tunnel Junctions

Jonathan M. Goodwill, Nitin Prasad, Brian D. Hoskins, Matthew W. Daniels, Advait
Madhavan, Lei Wan, Tiffany S. Santos, Michael Tran, Jordan A. Katine, Patrick M.

Braganca, Mark D. Stiles, and Jabez J. McClelland
Phys. Rev. Applied 18, 014039 — Published 18 July 2022

DOI: 10.1103/PhysRevApplied.18.014039

https://dx.doi.org/10.1103/PhysRevApplied.18.014039

1

Implementation of a Binary Neural Network on a Passive Array of Magnetic

Tunnel Junctions

Jonathan M. Goodwill1, Nitin Prasad2,3, Brian D. Hoskins1, Matthew W. Daniels1, Advait

Madhavan2,4, Lei Wan5, Tiffany S. Santos5, Michael Tran5, Jordan A. Katine5, Patrick M.

Braganca5, Mark D. Stiles1, Jabez J. McClelland1*

1Physical Measurement Laboratory, National Institute of Standards and Technology,

Gaithersburg, MD, 20899, USA
2Associate, Physical Measurement Laboratory, National Institute of Standards and Technology,

Gaithersburg, MD, 20899, USA
3Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA

4Institute for Research in Electronics and Applied Physics, University of Maryland, College

Park, MD, USA
5Western Digital Research Center, Western Digital Corporation, San Jose, California, 95119,

USA

(Received 15 December 2021)

The increasing scale of neural networks and their growing application space have produced

demand for more energy- and memory-efficient artificial-intelligence-specific hardware.

Avenues to mitigate the main issue, the von Neumann bottleneck, include in-memory and near-

memory architectures, as well as algorithmic approaches. Here we leverage the low-power and

the inherently binary operation of magnetic tunnel junctions (MTJs) to demonstrate neural

network hardware inference based on passive arrays of MTJs. In general, transferring a trained

network model to hardware for inference is confronted by degradation in performance due to

device-to-device variations, write errors, parasitic resistance, and nonidealities in the substrate.

To quantify the effect of these hardware realities, we benchmark 300 unique weight matrix

solutions of a 2-layer perceptron to classify the Wine dataset for both classification accuracy and

write fidelity. Despite device imperfections, we achieve software-equivalent accuracy of up to

95.3 % with proper tuning of network parameters in 15 × 15 MTJ arrays having a range of

device sizes. The success of this tuning process shows that new metrics are needed to

characterize the performance and quality of networks reproduced in mixed signal hardware.

I. INTRODUCTION

Over the past decade, artificial intelligence algorithms have achieved human-level performance

on increasingly complex tasks at the cost of increased neural network size, computing resources,

and energy consumption [1–5]. OpenAI’s GPT-3, for example, a state-ot-the-art natural

language processor, contains 175 billion parameters and requires 3.14×1023 floating point

operations to train [6], consuming roughly 190 MWh of electrical energy, roughly the average

yearly electrical energy consumption of 16 people in the US [7]. Running these algorithms for

inference applications—applications that require the model to make predictions but not learn

new information—requires lesser but still overwhelming amounts of energy. This makes them

difficult to implement in embedded applications where resources are limited, such as cellphones,

2

self-driving cars, or drones [8–10]. This energy inefficiency is in part due to implementing these

algorithms using general-purpose hardware such as central and graphical processing units (CPUs

and GPUs).

Because CPUs and GPUs have traditional von Neumann computing architectures, they do not

store data in the same spatial location as where computation is carried out. For this reason,

energy is consumed in moving the data, and the speed of computation is throttled by the time it

takes to shuttle from the storage to the computation location. This so-called von Neumann

bottleneck has been shown to be severe on large neural network models, with studies showing

the majority of the network time and energy can be expended distributing gradient and model

data [11–13].

Algorithmic approaches to lessening the data bottleneck have focused on simplifying neural

network models to achieve equivalent accuracy with less memory overhead. Strategies include

model compression and sparsification of the synaptic weights [14,15], as well as reducing the

precision of weights, with many recent networks performing inference with 4 bits of

precision [16–18]. Constantly falling bit precision has fueled interest in taking weight reduction

to its logical extreme by using binary neural networks - networks whose synaptic weights can be

represented by single bits. Low precision networks have demonstrated similar performance to

that of their full-precision counterparts on small datasets, but further improvements are needed to

achieve equivalent accuracy on larger datasets [19,20].

The trend towards storing larger models on chip has also driven an increasing effort to develop

hardware architectures for mitigating the von Neumann bottleneck [21–24]. For example, data

access time can be greatly reduced through near- or in-memory computing. Near-memory

computing aims to move the data closer to the processing location and use hardware with shorter

access times such as static random access memory (SRAM) [25]. Pushing the limits of near-

memory architectures, chips have been manufactured with enough onboard SRAM to store more

than 40 Gb of data [26], or stacked with through-silicon vias to connect memory and processing

chips in 3D [27–29]. Taking this approach to the extreme, in-memory computing carries out

calculations directly where the memory resides. Demonstrations of in-memory computing have

used dynamic random access memory and SRAM, but less mature emerging non-volatile

memories have promise of being lower-power solutions [23,30].

One proposed solution that leverages both low-precision and in-memory computing is to use an

array of back-end-of-the-line-compatible magnetic tunnel junctions (MTJs) to implement analog

vector matrix multiplication in a binary neural network. Because low-precision computing is

more efficient in the analog domain [31], and MTJs are inherently binary and can be designed

with low switching energy, they are ideal candidates for minimizing energy consumption in such

a hybrid configuration [32,33]. Past investigations have used individual MTJs to experimentally

explore the implications of using them in such neural networks [34,35]. A recent

demonstration [36] showed a high performance binary neural network using a 64 × 64 crossbar

array of MTJs integrated with transistors as an active selector device. Such investigations are

increasingly showing the utility of using MTJs for computing.

3

In contrast to active or transistor-integrated arrays, passive, transistorless arrays are potentially

an even more efficient way to implement these networks, as they would significantly reduce the

additional overhead of transistor capacitances and could be implemented at significantly higher

density, while freeing up space for additional transistors that might be needed in peripheral

circuitry. Because of the difficulty in fabricating passive nanoscale arrays of MTJs [37,38],

favorable performance metrics have only appeared in simulation thus far [39–43]. Here we

demonstrate an implementation of a neural network on a passive 15 × 15 crossbar array of MTJs

and show the feasibility of obtaining high inference accuracy, even in the presence of hardware

imperfections.

Developing a hardware accelerator for inference involves training the neural network offline and

transferring the weights to the conductance states of devices. However, because of device non-

idealities, it is not possible to exactly reproduce a simulated matrix in hardware and,

consequently, it is not possible to know a priori what the resultant accuracy of a downloaded

network will be. Current methods of increasing the inference accuracy of a downloaded network

include optimizing the weights after transfer with further device programming [44,45],

optimizing weight mapping onto devices [46], accounting for line resistance voltage drops and

parasitics in neural network operations [47,48], and including device variations or noise in the

training algorithm to make the final model in hardware more robust to device

nonidealities [49,50]. Here, we demonstrate the plausibility of this last approach. We produce

many variations (300) of weight matrices using different weight initializations during offline

training. In this way, based on array-specific non-idealities, certain weight matrix solutions

achieve higher inference accuracy than others. In principle, one would expect networks that

better reproduce the target network to achieve higher accuracy.

By programming all 300 weight matrix solutions into the hardware, we are able to quantify the

impact of device non-idealities on the distribution of achievable accuracies. We calculate our

ability to accurately reproduce each network model through the root mean square (RMS)

deviation between the model and the implementation. By optimizing the network conductance-

to-weight conversion, we achieve a median accuracy of 95.3 % over all programmed solutions.

One finding with implications for embedded inference is that the network parameters that

maximized the network’s experimental performance are different in general from those that

theoretically maximized it. Specifically, the magnitude of the weight normalization constant (see

Accuracy Optimization section) that minimized the RMS deviation did not also maximize the

accuracy. This result suggests the necessity of alternative approaches for embedded inference

with off-line trained networks on imperfect hardware, and that accurate network recreation is not

the ideal criterion for maximizing network performance.

II. RESULTS

A. Neural network hardware acceleration with arrays of MTJs

Experiments were carried out on 15 × 15 passive crossbar arrays (no integrated transistors or

selection devices) with MTJ diameters of 30 nm, 40 nm, 50 nm, and 60 nm. A scanning electron

microscope (SEM) micrograph of the array layout is shown in Fig. 1(a). Details of the MTJ array

fabrication can be found in Appendix A. The crossbar arrays are fabricated without integrated

control circuitry, so all measurements are made through port-to-port measurements using source

4

measure units and a switch matrix. This approach allows for detailed characterization and control

of individual devices, as we describe below, but does not allow us to control and characterize 15

voltages and currents simultaneously.

The dataset used for classification was the Wine dataset [51], which included 178 samples of

wine. Each sample has 13 recorded characteristics (for example, alcohol concentration, color

intensity, etc.) and an associated label for the cultivar from which the wine was produced.

To avoid trivial convergences of the learned weights towards the class-centroids, a simple 2-

layer network was constructed. The architecture of the neural network is shown in Fig. 1(b) and

the mapping to hardware shown in Fig. 1(c). The neural network includes 13 input neurons, 6

hidden neurons, and 3 output neurons (one for each of the possible cultivars), producing a 13 × 6

weight matrix for layer 1 and a 6 × 3 weight matrix for layer 2. Consequently, we fit our entire

network into the 15 × 15 array, necessarily limiting its size, in contrast to Ref. [36], where the

same array was used to 28 times to emulate a large network through reprogramming the same

array during the forward pass. Drawing inspiration from the inhibitory and excitatory synapses

found in the human brain, we chose to implement weights with two MTJ devices. The weight of

the dual MTJ synapse is proportional to the conductivity difference between the two MTJs, thus

allowing us to implement negative weights. In layer 1, weights were implemented with adjacent

devices arranged left-right, but in layer 2 they were arranged adjacently up-down. This was done

to maximize array utilization. However, there is a subtle difference in operation between layers 1

and 2 because of this. More specifically shown in Fig. 1(c), the arrangement of implemented

weights in layer 1 requires the difference in columns on the output to be taken, whereas in layer

2 the difference on the output is not necessary. Instead, both positive and negative input values

are required on the rows in layer 2. Both methods carry out exactly the same function, just in a

different manner. Network training was performed offline, and the learned weights were

subsequently downloaded into the MTJ crossbar by serially programming individual devices.

The inference accuracy was determined by reading all device conductance states after

programming and using these to scale the currents in software and simulate the number of

correctly predicted wine classifications. After writing weights to the crossbar and measuring all

effective port-to-port conductances, which include device non-idealities, line resistances, sneak

paths, etc., we have all the information necessary to determine the accuracy the solution would

produce in an inference process. The inference process itself, involving summing currents to

carry out vector matrix multiplications (VMMs), normalizing, and passing through activation

functions, can be carried out in software, since we have verified that these steps do not introduce

too much noise or uncertainty to the outcome to invalidate the results. We have verified that the

applied voltages are in a regime where device conductances have no measurable voltage

dependence and our measurements of this network satisfy the superposition principle of linear

circuits (see Appendix B). Simulating the full vector-matrix multiply using the individually

measured port-to-port device properties reduces the need for the additional external electronics,

and focuses most directly on the performance of the passive MTJ crossbar array itself.

Additionally, measuring these device properties allows for more thorough analysis of the

hyperparameter tuning required to achieve software-equivalent accuracy. This approach is both

quantitatively and qualitatively different from the one taken in Ref. [36] for a few reasons.

Unlike traditional binary neural networks, as implemented in [36], we opted to only binarize the

5

weights rather than the signals as well. Consequently, we are modeling the transmission and

activation of continuously valued signals on a binary network. In addition, we implicitly assume

a classic analog to digital conversion of the current through a transimpedance amplifier, though

we don’t explicitly include this in our model. In Ref. [36], the researchers explicitly implemented

a circuit for converting currents into a temporal code by charging a capacitor and counting clock

cycles before passing into a software activation function. Such temporal codings are potentially

more energy efficient than traditional analog to digital conversion. In principle, such an approach

could also be used for our passive array; however, it would require a more careful analysis of the

bit precision, and would not be expected to change the results of our analysis provided the device

behavior is sufficiently linear.

To simulate the classification of an individual wine sample, the 13 wine attributes (inputs),

normalized to be between 0 and 1, were first transformed into voltages by multiplying by a

constant voltage Vread (0.2 V); this is the voltage at which each port-to-port device conductance

was read in hardware after serial programming. The VMM for layer 1 was then carried out using

these voltages on the rows of the array to calculate the currents on the columns. The currents

were normalized into dimensionless quantities by dividing by the product of Vread and a

conductance hyperparameter 𝑔𝑛𝑜𝑟𝑚. The 6 outputs of layer 1 (z1 … z6) were obtained by taking

the difference between adjacent columns and adding a bias. Layer 1 outputs were then fed

through a hyperbolic tangent activation function to obtain layer 2 inputs (a1 … a6). Both positive

and negative values of each an were multiplied by Vread to use as input voltages on adjacent rows.

In layer 2 the output currents were again normalized to dimensionless quantities and a bias was

added before being fed through a softmax activation to determine the network classification

prediction. For each input, a correct result was tallied whenever the appropriate output current

was the largest of the three.

In Fig. 1(d), the simulated current values from each of the three output columns of the MTJ array

are shown over all 148 training samples and 30 test samples for a single weight matrix solution.

The accuracy is 99.3 % on the training set and 93.3 % on the test set. This high level of

performance is obtained after optimizing the 𝑔𝑛𝑜𝑟𝑚 hyperparameter, as discussed in the Accuracy

Optimization section below. The accuracies on the training dataset for all 300 unique weight

matrix solutions trained offline and programmed into the MTJ array are shown in Fig. 1(e). The

maximum accuracy is 100 %, the minimum is 71.6 %, and the median is 95.3 % over all

solutions. These results demonstrate that a high-accuracy inference binary neural network can be

realized using a non-ideal passive MTJ hardware array. Note the classification accuracy of the

neural network on the training dataset using the MTJ array is an important metric because it

shows how well the network in hardware can represent the network as it was trained in software.

All weight matrix solutions trained offline in software achieved a simulated accuracy above 96

% on the training dataset and 95 % on the test dataset, but due to write errors and device non-

idealities, perfect software-equivalent accuracy could not be guaranteed after transferring the

weights to hardware. Figure 1(e) shows the extent to which the hardware imperfections play a

role. As expected, certain solutions performed better than others, but overall the fidelity is

sufficient to allow for software-equivalent accuracy on average.

6

B. MTJ device and array characterization

An MTJ is formed by stacking two ferromagnetic layers, referred to as the fixed and free layers,

together with a thin insulating layer in between. While the magnetization of the fixed layer is

pinned, the free layer magnetization can be either parallel or anti-parallel to the fixed layer. The

direction of the free layer can be switched by applying a suitable write current through the MTJ,

which creates a spin-transfer torque [52]. When the free layer magnetization is parallel (anti-

parallel) to that of the fixed layer, the MTJ conductance is high (low). In the subsequent

discussion, we refer to the high and low conductance states as the on-state and off-state,

respectively, characterized by their conductance values 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓. The relative conductance is

characterized by a tunnel magnetoresistance ratio (𝑇𝑀𝑅) defined as

𝑇𝑀𝑅 ≡
𝑔𝑜𝑛 − 𝑔𝑜𝑓𝑓

𝑔𝑜𝑓𝑓
. (1)

The MTJ array is accessed with a probe card that interfaces with an offboard switch matrix and

three source-measure units. The metal routing to the array rows and columns is shown in the

zoomed out image of the array (Fig. 2(a)) with the active array region indicated by the white

dashed box. To write the devices, we use a “V over 2” scheme, which applies Vapply/2 to the

target column and -Vapply/2 to the target row while grounding all other connections. This ensures

Vapply is applied to the target device while only half the bias is applied to all the others [53].

Device conductance states were always read by applying a voltage (Vread) of 0.2 V on the target

row with all other connections grounded and measuring the current on the target column.

We use a write-verify scheme, shown in Fig. 2(b), to accurately write device states. This scheme

utilizes a sequence of four pulses (1 ms pulse width) where the first and third pulses write the

device state with opposite polarities. The first write pulse always attempts to write the device to

the opposite of the target state, and the third pulse attempts to switch to the target state. For

example, if the target state is the on-state, the first pulse attempts to write to the off-state and the

third pulse attempts to write to the on-state. The second and fourth pulses read the device state

after each write pulse. A device is ensured to be in the target state by checking the conductance

on/off ratio obtained from the second and fourth pulses. This 4-pulse sequence is repeated with

increasing Vapply until the on/off ratio condition is met or a maximum voltage limit is reached.

The maximum applicable voltage is limited to twice the smallest switching voltage in the array

to eliminate the risk of switching unwanted devices. If the on/off ratio is still negligible at the

maximum voltage limit, the write is deemed unsuccessful and considered a write error for

programming the array. The write accuracy was 100 % for the 30 nm array shown here but

decreased to 85 % as the device size increased to 60 nm.

The four-pulse write-verify scheme is used instead of a two-pulse scheme because the on/off

ratio criteria is more reliable than the device conductance, which could vary between on/off

switching cycles. In addition, the four-pulse scheme is more resilient to cycle-to-cycle write

errors. For instance, if a device is already in the on-state and the target state is also the on-state,

the calculated on/off ratio would be close to unity and lead to needlessly increasing Vapply. We

7

avoid such a circumstance by always writing the opposite of the target state first so as to validate

that the device switched to the correct state on each programming step.

Figure 2(c) shows the conductance read at 0.2 V as a function of increasing Vapply for an

individual MTJ in the array with device diameter 30 nm. Also shown on the graph are

illustrations of the configuration of the free and fixed layers for the corresponding on- and off-

states. For this measurement, Vapply was swept from -1.6 V to 1.6 V and, as indicated by the

vertical transitions, the free layer magnetization direction flipped at roughly ±1.5 V.

At the array level, additional complexities arise because of subtle differences from device to

device. Figure 2(d) plots the histogram of effective switching voltage while Figs. 2(e) and 2(f)

show the individual device voltage and on-state conductance values for a 15 × 15 MTJ array with

device diameter 30 nm as a function of device row and column. The values are “effective”

because no device can be separated from the array and tested in isolation; the values for each

device are only obtainable from measurements on the device word and bit lines. The data in Figs.

2(d) – 2(f) were obtained with each device originally in the off-state and then subjected to our

write-verify scheme to program every device to the off-state again. We measure individual

device characteristics when the rest of the array is in the off-state because, as a passive array, the

measured properties of each device state are influenced by the states of other devices in the

surrounding environment. As more devices are switched to the on-state, it becomes more

difficult to measure individual device characteristics due to the increased contribution from

sneak paths [54,55].

Of note in these figures are the variations present in both voltage and on/off conductance states.

The switching voltage appears to follow a normal distribution with a mean value around 2.2 V,

but the map of voltages in Fig. 2(e) indicates that variations do not occur uniformly across the

array. Lower voltages and higher conductance values occur towards the periphery of the array,

especially at the corners. Similarly, higher switching voltages are required near the center of the

array, where devices tend to have lower on-state conductance values. This effect is due to a

combination of line resistance and device-device variations. Device-device variations due to

minute differences in processing conditions mainly account for the small differences in voltage

and conductance between adjacent devices. Line resistance, on the other hand, accounts for

systematic differences across the array. Because of the nanoscale size of the metal word and bit

lines, the line resistance is non-negligible, and significant voltage drops occur across the

lines [48]. This gives the appearance that a device requires higher switching voltage, when in

reality it may require a comparable switching voltage, but additional voltage is needed to

compensate for the increased drop associated with the line. In the routing configuration of the

metal lines in the fabricated arrays, the longest metal lines are on the center row and column,

while the shortest lines are on the periphery (see Fig. 2(a)). This is the main effect giving rise to

the distributions shown in Figs. 2(d) – 2(f). Similar distributions are observed in the other

fabricated sizes of MTJ arrays (see Fig. S1). In general, the switching voltage and standard

deviation increased with increasing MTJ diameter, as can be seen in Figs. S2(a) and S2(b). This

trend can be anticipated from the increasing importance of the line resistances as the devices’

resistances decrease with increasing diameter.

C. Weight mapping to hardware and inference accuracy of 300 solutions

8

To encode the weight matrix into the MTJ array, each weight is represented by two adjacent

MTJ devices, in a scheme inspired by excitatory and inhibitory synapses. The conductances of

these two devices are denoted 𝑔𝑒 and 𝑔𝑖. The weight is defined as the difference between 𝑔𝑒 and

𝑔𝑖, divided by a normalization conductance 𝑔𝑛𝑜𝑟𝑚. During offline training, weights were given

values of {-1, 0, 1} to replicate the possible combinations of 𝑔𝑒 and 𝑔𝑖 MTJ pair states, as shown

by the magnetization orientations in Fig. 3(a).

The weight arrangement for layer 1 utilizes rows 1 - 13 and columns 1 - 12 of the MTJ array

with weights arranged as adjacent devices left-right, whereas layer 2 utilizes rows 1 - 12 and

columns 13 - 15 with weights arranged as adjacent devices up-down. In all cases the device on

the left (layer 1) or top (layer 2) of the pair is excitatory and the device on the right (layer 1) or

bottom (layer 2) is inhibitory. This is clarified in Fig. 3(b), which shows the weight mapping of

the entire array for both neural network layers, where 𝑔𝑒 devices are labeled in orange and 𝑔𝑖

devices labeled in blue. The last two rows and last three columns of row 13 are not used in either

layer of the neural network, and thus are always written to the off-state.

The dimensionless-equivalent quantity to the current on each column is the sum of weights

multiplied by inputs for each neuron. Mathematically, the VMM operation for the 𝑘th layer

manifests as

𝑦⃗𝑜𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 =

𝐼𝑐𝑜𝑙𝑢𝑚𝑛𝑠
𝑘

𝑉𝑟𝑒𝑎𝑑 ⋅ 𝑔𝑛𝑜𝑟𝑚
= [𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠

𝑘 ⋅ 𝑉𝑟𝑒𝑎𝑑] ⋅
1

𝑉𝑟𝑒𝑎𝑑 ⋅ 𝑔𝑛𝑜𝑟𝑚
[𝐺̂𝑒

𝑘 − 𝐺̂𝑖
𝑘], (2)

where 𝑥⃗𝑘 and 𝑦⃗𝑘 are dimensionless inputs and outputs, and 𝐺̂𝑒/𝑖
𝑘 are the respective excitatory and

inhibitory weight matrices. The quantity
1

𝑔𝑛𝑜𝑟𝑚
[𝐺̂𝑒

𝑘 − 𝐺̂𝑖
𝑘] is a matrix of the dimensionless

weights, which we denote as 𝑈̂𝑘 , with dimensionless matrix elements 𝑈𝑖𝑗
𝑘 that should be directly

comparable to the matrix elements of the ideal weight matrix 𝑊𝑖𝑗
𝑘.

To measure the inference accuracy of all 300 unique weight matrix solutions, each arrangement

of weights has to be individually written as conductances into the MTJ array. This was done

using the programming approach shown in Fig. 3(c). All operations in Fig. 3(c) utilize the write-

verify scheme discussed above and illustrated in Fig. 2(b). Because devices in the on-state

decrease write accuracy by increasing sneak-path parasitics, each weight matrix was

programmed from an initial state of all devices in the off-state. To ensure this was the case, the

first step in writing a particular weight solution was to write all devices to the off-state twice,

also called the “clear operation.” After clearing the array, only the devices that were required to

be in the on-state for that specific weight matrix solution were written during the “write

operation.” Once written, the “read operation” was carried out by serially reading the

conductance of each device at 0.2 V without disturbing the written states. These conductance

values were used to calculate the effective weights stored in the MTJ array. Finally, the inference

accuracy was determined in the “simulate” operation by calculating the number of correctly

predicted wine categories out of the 148 training samples assuming the weight values dictated by

the measured conductance states during the “read operation.” Results of this procedure are

shown in Fig. 4 and were also used to produce Figs. 1(d) and 1(e).

9

The 15 × 15 maps displayed in Figs. 4(a) and 4(b) demonstrate the high write accuracy achieved

by the programming sequence. Figure 4(a) shows the target MTJ device states for a particular

weight matrix solution with 1 being the on-state and 0 the off-state. Figure 4(b) shows the

corresponding conductance values obtained during the “read operation” on the MTJ array with

device diameter 30 nm. As shown previously in Fig. 2(f), there is still variation in the

conductance values across the array, but the devices in the on-state can nevertheless be

distinguished from devices in the off-state. This distinction is made clear in Fig. 4(c) which

shows histograms for the on- and off-states measured during the “write operation.” Both on- and

off-states have roughly normal distributions with an on/off ratio around 2. The standard deviation

of the off-state was smaller than the on-state and the distributions slightly overlap near 14 µS.

Similar on/off- conductance state distributions were observed in other MTJ sizes, but

importantly, the overlap in on/off-states worsened as MTJ diameter increased, as shown in Figs.

S2(c) and S2(d). This had detrimental consequences on the ability to accurately clear and write

device states in larger MTJ sizes, as shown in Figs. S3(a) and S3(b).

D. Accuracy optimization

In this study we used the normalization conductance 𝑔𝑛𝑜𝑟𝑚 as a hyperparameter to optimize the

classification accuracy. By tuning 𝑔𝑛𝑜𝑟𝑚, we could change how well the real weights represented

the ideal weights determined in software, and this affected the accuracy distribution over all 300

weight matrix solutions. In the ideal case where all devices have the same 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓, if all 𝑔𝑒,
𝑔𝑖 pairs are normalized by the same 𝑔𝑛𝑜𝑟𝑚 = 𝑔𝑜𝑛 − 𝑔𝑜𝑓𝑓, the weight values reduce to the pure

binary values {-1, 0, 1}. This is not the case for a hardware realization because no two devices

have the exact same 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓. Thus, modifying 𝑔𝑛𝑜𝑟𝑚 can improve how well some real

weights replicate their ideal counterparts, but can also degrade the fidelity of others. This

tradeoff means there is an optimal 𝑔𝑛𝑜𝑟𝑚 that minimizes the deviation between the real and ideal

weights. It also implies that there should be a 𝑔𝑛𝑜𝑟𝑚 that maximizes the accuracy. One might

expect that these two values of 𝑔𝑛𝑜𝑟𝑚 would coincide.

An important note is, just like device non-idealities, the optimal value of 𝑔𝑛𝑜𝑟𝑚 for a given

hardware implementation is impossible to know a priori. In our case, 𝑔𝑛𝑜𝑟𝑚 can be optimized

because we use measured conductance states of all devices and simulate the accuracy of the

neural network at different values of 𝑔𝑛𝑜𝑟𝑚. This is made simpler by the fact that the MTJ device

conductance does not change as a function of voltage for low applied voltages, making the

current on the columns easily computable as the voltage on the input changes over all wine input

samples. Because of this dependence, we are also able to test devices individually and add the

currents, as if we applied all voltages on all the rows at the same time. It should be noted,

however, that this procedure would not work for crossbars with highly nonlinear elements, such

as two-terminal selectors. Likewise, at higher biases where the MTJs are more nonlinear, we

would expect to see deviations from our calculations.

Simulating the accuracy for any type of hardware neural network becomes more difficult as the

number of devices increases and the device conductance changes as a function of voltage.

Hyperparameter optimization of the weight mapping to hardware becomes prohibitive due to the

large computational requirements of simulation. In most cases the normalization hyperparameter

10

is estimated [56]. For example, a relatively good approximation of 𝑔𝑛𝑜𝑟𝑚 can be calculated

trivially as:

𝑔𝑛𝑜𝑟𝑚 = 𝑔̅𝑜𝑛 − 𝑔̅𝑜𝑓𝑓, (3)

where 𝑔̅𝑜𝑛 and 𝑔̅𝑜𝑓𝑓 are the average values of 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓 for the array. This is a much simpler

computation to carry out, but as we will show in the following discussion, it turns out to be a

poor choice, providing strong incentive for determining the optimal 𝑔𝑛𝑜𝑟𝑚.

The accuracy distribution of the 300 unique weight matrix solutions for 30 nm devices is shown

as a function of 𝑔𝑛𝑜𝑟𝑚 in Fig. 5(a). For these devices, the estimated value of 𝑔𝑛𝑜𝑟𝑚 using average

𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓 values was 7 μS. This value of 𝑔𝑛𝑜𝑟𝑚 has an inference accuracy with a median of

only 60.8 %. Surprisingly, a 𝑔𝑛𝑜𝑟𝑚 of 3.4 μS did a much better job of compensating for the array

characteristics and resulted in a much higher optimized median accuracy of 95.3 %.

In Fig. 5(b) we show the RMS deviation between the ideal and measured weights as a function of

𝑔𝑛𝑜𝑟𝑚 over the 300 weight matrix solutions. The total RMS deviation, 𝛥RMS, for a given weight

matrix solution of the two neural network layers is calculated as:

𝛥RMS = ∑ √∑(𝑊𝑖𝑗
𝑘 − 𝑈𝑖𝑗

𝑘)
2

𝑖𝑗𝑘=1,2

 (4)

where 𝑊𝑖𝑗
𝑘 are the ideal weights for node 𝑖𝑗 in network layer 𝑘 and 𝑈𝑖𝑗

𝑘 are the weights for the

programmed MTJ array determined from the measured conductances scaled by 𝑔𝑛𝑜𝑟𝑚. The

superscript 𝑘 indicates the associated neural network layer and the summation is performed over

the weight matrix indices. The point of minimum RMS deviation is significant because this is

where the measured weights best reproduce the ideal weights. Figure 5(b) shows that 𝛥RMS is

minimized at 𝑔𝑛𝑜𝑟𝑚 = 5.5 µS, a value that differs from the accuracy-optimized value and is

much closer to the estimated value of 7 μS. The two different optimized values of 𝑔𝑛𝑜𝑟𝑚 are

highlighted by the vertical dashed lines in Fig. 5(b).

Figures 5(c) and 5(d) show distributions of the optimized accuracy and minimum RMS

deviations over all 300 weight matrix solutions for all four MTJ device sizes fabricated. The full

set of plots for accuracy and RMS deviation as a function of 𝑔𝑛𝑜𝑟𝑚 are shown in Fig. S4 in the

supplemental material. Figure 5(c) shows that the maximal median achievable accuracy

decreases as MTJ size increases, while Fig. 5(d) indicates that the minimum RMS deviations

simultaneously increase with MTJ size. We attribute these trends to the increasing overlap of

on/off conductance states as the device size increases (see Figs. S2(c) and S2(d)), which affects

the clear and write accuracy of the array. Although the maximum median accuracy did not occur

at the same value of 𝑔𝑛𝑜𝑟𝑚 as the minimum median RMS deviation for any device size, the trend

of the minimum median RMS deviation does provide an indication of the trend of maximum

median accuracies, with overall poorer reproducibility predicting lower accuracy.

11

To shed light on the reduction of maximum achievable accuracies in experiments and to explain

the mismatch between the value of 𝑔𝑛𝑜𝑟𝑚 that maximizes the accuracy and the value of 𝑔𝑛𝑜𝑟𝑚 that

minimizes RMS deviation, we carried out circuit (SPICE) simulations of inference on an MTJ

array. The simulations capture the variations in the two-port conductances by accounting for

external resistances, line resistances, and random variations in the MTJ properties. The model

parameters were obtained by fits to measured data. For each MTJ size, 30 separate realizations of

the device variations were implemented by treating the off-state conductance and 𝑇𝑀𝑅 of each

MTJ as independent normally distributed quantities consistent with the measured distributions of

values. Figures 6(a) and 6(b) show the full model of the simulated accuracy and RMS deviation

as a function of 𝑔𝑛𝑜𝑟𝑚 in the presence of line resistances for a representative realization of

device-device variations in the 30 nm diameter array. The simulation reproduces the

experimental finding that network accuracy is not maximized at the value of 𝑔𝑛𝑜𝑟𝑚 that

minimizes the RMS deviation. For comparison, Figs. 6(c) and 6(d) show that when these

simulations were carried out in the ideal case, with no line resistances or device variations, so

that 𝑔𝑜𝑓𝑓 and 𝑇𝑀𝑅 are the same value for all devices, the network accuracy maximizes at the

same value of 𝑔𝑛𝑜𝑟𝑚 that minimizes the RMS deviation. Similar comparisons of simulated

accuracies and RMS deviations as a function of 𝑔𝑛𝑜𝑟𝑚 for different MTJ diameters with and

without line resistances and device variations are provided in Figs. S5 and S6.

These simulations reveal that the line resistances amplify the effects of the device variations. We

found that in simulations that neglect line resistances, to get results close to those in experiment,

the device variations needed to be much larger than would be consistent with the distributions

measured from single device measurements. Without line resistances, the voltage drop across

every MTJ on a row was the same. However, when line resistances are included, the voltage

drops across each device depend on the state (parallel or antiparallel) of each MTJ along that

row. In the simulations that include the line resistances, the variations in the devices taken from

other measurements lead to good agreement between the experiments on the arrays and the

simulations of the arrays.

The simulated maximum achievable accuracies as a function of the MTJ diameter obtained over

30 different realizations of the MTJ device variations and 300 different weight matrix solutions

are shown in Fig. 6(e), along with the experimental maximum achievable accuracies. In the

absence of device-to-device variations and line resistances, the mean value of the maximum

accuracies of the 300 different weight solutions obtained is about 99 %. The device conductances

scale quadratically with the MTJ diameter, causing a corresponding increase in the relative

variations in the two-port conductances in the presence of fixed line resistances. These increased

variations, along with lower write accuracies, reduce the accuracies in both the experimental data

and simulation results shown in Fig. 6(e). Similar variations of simulated maximum achievable

accuracies as device parameters are scaled, starting from the nominal values corresponding to the

MTJ array with 30 nm diameter, are provided in Fig. S8.

Using the simulations, we also calculate the distribution of ξnorm, which is the ratio of 𝑔𝑛𝑜𝑟𝑚 at

minimum RMS deviation to the 𝑔𝑛𝑜𝑟𝑚 at maximum accuracy as a function of MTJ diameter, and

show it in Fig. 6(f). In the ideal case, ξnorm is unity for all MTJ sizes because the 𝑔𝑛𝑜𝑟𝑚 that

minimized RMS deviation is always equal to the 𝑔𝑛𝑜𝑟𝑚 that maximized accuracy. In the full

model, as the relative variations of conductance increase with MTJ diameter so does the

12

disagreement between the 𝑔𝑛𝑜𝑟𝑚 value that maximizes accuracy and the 𝑔𝑛𝑜𝑟𝑚 value that

minimizes RMS deviation, as seen by the increasing magnitude of ξnorm with MTJ diameter in

both experimental and simulation data. By reproducing this disagreement in variational

simulations, we posit that maximizing the network fidelity is not the same as maximizing the

network accuracy for neural networks. This observation has important implications in embedded

inference applications and suggests techniques to compare a hardware recreation of a network to

its software source are needed to improve the resilience of these systems.

III. DISCUSSION

In this work, a 15 × 15 passive MTJ array was fabricated and programmed to analyze a hardware

implementation for inference of a binary neural network trained to classify the Wine dataset [51].

To investigate the role played by hardware non-idealities, 300 unique weight matrix solutions

were programmed into the array using a write-verify process and the accuracy was determined

from the read conductance values. As expected, certain weight solutions perform better than

others, but we find the accuracy values can be boosted significantly by optimizing the

normalization conductance value. Surprisingly, the value of normalization conductance that

minimizes the median of weight RMS deviation is not the same value that maximizes the median

classification accuracy over all 300 weight solutions. These findings provide insight into the

problem of embedded inference with MTJ-based hardware accelerators and are an integral step

forward on the pathway toward large-scale integration of hardware devices with imperfections

and variations. In reference [36], the MTJ network accuracies were about 1 % to 2 % below the

baseline accuracy, however, as we show in this work, studying an ensemble of network solutions

reveals a distribution of performance levels. Consequently, a broader exploration of the solution

space compiled onto the crossbar and additional optimizations can likely lead to equivalent

performance to the targeted baseline.

With this in mind, the work described here involves a small prototype array and a simple two-

layer neural network applied to a very basic dataset. The results obtained, however, have

important implications if scaling of this type of neural network is to be pursued. Any full-scale

realization of a neural network using a passive MTJ array will necessarily include supporting

complementary metal-oxide semiconductor (CMOS) circuitry. Co-design of the supporting

circuits with the array is important since the properties of the former affect the overall accuracy,

the overall power, and the requirements on the properties of the devices used in the array itself.

One important co-design constraint is the precision of the readout circuits. For single-bit

precision in integrated binary neural network proposals [57], sense amplifiers are commonly

used as thresholding elements, as used in commercial MTJ memory arrays. As neural networks

are scaled to higher precisions, the readout circuits require a better signal-to-noise ratio, skewing

the ratio of the power spent in the system toward the supporting circuits. Extending the sense

amplifier to multibit precision can involve using analog to digital conversion techniques (such as

successive approximation or flash). In this approach, the power dissipation scales as the square

of the signal to noise ratio (SNR) [58]. In order to overcome this problem and improve output

precision without significantly increasing the power of the amplifier, a recent work proposes

using time-domain readout by measuring the RC charging time of the output line, where R is

determined by the MTJs in the column based on input devices [36].

13

Once the co-design of the readout circuits is optimized with respect to the array, the following

considerations determine the optimal array size. For a fixed current budget (and, hence,

bandwidth) of these sense amplifiers, and a fixed 𝑇𝑀𝑅 of the MTJs, a successful VMM

operation needs a high signal-to-noise ratio, which depends on the size of the array and the line

resistances. For a fixed MTJ 𝑇𝑀𝑅, larger arrays require a proportional reduction in the line

resistances. This ensures that, during array operation, most of the voltage is dropped across the

MTJs. Once the physical limits of scaling line resistances are reached, the array size could be

further increased by increasing the MTJ resistances (while keeping the 𝑇𝑀𝑅 fixed) until the

bandwidth constraints on the sense amplifier are reached. The resulting array size is optimal.

Scaling the VMM to larger sizes does not improve the performance of the system, since it runs

into the bandwidth limitations of the sense amplifiers, while a smaller and faster VMM does not

take full advantage of the available power budget.

Practically speaking, while the line resistances of the row and column lines used in this array are

about 6 Ω per square, standard CMOS back-end-of the line processes using a dual damascene

process are capable of producing interconnects with sheet resistances less than 1 Ω per

square [59,60]. The resistance-area-product (RA) of the MTJs used in this study is about 20

Ω·μm2. Higher MTJ resistances can be achieved, for example, by scaling down the MTJ

diameter and by increasing the tunnel barrier thicknesses. While decreasing the diameter is

limited by the thermal stability of the free layer magnetization, increasing the tunnel barrier

thickness requires increased switching voltages [61]. By varying the MTJ stack composition and

processes involved during fabrication, RA values from a few to about 500 Ω·μm2 capable of

voltage switching [61,62], and RA values of several kΩ·μm2 to a few MΩ·μm2 with field-assisted

switching have been reported [63,64].

These considerations suggest that scaling of a passive MTJ array of the type investigated here is

possible up to an optimal size, even when the necessary peripheral CMOS circuitry is included.

Determination of the optimal size will involve detailed engineering design that considers all the

necessary circuitry and the specifics of the semiconductor process to be used. In Ref. [36] a

significantly larger array was implemented, and showed only minimal degradation in

performance as compared to the ideal benefit. An important factor in this improvement is both

the larger network size as well as the reduced line resistance. Nevertheless, it is likely that

significant energy savings over conventional von Neumann-limited, software-based approaches

will be realized by implementing large neural networks using this type of array.

ACKNOWLEDGMENTS

We acknowledge Michael Grobis, Chris Petti, and Alexei Bogdanov from Western Digital for their

contributions in the design of the MTJ arrays used in this study. This work was funded by The

National Institute of Standards and Technology. Nitin Prasad is supported by Quantum Materials

for Energy Efficient Neuromorphic Computing, an Energy Frontier Research Center funded by the

U.S. DOE, Office of Science, Basic Energy Sciences, under Award DE-SC0019273. Advait

Madhavan acknowledges support under the Cooperative Research Agreement Award No.

14

70NANB14H209, through the University of Maryland. This work benefited in part from materials

and software developed under DARPA / ONR grant No. N00014-20-1-2031.

APPENDIX A: MTJ ARRAY FABRICATION

The fabrication of a 15x15 MTJ device array started by defining the bottom wordlines, beginning

with sputter depositing 5 nm of aluminum oxide followed by 200 nm of TaN (≈200 µΩ∙cm) onto

a thermally oxidized silicon substrate. The thin aluminum oxide layer acted as an etch stop

during reactive ion etching (RIE) of the TaN so the thermal silicon oxide surface of the substrate

was not attacked. Photolithography (i-line) was then used to pattern photoresist into alignment

marks, metrology features used in subsequent process steps, and active array regions of 400 nm

wide lines with a full pitch of 800 nm. This photoresist was used as a mask for RIE of the TaN,

which had to be completely etched down to the aluminum oxide stop layer otherwise the

wordlines could have been potentially shorted. Following wordline RIE, we sputter-deposited

200 nm of SiO2 onto the wafer. Defining the wordlines concluded by performing chemical-

mechanical polishing (CMP) to remove material from the wafer until left with exposed TaN

wordlines approximately 120 nm thick, co-planar with the silicon oxide refill and quite smooth

(RMS roughness ≈ 0.3 nm). Low RMS roughness for the surface on which the MRAM film is

deposited is crucial for achieving the desired electrical and magnetic properties of the MTJs.

Prior to MRAM film deposition an in situ sputter etch removed any oxidized TaN at the surface

of the wordlines, allowing for deposition directly onto low resistance TaN. The bottom-pinned

MRAM stack was sputter deposited in a physical vapor deposition system, and then annealed in

vacuum at 335 ℃ for 1 hour. A detailed description of the MRAM film stack including magnetic

properties is given in Ref. [65].

After the deposition of the MRAM film, the hardmask for etching the film was deposited and

patterned. TaN (40 nm) was sputter deposited followed by 50 nm of diamond-like carbon (DLC)

and a final layer of 10 nm Cr. An aligned e-beam exposure then patterned an array of holes in

high-resolution negative resist (HSQ) where the MRAM pillars were to be located. The various

hardmask layers were then etched successively using a chlorine-based RIE process to transfer the

patterns from HSQ into the Cr layer, then a CO2 RIE process to etch the DLC without attacking

the Cr, and finally a CHF3/CF4/Ar-based RIE process to etch the TaN without attacking either

the Cr or DLC. DLC has excellent ion milling selectivity and provided most of the masking

during ion milling of the MRAM stack. The primary purpose of the TaN layer was to act as a

conductive cap since this material would be at the surface after subsequent steps described

below.

After the hardmask was patterned, a multi-angle ion milling process was used to etch the MRAM

stack down to the wordline layer. It was important to avoid incomplete milling as this would

leave all the wordlines shorted together by the residual MRAM stack. Overmilling also needed to

be avoided lest the mill penetrate too deeply into the wordlines. The final milling step was an

oblique angle 200 V cleaning step to ensure redeposited metal was removed from the device

sidewalls since it could possibly short the tunnel junction if present.

15

Following ion milling, the MRAM pillars were encapsulated with 5 nm of ion-beam-deposited

aluminum oxide. SiO2 (200 nm) was then sputter-deposited to fully encapsulate the MRAM bits.

Using CMP we first planarized the wafer and then continued polishing until roughly midway into

the TaN hardmask layer. This TaN served as a self-aligned via connecting the bitline directly to

the MRAM devices.

The final steps in the process defined the vias, bitlines, and probe pads necessary for electrically

connecting the pillars. Photolithography and RIE were first used to pattern vias in the SiO2/alumina

so the top electrodes would be able to electrically contact the wordlines beneath the MRAM bits

at landing pads defined during wordline processing. Following the via etch, we sputter-deposited

5 nm Cr/≈1.2 nm Au/5 nm Cr onto the wafer, where the thickness of each metal was chosen such

that the total resistance of the bitlines patterned from this film would match the resistance of the

bottom TaN wordlines. Prior to depositing this metal film, an in-situ ion mill removed any oxide

at the surface to ensure good electrical contact between the Cr and the TaN. Optical lithography

was then used to pattern bitlines 400 nm wide on an 800 nm full pitch. The photoresist acted as a

mask for the ion milling used to pattern the Cr/Au/Cr into the bitlines and was stripped using

solvents following the etch step (see Fig. 1(a) for an image of the active region of one such array

after completion of bitline processing). The process was completed with an optical lithography

step accompanied by a Ta/Au deposition to pattern probe pads connected to the wordlines and

bitlines used to make electrical measurements on devices.

APPENDIX B: VERIFICATION OF CURRENT LINEAR SUPERPOSITION

In general, MTJs are non-linear elements with voltage-dependent resistances [66]. However, in

the MTJ array considered in this work, the voltage drop seen across each MTJ is small enough that

we can neglect these non-linearities and consider the MTJs to be linear elements. This allows us

to analyze the full VMM element-by-element by applying a read voltage one row at a time. The

resulting currents are then added up with appropriate scaling to obtain an approximation for the

full VMM current output. In this Appendix, we describe experiments to test the linearity of the

MTJ array. In these experiments, we compare the full VMM currents against those computed by

summing the currents produced by applying read voltages one row at a time.

In the first set of measurements, we constructed 100 input vectors 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠 of size 15 with elements

𝑥𝑖 being 0 or 1 chosen randomly with equal probability. A voltage was then applied simultaneously

on all rows where 𝑥𝑖 = 1 while rows with 𝑥𝑖 = 0 were grounded. The applied voltage was varied

from 0.1 V to 0.5 V in steps of 0.1 V. Current 𝐼𝑗,𝑝 on column 𝑗 was measured at each applied

voltage for all 100 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠. We refer to these measurements as “parallel” measurements, indicated

by the subscript 𝑝. The full VMM of each of the 100 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠 can be obtained from these 𝐼𝑗,𝑝.

In a second set of measurements, we perform a current read on each individual device 𝐼𝑖𝑗,𝑠 by

applying a read voltage (0.2 V) on the 𝑖th row and measuring the current on the 𝑗th column while

all other connections are grounded. We refer to these measurements as “serial” measurements,

indicated by the subscript 𝑠. An approximation of the full VMM was then obtained for comparison.

16

Figure 7 plots the relative RMS deviation between the current vector for devices measured in

parallel and serially, where the individual currents were calculated from the device conductance

as measured at 0.2 V. The relative RMS deviation for Fig. 7 is calculated as:

Relative RMS Deviation =
√∑ (𝐼𝑗,𝑝 − ∑ 𝑥𝑖 𝑔𝑖𝑗,𝑠 @ 0.2 𝑉𝑖 𝑉𝑎𝑝𝑝𝑙𝑦)

2
𝑗

√∑ (∑ 𝑥𝑖 𝑔𝑖𝑗,@ 0.2 𝑉𝑖 𝑉𝑎𝑝𝑝𝑙𝑦)
2

𝑗

, (B1)

where 𝑔𝑖j,s @ 0.2 𝑉 is the conductance of an individual device measured at 0.2 V. The deviation is

less than 3 % for applied voltages up to 0.5 V and more typically about 1 %. In addition, the

standard deviation in the measurements of the current of each individual device is ≈10 nA, giving

a measurement uncertainty of ≈1 %, which accounts for nearly half the measurement error in Fig.

7. This shows that even if there is some error on the current of individual columns, the error in the

output vector is below 2 %, and based on Fig. 1(d), this does not change the accuracy significantly.

These results demonstrate that the port-to-port resistance of individual devices in the array is

sufficiently linear with applied voltage and the assumption that linear superposition applies to this

system is valid. It also shows the devices are sufficiently linear with respect to the conductance

values at 0.2 V and the simulation described in the main text provides valid conclusions. Each of

these measurements was performed on all sizes of MTJ arrays used in the paper and the findings

are identical (see full set of figures in Fig. S7).

REFERENCES

[1] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique, Hardware

and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current

Trends, Challenges, and the Road Ahead, IEEE Access 8, 225134 (2020).

[2] A. Canziani, E. Culurciello, and A. Paszke, Evaluation of Neural Network Architectures for

Embedded Systems, in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS) (IEEE, New York, 2017), pp. 224–227.

[3] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, A Domain-Specific Architecture for

Deep Neural Networks, Commun. ACM 61, 50 (2018).

[4] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, Benchmark Analysis of

Representative Deep Neural Network Architectures, IEEE Access 6, 64270 (2018).

[5] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, Scaling for Edge

Inference of Deep Neural Networks, Nat Electron 1, 216 (2018).

[6] T. Brown et al., Language Models Are Few-Shot Learners, in Advances in Neural

Information Processing Systems, Vol. 33 (Curran Associates, Inc., 2020), pp. 1877–1901.

[7] L. F. W. Anthony, B. Kanding, and R. Selvan, Carbontracker: Tracking and Predicting the

Carbon Footprint of Training Deep Learning Models, ArXiv Preprint ArXiv:2007.03051

(2020).

17

[8] A. Arnautović and E. Teskeredžić, Evaluation of Artificial Neural Network Inference Speed

and Energy Consumption on Embedded Systems, in 2021 20th International Symposium

INFOTEH-JAHORINA (INFOTEH) (2021), pp. 1–5.

[9] A. D. Vita, D. Pau, C. Parrella, L. D. Benedetto, A. Rubino, and G. D. Licciardo, Low-

Power HWAccelerator for AI Edge-Computing in Human Activity Recognition Systems, in

2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems

(AICAS) (2020), pp. 291–295.

[10] A. Nicosia, D. Pau, D. Giacalone, E. Plebani, A. Bosco, and A. Iacchetti, Efficient Light

Harvesting for Accurate Neural Classification of Human Activities, in 2018 IEEE

International Conference on Consumer Electronics (ICCE) (2018), pp. 1–4.

[11] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, Deep Learning with

COTS HPC Systems, in International Conference on Machine Learning (PMLR, 2013), pp.

1337–1345.

[12] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, Memory Requirements for

Convolutional Neural Network Hardware Accelerators, in 2018 IEEE International

Symposium on Workload Characterization (IISWC) (2018), pp. 111–121.

[13] D. Moolchandani, A. Kumar, and S. R. Sarangi, Accelerating CNN Inference on ASICs: A

Survey, Journal of Systems Architecture 113, 101887 (2021).

[14] S. Han, H. Mao, and W. J. Dally, Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding, ArXiv:1510.00149 [Cs] (2016).

[15] B. D. Hoskins, M. W. Daniels, S. Huang, A. Madhavan, G. C. Adam, N. Zhitenev, J. J.

McClelland, and M. D. Stiles, Streaming Batch Eigenupdates for Hardware Neural

Networks, Frontiers in Neuroscience 13, 793 (2019).

[16] A. Trusov, E. Limonova, D. Slugin, D. Nikolaev, and V. V. Arlazarov, Fast Implementation

of 4-Bit Convolutional Neural Networks for Mobile Devices, in 2020 25th International

Conference on Pattern Recognition (ICPR) (IEEE Computer Society, Los Alamitos, 2021),

pp. 9897–9903.

[17] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani, K. El

Maghraoui, V. (Viji) Srinivasan, and K. Gopalakrishnan, Ultra-Low Precision 4-Bit

Training of Deep Neural Networks, in Advances in Neural Information Processing

Systems, Vol. 33 (Curran Associates, Inc., 2020), pp. 1796–1807.

[18] Y. Wu, Y. Wu, R. Gong, Y. Lv, K. Chen, D. Liang, X. Hu, X. Liu, and J. Yan, Rotation

Consistent Margin Loss for Efficient Low-Bit Face Recognition, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 6866–

6876.

[19] T. Simons and D.-J. Lee, A Review of Binarized Neural Networks, Electronics 8, 6 (2019).

[20] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, Binary Neural Networks: A Survey,

Pattern Recognition 105, 107281 (2020).

[21] G. W. Burr et al., Neuromorphic Computing Using Non-Volatile Memory, Advances in

Physics: X 2, 89 (2017).

[22] W. Haensch, T. Gokmen, and R. Puri, The Next Generation of Deep Learning Hardware:

Analog Computing, Proceedings of the IEEE 107, 108 (2019).

[23] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella, Analog

Architectures for Neural Network Acceleration Based on Non-Volatile Memory, Applied

Physics Reviews 7, 031301 (2020).

18

[24] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, Survey of

Machine Learning Accelerators, 2020 IEEE High Performance Extreme Computing

Conference (HPEC) 1 (2020).

[25] G. Singh, L. Chelini, S. Corda, A. Javed Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.-

J. Boonstra, A Review of Near-Memory Computing Architectures: Opportunities and

Challenges, in 2018 21st Euromicro Conference on Digital System Design (DSD) (2018),

pp. 608–617.

[26] K. Rocki, D. Van Essendelft, I. Sharapov, R. Schreiber, M. Morrison, V. Kibardin, A.

Portnoy, J. F. Dietiker, M. Syamlal, and M. James, Fast Stencil-Code Computation on a

Wafer-Scale Processor, in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (IEEE Press, Atlanta, Georgia,

2020), pp. 1–14.

[27] J. T. Pawlowski, Hybrid Memory Cube (HMC), in 2011 IEEE Hot Chips 23 Symposium

(HCS) (2011), pp. 1–24.

[28] J.-S. Kim et al., A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM With 4×128 I/Os Using

TSV Based Stacking, IEEE Journal of Solid-State Circuits 47, 107 (2012).

[29] D. U. Lee, K. W. Kim, K. W. Kim, K. S. Lee, S. J. Byeon, J. H. Kim, J. H. Cho, J. Lee, and

J. H. Chun, A 1.2 V 8 Gb 8-Channel 128 GB/s High-Bandwidth Memory (HBM) Stacked

DRAM With Effective I/O Test Circuits, IEEE Journal of Solid-State Circuits 50, 191

(2015).

[30] S. Bavikadi, P. R. Sutradhar, K. N. Khasawneh, A. Ganguly, and S. M. Pudukotai

Dinakarrao, A Review of In-Memory Computing Architectures for Machine Learning

Applications, in Proceedings of the 2020 on Great Lakes Symposium on VLSI (Association

for Computing Machinery, New York, NY, USA, 2020), pp. 89–94.

[31] K. Boahen, A Neuromorph’s Prospectus, Computing in Science Engineering 19, 14 (2017).

[32] S. Z. Peng, Y. Zhang, M. X. Wang, Y. G. Zhang, and W. Zhao, Magnetic Tunnel Junctions

for Spintronics: Principles and Applications, in Wiley Encyclopedia of Electrical and

Electronics Engineering (American Cancer Society, 2014), pp. 1–16.

[33] N. Maciel, E. Marques, L. Naviner, Y. Zhou, and H. Cai, Magnetic Tunnel Junction

Applications, Sensors 20, 1 (2020).

[34] S. Gao, B. Chen, Y. Qu, and Y. Zhao, MRAM Acceleration Core for Vector Matrix

Multiplication and XNOR-Binarized Neural Network Inference, in 2020 International

Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) (2020), pp. 153–

154.

[35] P. Zhou, A. J. Edwards, F. B. Mancoff, D. Houssameddine, S. Aggarwal, and J. S.

Friedman, Experimental Demonstration of Neuromorphic Network with STT MTJ

Synapses, ArXiv:2112.04749 [Cond-Mat, Physics:Physics] (2021).

[36] S. Jung et al., A Crossbar Array of Magnetoresistive Memory Devices for In-Memory

Computing, Nature 601, 211 (2022).

[37] W. Boullart, D. Radisic, V. Paraschiv, S. Cornelissen, M. Manfrini, K. Yatsuda, E.

Nishimura, T. Ohishi, and S. Tahara, STT MRAM Patterning Challenges, in Advanced

Etch Technology for Nanopatterning II, Vol. 8685 (International Society for Optics and

Photonics, 2013), p. 86850F.

[38] L. Xue, A. Kontos, C. Lazik, S. Liang, and M. Pakala, Scalability of Magnetic Tunnel

Junctions Patterned by a Novel Plasma Ribbon Beam Etching Process on 300 Mm Wafers,

IEEE Transactions on Magnetics 51, 1 (2015).

19

[39] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, J.-P. Wang, S. S.

Sapatnekar, and U. R. Karpuzcu, PIMBALL: Binary Neural Networks in Spintronic

Memory, ACM Trans. Archit. Code Optim. 16, 41:1 (2019).

[40] A. Nisar, F. A. Khanday, and B. K. Kaushik, Implementation of an Efficient Magnetic

Tunnel Junction-Based Stochastic Neural Network with Application to Iris Data

Classification, Nanotechnology 31, 504001 (2020).

[41] A. Mondal and A. Srivastava, In-Situ Stochastic Training of MTJ Crossbar Based Neural

Networks, Proceedings of the International Symposium on Low Power Electronics and

Design 1 (2018).

[42] A. W. Stephan and S. J. Koester, Spin Hall MTJ Devices for Advanced Neuromorphic

Functions, IEEE Transactions on Electron Devices 67, 487 (2020).

[43] G. Srinivasan, A. Sengupta, and K. Roy, Magnetic Tunnel Junction Based Long-Term

Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP

Learning, Sci Rep 6, 29545 (2016).

[44] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, Fully

Hardware-Implemented Memristor Convolutional Neural Network, Nature 577, 641 (2020).

[45] A. Mohanty, X. Du, P.-Y. Chen, J. Seo, S. Yu, and Y. Cao, Random Sparse Adaptation for

Accurate Inference with Inaccurate Multi-Level RRAM Arrays, in 2017 IEEE International

Electron Devices Meeting (IEDM) (2017), p. 6.3.1-6.3.4.

[46] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J. Yang,

and R. S. Williams, Dot-Product Engine for Neuromorphic Computing: Programming

1T1M Crossbar to Accelerate Matrix-Vector Multiplication, in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC) (2016), pp. 1–6.

[47] S. Agarwal, R. L. Schiek, and M. J. Marinella, Compensating for Parasitic Voltage Drops in

Resistive Memory Arrays, in 2017 IEEE International Memory Workshop (IMW) (2017),

pp. 1–4.

[48] Y. Jeong, M. A. Zidan, and W. D. Lu, Parasitic Effect Analysis in Memristor-Array-Based

Neuromorphic Systems, IEEE Transactions on Nanotechnology 17, 184 (2018).

[49] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang, Accelerator-Friendly

Neural-Network Training: Learning Variations and Defects in RRAM Crossbar, in Design,

Automation Test in Europe Conference Exhibition (DATE) (2017), pp. 19–24.

[50] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi, B.

Rajendran, A. Sebastian, and E. Eleftheriou, Accurate Deep Neural Network Inference

Using Computational Phase-Change Memory, Nat Commun 11, 2473 (2020).

[51] UCI Machine Learning Repository: Wine Data Set,

https://archive.ics.uci.edu/ml/datasets/wine.

[52] H. J. M. Swagten and P. V. Paluskar, Magnetic Tunnel Junctions, in Encyclopedia of

Materials: Science and Technology, edited by K. H. J. Buschow, R. W. Cahn, M. C.

Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière (Elsevier, Oxford, 2010),

pp. 1–7.

[53] S. Kim, J. Zhou, and W. D. Lu, Crossbar RRAM Arrays: Selector Device Requirements

During Write Operation, IEEE Transactions on Electron Devices 61, 2820 (2014).

[54] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, Memristor-Based

Memory: The Sneak Paths Problem and Solutions, Microelectronics Journal 44, 176 (2013).

[55] A. Chen, Memory Select Devices, in Emerging Nanoelectronic Devices (John Wiley &

Sons, Ltd, 2014), pp. 227–245.

20

[56] A. Mehonic, D. Joksas, W. H. Ng, M. Buckwell, and A. J. Kenyon, Simulation of Inference

Accuracy Using Realistic RRAM Devices, Frontiers in Neuroscience 13, 593 (2019).

[57] T. Hirtzlin, M. Bocquet, B. Penkovsky, J.-O. Klein, E. Nowak, E. Vianello, J.-M. Portal,

and D. Querlioz, Digital Biologically Plausible Implementation of Binarized Neural

Networks With Differential Hafnium Oxide Resistive Memory Arrays, Frontiers in

Neuroscience 13, 1383 (2020).

[58] R. Sarpeshkar, Analog Versus Digital: Extrapolating from Electronics to Neurobiology,

Neural Computation 10, 1601 (1998).

[59] E. Milosevic and D. Gall, Copper Interconnects: Surface State Engineering to Facilitate

Specular Electron Scattering, IEEE Transactions on Electron Devices 66, 2692 (2019).

[60] IEEE International Roadmap for Devices and Systems, https://irds.ieee.org/editions/2020.

[61] C. Grezes, F. Ebrahimi, J. G. Alzate, X. Cai, J. A. Katine, J. Langer, B. Ocker, P. Khalili

Amiri, and K. L. Wang, Ultra-Low Switching Energy and Scaling in Electric-Field-

Controlled Nanoscale Magnetic Tunnel Junctions with High Resistance-Area Product,

Appl. Phys. Lett. 108, 012403 (2016).

[62] Y. Nagamine, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, S. Yuasa,

and K. Ando, Ultralow Resistance-Area Product of 0.4Ω(Μm)2 and High

Magnetoresistance above 50% in CoFeB∕MgO∕CoFeB Magnetic Tunnel Junctions, Appl.

Phys. Lett. 89, 162507 (2006).

[63] S. Kanai, F. Matsukura, and H. Ohno, Electric-Field-Induced Magnetization Switching in

CoFeB/MgO Magnetic Tunnel Junctions with High Junction Resistance, Appl. Phys. Lett.

108, 192406 (2016).

[64] N. Tezuka, S. Oikawa, I. Abe, M. Matsuura, S. Sugimoto, K. Nishimura, and T. Seino,

Perpendicular Magnetic Tunnel Junctions with Low Resistance-Area Product: High Output

Voltage and Bias Dependence of Magnetoresistance, IEEE Magnetics Letters 7, 1 (2016).

[65] G. Mihajlović, N. Smith, T. Santos, J. Li, M. Tran, M. Carey, B. D. Terris, and J. A. Katine,

Origin of the Resistance-Area-Product Dependence of Spin-Transfer-Torque Switching in

Perpendicular Magnetic Random-Access Memory Cells, Phys. Rev. Applied 13, 024004

(2020).

[66] J. Z. Sun and D. C. Ralph, Magnetoresistance and Spin-Transfer Torque in Magnetic

Tunnel Junctions, Journal of Magnetism and Magnetic Materials 320, 1227 (2008).

21

FIGURE CAPTIONS

FIG. 1. Classification of the Wine dataset using a 15 × 15 MTJ array. (a) Scanning electron

microscope (SEM) micrograph of the MTJ array. (b) Neural network architecture used to classify

the Wine dataset samples, containing 13 input neurons, 6 hidden layer neurons (layer 1), and 3

output neurons (layer 2). The hidden layer and output layer neurons each use two MTJs to

implement three-level weights. (c) Schematic of the neural network mapping to the MTJ

hardware. The hardware equivalent neural network function is the same color as the

corresponding function shown in (b). Layer 1 outputs 𝑧𝑛 (𝑛 = 1 − 6) are transformed by a tanh

activation into layer 2 inputs 𝑎𝑛. (d) Currents simulated on the output columns of layer 2 in the

MTJ array over 148 training and 30 test inputs for a single weight matrix solution with 99.3 %

and 93.3 % accuracy on the training and test datasets, respectively, after programming weight

values into devices. (e) Optimized classification accuracy on the training dataset of 300 different

weight solutions tried in the array. Measurements for (d) and (e) were both performed on an MTJ

array with a device diameter of 30 nm.

FIG. 2. Neural network hardware. (a) Zoomed out SEM image, showing the 15 × 15 MTJ array

(dashed white box) as part of a larger, unused array. Lighter traces are the metal routing lines. (b)

Pulse sequence used for writing and verifying devices with alternating write and read biases. The

switching voltage for each device is measured by repeating this sequence while increasing Vapply

until the device switches. (c) Switching curve of a device (diameter 30 nm) with a 1.5 V

threshold from the anti-parallel (off) state to the parallel (on) state. The conductance was

measured at a fixed 0.2 V bias. Also shown are the MTJ configurations in each state. (d)

Histogram of switching voltages on the 30 nm diameter array, showing essentially a normal

distribution. (e) Color plot of the measured switching voltages in the 30 nm diameter array. The

voltages are higher near the center where the line resistance is greatest. (f) Color plot of the

measured on-state conductances of the MTJs in the array. The values are lower near the center

where the line resistance is highest.

22

FIG. 3. Writing 300 unique weight solutions and testing inference accuracy. (a) Illustration of

how weights were encoded in the hardware using adjacent devices (𝑔𝑒 devices are labeled in

orange and 𝑔𝑖 devices labeled in blue). (b) Layout of the nearest neighbor differential weight

mapping. In the first layer, differential weights are defined by neighboring columns but in the

second layer they are defined within neighboring rows. (c) Block diagram of the write algorithm

to program the arrays and test inference accuracy.

FIG. 4. Writing weight matrices and measuring conductance. (a) A target matrix solution in the

passive MTJ array. (b) The “read operation” results of the programmed crossbar to the target

array (diameter 30 nm) using the write-verify scheme. (c) Conductance values of each device

measured in the on- and off-state during the “write operation.” The histogram shows separation

of the states.

FIG. 5. Optimization of accuracy and RMS deviation over 𝑔𝑛𝑜𝑟𝑚 and MTJ diameter. Box-

whisker plot of (a) accuracy vs. 𝑔𝑛𝑜𝑟𝑚 and (b) RMS deviation vs. 𝑔𝑛𝑜𝑟𝑚 for all 300 weight

solutions in the 30 nm diameter array. Vertical dashed lines indicate the optimum values for the

two different criteria (3.4 µS and 5.5 µS) determined from the median values at each 𝑔𝑛𝑜𝑟𝑚. (c)

Box-whisker plots of the distributions of optimized accuracies as a function of MTJ diameter. (d)

Box-whisker plots of the distributions of minimum RMS deviations as a function of MTJ

diameter. In each figure, whiskers indicate maximum and minimum values, whereas box edges

represent 25 % and 75 % quartiles and the middle line is the median (50 % quartile).

FIG. 6. Accuracy and RMS deviation as a function of the scaling parameter between measured

and model networks, 𝑔𝑛𝑜𝑟𝑚, and MTJ diameter. Panels (a-d) show the results of simulations with

all device variations and line resistances included (full model) and also with no non-idealities

(ideal model). Results are for a single realization of device conductance variations of the 30 nm

diameter MTJ array. Shown are box-whisker plots of the distribution of results over the 300

23

unique weight solutions. Panels (a) and (b) show accuracy and RMS deviation, respectively, as a

function of 𝑔𝑛𝑜𝑟𝑚 for the full model. Panels (c) and (d) show the same for the ideal model. For

each box-whisker plot (a-d), whiskers indicate maximum and minimum values, whereas box

edges represent 25 % and 75 % quartiles and the middle line is the median (50 % quartile).

Panels (e) and (f) show the optimized accuracies and values of ξnorm (see text) for experimental

results and the results of simulations like those in (a-d) for different MTJ diameters. The symbols

give the mean values. For the experimental results and the ideal model simulation results, the

whiskers give the one-standard-deviation width of the distribution of results over the 300

different solution matrices. For the full model results, the whiskers give the one-standard-

deviation width of the distribution over 9000 solutions (300 solution matrices for each of 30

realizations of device conductance variations).

FIG. 7. Box-whisker plots showing the distribution over 100 randomizations of connected rows

of the relative RMS deviation between the current vector output of the 15 columns based on the

conductance of individual devices read at 0.2 V as a function of applied voltage. Whiskers

indicate maximum and minimum values, whereas box edges represent 25 % and 75 % quartiles

and the middle line is the median (50 % quartile).

(a)

(d)

(b) (c)

(e)

1 μm
Input
Layer

Inputs
× Vread

Currents

gnorm × Vread

× Vread

Currents

gnorm × Vread

Layer 1 VMM Layer 2 VMM

Softmax
output

Analog

0 50 100 150 200 250 300

Weight Matrix Solution Num

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

95.3 %
median

0 50 100 150

Sample Number

-20

-10

0

10

20

30

40

La
ye

r
2

O
ut

pu
t C

ur
re

nt
 (
μ

A
)

Train
Test

Wine 1 Wine 2 Wine 3

...

Layer 1
(Hidden)

Layer 2
(Output)

...+ - + -

...

z1z1 z6

+a1−a1

+a6−a6

an = tanh(zn)

Free Layer

Fixed Layer
Insulating Layer

2 4 6 8 10 12 14

Column

Free Layer

Fixed Layer
Insulating Layer

V
ol

ta
ge

 (
V

)

Vapply

Vread

time

−Vapply

WRITE

READ

C
on

du
ct

an
ce

 (
μ

S
)

(a)

(b)

(c)

(d)

(e)

(f)

C
on

du
ct

an
ce

 (
μ

S
)

at
 0

.2
 V

2

4

6

8

10

12

14

R
ow

1.6

1.8

2.0

2.2

2.4

2.6

2 4 6 8 10 12 14

Column

2

4

6

8

10

12

14

R
ow

10

15

20

25

1 1.5 2 2.5 3

Voltage (V)

0

20

40

60

80

100

C
ou

nt

10 μm -1.5 -1 -0.5 0 0.5 1 1.5
5

10

15

20

25

(b) (c)

CLEAR:
Cycle devices on/off twice

WRITE:
Turn required devices on

READ:
Measure conductance at 0.2 V

SIMULATE:
Calculate accuracy

0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
0 1 0 0 0 1 0 1 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1 0 0 1 0 1 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 0
0 1 1 1 0 1 0 1 1 0 0 1 0 1 0
0 0 0 1 0 0 1 0 0 1 0 1 1 0 1
0 1 0 1 1 0 1 0 0 1 0 1 1 1 0
1 1 1 0 1 0 0 1 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 1 1 1 0 0 1
0 1 0 1 0 1 0 1 1 0 0 1 1 1 0
1 0 0 1 1 0 1 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 0 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a)

Weight = 0 Weight = 1

Weight = −1

ge gi ge gi

ge gi

ge
Weight =

gnorm

Weight = 0

ge gi

gi

C
on

du
ct

an
ce

 (
μ

S
)

2

4

6

8

10

12

14

R
ow

1

on-
state

0

off-
state

(a) (b)

2

4

6

8

10

12

14

R
ow

2 4 6 8 10 12 14

Column

6

8

10

12

14

16

2 4 6 8 10 12 14

Column

on-state
off-state

5 10 15 20 25

Conductance (μS)

0

20

40

60

80

100

C
ou

nt

(c)

1 3 6 10

gnorm (μS)

0

10

20

30

40

50

R
M

S
 D

ev
ia

tio
n

1 3 6 10

gnorm (μS)

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
(a) (c)

(b) (d)
R

M
S

 D
ev

ia
tio

n
MTJ Diameter (nm)

A
cc

ur
ac

y

30 40 50 60

MTJ Diameter (nm)

0

1

2

3

4

5

6

7

8

30 40 50 60
0

0.2

0.4

0.6

0.8

1

R
M

S
 d

ev
ia

ti
on

 o
p
ti
m

u
m

ac
cu

ra
cy

 o
p
ti
m

u
m

MTJ Diameter (nm)
ξ n
or
m

(a)

(b)

(c)

(d)
gnorm (μS)

A
cc

ur
ac

y

gnorm (μS)
A

cc
ur

ac
y

gnorm (μS)

R
M

S
 D

ev
ia

tio
n

gnorm (μS)

R
M

S
 D

ev
ia

tio
n

(f)

(e)

1 3 6 10
0

0.2

0.4

0.6

0.8

1

MTJ Diameter (nm)

M
ax

im
um

 A
cc

ur
ac

y
1 3 6 10

0

10

20

30

40

50

1 3 6 10
0

10

20

30

40

50

30 40 50 60

1

2

3

4

5

Experiment
Full model
Ideal model

30 40 50 60

0.6

0.7

0.8

0.9

1

Experiment
Full model
Ideal model

1 3 6 10
0

0.2

0.4

0.6

0.8

1

Full model

Full model

Ideal model

Ideal model

ac
cu

ra
cy

 o
p
ti
m

u
m

R
M

S
 d

ev
ia

ti
on

 o
p
ti
m

u
m

0.1 0.2 0.3 0.4 0.5

Voltage (V)

0

0.005

0.01

0.015

0.02

0.025

0.03
R

el
at

iv
e

R
M

S
 D

ev
ia

tio
n

