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Abstract  
Ferroelectricity has been shown promising in emulating the synaptic characteristics of human brains. 

Utilizing ferroelectricity for brain-inspired computing has been proposed as a feasible route in 

addressing technical challenges in memory and computing. In this work, we demonstrate the use of 

ferroelectric van der Waals (vdW) halide perovskite for synaptic emulation. The two-terminal 

ferroelectric synapse based a vdW material (R)-(−)-1-cyclohexylethylammonium)PbI3 (R-CYHEAPbI3) 

exhibits voltage pulse-dependent weights modulation with a total on/off ratio of 50 and good endurance 

up to 107 cycles. The energy consumptions per synaptic operation for both short-term plasticity and 

long-term plasticity reach pico joule level. The device also shows reasonable write linearity and small 

cycle-to-cycle variation, as well as promising spike timing dependent plasticity and paired-pulse 

facilitation function. Numerical simulations with R-CYHEAPbI3 synapses-based neural network 

suggest the potential of R-CYHEAPbI3 synapses for pattern recognition. Ferroelectric vdW halide 

perovskites would render opportunities in exploiting their dimensionality, superior optoelectronic 

properties, and their mild materials processing condition for engineering the synaptic device 

performance. 
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Main text 

 

I. INTRODUCTION 

 

Artificial synapses, as one of essential building blocks in the neuromorphic circuits, mimic the way 

biological synapses memorize and learn in human brain.[1-6] In neuromorphic circuits, learning is 

achieved by the tuning of the weight of each synaptic device following certain mathematical 

algorithms.[1] To realize efficient parallel learning and inference in neuromorphic computing, synaptic 

devices must carry attributes of linear and symmetric weight-excitation relation, a large number of non-

volatile states and fast switching speed.[1, 7, 8] 

Among extensive demonstrations of synaptic devices,[9-11] ferroelectricity-enabled multi-state 

memristive synapse has recently attracted some attentions.[11-15] In a ferroelectric synapse, non-

volatile synaptic weights are encoded in ferroelectric polarization. The multilevel polarization states of 

ferroelectrics are mainly due to the multiple-domain structure. So far the mostly studied ferroelectric 

materials for synapse have been mainly focused on oxide ferroelectrics. They show a large polarization, 

reasonable number of synaptic states, good endurance and retention. However, materials processability 

and defects (e.g. vacancies) have been issues for their scalability and reliable operation.[16] Expanding 

the materials space beyond oxides for synaptic application may provide new opportunities for addressing 

some issues that oxides ferroelectrics suffer from. Van der Waals (vdW) halide perovskites have 

exhibited superior electrical and optical properties with great feasibility in materials processing and 

device miniaturization.[17-21] The demonstration of ferroelectric synapse in halide perovskite would 

provide us a new material platform in designing synapses with demanded characteristics.[20, 22-25]  

Herein, we demonstrate the use of an one-dimensional (1D) vdW halide perovskite ((R)-(−)-1-

cyclohexylethylammonium)PbI3 (R-CYHEAPbI3) for ferroelectric synapses. As shown in Fig. 1(a), in 

our ferroelectric R-CYHEAPbI3, Pb-I atoms crystallize to 1D face-sharing octahedral chains loosely 

bound by organic ligands. The inorganic lead iodine octahedra dominate semiconducting properties, 

while organic molecules are responsible for switchable ferroelectric polarization.[26] The vdW nature 

of this material allows the structural flexibility in enabling both band transport (PbI6) and ferroelectricity 

(organic groups). We have successfully achieved the synaptic plasticity in R-CYHEAPbI3 ferroelectric 

diode, which is featured by a reasonable number of non-volatile states, pulse-dependent weight update, 

good endurance, nearly linear weight-updates, small cycle-cycle variances and nondestructive read 

operations. Based on such device, we further demonstrated short- and long-term plasticity (STP and 

LTP), spike timing dependent plasticity (STDP) and paired-pulse facilitation (PPF) function. With the 

experimental synaptic characteristics, a parallel training with back propagation algorithm is executed in 

a crossbar-based two-layer neural network with which a high classification accuracy has been achieved.  

 

II. METHODS AND CHARACTERIZATION 

 

Figure 1(b) and 1(c) show the atomic crystal structures of R-CYHEAPbI3. R-CYHEAPbI3 belongs to 

P21space group and has lattice constants a = 8.628 Å, b = 8.211 Å, c = 22.994 Å and β = 89.5121° at 

room temperature.[26, 27] Compared with most conventional ferroelectrics of BaTiO3 and 

Pb(ZrxTi1−x)O3,[28] the halide perovskite R-CYHEAPbI3 are featured by large lattice constants and low 

processing temperature due to the existence of large organic groups and vdW gaps (Fig. 1(a)). We 

employ a solution method to synthesize R-CYHEAPbI3 mm-sized bulk crystals and apply a standard 

spin-coating approach to synthesize thin film form (see Experimental Section in Supplemental 

Material[29]). For the spin coating method, briefly, the saturated solution of R-CYHEAPbI3 was spin-

coated on the substates and then film is crystallized. Figure 1(d) shows the x-ray diffraction (XRD) 

patterns of both R-CYHEAPbI3 powders (grinded from their single crystals) and spin-coated film on 

silicon substrate with Au electrode deposited. With the simulated XRD result of ideal R-CYHEAPbI3 

crystal from our previous research,[26] we can confirm the synthesis and deposition of expected polar 

P21 phase (Experimental Section in Supplemental Material). In the spin-coated film with Au electrode, 

XRD result shows the presence of Au (111) peak. The simple spin-coating approach in fabricating the 

R-CYHEAPbI3 thin film makes it easily be integrated on many technological important substrates.  
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FIG. 1. Ferroelectric 1D soft vdW halide perovskite R-CYHEAPbI3. a) A schematic of R-CYHEAPbI3 

crystal structure consisting of lead halogen octahedra (PbI6) and chiral organic groups. The helixes 

represent the chiral organic groups and the arrows represent the direction of ferroelectric polarization 

(b direction). Atomic structures of the R-CYHEAPbI3 crystal: b) Side view from a direction and c) Side 

view from b direction. d) Experimental XRD results of grinded power form of R-CYHEAPbI3, spin-

coating film compared to the simulated one. The Au (111) peak rises from the top Au electrode. 

 

The ferroelectric property of R-CYHEAPbI3 at both single crystal and thin film forms has been reported 

in our previous work.[26] More information about the intrinsic properties of R-CYHEAPbI3 can be 

found in our previous work in ref[26].  It is shown that the polar axis of R-CYHEAPbI3 is b direction. 

Similar as many other vdW materials,[30] when its thin film form is developed, most grains align their 

nonpolar axes (the axes that are perpendicular to the vdW gap planes) along the out-of-plane direction 

of the film and only a small portion of grains with their polar axes get aligned with the out-of-plane 

direction of the film.[26] Under a vertical device configuration, the ferroelectric polarization of the 

device is thus proportional to the percentage of the grains with b axis aligned along the out-of-plane 

direction of the film. Such relation has been experimentally confirmed in our previous work.[26] Based 

upon our current and former understanding of the ferroelectric property of R-CYHEAPbI3 material, we 

further fabricate the synaptic device and explore the synaptic behaviors (Fig. 2(a)) based on thin film 

structure of R-CYHEAPbI3. The schematic and morphology of the two-terminal ferroelectric diode is 

shown in Fig. S1(a) and S1(b) (in the Supplemental Material), in which R-CYHEAPbI3 thin film is 

sandwiched between the top Au electrode and the bottom n-type Si (n-Si). The polarization-electric field 

measurement (Fig. S1(c)) shows that the magnitude of ferroelectric polarization of our thin film is 

consistent with previously reported ones. Figure S1(d) confirms the stable I-V curves with applied 

voltages from −0.6 V to 0.6 V for 50 loops. 
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FIG. 2. Characterizations of a two-terminal R-CYHEAPbI3 ferroelectric diode. a) Our proposed 

ferroelectric synaptic device mimics the biological synapse whose weight is modified by presynaptic 

and postsynaptic potentials. b) I-V curves of R-CYHEAPbI3 ferroelectric device at different poling 

voltages following a poling sequence of “virgin” →8 V for 30 s→−4 V for 30 s→−6 V for 30 s. c) 

Variable EPSCs of R-CYHEAPbI3 ferroelectric device with the different Au electrode diameters of 1 

mm, 100 μm and 50 μm, respectively. The write voltage (Vw) is 3 V with a duration of 500 μs, and the 

read voltage (Vr) is 0.5 V. d) and e) Varying resistances after positive and negative write voltage (Vw) 

with a pulse of 0.5 s. The read voltage (Vr) is 0.5 V and read length is almost 20 s. 

 

 

III. RESULTS AND DISCUSSION 

 

The weight of R-CYHEAPbI3 synapse is emulated by the resistance of ferroelectric diode which is a 

function of the relative fraction of aligned ferroelectric domains.[31] External write voltage pulses 

applied on the device are expected to modify the fraction of aligned  domains, thus causing resistance 

to change.[32] Figure 2(b) shows I-V curves of our device Au/R-CYHEAPbI3/Si with the Au electrode 

diameter of 1 mm after different write voltage (Vw) pulses (Au electrode is the positive terminal) with 

the duration of 30 s. For each Vw, the following sequence is virgin state (0 V) →first pulse (8 V) → 

second pulse (−4 V) → third pulse (−6 V). A large dynamic window of the forward current (at 0.5 V 

read voltage, Vr) of two orders of magnitude is observed. With the designed voltage poling sequence, 

we have observed that a positive voltage leads to a drop in resistance, while a negative voltage pulse 

gives a rise. Since our film is relatively thick beyond the tunneling regime, the transport behavior of our 

ferroelectric diode could be understood from thermionic model involving the potential barriers modified 

by ferroelectric polarization. The observation in Fig. 2(b) thus shows that voltage-tuned ferroelectric 

polarization can change the synaptic weight of our device. We adopted pulsed Vw on the R-CYHEAPbI3 

synapses with three different electrode diameters of 1 mm, 100 μm, 50 μm, respectively, to study the 

synaptic characteristics. As shown in Fig. 2(c), Vw of 3 V with the pulse duration of 500 μs as the 

presynaptic spikes applied on the Au electrode can bring the variable excitatory postsynaptic currents 

(EPSCs). The EPSCs of R-CYHEAPbI3 synapses increase under a positive presynaptic spike (or Vw). 

Investigations of voltage pulse-dependent weight update at constant voltage duration per pulse are 
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conducted also with the results shown in Figs. 2(d) and 2(e) in which Vr is fixed to be 0.5 V and six 

different voltage pulses are employed, respectively. It is shown that positive or negative Vw pulses with 

increasing voltage magnitudes and a same pulse duration of 0.5 s lead to varying degrees of change in 

resistance. When the magnitude of positive or negative Vw are bigger than 2 V, the resistances of 

ferroelectric diode can have significant changes.  

Figure 3(a) shows resistance-Vw hysteresis loops with resistance measured at Vr of 0.5 V. In 

characterizing the resistance-write voltage loop, Vw pulses are continuously applied following the path 

of 0 V → 9.2 V → (−6.4 V) → 0 V. It is found that R-CYHEAPbI3 synapses can switch between high 

resistance state (HRS, Rmax ~3×109 Ω) and low resistance state (LRS, Rmin ~6×107 Ω) continuously. A 

higher Vw leads to a larger change of resistance, implied by the slope of resistance-write voltage curves. 

When Vw is above 8 V or below −5.6 V, resistance change pauses suggesting that the polarization may 

reach its saturation values. Overall, resistance change follows a multiple-state transition with a resistance 

span of almost 50 times.  

Figures 3(b),3(c) illustrate the proposed resistance switching mechanism. The observed resistance 

switching can be explained by the tuning of height of potential barrier and the width of depletion region 

at the R-CYHEAPbI3/electrode interface.[33-35] When current flows from Au to Si, the barrier height 

at R-CYHEAPbI3/electrode interface determines its value.[32, 34-36] Specifically, after applying a 

positive Vw, some of ferroelectric dipoles point to n-Si (Pdown). Positive bound charges at the R-

CYHEAPbI3/n-Si interface result in a reduced barrier height. [34, 35]  In this case, under a small positive 

Vr, the device exhibits a relatively lower resistance  than that before the positive write pulse is applied 

(Fig. 3(b)). In contrast, when some of the dipoles are flipped towards the Au electrode (Pup) under 

negative Vw, as shown in Fig. 3(c), the negative ferroelectric bound charges at R-CYHEAPbI3/n-Si 

interface increases the barrier height. In this case, a higher resistance is expected.  

As shown in Fig. 3(d), the LRS and HRS of synaptic devices are obtained after applying Vw of 10 V and 

−6.4 V with the duration of 30 s, respectively. The I-V characteristics of the device right after writing 

and after it is exposed in air for 24 hours are almost identical suggesting a good retention time of the 

analog states for our device. Figure 3(e) shows the retention performance of synaptic devices at HRS 

and LRS, in which no obvious deterioration is found within the 1000 s-duration reads. The Rmax/Rmin 

ratio of this synaptic device with R-CYHEAPbI3 film at 100 nm in thickness is close to 50. Furthermore, 

we fabricated two-terminal R-CYHEAPbI3 synapses with other two different thickness 160 nm (Fig. 

S2(a)) and 60 nm (Fig. S2(b)) with Rmax/Rmin ratio of 33 and 65, respectively. The dependence of 

Rmax/Rmin ratio on film thickness can be contributed the relative percentile of width of depletion region 

over the whole film thickness.”[33-35] The polarization switching of R-CYHEAPbI3 film was tested by 

using the PUND method (Experimental Section in Supplemental Material). After 107 bipolar switching 

cycles, the remanent polarization remains almost the same as the initial value of poled R-CYHEAPbI3 

film (Fig. 3(f), P0 is the remanent polarization at first poling cycle).  
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FIG. 3. Tunable resistance of two-terminal R-CYHEAPbI3 synapses. a) Resistance hysteresis loops 

versus pulse Vw (each pulse is 10 s). Vr is 0.5 V. Starting from the initial state of R-CYHEAPbI3 device 

(the central orange point), two loops are collected. Schematics of polarization states are shown in the 

bottom-right (Pdown) and top-left (Pup). Illustrations of ferroelectric polarization-modified carrier 

distributions and band diagrams: b) Ferroelectric polarization points to n-Si interface (Pdown) after 

applying positive Vw; c) Ferroelectric polarization points to Au electrode (Pup) after applying negative 

Vw. EF, Ec and Ev represents Fermi level, conduction band minimum and valence band maximum, 

respectively. d) Comparisons of I-V curves of as-written and after 24 h LRS and HRS. e) The retention 

performance of synaptic devices at HRS and LRS with 1000 s-duration reads. f) Fatigue endurance tests 

of remanent polarization. 

 

The STP and LTP are the basis synaptic functionalities executing neural computation.[37, 38] Typical 

STP behaviors of our Au/R-CYHEAPbI3/Si synapses can be obtained by applying small Vw pulses. As 

shown in Figs. S3(a) and S3b, EPSCs are trigged by a small Vw of  1 V with the duration of 500 μs and 

the magnitude of EPSCs decays fastly to the initial states, which indicates only termporal enhanced 

connection exists between two adjacent neurons.[39] Figure 4(a) shows the characteristic of PPF which 

reflects the activity-dependent enhancement of EPSC evoked by the second pulse.[40] The inset in Fig. 

4(a) is the PPF performance with the pulse interval of 180 μs. The plasticity of PPF is calculated as the 

increased proportion of second peak current compared with the first peak current. [37]  Under the paired-

pulse with a magnitude of 1.5 V and each duration of 500 μs, the plasticity of PPF is near to zero 

indicating the influence of first EPSC are effectively eliminated when the stimuli with the pulse intervals 

are larger than 280 μs. In neurobiology, STP can be converted to LTP by applying enhanced magnitude 

or duration of external stimulation.[11] Figures S3(c) and S3(d) show the increasing EPSCs under Vw of 

4 V with the duration of 500 μs, suggesting the characteristic of long-term memory in R-CYHEAPbI3 

synapses. Using the stimulus signals shown in Fig. S(3), the calculated energy consumptions per spike 

of R-CYHEAPbI3 synapses with the Au electrode diameter of 1 mm are 27 pJ and 70 pJ, respectively, 

when conducting STP and LTP processing.[2] As the Au electrode diameter decreases to 50 μm, the 

energy consumptions per spike are 0.25 pJ and 6.6 pJ for STP and LTP processing, respectively. The 

electrode area dependence of energy consumption per synpatic operation suggests that one may futher 

reduce the power consumption by reducing the electrode area. 

STDP, as a form of Hebbian learning, is closely related with the information processing and synaptic 

characteristic.[2, 37, 38] 
 The changes of synaptic weight and the performances of long-term potentiation 

or depression depends on ∆t, which is defined as the relative time interval of the pre- and postsynaptic 

spikes. To emulate the STDP functionality of R-CYHEAPbI3 synapses, the Au electrode as the 

presynaptic neurons is connected to a multiplexer and the Si electrode is grounded (Fig. S4(a)). The 

multiplexer is used to convert the time difference between pre- and postsynaptic spikes, and the detail 
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circuitry and logic of multiplexer can be found in Figs. S4b and S4c.[6, 41] As shown in Fig. S4(b), the 

adopted asymmetric STDP is conducted with the principle that the voltage pulse with the duration of 

500 μs is proportional to ∆t. Figure 4(b) shows the measured nonvolatile modifications of synaptic 

weight (the conductance of R-CYHEAPbI3 synapses) with different initial resistance states. When a 

post-synaptic spike is fired before a pre-synaptic spike (∆t＜0), a negative voltage pulse is applied on 

the Au electrode leading to a synaptic depression, while the synaptic potentiation occurs if ∆t＞0. 

Moreover, with a shorter ∆t, a larger change of synaptic weight is obtained. 

Figure 4(c), 4(d) show the demonstration of synaptic potentiation and depression of LTP using R-

CYHEAPbI3 synapses. We adopted different write schemes: scheme 1 includes a depressing voltage of 

−3.4 V and potentiating voltage of 5.8 V; scheme 2 includes a depressing voltage of −3.6 V and 

potentiating voltage of 6.2 V; other three write schemes (3, 4 and 5) can be seen in Fig. S(5). Each Vw 

pulse lasts for 0.5 s. Both write schemes 1 and 2 lead to 50 resistance states (Vr is 0.5 V). Following the 

definition of linearity of synaptic device,[14, 42] we find that using scheme 1, the linearity of depression 

𝐴𝑑,1 is 0.4503 and potentiation 𝐴𝑝,1 is −0.4992. In scheme 2, the linearity of depression 𝐴𝑑,2 is 1.013 

and potentiation 𝐴𝑝,2  is −0.6258. A larger absolute value of 𝐴𝑑,𝑝  implies a better linearity for 

potentiation/depression (Experimental Section in Supplemental Material).[39, 42]  Such linearity value 

is comparable to some of the best-performed artificial synapses (see Table S1). We also found that 

scheme 2 leads to a larger dynamic range which is reasonable as scheme 2 uses higher write voltages.[31]  

 

 

 
FIG. 4. Write-read operations of R-CYHEAPbI3 synapses and the neural network. a) PPF of R-

CYHEAPbI3 synapses under a paired-pulse with a magnitude of 1.5 V and each duration of 500 μs. The 

inset is the PPF performance with the pulse interval of 180 μs. b) STDP functionality of R-CYHEAPbI3 

synapses with the initial resistance of 4.76×108 Ω and 1.91×108 Ω. ∆W is the change ratio of 

conductance. Depressing and potentiating properties of R-CYHEAPbI3 synapses with two different write 

schemes: c) Scheme 1 and d) Scheme 2. Vr and corresponding Vw with a pulse of 0.5 s are shown 

schematically in the bottom-left insets. The depressing and potentiating Vw are −3.4 V and 5.8 V for 

Scheme 1, −3.6 V and 6.2 V for Scheme 2, respectively. Vr is 0.5 V and both schemes start from the 

initial Rmin state. Ad,p represent the write linearity. e) Schematic of our proposed two-layer neural 

network. Wij and Wjk represent the weight matrices. f is sigmoid nonlinear activation function. f) Our 

proposed crossbar structure with M input rows (word lines) and N output columns (bit lines) based on 

R-CYHEAPbI3 synapses for performing the analog matrix operations. 

  

To evaluate the potential of R-CYHEAPbI3 synapse in neural network for learning tasks like pattern 

recognition, as shown in Figs. 4(e) and 4(f), we designed R-CYHEAPbI3 synapses into a two-layer 

neural network (one hidden layer) based on two crossbar arrays. In Fig. 4(e), Wij and Wjk represent the 
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weight matrices connecting the input layer to the hidden layer (the first crossbar array) and the hidden 

layer to the output layer (the second crossbar array), respectively. As illustrated in Fig. 4(f), the crossbar 

array with M input rows (word lines) and N output columns (bit lines) was used to carry out the parallel 

read and write operations. Individual synapse ij and jk can be reached from ith word line/jth bit line and 

jth word line/kth bit line, respectively.[43] With this, we conducted supervised learning with back 

propagation algorithm and sigmoid nonlinear activation function (details in Fig. S(6)).[43-45] This 

artificial neural network was trained with two data sets: an 8 × 8 pixel image version of handwritten 

digits[46] and a 28 × 28 pixel image version of handwritten digits.[47] The training and classification 

information associated with  8 × 8  and 28 × 28  image sets is summarized in Table S2. Learning rate η 

= 0.1 was used for training both two image sets. 

 Figure 5(a)-5(f) show the weight patterns and distributions of synapses connecting the input layer to 

the hidden layer at different training epochs (for 8 × 8 imagine set). [48, 49] The corresponding matrix 

is 64 (input elements) × 36 (output elements). The weight patterns and distributions evolution for 28 × 

28 image set are presented in Figs. S(7) and S(8). The initial weights (0th epoch) of R-CYHEAPbI3 

synapses are generated randomly (Fig. 5(a) and Fig. S7(a)). To minimize the negative impact of synaptic 

nonlinearity and write/read noise, and to prevent potential weight saturation, weights of R-CYHEAPbI3 

synapses are set to stay in 25% to 75% of the whole conductance range during training.[43] It can be 

seen that after training weight distributions profile exhibit multiple peaks spanning in a relatively 

reasonable range shown in Figs. 5(e), 5(f) and Fig. S(8). From the probability density of synaptic 

conductance (Figs. 5(d)-5(f) and Fig. S(8)), we can see that weights are updated rapidly after the first 

few training epochs and then remain relatively stable. This indicates that a highly efficient training is 

achieved within a few iterations.  

Figure 5(g) shows that reasonable classification accuracies can be reached very rapidly during training. 

For example, for 8 × 8 image set, after five epochs, for training scheme 1, the classification accuracy 

reaches 85.1%. For training scheme 2, it is 91.5%. The better performance of scheme 2 is likely due to 

its better synaptic linearity.[1] Figure 5(h) shows similar observation in which the training data set is 28 

× 28 image set. Compared to the classification accuracy of ideal numeric that is from the floating-point-

based neural network performance,[1, 37]  the classification accuracies of both scheme 1 and 2 are 

slightly lower for 8 × 8 image set. [43]  Figure S9(a) shows the classification accuracies of 8 × 8 image 

set obtained using 0 to 100% and 25% to 75% of the scheme 1 and 2 weight range. It can be seen that 

the classification accuracies using 25% to 75% of the weight range indeed can reach a higher value. The 

comparisons of classification accuracies using scheme 1 to 2 can also prove that a better linearity is 

helpful for achieving good computing results. A comparison of the performance of our R-CYHEAPbI3 

synapse with several typical memristive devices is shown in Table S1. [37, 39, 50-55] From Table S1, 

it can be seen that the energy consumption per synaptic operation for our vdW system is comparable or 

better than several synaptic systems, making it as a promising candidate for brain-like computing. 

Although the dynamic range of weights in our synapses is smaller than some of former devices, [14, 37, 

50, 52] R-CYHEAPbI3 device still exhibits a good linearity and small cycle-to-cycle variation, which 

seem to contribute more on receiving better accuracies.  

 

IV. CONCLUSION 

 

In summary, we propose and experimentally demonstrate a vdW halide perovskite-based ferroelectric 

synapse. We show that individual devices exhibit a promising synaptic linearity and low cycle-to-cycle 

variation. By optimizing the voltage pulse parameters, the R-CYHEAPbI3 synapses can process with a 

switching speed within hundreds of microseconds and an energy consumption per spike at pico joule 

level for the STP and LTP operations. Crossbar-structured two-layer neural network simulations based 

on R-CYHEAPbI3 synapses with back propagation algorisms show that our synaptic device and circuit 

can perform efficient learning and reach reasonable classification accuracy (92%) with a low number of 

training epochs. Our work suggests the prospective potential of ferroelectric vdW halide perovskite in 

energy-efficient information processing and computing. 
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FIG. 5. Pattern recognition using proposed neural network following back propagation algorithm. a-f) 

Weight (conductance) distributions and the corresponding probability density plots of the first crossbar 

array (connecting the input layer to the hidden layer) during training with synaptic plasticity following 

the one in Fig. 4(b) (scheme 2): (a) and (d) initial state (the 0th epoch); (b) and (e) after the 1st training 

epoch; (c) and (f) after the 40th training epoch. Each pixel in (a)-(c) represents the conductance of each 

R-CYHEAPbI3 synapse in the first crossbar array. g) and h) Classification accuracies versus training 

epochs for 8 × 8 and 28 × 28 image sets, respectively.  

 

Supplemental Material Experimental Section, additional information and figures, including 

polarization-electric loop and transport characteristics, STP and LTP behaviors, the realization of STDP, 

depressing and potentiating properties of R-CYHEAPbI3 ferroelectric diode; details of pattern 

classification simulation.  
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