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The increasing scale of neural networks and their growing application space have produced 

demand for more energy- and memory-efficient artificial-intelligence-specific hardware. 

Avenues to mitigate the main issue, the von Neumann bottleneck, include in-memory and near-

memory architectures, as well as algorithmic approaches. Here we leverage the low-power and 

the inherently binary operation of magnetic tunnel junctions (MTJs) to demonstrate neural 

network hardware inference based on passive arrays of MTJs. In general, transferring a trained 

network model to hardware for inference is confronted by degradation in performance due to 

device-to-device variations, write errors, parasitic resistance, and nonidealities in the substrate. 

To quantify the effect of these hardware realities, we benchmark 300 unique weight matrix 

solutions of a 2-layer perceptron to classify the Wine dataset for both classification accuracy and 

write fidelity. Despite device imperfections, we achieve software-equivalent accuracy of up to 

95.3 % with proper tuning of network parameters in 15 × 15 MTJ arrays having a range of 

device sizes. The success of this tuning process shows that new metrics are needed to 

characterize the performance and quality of networks reproduced in mixed signal hardware. 

 

I. INTRODUCTION 

Over the past decade, artificial intelligence algorithms have achieved human-level performance 

on increasingly complex tasks at the cost of increased neural network size, computing resources, 

and energy consumption  [1–5]. OpenAI’s GPT-3, for example, a state-ot-the-art natural 

language processor, contains 175 billion parameters and requires 3.14×1023 floating point 

operations to train  [6], consuming roughly 190 MWh of electrical energy, roughly the average 

yearly electrical energy consumption of 16 people in the US  [7]. Running these algorithms for 

inference applications—applications that require the model to make predictions but not learn 

new information—requires lesser but still overwhelming amounts of energy. This makes them 

difficult to implement in embedded applications where resources are limited, such as cellphones, 
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self-driving cars, or drones  [8–10]. This energy inefficiency is in part due to implementing these 

algorithms using general-purpose hardware such as central and graphical processing units (CPUs 

and GPUs). 

Because CPUs and GPUs have traditional von Neumann computing architectures, they do not 

store data in the same spatial location as where computation is carried out. For this reason, 

energy is consumed in moving the data, and the speed of computation is throttled by the time it 

takes to shuttle from the storage to the computation location. This so-called von Neumann 

bottleneck has been shown to be severe on large neural network models, with studies showing 

the majority of the network time and energy can be expended distributing gradient and model 

data  [11–13]. 

Algorithmic approaches to lessening the data bottleneck have focused on simplifying neural 

network models to achieve equivalent accuracy with less memory overhead. Strategies include 

model compression and sparsification of the synaptic weights  [14,15], as well as reducing the 

precision of weights, with many recent networks performing inference with 4 bits of 

precision  [16–18]. Constantly falling bit precision has fueled interest in taking weight reduction 

to its logical extreme by using binary neural networks - networks whose synaptic weights can be 

represented by single bits. Low precision networks have demonstrated similar performance to 

that of their full-precision counterparts on small datasets, but further improvements are needed to 

achieve equivalent accuracy on larger datasets  [19,20]. 

The trend towards storing larger models on chip has also driven an increasing effort to develop 

hardware architectures for mitigating the von Neumann bottleneck  [21–24]. For example, data 

access time can be greatly reduced through near- or in-memory computing. Near-memory 

computing aims to move the data closer to the processing location and use hardware with shorter 

access times such as static random access memory (SRAM)  [25]. Pushing the limits of near-

memory architectures, chips have been manufactured with enough onboard SRAM to store more 

than 40 Gb of data  [26], or stacked with through-silicon vias to connect memory and processing 

chips in 3D  [27–29]. Taking this approach to the extreme, in-memory computing carries out 

calculations directly where the memory resides. Demonstrations of in-memory computing have 

used dynamic random access memory and SRAM, but less mature emerging non-volatile 

memories have promise of being lower-power solutions  [23,30]. 

One proposed solution that leverages both low-precision and in-memory computing is to use an 

array of back-end-of-the-line-compatible magnetic tunnel junctions (MTJs) to implement analog 

vector matrix multiplication in a binary neural network. Because low-precision computing is 

more efficient in the analog domain  [31], and MTJs are inherently binary and can be designed 

with low switching energy, they are ideal candidates for minimizing energy consumption in such 

a hybrid configuration  [32,33]. Past investigations have used individual MTJs to experimentally 

explore the implications of using them in such neural networks [34,35]. A recent 

demonstration [36] showed a high performance binary neural network using a 64 × 64 crossbar 

array of MTJs integrated with transistors as an active selector device. Such investigations are 

increasingly showing the utility of using MTJs for computing. 
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In contrast to active or transistor-integrated arrays, passive, transistorless arrays are potentially 

an even more efficient way to implement these networks, as they would significantly reduce the 

additional overhead of transistor capacitances and could be implemented at significantly higher 

density, while freeing up space for additional transistors that might be needed in peripheral 

circuitry. Because of the difficulty in fabricating passive nanoscale arrays of MTJs  [37,38], 

favorable performance metrics have only appeared in simulation thus far  [39–43]. Here we 

demonstrate an implementation of a neural network on a passive 15 × 15 crossbar array of MTJs 

and show the feasibility of obtaining high inference accuracy, even in the presence of hardware 

imperfections. 

Developing a hardware accelerator for inference involves training the neural network offline and 

transferring the weights to the conductance states of devices. However, because of device non-

idealities, it is not possible to exactly reproduce a simulated matrix in hardware and, 

consequently, it is not possible to know a priori what the resultant accuracy of a downloaded 

network will be. Current methods of increasing the inference accuracy of a downloaded network 

include optimizing the weights after transfer with further device programming  [44,45], 

optimizing weight mapping onto devices  [46], accounting for line resistance voltage drops and 

parasitics in neural network operations  [47,48], and including device variations or noise in the 

training algorithm to make the final model in hardware more robust to device 

nonidealities  [49,50]. Here, we demonstrate the plausibility of this last approach. We produce 

many variations (300) of weight matrices using different weight initializations during offline 

training. In this way, based on array-specific non-idealities, certain weight matrix solutions 

achieve higher inference accuracy than others. In principle, one would expect networks that 

better reproduce the target network to achieve higher accuracy. 

By programming all 300 weight matrix solutions into the hardware, we are able to quantify the 

impact of device non-idealities on the distribution of achievable accuracies. We calculate our 

ability to accurately reproduce each network model through the root mean square (RMS) 

deviation between the model and the implementation. By optimizing the network conductance-

to-weight conversion, we achieve a median accuracy of 95.3 % over all programmed solutions. 

One finding with implications for embedded inference is that the network parameters that 

maximized the network’s experimental performance are different in general from those that 

theoretically maximized it. Specifically, the magnitude of the weight normalization constant (see 

Accuracy Optimization section) that minimized the RMS deviation did not also maximize the 

accuracy. This result suggests the necessity of alternative approaches for embedded inference 

with off-line trained networks on imperfect hardware, and that accurate network recreation is not 

the ideal criterion for maximizing network performance. 

II. RESULTS 

A. Neural network hardware acceleration with arrays of MTJs 

Experiments were carried out on 15 × 15 passive crossbar arrays (no integrated transistors or 

selection devices) with MTJ diameters of 30 nm, 40 nm, 50 nm, and 60 nm. A scanning electron 

microscope (SEM) micrograph of the array layout is shown in Fig. 1(a). Details of the MTJ array 

fabrication can be found in Appendix A. The crossbar arrays are fabricated without integrated 

control circuitry, so all measurements are made through port-to-port measurements using source 
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measure units and a switch matrix. This approach allows for detailed characterization and control 

of individual devices, as we describe below, but does not allow us to control and characterize 15 

voltages and currents simultaneously.  

The dataset used for classification was the Wine dataset [51], which included 178 samples of 

wine. Each sample has 13 recorded characteristics (for example, alcohol concentration, color 

intensity, etc.) and an associated label for the cultivar from which the wine was produced.  

To avoid trivial convergences of the learned weights towards the class-centroids, a simple 2-

layer network was constructed. The architecture of the neural network is shown in Fig. 1(b) and 

the mapping to hardware shown in Fig. 1(c). The neural network includes 13 input neurons, 6 

hidden neurons, and 3 output neurons (one for each of the possible cultivars), producing a 13 × 6 

weight matrix for layer 1 and a 6 × 3 weight matrix for layer 2. Consequently, we fit our entire 

network into the 15 × 15 array, necessarily limiting its size, in contrast to Ref.  [36], where the 

same array was used to 28 times to emulate a large network through reprogramming the same 

array during the forward pass.  Drawing inspiration from the inhibitory and excitatory synapses 

found in the human brain, we chose to implement weights with two MTJ devices. The weight of 

the dual MTJ synapse is proportional to the conductivity difference between the two MTJs, thus 

allowing us to implement negative weights. In layer 1, weights were implemented with adjacent 

devices arranged left-right, but in layer 2 they were arranged adjacently up-down. This was done 

to maximize array utilization. However, there is a subtle difference in operation between layers 1 

and 2 because of this. More specifically shown in Fig. 1(c), the arrangement of implemented 

weights in layer 1 requires the difference in columns on the output to be taken, whereas in layer 

2 the difference on the output is not necessary. Instead, both positive and negative input values 

are required on the rows in layer 2. Both methods carry out exactly the same function, just in a 

different manner. Network training was performed offline, and the learned weights were 

subsequently downloaded into the MTJ crossbar by serially programming individual devices. 

The inference accuracy was determined by reading all device conductance states after 

programming and using these to scale the currents in software and simulate the number of 

correctly predicted wine classifications. After writing weights to the crossbar and measuring all 

effective port-to-port conductances, which include device non-idealities, line resistances, sneak 

paths, etc., we have all the information necessary to determine the accuracy the solution would 

produce in an inference process. The inference process itself, involving summing currents to 

carry out vector matrix multiplications (VMMs), normalizing, and passing through activation 

functions, can be carried out in software, since we have verified that these steps do not introduce 

too much noise or uncertainty to the outcome to invalidate the results. We have verified that the 

applied voltages are in a regime where device conductances have no measurable voltage 

dependence and our measurements of this network satisfy the superposition principle of linear 

circuits (see Appendix B). Simulating the full vector-matrix multiply using the individually 

measured port-to-port device properties reduces the need for the additional external electronics, 

and focuses most directly on the performance of the passive MTJ crossbar array itself. 

Additionally, measuring these device properties allows for more thorough analysis of the 

hyperparameter tuning required to achieve software-equivalent accuracy. This approach is both 

quantitatively and qualitatively different from the one taken in Ref. [36] for a few reasons. 

Unlike traditional binary neural networks, as implemented in  [36], we opted to only binarize the 
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weights rather than the signals as well. Consequently, we are modeling the transmission and 

activation of continuously valued signals on a binary network. In addition, we implicitly assume 

a classic analog to digital conversion of the current through a transimpedance amplifier, though 

we don’t explicitly include this in our model. In Ref. [36], the researchers explicitly implemented 

a circuit for converting currents into a temporal code by charging a capacitor and counting clock 

cycles before passing into a software activation function. Such temporal codings are potentially 

more energy efficient than traditional analog to digital conversion. In principle, such an approach 

could also be used for our passive array; however, it would require a more careful analysis of the 

bit precision, and would not be expected to change the results of our analysis provided the device 

behavior is sufficiently linear. 

To simulate the classification of an individual wine sample, the 13 wine attributes (inputs), 

normalized to be between 0 and 1, were first transformed into voltages by multiplying by a 

constant voltage Vread (0.2 V); this is the voltage at which each port-to-port device conductance 

was read in hardware after serial programming. The VMM for layer 1 was then carried out using 

these voltages on the rows of the array to calculate the currents on the columns. The currents 

were normalized into dimensionless quantities by dividing by the product of Vread and a 

conductance hyperparameter 𝑔𝑛𝑜𝑟𝑚. The 6 outputs of layer 1 (z1 … z6) were obtained by taking 

the difference between adjacent columns and adding a bias. Layer 1 outputs were then fed 

through a hyperbolic tangent activation function to obtain layer 2 inputs (a1 … a6). Both positive 

and negative values of each an were multiplied by Vread to use as input voltages on adjacent rows. 

In layer 2 the output currents were again normalized to dimensionless quantities and a bias was 

added before being fed through a softmax activation to determine the network classification 

prediction. For each input, a correct result was tallied whenever the appropriate output current 

was the largest of the three. 

In Fig. 1(d), the simulated current values from each of the three output columns of the MTJ array 

are shown over all 148 training samples and 30 test samples for a single weight matrix solution. 

The accuracy is 99.3 % on the training set and 93.3 % on the test set. This high level of 

performance is obtained after optimizing the 𝑔𝑛𝑜𝑟𝑚 hyperparameter, as discussed in the Accuracy 

Optimization section below. The accuracies on the training dataset for all 300 unique weight 

matrix solutions trained offline and programmed into the MTJ array are shown in Fig. 1(e). The 

maximum accuracy is 100 %, the minimum is 71.6 %, and the median is 95.3 % over all 

solutions. These results demonstrate that a high-accuracy inference binary neural network can be 

realized using a non-ideal passive MTJ hardware array. Note the classification accuracy of the 

neural network on the training dataset using the MTJ array is an important metric because it 

shows how well the network in hardware can represent the network as it was trained in software. 

All weight matrix solutions trained offline in software achieved a simulated accuracy above 96 

% on the training dataset and 95 % on the test dataset, but due to write errors and device non-

idealities, perfect software-equivalent accuracy could not be guaranteed after transferring the 

weights to hardware. Figure 1(e) shows the extent to which the hardware imperfections play a 

role. As expected, certain solutions performed better than others, but overall the fidelity is 

sufficient to allow for software-equivalent accuracy on average. 
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B. MTJ device and array characterization 

An MTJ is formed by stacking two ferromagnetic layers, referred to as the fixed and free layers, 

together with a thin insulating layer in between. While the magnetization of the fixed layer is 

pinned, the free layer magnetization can be either parallel or anti-parallel to the fixed layer. The 

direction of the free layer can be switched by applying a suitable write current through the MTJ, 

which creates a spin-transfer torque  [52]. When the free layer magnetization is parallel (anti-

parallel) to that of the fixed layer, the MTJ conductance is high (low). In the subsequent 

discussion, we refer to the high and low conductance states as the on-state and off-state, 

respectively, characterized by their conductance values 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓. The relative conductance is 

characterized by a tunnel magnetoresistance ratio (𝑇𝑀𝑅) defined as 

𝑇𝑀𝑅 ≡
𝑔𝑜𝑛 − 𝑔𝑜𝑓𝑓

𝑔𝑜𝑓𝑓
. (1) 

 

The MTJ array is accessed with a probe card that interfaces with an offboard switch matrix and 

three source-measure units. The metal routing to the array rows and columns is shown in the 

zoomed out image of the array (Fig. 2(a)) with the active array region indicated by the white 

dashed box. To write the devices, we use a “V over 2” scheme, which applies Vapply/2 to the 

target column and -Vapply/2 to the target row while grounding all other connections. This ensures 

Vapply is applied to the target device while only half the bias is applied to all the others  [53]. 

Device conductance states were always read by applying a voltage (Vread) of 0.2 V on the target 

row with all other connections grounded and measuring the current on the target column. 

We use a write-verify scheme, shown in Fig. 2(b), to accurately write device states. This scheme 

utilizes a sequence of four pulses (1 ms pulse width) where the first and third pulses write the 

device state with opposite polarities. The first write pulse always attempts to write the device to 

the opposite of the target state, and the third pulse attempts to switch to the target state. For 

example, if the target state is the on-state, the first pulse attempts to write to the off-state and the 

third pulse attempts to write to the on-state. The second and fourth pulses read the device state 

after each write pulse. A device is ensured to be in the target state by checking the conductance 

on/off ratio obtained from the second and fourth pulses. This 4-pulse sequence is repeated with 

increasing Vapply until the on/off ratio condition is met or a maximum voltage limit is reached. 

The maximum applicable voltage is limited to twice the smallest switching voltage in the array 

to eliminate the risk of switching unwanted devices. If the on/off ratio is still negligible at the 

maximum voltage limit, the write is deemed unsuccessful and considered a write error for 

programming the array. The write accuracy was 100 % for the 30 nm array shown here but 

decreased to 85 % as the device size increased to 60 nm. 

The four-pulse write-verify scheme is used instead of a two-pulse scheme because the on/off 

ratio criteria is more reliable than the device conductance, which could vary between on/off 

switching cycles. In addition, the four-pulse scheme is more resilient to cycle-to-cycle write 

errors. For instance, if a device is already in the on-state and the target state is also the on-state, 

the calculated on/off ratio would be close to unity and lead to needlessly increasing Vapply. We 
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avoid such a circumstance by always writing the opposite of the target state first so as to validate 

that the device switched to the correct state on each programming step. 

Figure 2(c) shows the conductance read at 0.2 V as a function of increasing Vapply for an 

individual MTJ in the array with device diameter 30 nm. Also shown on the graph are 

illustrations of the configuration of the free and fixed layers for the corresponding on- and off-

states. For this measurement, Vapply was swept from -1.6 V to 1.6 V and, as indicated by the 

vertical transitions, the free layer magnetization direction flipped at roughly ±1.5 V. 

At the array level, additional complexities arise because of subtle differences from device to 

device. Figure 2(d) plots the histogram of effective switching voltage while Figs. 2(e) and 2(f) 

show the individual device voltage and on-state conductance values for a 15 × 15 MTJ array with 

device diameter 30 nm as a function of device row and column. The values are “effective” 

because no device can be separated from the array and tested in isolation; the values for each 

device are only obtainable from measurements on the device word and bit lines. The data in Figs. 

2(d) – 2(f) were obtained with each device originally in the off-state and then subjected to our 

write-verify scheme to program every device to the off-state again. We measure individual 

device characteristics when the rest of the array is in the off-state because, as a passive array, the 

measured properties of each device state are influenced by the states of other devices in the 

surrounding environment. As more devices are switched to the on-state, it becomes more 

difficult to measure individual device characteristics due to the increased contribution from 

sneak paths  [54,55]. 

Of note in these figures are the variations present in both voltage and on/off conductance states. 

The switching voltage appears to follow a normal distribution with a mean value around 2.2 V, 

but the map of voltages in Fig. 2(e) indicates that variations do not occur uniformly across the 

array. Lower voltages and higher conductance values occur towards the periphery of the array, 

especially at the corners. Similarly, higher switching voltages are required near the center of the 

array, where devices tend to have lower on-state conductance values. This effect is due to a 

combination of line resistance and device-device variations. Device-device variations due to 

minute differences in processing conditions mainly account for the small differences in voltage 

and conductance between adjacent devices. Line resistance, on the other hand, accounts for 

systematic differences across the array. Because of the nanoscale size of the metal word and bit 

lines, the line resistance is non-negligible, and significant voltage drops occur across the 

lines  [48]. This gives the appearance that a device requires higher switching voltage, when in 

reality it may require a comparable switching voltage, but additional voltage is needed to 

compensate for the increased drop associated with the line. In the routing configuration of the 

metal lines in the fabricated arrays, the longest metal lines are on the center row and column, 

while the shortest lines are on the periphery (see Fig. 2(a)). This is the main effect giving rise to 

the distributions shown in Figs. 2(d) – 2(f). Similar distributions are observed in the other 

fabricated sizes of MTJ arrays (see Fig. S1). In general, the switching voltage and standard 

deviation increased with increasing MTJ diameter, as can be seen in Figs. S2(a) and S2(b). This 

trend can be anticipated from the increasing importance of the line resistances as the devices’ 

resistances decrease with increasing diameter. 

C. Weight mapping to hardware and inference accuracy of 300 solutions 
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To encode the weight matrix into the MTJ array, each weight is represented by two adjacent 

MTJ devices, in a scheme inspired by excitatory and inhibitory synapses. The conductances of 

these two devices are denoted 𝑔𝑒 and 𝑔𝑖. The weight is defined as the difference between 𝑔𝑒 and 

𝑔𝑖, divided by a normalization conductance 𝑔𝑛𝑜𝑟𝑚. During offline training, weights were given 

values of {-1, 0, 1} to replicate the possible combinations of 𝑔𝑒 and 𝑔𝑖 MTJ pair states, as shown 

by the magnetization orientations in Fig. 3(a). 

The weight arrangement for layer 1 utilizes rows 1 - 13 and columns 1 - 12 of the MTJ array 

with weights arranged as adjacent devices left-right, whereas layer 2 utilizes rows 1 - 12 and 

columns 13 - 15 with weights arranged as adjacent devices up-down. In all cases the device on 

the left (layer 1) or top (layer 2) of the pair is excitatory and the device on the right (layer 1) or 

bottom (layer 2) is inhibitory. This is clarified in Fig. 3(b), which shows the weight mapping of 

the entire array for both neural network layers, where 𝑔𝑒 devices are labeled in orange and 𝑔𝑖 

devices labeled in blue. The last two rows and last three columns of row 13 are not used in either 

layer of the neural network, and thus are always written to the off-state. 

The dimensionless-equivalent quantity to the current on each column is the sum of weights 

multiplied by inputs for each neuron. Mathematically, the VMM operation for the 𝑘th layer 

manifests as 

𝑦⃗𝑜𝑢𝑡𝑝𝑢𝑡𝑠
𝑘 =

𝐼𝑐𝑜𝑙𝑢𝑚𝑛𝑠
𝑘   

𝑉𝑟𝑒𝑎𝑑 ⋅ 𝑔𝑛𝑜𝑟𝑚
= [𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠

𝑘 ⋅ 𝑉𝑟𝑒𝑎𝑑] ⋅
1

𝑉𝑟𝑒𝑎𝑑 ⋅ 𝑔𝑛𝑜𝑟𝑚
[𝐺̂𝑒

𝑘 − 𝐺̂𝑖
𝑘], (2) 

 

where 𝑥⃗𝑘 and 𝑦⃗𝑘 are dimensionless inputs and outputs, and 𝐺̂𝑒/𝑖
𝑘  are the respective excitatory and 

inhibitory weight matrices. The quantity 
1

𝑔𝑛𝑜𝑟𝑚
[𝐺̂𝑒

𝑘 − 𝐺̂𝑖
𝑘] is a matrix of the dimensionless 

weights, which we denote as 𝑈̂𝑘 , with dimensionless matrix elements 𝑈𝑖𝑗
𝑘  that should be directly 

comparable to the matrix elements of the ideal weight matrix 𝑊𝑖𝑗
𝑘. 

To measure the inference accuracy of all 300 unique weight matrix solutions, each arrangement 

of weights has to be individually written as conductances into the MTJ array. This was done 

using the programming approach shown in Fig. 3(c). All operations in Fig. 3(c) utilize the write-

verify scheme discussed above and illustrated in Fig. 2(b). Because devices in the on-state 

decrease write accuracy by increasing sneak-path parasitics, each weight matrix was 

programmed from an initial state of all devices in the off-state. To ensure this was the case, the 

first step in writing a particular weight solution was to write all devices to the off-state twice, 

also called the “clear operation.” After clearing the array, only the devices that were required to 

be in the on-state for that specific weight matrix solution were written during the “write 

operation.” Once written, the “read operation” was carried out by serially reading the 

conductance of each device at 0.2 V without disturbing the written states. These conductance 

values were used to calculate the effective weights stored in the MTJ array. Finally, the inference 

accuracy was determined in the “simulate” operation by calculating the number of correctly 

predicted wine categories out of the 148 training samples assuming the weight values dictated by 

the measured conductance states during the “read operation.” Results of this procedure are 

shown in Fig. 4 and were also used to produce Figs. 1(d) and 1(e). 
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The 15 × 15 maps displayed in Figs. 4(a) and 4(b) demonstrate the high write accuracy achieved 

by the programming sequence. Figure 4(a) shows the target MTJ device states for a particular 

weight matrix solution with 1 being the on-state and 0 the off-state. Figure 4(b) shows the 

corresponding conductance values obtained during the “read operation” on the MTJ array with 

device diameter 30 nm. As shown previously in Fig. 2(f), there is still variation in the 

conductance values across the array, but the devices in the on-state can nevertheless be 

distinguished from devices in the off-state. This distinction is made clear in Fig. 4(c) which 

shows histograms for the on- and off-states measured during the “write operation.” Both on- and 

off-states have roughly normal distributions with an on/off ratio around 2. The standard deviation 

of the off-state was smaller than the on-state and the distributions slightly overlap near 14 µS. 

Similar on/off- conductance state distributions were observed in other MTJ sizes, but 

importantly, the overlap in on/off-states worsened as MTJ diameter increased, as shown in Figs. 

S2(c) and S2(d). This had detrimental consequences on the ability to accurately clear and write 

device states in larger MTJ sizes, as shown in Figs. S3(a) and S3(b). 

D. Accuracy optimization 

In this study we used the normalization conductance 𝑔𝑛𝑜𝑟𝑚 as a hyperparameter to optimize the 

classification accuracy. By tuning 𝑔𝑛𝑜𝑟𝑚, we could change how well the real weights represented 

the ideal weights determined in software, and this affected the accuracy distribution over all 300 

weight matrix solutions. In the ideal case where all devices have the same 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓, if all 𝑔𝑒, 
𝑔𝑖 pairs are normalized by the same 𝑔𝑛𝑜𝑟𝑚 = 𝑔𝑜𝑛 − 𝑔𝑜𝑓𝑓, the weight values reduce to the pure 

binary values {-1, 0, 1}. This is not the case for a hardware realization because no two devices 

have the exact same 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓. Thus, modifying 𝑔𝑛𝑜𝑟𝑚 can improve how well some real 

weights replicate their ideal counterparts, but can also degrade the fidelity of others. This 

tradeoff means there is an optimal 𝑔𝑛𝑜𝑟𝑚 that minimizes the deviation between the real and ideal 

weights. It also implies that there should be a 𝑔𝑛𝑜𝑟𝑚 that maximizes the accuracy. One might 

expect that these two values of 𝑔𝑛𝑜𝑟𝑚 would coincide. 

An important note is, just like device non-idealities, the optimal value of 𝑔𝑛𝑜𝑟𝑚 for a given 

hardware implementation is impossible to know a priori. In our case, 𝑔𝑛𝑜𝑟𝑚 can be optimized 

because we use measured conductance states of all devices and simulate the accuracy of the 

neural network at different values of 𝑔𝑛𝑜𝑟𝑚. This is made simpler by the fact that the MTJ device 

conductance does not change as a function of voltage for low applied voltages, making the 

current on the columns easily computable as the voltage on the input changes over all wine input 

samples. Because of this dependence, we are also able to test devices individually and add the 

currents, as if we applied all voltages on all the rows at the same time. It should be noted, 

however, that this procedure would not work for crossbars with highly nonlinear elements, such 

as two-terminal selectors. Likewise, at higher biases where the MTJs are more nonlinear, we 

would expect to see deviations from our calculations. 

Simulating the accuracy for any type of hardware neural network becomes more difficult as the 

number of devices increases and the device conductance changes as a function of voltage. 

Hyperparameter optimization of the weight mapping to hardware becomes prohibitive due to the 

large computational requirements of simulation. In most cases the normalization hyperparameter 
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is estimated  [56]. For example, a relatively good approximation of 𝑔𝑛𝑜𝑟𝑚 can be calculated 

trivially as: 

𝑔𝑛𝑜𝑟𝑚 = 𝑔̅𝑜𝑛 − 𝑔̅𝑜𝑓𝑓, (3) 

 

where 𝑔̅𝑜𝑛 and 𝑔̅𝑜𝑓𝑓 are the average values of 𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓 for the array. This is a much simpler 

computation to carry out, but as we will show in the following discussion, it turns out to be a 

poor choice, providing strong incentive for determining the optimal 𝑔𝑛𝑜𝑟𝑚. 

The accuracy distribution of the 300 unique weight matrix solutions for 30 nm devices is shown 

as a function of 𝑔𝑛𝑜𝑟𝑚 in Fig. 5(a). For these devices, the estimated value of 𝑔𝑛𝑜𝑟𝑚 using average 

𝑔𝑜𝑛 and 𝑔𝑜𝑓𝑓 values was 7 μS. This value of 𝑔𝑛𝑜𝑟𝑚 has an inference accuracy with a median of 

only 60.8 %. Surprisingly, a 𝑔𝑛𝑜𝑟𝑚 of 3.4 μS did a much better job of compensating for the array 

characteristics and resulted in a much higher optimized median accuracy of 95.3 %. 

In Fig. 5(b) we show the RMS deviation between the ideal and measured weights as a function of 

𝑔𝑛𝑜𝑟𝑚 over the 300 weight matrix solutions. The total RMS deviation, 𝛥RMS, for a given weight 

matrix solution of the two neural network layers is calculated as: 

𝛥RMS = ∑ √∑(𝑊𝑖𝑗
𝑘 − 𝑈𝑖𝑗

𝑘 )
2

𝑖𝑗𝑘=1,2

 (4) 

 

where  𝑊𝑖𝑗
𝑘 are the ideal weights for node 𝑖𝑗 in network layer 𝑘 and 𝑈𝑖𝑗

𝑘  are the weights for the 

programmed MTJ array determined from the measured conductances scaled by 𝑔𝑛𝑜𝑟𝑚. The 

superscript 𝑘 indicates the associated neural network layer and the summation is performed over 

the weight matrix indices. The point of minimum RMS deviation is significant because this is 

where the measured weights best reproduce the ideal weights. Figure 5(b) shows that 𝛥RMS is 

minimized at 𝑔𝑛𝑜𝑟𝑚 = 5.5 µS, a value that differs from the accuracy-optimized value and is 

much closer to the estimated value of 7 μS. The two different optimized values of 𝑔𝑛𝑜𝑟𝑚 are 

highlighted by the vertical dashed lines in Fig. 5(b). 

Figures 5(c) and 5(d) show distributions of the optimized accuracy and minimum RMS 

deviations over all 300 weight matrix solutions for all four MTJ device sizes fabricated. The full 

set of plots for accuracy and RMS deviation as a function of 𝑔𝑛𝑜𝑟𝑚 are shown in Fig. S4 in the 

supplemental material. Figure 5(c) shows that the maximal median achievable accuracy 

decreases as MTJ size increases, while Fig. 5(d) indicates that the minimum RMS deviations 

simultaneously increase with MTJ size. We attribute these trends to the increasing overlap of 

on/off conductance states as the device size increases (see Figs. S2(c) and S2(d)), which affects 

the clear and write accuracy of the array. Although the maximum median accuracy did not occur 

at the same value of 𝑔𝑛𝑜𝑟𝑚 as the minimum median RMS deviation for any device size, the trend 

of the minimum median RMS deviation does provide an indication of the trend of maximum 

median accuracies, with overall poorer reproducibility predicting lower accuracy. 
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To shed light on the reduction of maximum achievable accuracies in experiments and to explain 

the mismatch between the value of 𝑔𝑛𝑜𝑟𝑚 that maximizes the accuracy and the value of 𝑔𝑛𝑜𝑟𝑚 that 

minimizes RMS deviation, we carried out circuit (SPICE) simulations of inference on an MTJ 

array.  The simulations capture the variations in the two-port conductances by accounting for 

external resistances, line resistances, and random variations in the MTJ properties. The model 

parameters were obtained by fits to measured data. For each MTJ size, 30 separate realizations of 

the device variations were implemented by treating the off-state conductance and 𝑇𝑀𝑅 of each 

MTJ as independent normally distributed quantities consistent with the measured distributions of 

values. Figures 6(a) and 6(b) show the full model of the simulated accuracy and RMS deviation 

as a function of 𝑔𝑛𝑜𝑟𝑚 in the presence of line resistances for a representative realization of 

device-device variations in the 30 nm diameter array. The simulation reproduces the 

experimental finding that network accuracy is not maximized at the value of 𝑔𝑛𝑜𝑟𝑚 that 

minimizes the RMS deviation. For comparison, Figs. 6(c) and 6(d) show that when these 

simulations were carried out in the ideal case, with no line resistances or device variations, so 

that 𝑔𝑜𝑓𝑓 and 𝑇𝑀𝑅 are the same value for all devices, the network accuracy maximizes at the 

same value of 𝑔𝑛𝑜𝑟𝑚 that minimizes the RMS deviation. Similar comparisons of simulated 

accuracies and RMS deviations as a function of 𝑔𝑛𝑜𝑟𝑚 for different MTJ diameters with and 

without line resistances and device variations are provided in Figs. S5 and S6.  

These simulations reveal that the line resistances amplify the effects of the device variations. We 

found that in simulations that neglect line resistances, to get results close to those in experiment, 

the device variations needed to be much larger than would be consistent with the distributions 

measured from single device measurements. Without line resistances, the voltage drop across 

every MTJ on a row was the same. However, when line resistances are included, the voltage 

drops across each device depend on the state (parallel or antiparallel) of each MTJ along that 

row. In the simulations that include the line resistances, the variations in the devices taken from 

other measurements lead to good agreement between the experiments on the arrays and the 

simulations of the arrays. 

The simulated maximum achievable accuracies as a function of the MTJ diameter obtained over 

30 different realizations of the MTJ device variations and 300 different weight matrix solutions 

are shown in Fig. 6(e), along with the experimental maximum achievable accuracies. In the 

absence of device-to-device variations and line resistances, the mean value of the maximum 

accuracies of the 300 different weight solutions obtained is about 99 %. The device conductances 

scale quadratically with the MTJ diameter, causing a corresponding increase in the relative 

variations in the two-port conductances in the presence of fixed line resistances. These increased 

variations, along with lower write accuracies, reduce the accuracies in both the experimental data 

and simulation results shown in Fig. 6(e). Similar variations of simulated maximum achievable 

accuracies as device parameters are scaled, starting from the nominal values corresponding to the 

MTJ array with 30 nm diameter, are provided in Fig. S8.  

Using the simulations, we also calculate the distribution of ξnorm, which is the ratio of 𝑔𝑛𝑜𝑟𝑚 at 

minimum RMS deviation to the 𝑔𝑛𝑜𝑟𝑚 at maximum accuracy as a function of MTJ diameter, and 

show it in Fig. 6(f). In the ideal case, ξnorm is unity for all MTJ sizes because the 𝑔𝑛𝑜𝑟𝑚 that 

minimized RMS deviation is always equal to the 𝑔𝑛𝑜𝑟𝑚 that maximized accuracy. In the full 

model, as the relative variations of conductance increase with MTJ diameter so does the 
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disagreement between the 𝑔𝑛𝑜𝑟𝑚 value that maximizes accuracy and the 𝑔𝑛𝑜𝑟𝑚 value that 

minimizes RMS deviation, as seen by the increasing magnitude of ξnorm with MTJ diameter in 

both experimental and simulation data. By reproducing this disagreement in variational 

simulations, we posit that maximizing the network fidelity is not the same as maximizing the 

network accuracy for neural networks. This observation has important implications in embedded 

inference applications and suggests techniques to compare a hardware recreation of a network to 

its software source are needed to improve the resilience of these systems. 

III. DISCUSSION 

In this work, a 15 × 15 passive MTJ array was fabricated and programmed to analyze a hardware 

implementation for inference of a binary neural network trained to classify the Wine dataset [51]. 

To investigate the role played by hardware non-idealities, 300 unique weight matrix solutions 

were programmed into the array using a write-verify process and the accuracy was determined 

from the read conductance values. As expected, certain weight solutions perform better than 

others, but we find the accuracy values can be boosted significantly by optimizing the 

normalization conductance value. Surprisingly, the value of normalization conductance that 

minimizes the median of weight RMS deviation is not the same value that maximizes the median 

classification accuracy over all 300 weight solutions. These findings provide insight into the 

problem of embedded inference with MTJ-based hardware accelerators and are an integral step 

forward on the pathway toward large-scale integration of hardware devices with imperfections 

and variations. In reference [36], the MTJ network accuracies were about 1 % to 2 % below the 

baseline accuracy, however, as we show in this work, studying an ensemble of network solutions 

reveals a distribution of performance levels. Consequently, a broader exploration of the solution 

space compiled onto the crossbar and additional optimizations can likely lead to equivalent 

performance to the targeted baseline.  

With this in mind, the work described here involves a small prototype array and a simple two-

layer neural network applied to a very basic dataset. The results obtained, however, have 

important implications if scaling of this type of neural network is to be pursued. Any full-scale 

realization of a neural network using a passive MTJ array will necessarily include supporting 

complementary metal-oxide semiconductor (CMOS) circuitry. Co-design of the supporting 

circuits with the array is important since the properties of the former affect the overall accuracy, 

the overall power, and the requirements on the properties of the devices used in the array itself.  

One important co-design constraint is the precision of the readout circuits. For single-bit 

precision in integrated binary neural network proposals  [57], sense amplifiers are commonly 

used as thresholding elements, as used in commercial MTJ memory arrays. As neural networks 

are scaled to higher precisions, the readout circuits require a better signal-to-noise ratio, skewing 

the ratio of the power spent in the system toward the supporting circuits. Extending the sense 

amplifier to multibit precision can involve using analog to digital conversion techniques (such as 

successive approximation or flash). In this approach, the power dissipation scales as the square 

of the signal to noise ratio (SNR) [58]. In order to overcome this problem and improve output 

precision without significantly increasing the power of the amplifier, a recent work proposes 

using time-domain readout by measuring the RC charging time of the output line, where R is 

determined by the MTJs in the column based on input devices [36].  
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Once the co-design of the readout circuits is optimized with respect to the array, the following 

considerations determine the optimal array size. For a fixed current budget (and, hence, 

bandwidth) of these sense amplifiers, and a fixed 𝑇𝑀𝑅 of the MTJs, a successful VMM 

operation needs a high signal-to-noise ratio, which depends on the size of the array and the line 

resistances. For a fixed MTJ 𝑇𝑀𝑅, larger arrays require a proportional reduction in the line 

resistances. This ensures that, during array operation, most of the voltage is dropped across the 

MTJs. Once the physical limits of scaling line resistances are reached, the array size could be 

further increased by increasing the MTJ resistances (while keeping the 𝑇𝑀𝑅 fixed) until the 

bandwidth constraints on the sense amplifier are reached. The resulting array size is optimal. 

Scaling the VMM to larger sizes does not improve the performance of the system, since it runs 

into the bandwidth limitations of the sense amplifiers, while a smaller and faster VMM does not 

take full advantage of the available power budget. 

Practically speaking, while the line resistances of the row and column lines used in this array are 

about 6 Ω per square, standard CMOS back-end-of the line processes using a dual damascene 

process are capable of producing interconnects with sheet resistances less than 1 Ω per 

square [59,60]. The resistance-area-product (RA) of the MTJs used in this study is about 20 

Ω·μm2. Higher MTJ resistances can be achieved, for example, by scaling down the MTJ 

diameter and by increasing the tunnel barrier thicknesses. While decreasing the diameter is 

limited by the thermal stability of the free layer magnetization, increasing the tunnel barrier 

thickness requires increased switching voltages [61]. By varying the MTJ stack composition and 

processes involved during fabrication, RA values from a few to about 500 Ω·μm2 capable of 

voltage switching [61,62], and RA values of several kΩ·μm2 to a few MΩ·μm2 with field-assisted 

switching have been reported [63,64]. 

These considerations suggest that scaling of a passive MTJ array of the type investigated here is 

possible up to an optimal size, even when the necessary peripheral CMOS circuitry is included. 

Determination of the optimal size will involve detailed engineering design that considers all the 

necessary circuitry and the specifics of the semiconductor process to be used. In Ref. [36] a 

significantly larger array was implemented, and showed only minimal degradation in 

performance as compared to the ideal benefit. An important factor in this improvement is both 

the larger network size as well as the reduced line resistance. Nevertheless, it is likely that 

significant energy savings over conventional von Neumann-limited, software-based approaches 

will be realized by implementing large neural networks using this type of array. 
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APPENDIX A: MTJ ARRAY FABRICATION 

The fabrication of a 15x15 MTJ device array started by defining the bottom wordlines, beginning 

with sputter depositing 5 nm of aluminum oxide followed by 200 nm of TaN (≈200 µΩ∙cm) onto 

a thermally oxidized silicon substrate. The thin aluminum oxide layer acted as an etch stop 

during reactive ion etching (RIE) of the TaN so the thermal silicon oxide surface of the substrate 

was not attacked. Photolithography (i-line) was then used to pattern photoresist into alignment 

marks, metrology features used in subsequent process steps, and active array regions of 400 nm 

wide lines with a full pitch of 800 nm. This photoresist was used as a mask for RIE of the TaN, 

which had to be completely etched down to the aluminum oxide stop layer otherwise the 

wordlines could have been potentially shorted. Following wordline RIE, we sputter-deposited 

200 nm of SiO2 onto the wafer. Defining the wordlines concluded by performing chemical-

mechanical polishing (CMP) to remove material from the wafer until left with exposed TaN 

wordlines approximately 120 nm thick, co-planar with the silicon oxide refill and quite smooth 

(RMS roughness ≈ 0.3 nm). Low RMS roughness for the surface on which the MRAM film is 

deposited is crucial for achieving the desired electrical and magnetic properties of the MTJs. 

Prior to MRAM film deposition an in situ sputter etch removed any oxidized TaN at the surface 

of the wordlines, allowing for deposition directly onto low resistance TaN. The bottom-pinned 

MRAM stack was sputter deposited in a physical vapor deposition system, and then annealed in 

vacuum at 335 ℃ for 1 hour. A detailed description of the MRAM film stack including magnetic 

properties is given in Ref.  [65]. 

After the deposition of the MRAM film, the hardmask for etching the film was deposited and 

patterned. TaN (40 nm) was sputter deposited followed by 50 nm of diamond-like carbon (DLC) 

and a final layer of 10 nm Cr. An aligned e-beam exposure then patterned an array of holes in 

high-resolution negative resist (HSQ) where the MRAM pillars were to be located. The various 

hardmask layers were then etched successively using a chlorine-based RIE process to transfer the 

patterns from HSQ into the Cr layer, then a CO2 RIE process to etch the DLC without attacking 

the Cr, and finally a CHF3/CF4/Ar-based RIE process to etch the TaN without attacking either 

the Cr or DLC. DLC has excellent ion milling selectivity and provided most of the masking 

during ion milling of the MRAM stack. The primary purpose of the TaN layer was to act as a 

conductive cap since this material would be at the surface after subsequent steps described 

below. 

After the hardmask was patterned, a multi-angle ion milling process was used to etch the MRAM 

stack down to the wordline layer. It was important to avoid incomplete milling as this would 

leave all the wordlines shorted together by the residual MRAM stack. Overmilling also needed to 

be avoided lest the mill penetrate too deeply into the wordlines. The final milling step was an 

oblique angle 200 V cleaning step to ensure redeposited metal was removed from the device 

sidewalls since it could possibly short the tunnel junction if present. 



 

15 
 

Following ion milling, the MRAM pillars were encapsulated with 5 nm of ion-beam-deposited 

aluminum oxide. SiO2 (200 nm) was then sputter-deposited to fully encapsulate the MRAM bits. 

Using CMP we first planarized the wafer and then continued polishing until roughly midway into 

the TaN hardmask layer. This TaN served as a self-aligned via connecting the bitline directly to 

the MRAM devices. 

The final steps in the process defined the vias, bitlines, and probe pads necessary for electrically 

connecting the pillars. Photolithography and RIE were first used to pattern vias in the SiO2/alumina 

so the top electrodes would be able to electrically contact the wordlines beneath the MRAM bits 

at landing pads defined during wordline processing. Following the via etch, we sputter-deposited 

5 nm Cr/≈1.2 nm Au/5 nm Cr onto the wafer, where the thickness of each metal was chosen such 

that the total resistance of the bitlines patterned from this film would match the resistance of the 

bottom TaN wordlines. Prior to depositing this metal film, an in-situ ion mill removed any oxide 

at the surface to ensure good electrical contact between the Cr and the TaN. Optical lithography 

was then used to pattern bitlines 400 nm wide on an 800 nm full pitch. The photoresist acted as a 

mask for the ion milling used to pattern the Cr/Au/Cr into the bitlines and was stripped using 

solvents following the etch step (see Fig. 1(a) for an image of the active region of one such array 

after completion of bitline processing). The process was completed with an optical lithography 

step accompanied by a Ta/Au deposition to pattern probe pads connected to the wordlines and 

bitlines used to make electrical measurements on devices. 

APPENDIX B: VERIFICATION OF CURRENT LINEAR SUPERPOSITION 

In general, MTJs are non-linear elements with voltage-dependent resistances  [66]. However, in 

the MTJ array considered in this work, the voltage drop seen across each MTJ is small enough that 

we can neglect these non-linearities and consider the MTJs to be linear elements. This allows us 

to analyze the full VMM element-by-element by applying a read voltage one row at a time. The 

resulting currents are then added up with appropriate scaling to obtain an approximation for the 

full VMM current output. In this Appendix, we describe experiments to test the linearity of the 

MTJ array. In these experiments, we compare the full VMM currents against those computed by 

summing the currents produced by applying read voltages one row at a time. 

In the first set of measurements, we constructed 100 input vectors 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠 of size 15 with elements 

𝑥𝑖 being 0 or 1 chosen randomly with equal probability. A voltage was then applied simultaneously 

on all rows where 𝑥𝑖 = 1 while rows with 𝑥𝑖 = 0 were grounded. The applied voltage was varied 

from 0.1 V to 0.5 V in steps of 0.1 V. Current 𝐼𝑗,𝑝 on column 𝑗 was measured at each applied 

voltage for all 100 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠. We refer to these measurements as “parallel” measurements, indicated 

by the subscript 𝑝. The full VMM of each of the 100 𝑥⃗𝑖𝑛𝑝𝑢𝑡𝑠 can be obtained from these 𝐼𝑗,𝑝.  

In a second set of measurements, we perform a current read on each individual device 𝐼𝑖𝑗,𝑠 by 

applying a read voltage (0.2 V) on the 𝑖th row and measuring the current on the 𝑗th column while 

all other connections are grounded. We refer to these measurements as “serial” measurements, 

indicated by the subscript 𝑠. An approximation of the full VMM was then obtained for comparison.  



 

16 
 

Figure 7 plots the relative RMS deviation between the current vector for devices measured in 

parallel and serially, where the individual currents were calculated from the device conductance 

as measured at 0.2 V. The relative RMS deviation for Fig. 7 is calculated as: 

Relative RMS Deviation =  
√∑ (𝐼𝑗,𝑝 − ∑ 𝑥𝑖  𝑔𝑖𝑗,𝑠 @ 0.2 𝑉𝑖 𝑉𝑎𝑝𝑝𝑙𝑦)

2
𝑗

√∑ (∑ 𝑥𝑖  𝑔𝑖𝑗,@ 0.2 𝑉𝑖 𝑉𝑎𝑝𝑝𝑙𝑦)
2

𝑗

, (B1) 

 

where 𝑔𝑖j,s @ 0.2 𝑉 is the conductance of an individual device measured at 0.2 V. The deviation is 

less than 3 % for applied voltages up to 0.5 V and more typically about 1 %. In addition, the 

standard deviation in the measurements of the current of each individual device is ≈10 nA, giving 

a measurement uncertainty of ≈1 %, which accounts for nearly half the measurement error in Fig. 

7. This shows that even if there is some error on the current of individual columns, the error in the 

output vector is below 2 %, and based on Fig. 1(d), this does not change the accuracy significantly. 

These results demonstrate that the port-to-port resistance of individual devices in the array is 

sufficiently linear with applied voltage and the assumption that linear superposition applies to this 

system is valid. It also shows the devices are sufficiently linear with respect to the conductance 

values at 0.2 V and the simulation described in the main text provides valid conclusions. Each of 

these measurements was performed on all sizes of MTJ arrays used in the paper and the findings 

are identical (see full set of figures in Fig. S7). 
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FIGURE CAPTIONS 

FIG. 1. Classification of the Wine dataset using a 15 × 15 MTJ array. (a) Scanning electron 

microscope (SEM) micrograph of the MTJ array. (b) Neural network architecture used to classify 

the Wine dataset samples, containing 13 input neurons, 6 hidden layer neurons (layer 1), and 3 

output neurons (layer 2). The hidden layer and output layer neurons each use two MTJs to 

implement three-level weights. (c) Schematic of the neural network mapping to the MTJ 

hardware. The hardware equivalent neural network function is the same color as the 

corresponding function shown in (b). Layer 1 outputs 𝑧𝑛 (𝑛 = 1 − 6) are transformed by a tanh 

activation into layer 2 inputs 𝑎𝑛. (d) Currents simulated on the output columns of layer 2 in the 

MTJ array over 148 training and 30 test inputs for a single weight matrix solution with 99.3 % 

and 93.3 % accuracy on the training and test datasets, respectively, after programming weight 

values into devices. (e) Optimized classification accuracy on the training dataset of 300 different 

weight solutions tried in the array. Measurements for (d) and (e) were both performed on an MTJ 

array with a device diameter of 30 nm. 

 

FIG. 2. Neural network hardware. (a) Zoomed out SEM image, showing the 15 × 15 MTJ array 

(dashed white box) as part of a larger, unused array. Lighter traces are the metal routing lines. (b) 

Pulse sequence used for writing and verifying devices with alternating write and read biases. The 

switching voltage for each device is measured by repeating this sequence while increasing Vapply 

until the device switches. (c) Switching curve of a device (diameter 30 nm) with a 1.5 V 

threshold from the anti-parallel (off) state to the parallel (on) state. The conductance was 

measured at a fixed 0.2 V bias. Also shown are the MTJ configurations in each state. (d) 

Histogram of switching voltages on the 30 nm diameter array, showing essentially a normal 

distribution. (e) Color plot of the measured switching voltages in the 30 nm diameter array. The 

voltages are higher near the center where the line resistance is greatest. (f) Color plot of the 

measured on-state conductances of the MTJs in the array. The values are lower near the center 

where the line resistance is highest.  
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FIG. 3. Writing 300 unique weight solutions and testing inference accuracy. (a) Illustration of 

how weights were encoded in the hardware using adjacent devices (𝑔𝑒 devices are labeled in 

orange and 𝑔𝑖 devices labeled in blue). (b) Layout of the nearest neighbor differential weight 

mapping. In the first layer, differential weights are defined by neighboring columns but in the 

second layer they are defined within neighboring rows. (c) Block diagram of the write algorithm 

to program the arrays and test inference accuracy. 

 

FIG. 4. Writing weight matrices and measuring conductance. (a) A target matrix solution in the 

passive MTJ array. (b) The “read operation” results of the programmed crossbar to the target 

array (diameter 30 nm) using the write-verify scheme. (c) Conductance values of each device 

measured in the on- and off-state during the “write operation.” The histogram shows separation 

of the states. 

 

FIG. 5. Optimization of accuracy and RMS deviation over 𝑔𝑛𝑜𝑟𝑚 and MTJ diameter. Box-

whisker plot of (a) accuracy vs. 𝑔𝑛𝑜𝑟𝑚 and (b) RMS deviation vs. 𝑔𝑛𝑜𝑟𝑚 for all 300 weight 

solutions in the 30 nm diameter array. Vertical dashed lines indicate the optimum values for the 

two different criteria (3.4 µS and 5.5 µS) determined from the median values at each 𝑔𝑛𝑜𝑟𝑚. (c) 

Box-whisker plots of the distributions of optimized accuracies as a function of MTJ diameter. (d) 

Box-whisker plots of the distributions of minimum RMS deviations as a function of MTJ 

diameter. In each figure, whiskers indicate maximum and minimum values, whereas box edges 

represent 25 % and 75 % quartiles and the middle line is the median (50 % quartile). 

 

FIG. 6. Accuracy and RMS deviation as a function of the scaling parameter between measured 

and model networks, 𝑔𝑛𝑜𝑟𝑚, and MTJ diameter. Panels (a-d) show the results of simulations with 

all device variations and line resistances included (full model) and also with no non-idealities 

(ideal model).  Results are for a single realization of device conductance variations of the 30 nm 

diameter MTJ array. Shown are box-whisker plots of the distribution of results over the 300 
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unique weight solutions. Panels (a) and (b) show accuracy and RMS deviation, respectively, as a 

function of 𝑔𝑛𝑜𝑟𝑚 for the full model. Panels (c) and (d) show the same for the ideal model. For 

each box-whisker plot (a-d), whiskers indicate maximum and minimum values, whereas box 

edges represent 25 % and 75 % quartiles and the middle line is the median (50 % quartile). 

Panels (e) and (f) show the optimized accuracies and values of ξnorm (see text) for experimental 

results and the results of simulations like those in (a-d) for different MTJ diameters. The symbols 

give the mean values. For the experimental results and the ideal model simulation results, the 

whiskers give the one-standard-deviation width of the distribution of results over the 300 

different solution matrices. For the full model results, the whiskers give the one-standard-

deviation width of the distribution over 9000 solutions (300 solution matrices for each of 30 

realizations of device conductance variations).  

 

FIG. 7. Box-whisker plots showing the distribution over 100 randomizations of connected rows 

of the relative RMS deviation between the current vector output of the 15 columns based on the 

conductance of individual devices read at 0.2 V as a function of applied voltage. Whiskers 

indicate maximum and minimum values, whereas box edges represent 25 % and 75 % quartiles 

and the middle line is the median (50 % quartile). 
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