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Abstract 

Low dimensional materials provide a unique platform for exploring exotic 

properties that are otherwise unachievable in bulk solids. C3N and C3B are two 

graphene-derived two-dimensional (2D) ordered alloys that have attracted 

increasing research attention. These materials are best known for their remarkable 

stability and moderate band gaps, and thus are suitable for a range of applications. 

Perhaps the most interesting feature of the electronic structures of C3N and C3B is 

the existence of nearly parallel valence and conduction bands across a large region 

of the Brillouin zone. In this work, using many-body perturbation theory within the 

GW and Bethe-Salpeter equation (BSE) approach, we predict that the primarily pz 

orbitals derived nearly parallel valence and conduction bands in monolayer C3N 

and C3B give rise to a giant narrow-band absorption peak in their optical absorption 

spectra. More surprisingly, two degenerate excitonic states contribute to over 90% 

and 80% of the dipole absorption below 5 eV for C3N and C3B, respectively. 

Detailed examinations of the exciton binding energies unveil a unique shell-like 

distribution of the excitonic states, with each shell (series) converging to a different 

excitation edge. Such distinctive absorption properties have not been observed in 

any other 2D materials. We further investigate the internal structure of the excitonic 

states using a multifaceted approach and reveal several important characteristics of 

the excitonic states in these 2D materials.  

mailto:pzhang3@buffalo.edu


1. Introduction 

The research on graphene [1] has opened the era of two-dimensional (2D) materials [2-8] with 

extraordinary properties beyond what are offered by traditional bulk (3D) materials. The defining 

electronic structure of graphene, however, also limits its applications in electronic devices, and 

much recent effort has been devoted to the search for graphene-like (or graphene-based) 2D 

semiconductors. One possibility is to incorporate compatible heteroatoms such as boron and/or 

nitrogen into graphene. [9-13] Since both B and N form sp2 bonds, the introduction of these atoms 

does not significantly affect the hexagonal network of graphene, but, at the same time, offers the 

possibility of opening up a sizable band gap for electronic or energy applications. 

In fact, a number of ordered graphitic borocarbonitride alloys have been proposed and/or 

synthesized; examples include C2N, [14] C3N, [15-18] C3B, [19-22] C5N, [23] C4N3, [24] graphitic 

C3N4, [25,26] and BC6N. [27-30] Among them, C3N and C3B are two particularly interesting ones 

due to their remarkable stability, moderate band gaps, and high alloy contents while maintaining 

a nearly ideal hexagonal network. Low dimensional materials such as  C3N and C3B  can also serve 

as an interesting platform for studying the exciton physics. Perhaps one of the most interesting 

features of the electronic structures of C3N and C3B is the existence of nearly parallel valence and 

conduction bands across a large region of the Brillouin zone (BZ). [15,18,21,22] Unlike direct gap 

2D semiconductors such as black phosphorus and MoS2, in which the low energy excitonic states 

are derived from (non-interacting) electron-hole (e-h) pairs that are highly concentrated in a small 

region(s) of the BZ around the direct-gap k-point(s), [31,32] the k-space spread of the low energy 

exciton wave functions in C3N and C3B can be far more extended, offering the possibility of strong 

and narrow-band optical absorption. 

In this work, we investigate the optical properties and excitonic structures of monolayer C3N 

and C3B. The quasiparticle band structures are calculated using the GW [33] approximation; the 

e-h excitations and optical properties are obtained by solving the Bethe-Salpeter equation (BSE). 

[34] We find that two low-energy degenerate excitonic states contribute to over 90% and 80% of 

the dipole absorption below 5 eV for C3N and C3B, respectively. To the best of our knowledge, no 

other known materials have such intriguing optical properties. We also examine the state-specific 

exciton binding energies of C3N and C3B for all excitonic states below 5 eV and uncover an 

interesting pattern for the distribution of excitonic states: pairs of nearly parallel valence and 

conduction bands give rise to a shell-like distribution of exciton states with similar non-interacting 

e-h excitation energies (defined later) but with disparate exciton binding energies. Excitonic states 

with large binding energies (1 eV or larger) are observed within each shell (series), suggesting that 

strongly bound excitonic states can form well above the fundamental band gap. We further 

investigate the formation mechanism of the excitonic states in C3N and C3B by analyzing their 

band, energy and reciprocal space and unveil several important characteristics of the excitonic 

wave functions in these systems. These results will help shed light on the formation mechanism of 

excitonic states in indirect band gap 2D semiconductors. 

  



2. Computational details 

The quasiparticle band structures are calculated within the GW [33] approximation, and the e-

h excitations and optical properties are obtained by solving the BSE [34], using a local version of 

the BerkeleyGW code [34,35]. These many-body perturbation calculations are carried out starting 

from the density functional theory (DFT) mean-field solution within the local density 

approximation (LDA) [36-38]. Our work benefits from the recently developed acceleration 

methods [39,40] that lead to a combined speed-up factor of over three orders of magnitude for GW 

calculations of 2D materials.  

We include a large vacuum layer of 40 a.u. and use a truncated Coulomb potential [41] in our 

calculations to minimize the fictitious interaction between periodic image layers. The Hybertsen-

Louie Generalized Plasmon-Pole (HL-GPP) model [33] is used to extend the static dielectric 

function to finite frequencies. A cutoff energy of 60 Ry is used for the DFT pseudopotential plane 

wave calculations, and we use a high kinetic cutoff of 40 Ry for the dielectric matrices. Excitonic 

structure calculations often require an extremely dense k-grid to properly converge the result. With 

a good balance of accuracy and efficiency, we applied a dual-grid method [34] to reduce the 

workload: The electron e-h kernel is first calculated on an 18×18×1 coarse k-grid, the results are 

then interpolated onto a 60×60×1 fine k-grid. The density of the fine grid for the 8-atom unit-cell 

C3N and C3B is equivalent to that of a 120×120×1 k-grid for a 2-atom graphene unit cell. We only 

investigate excitons with zero wave vectors (i.e., vertical transitions) in this work. For the optical 

absorption calculations, we assume an in-plane polarization. The optical properties of these two 

materials are 2D isotropic. Other details of the calculations will be discussed later. 

3. Results and discussion 

3.1 Quasiparticle and optical properties: Nearly parallel quasiparticle band structures and 

giant narrow-band optical absorption 

 We use the van der Waals functional optB86b-vdW [42] to optimize the crystal structures 

[shown schematically in Figure 1(a)]; the optimized lattice constants for C3N and C3B are 4.857 

Å and 5.170 Å, respectively. These structures are used for subsequent GW plus BSE calculations. 

Figure 1(b) compares the DFT-LDA and GW quasiparticle band structures of C3N and C3B. Our 

GW calculations take advantage of the recent developments [39,40] that drastically reduce the 

computation efforts for 2D materials. Using the energy-integration technique, [39] we are able to 

include all conduction bands in the GW calculations at a fraction of the computational effort 

compared with the conventional band-by-band summation approach. The combined mini-Brillouin 

zone subsampling and analytical integration technique, [40] on the other hand, greatly improves 

the BZ sampling efficiency for GW calculations of 2D materials. Details of the convergence tests 

can be found in our previous publications [18,22]. Our converged GW calculations give a 

minimum (indirect) band gap of 1.51 eV for C3N and 2.44 eV for C3B, and the direct minimum 

band gaps (𝐸g
dir) are 2.68 eV and 2.98 eV for C3N (between Γ and M) and C3B (at M), respectively. 



One of the most distinctive features of the quasiparticle band structures of C3N and C3B [Figure 

1 (b)] is the presence of nearly parallel low energy valence and conduction bands as shown in 

Figure 1 (b). To better illustrate this point, we show in Figure 1 (c) the contour color maps of the 

direct quasiparticle gaps between the top valence and bottom conduction bands. The black curves 

highlight the area in the BZ in which the non-interacting e-h pair excitation energy is within 0.2 

eV from the minimum direct gap 𝐸g
dir. Compared with the direct band gap semiconductors which 

often have low joint density of states (JDOS) at the adsorption edge,  the JDOS of indirect band 

gap materials with parallel band edges can be significantly higher. Consequently, a large number 

of e-h pairs with similar (non-interacting) excitation energies are available. If the transitions 

between these bands are optical allowed, we expect the formation of excitonic states with much 

stronger optical absorption compared with direct band gap 2D semiconductors. 

 

 
Figure 1. Crystal structures and band structures of C3N and C3B. (a) Crystal structures of C3N and 

C3B. Note that small distortions from the ideal graphene structure are not shown for simplicity.  (b) 

DFT (orange dashed lines) and GW (black solid lines) band structures. The valence band maximum 

(VBM) has been shifted to zero. (c) Contour color maps (in the Brillouin zone) of the direct 

quasiparticle band gap between the top valence and bottom conduction bands; the minimum direct 

band gap (𝐸g
dir) is shown with light gray. The nearly parallel valence and conduction bands give rise 

to extended areas (light gray areas highlighted with black contour curves) in which the quasiparticle 

excitation energies are within 0.2 eV to 𝐸g
dir .  



 We then investigate the e-h excitations and optical properties of C3N and C3B by solving the 

BSE equation, which is reduced to an eigenvalue problem after decoupling the excitations and de-

excitations: [34] 

(𝐸𝑐𝒌 − 𝐸𝑣𝒌)𝐴𝑣𝑐𝒌
𝑆 + ∑⟨𝑣𝑐𝒌|𝐾eh|𝑣′𝑐′𝒌′⟩𝐴

𝑣′𝑐′𝒌′
𝑆

𝑣′𝑐′𝒌′

= 𝛺𝑆𝐴𝑣𝑐𝒌
𝑆 , (1) 

where 𝐸𝑐𝒌 and 𝐸𝑣𝒌 are the quasiparticle energies of the conduction and valence states calculated 

within the GW approximation, and 𝐾𝑒ℎ is the electron-hole interaction kernel. Solving the above 

eigenvalue problem gives the e-h excitation energies 𝛺𝑆
 and the corresponding eigenvectors 𝐴𝑣𝑐𝒌

𝑆
, 

from which the excitonic wave functions can be constructed:  

𝛹𝑆(𝒓e, 𝒓h) = ∑𝐴𝑣𝑐𝒌
𝑆 𝜓

𝑐𝒌
(𝒓e)𝜓𝑣𝒌

∗ (𝒓h)

𝑣𝑐𝒌

. (2) 

The imaginary part of the macroscopic transverse dielectric function, which describes the 

interaction between the e-h excitations and an external light field, is given by  

𝜖2(𝜔) =
16𝜋2𝑒2

𝜔2
∑|e⃗ ⋅ ⟨0|𝑣⃗ |𝑆⟩|2δ(𝜔 − 𝛺𝑆)

𝑆

, (3) 

where 𝑣⃗  is the velocity operator and e⃗  is the polarization vector of the light. In practical 

calculations, we use a Gaussian function with a broadening parameter of 0.05 eV in place of the 

delta function. 

Our GW plus BSE calculations indeed show that these valence and conduction states (free e-h 

pairs) with close excitation energies can couple coherently to produce exceptionally strong optical 

absorption, as shown in Figure 2 (b). The full excitonic spectrum is shown in Figure 2 (a) as vertical 

lines color coded with the magnitude of the dipole matrix elements (squared) of the excitonic 

states. The calculated imaginary part of the dielectric functions of C3N (left panel) and C3B (right 

panel) are highly unusual in several ways. First, other than the first giant absorption peak (peak 

A), optical absorption is practically negligible below 5 eV. This is very different from the optical 

absorption of other materials (2D or bulk), where one often observes, in addition to the below-

edge absorptions of bound excitonic states, a gradual increase in the absorption weight above the 

band edge. Second, the A absorption peak comes almost exclusively from two degenerate exciton 

states. In Figure 2 (b), we show the state-dependent dipole matrix element (renormalized to one 

unit-cell), with degenerate states indicated by red circles and non-degenerate states by black 

circles. A pair of degenerate excitonic states contribute to over 90% and 80% of all dipole 

absorption weight below 5 eV in C3N and C3B, respectively. To the best of our knowledge, no 

other materials show such peculiar optical absorption properties.  

The surprisingly weak optical absorption (except for the abnormally strong and nearly 

monochromic excitonic absorption peak A) below 5 eV is not a result of the lack of available e-h 

pairs in this energy window. In fact, there is a large number of excitonic states with energies below 



𝐸g
dir as shown in Figure 2 (a) and Figure 2 (b). However, most of these states have very small 

dipole transition matrix elements, hence they can practically be ascribed as dark excitons.  Figure 

2 (c) shows both the quasiparticle JDOS (i.e., non-interacting e-h pair density of states) and the 

exciton density of states (DOS) of C3N and C3B. It is clear that there are significant state densities 

below 5 eV. Except for the formation of a few bound states below the band gap (which only show 

up as tails due to the broadening technique used in the calculation of the DOS), the main difference 

between the quasiparticle JDOS and excitonic DOS is a systematic shift in the energy of about 0.2 

eV. This shift should reveal the averaged e-h interaction strength in this energy window. Therefore, 

it is the coherent (constructive) superpositions of the dipole matrix elements in these 2D materials 

with nearly parallel band structures that somehow lumps most of the optical absorption weight into 

one pair of degenerate excitonic states. In the next section, we investigate the details of the 

excitonic structures and binding energies of C3N and C3B. 

 

 
Figure 2. Optical properties of C3N and C3B. (a) Distribution of excitonic states within a 5 eV energy 

window, color coded using the dipole matrix elements. (b) Imaginary part of the dielectric function 

(solid light blue curve) and dipole matrix elements (red/black circles) of the (degenerated/non-

degenerated) excitonic states. (c) Quasiparticle (orange) and excitonic (back) joint density of states 

(JDOS). 



 

3.2 Excitonic structures and shell-like distribution of the exciton binding energies  

In addition to the optical absorption discussed in the previous section, it is also of great interest 

to understand the binding energies of the excitonic states. For direct band gap semiconductors, the 

textbook definition of the exciton binding energy of a bound excitonic state |𝑆⟩ below the band 

gap is the difference between the excitation energy 𝛺𝑆
 and the minimum (direct) quasiparticle gap 

𝐸g
dir (i.e., the onset of the excitonic continuum): 𝐸b

𝑆 = 𝐸g
dir − 𝛺𝑆

. This definition is also the basis 

of experimental measurements of the binding energies of the bound states. [Note that here the term 

bound state is used to distinguish discrete excitonic states below the fundamental gap from the 

excitonic continuum, which shall not be confused with bound excitons which are referred to 

excitons bound to certain defects.]  One fundamental issue of this simplified definition is that the 

excitonic wave functions are superpositions of a large number of free (i.e., non-interacting) e-h 

pairs, not just the e-h pair across the minimum gap, as shown in Eq. (2). Thus this definition does 

not give an accurate understanding of the strength of the e-h interaction. In addition, this definition 

does not provide a convenient means to estimate the binding energies of contiuum states or bound 

states that are embedded in (or in resonance with) the continuum.  

A more rigorous definition for the exciton binding energy is 

𝐸b
𝑆 = 𝐸g

𝑆 − 𝛺𝑆, (4) 

where 𝐸g
𝑆 is the expectation value of the free e-h excitation gap for a given excitonic state |𝑆⟩,  

which can be easily evaluated using the e-h pair amplitude 𝐴𝑣𝑐𝒌
𝑆

 defined in Eq. (1): 

𝐸g
𝑆 = ∑|𝐴𝑣𝑐𝒌

𝑆 |
2
(𝐸𝑐𝒌 − 𝐸𝑣𝒌)

𝑣𝑐𝒌

. (5) 

The interpretation for Eq. (4) is clear: the exciton binding energy is the difference between the 

non-interacting and interacting e-h excitation energies. This definition can be applied to calculating 

the binding energy of any excitonic states, including bound states below the quasiparticle 

excitation gap, continuum states, and bound states in resonance with (embedded in) the continuum. 

Figure 3 (a) shows the calculated exciton binding energies for C3N (left) and C3B (right) vs 𝐸g
𝑆 

defined in Eqs. (4) and (5). There are several interesting features that deserve careful examination. 

First, both systems show distinctive shell-like structures. For C3N, we can identify five excitonic 

series (we only label the first three for clarity) below 6 eV. These series stand out as groups of 

excitonic states with similar 𝐸g
𝑆 but significantly varied exciton binding energies, with each series 

converging to a different excitation edge. The same series (grouping) behavior can also be seen 

when we plot the exciton binding energy with respect to the excitation energy 𝛺𝑆
, as shown in 

Figure 3 (b). For C3B, at least two series, labeled I, and II, can be clearly recognized. Within each 

series, excitonic states with large binding energies (around 1 eV or greater) can be observed. This 

suggests that strongly bound (or resonance) states can form well above the fundamental gap. These 



shell-like structures can be traced back to the presence of nearly-parallel valence and conduction 

bands in these systems. To illustrate this point, we show in Figure 4 the quasiparticle band 

structures of C3N and C3B with transitions that are responsible for the excitonic series, indicated 

by vertical arrows. However, this simplified picture does not show the full detail and complexity 

of the excitonic states, as discussed in the next section.  

 

 
Figure 3. Shell-like distribution of excitonic states in C3N and C3B. (a) Exciton binding energy with 

respect to the non-interacting excitation energy 𝐸g
𝑆. (b) Exciton binding energy with respect to 𝛺𝑆. 

The binding energy reveals interesting shell-like distributions, labeled series I, II, and III. In panel 

(b), we also show the imaginary part of the dielectric function (solid blue curves) to corroborate the 

positions of the excitonic states. 



 

Another interesting observation from the results shown in Figure 3 is that there are only a small 

number of excitonic states that have large exciton binding energy: for excitation energies 𝛺𝑆
 < 6 

eV, there are only about 50 states that have exciton binding energies greater than 0.6 eV. In fact, 

a majority of the excitonic states have binding energies smaller than 0.3 eV. Finally, in addition to 

the bound states below the energy gap (which are well-understood), each series has its own 

excitonic bound (or resonance) states and continuum. These large-binding-energy excitonic states 

above the band gap can be considered as resonance states embedded in the excitonic continuum. 

Some of these states can have very large binding energies that are comparable to (or even greater 

than) those below-edge bound states, as shown in Figure 3. Table 1 lists the calculated exciton 

eigenvalues 𝛺𝑆
, non-interacting excitation energies 𝐸g

𝑆, binding energies 𝐸b
𝑆, and the dipole matrix 

element squared for five states each from series I and II with the largest binding energies for both 

C3N and C3B. Even though the energies of the II series excitons are well above the band gaps, 

states with very large binding energies are observed in this series, suggesting that strongly bound 

excitons can form well above the quasiparticle band gap. The degenerate I3 states (responsible for 

giant optical absorption discussed in the previous section) stand out as the sole state with a very 

large optical dipole matrix element for both systems.  

 
Figure 4. Quasiparticle band structures of C3N and C3B showing transitions that are responsible for 

the excitonic series shown in Figure 3.  



 

3.3 Formation of excitonic states: spreads in bands, mode excitations in reciprocal space, and 

energy distributions 

The complexity of the exciton wave functions [Eq. (2)] often makes it difficult to examine the 

internal structures of the excitonic states. One can inspect the wave functions in real space (by 

fixing either the electron or the hole position) and gain some visual understanding of the spread 

and spatial distribution of the electron or hole charge density. However, often we are interested in 

understanding how the excitonic states are formed from the free e-h pairs, i.e., the valence and 

conduction states that compose a given excitonic state. To this end, we propose that the electron 

and hole amplitude functions defined below would better serve the purpose. For a given excitonic 

states |𝑆⟩, we define three amplitude functions: the band and k-dependent electron amplitude, 

|𝐴𝑐𝒌
𝑆 |

2
= ∑|𝐴𝑣𝑐𝒌

𝑆 |
2

𝑣

, (6) 

the hole amplitude, 

|𝐴𝑣𝒌
𝑆 |

2
= ∑|𝐴𝑣𝑐𝒌

𝑆 |
2

𝑐

, (7) 

and the k-dependent pair amplitude, 

|𝐴𝑆(𝒌)|
2
= ∑|𝐴𝑣𝑐𝒌

𝑆 |
2

𝑣𝑐

. (8) 

The left three panels of Figure 5 show the distributions of |𝐴𝑐𝒌
𝑆 |

2
 (in blue) and |𝐴𝑣𝒌

𝑆 |
2
 (orange) for 

a few excitonic states [labeled I1, I3, and II1, as indicated in Figure 3 (a)] with large binding energies 

Table 1. Large-binding-energy excitons from series I and II of C3N and C3B. For each excitonic state, 

in addition to the exciton binding energy 𝐸b
𝑆 , we also include the excitation energy 𝛺𝑆 , the non-

interacting e-h excitation energy 𝐸g
𝑆 , the dipole matrix element squared (in a.u.), and the degree of 

degeneracy. All energies are in electron-Volts (eV).  

 C3N C3B 

 𝛺𝑆 𝐸g
𝑆 𝐸b

𝑆 |dipole|2 Deg.  𝛺𝑆 𝐸g
𝑆 𝐸b

𝑆 |dipole|2 Deg. 

I1 1.830 2.894 1.064 2.18×10-6 2 I1 1.984 3.278 1.294 9.31×10-5 1 

I2 1.841 2.856 1.015 6.57×10-4 1 I2 2.206 3.350 1.144 8.80×10-8 2 

I3 (A) 1.932 2.823 0.892 8.35×100 2 I3 (A) 2.101 3.190 1.088 6.06×100 2 

I4 1.990 2.785 0.795 5.55×10-5 1 I4 2.311 3.182 0.870 1.00×10-6 1 

I5 2.041 2.828 0.788 1.04×10-4 1 I5 2.367 3.215 0.848 7.01×10-5 1 

II1 3.332 4.385 1.054 4.23×10-15 1 II1 2.200 3.614 1.413 4.56×10-15 2 

II2 3.417 4.379 0.962 1.17×10-14 2 II2 2.264 3.618 1.353 6.69×10-15 1 

II3 3.527 4.357 0.830 1.63×10-17 2 II3 2.375 3.636 1.261 1.61×10-16 2 

II4 3.634 4.407 0.772 7.29×10-17 1 II4 2.574 3.519 0.946 2.10×10-17 1 

II5 3.586 4.332 0.747 1.45×10-20 1 II5 2.659 3.604 0.945 9.41×10-16 2 

 



(i.e., low excitation energies) for C3N (top panels) and C3B (bottom panels). These plots clearly 

reveal the band origins of the excitonic states. For example, the I series excitonic states of C3N are 

primarily derived from the nearly-parallel highest valence and lowest conduction bands around the 

-M and -K paths; the II series, on the other hand, are predominantly derived from the top valence 

and the third conduction bands. Contributions from other bands and from different regions of the 

BZ are less significant but still noticeable. 

  

For the states with large binding energies, the k-dependent electron and hole amplitudes |𝐴𝑐𝒌
𝑆 |

2
 

and |𝐴𝑣𝒌
𝑆 |

2
 vary smoothly (with respect to the wave vector) within a given band (left three panels 

in Figure 5), suggesting a coherent superposition of relevant non-interacting e-h states. For states 

with smaller binding energies, however, they display rather different (wave vector dependent) 

behaviors. The top right panel of Figure 5 shows |𝐴𝑐𝒌
𝑆 |

2
 and |𝐴𝑣𝒌

𝑆 |
2
 for a state taken from the I 

series of C3N with a smaller exciton binding energy of 0.39 eV; the bottom right panel is for a state 

taken from the I series of C3B with a small exciton binding energy of 0.34 eV.  The complex 

modulation pattern in the reciprocal space (e.g., from  to M) is in contrast to the smooth variation 

observed for larger binding energy states. In general, higher energy (i.e., lower binding energy) 

excitonic states show more complex reciprocal modulation patterns. 

For direct (or quasi-direct) band gap semiconductors, bound excitonic states are often 

analogized to the Rydberg series of a vastly simplified (3D or 2D) hydrogenic model. These states 

are often visualized in the reciprocal space space [31] by plotting the e-h pair amplitudes |𝐴𝑆(𝒌)|
2
 

[defined in Eq. (8)]. For indirect gap semiconductors such as C3N and C3B, such an analogy cannot 

be easily applied. To better illustrate this point, we show in Figure 6 color contour plots of the 

 

Figure 5. The k-dependent electron and hole amplitudes |𝐴𝑐𝒌
𝑆 |

2
 and |𝐴𝑣𝒌

𝑆 |
2
. The left three panels are 

for excitonic states (labeled I1, I3, and II1) with large binding energies, and the right panels are for 

states with small binding energies. Results for C3N (C3B) are shown in the top (bottom) panels. 



wave vector resolved e-h pair amplitude |𝐴𝑆(𝒌)|
2
 for the 15 lowest excitonic states of C3N. These 

states have exciton binding energies [defined in Eq. (4)] ranging from 1.06 to 0.63 eV within series 

I as shown in Figure 3.  

 

With the increasing excitation energy (decreasing binding energy), excitonic states develop 

more complex mode patterns in the BZ. Therefore, different excitonic states formed primarily 

within a given pair of valence and conduction bands (with small admixture of other bands) can be 

viewed as excitation modes in the reciprocal space. The higher the excitation energy, the more 

complex the mode pattern appears. It then becomes clear that extremely high density k-grids may 

be needed to describe excitonic states with very complex mode patterns in the BZ. 

Finally, we would like to address another important issue of the formation of excitonic states 

that has not been carefully investigated so far. Although in principle all valence and conduction 

states participate in the formation of excitonic states [see Eq. (2)], only free e-h pairs with close 

quasiparticle excitation energies will couple strongly, and there has been little understanding on 

the spread of the free e-h pairs in the energy domain.  To this end, we define, for a given excitonic 

state |𝑆⟩, an e-h pair participation density of state,  

𝑃𝐷𝑒ℎ(𝜔) = ∑|𝐴𝑣𝑐𝒌
𝑆 |

2
δ(𝐸𝑐𝒌 − 𝐸𝑣𝒌 − 𝜔)

𝑣𝑐𝒌

, (9) 

which essentially shows the spread in the excitation energies of the non-interacting e-h pairs that 

compose the state |𝑆⟩. The left panel of Figure 7 shows 𝑃𝐷𝑒ℎ(𝜔) for six excitonic states of C3N, 

 

Figure 6. Color contour plots of the k-resolved e-h pair amplitudes |𝐴𝑆(𝒌)|2 of 15 states with the lowest 

energy (i.e., highest binding energy) of C3N. The e-h pair amplitude develops more complex modulation 

patterns in the BZ as the excitation energy increases. For degenerate states, we average their amplitudes 

to show the full symmetry.  



three each from the I and II series with the largest exciton binding energies. The full width at half 

maximum (FWHM) is about 0.3 eV for I1, I2, and I3,  and it is about 0.2 eV for the II series states. 

Indeed, excitonic states tend to form mostly from the superposition of free e-h pairs with close 

(non-interacting) excitation energies. However, the tails can spread to about 1 eV. Interestingly, 

we find that this 0.2 ~ 0.3 eV FWHM spread is nearly universal, which does not seem to correlate 

with the exciton binding energy. For example, the middle panels show 𝑃𝐷𝑒ℎ(𝜔) for three states 

each from the I and II series. These states have exciton binding energies of about 0.3 eV. The 

spreads of 𝑃𝐷𝑒ℎ(𝜔) for these small-binding-energy states are qualitatively the same as those of 

large-binding-energy states. The right panel shows 𝑃𝐷𝑒ℎ(𝜔) for three excitonic states that do not 

belong to the I or II series, which again show similar behaviors as those shown in the left and 

middle panels. These results suggest that, regardless of the binding energy, excitonic states are 

formed primarily from free e-h pairs with similar (non-interacting) pair excitation energies; the 

spread of the pair excitation energies then reveals the characteristic e-h interaction strength in these 

systems. 

 

4. SUMMARY 

In summary, we have investigated the excitonic structures and optical properties of monolayer 

C3N and C3B using a GW plus BSE many-body perturbation approach. Both C3N and C3B have 

nearly parallel valence and conduction bands spanning an extended region of the BZ, offering a 

large number of (free) e-h pair states with nearly identical energies. We find that the coherent 

superposition of these e-h pairs results in extremely strong and narrow-band excitonic absorption, 

making these materials potential candidates for applications in areas such as optical sensing or 

narrow band optical detectors. In fact, a single pair of degenerate bound excitonic states accounts 

for over 90% (80%) of the dipole absorption weight below 5 eV for C3N (C3B), a remarkable 

property that has not been observed in any other known 2D materials. Careful examination of the 

state-specific exciton binding energies unveils a unique shell-like distribution of the exciton states; 

each shell (series) converges to a distinct excitation edge that can be traced to a set of (nearly) 

 
Figure 7. The e-h pair participation density of selected excitonic state of C3N. Left: states with the 

largest binding energies from the I and II series. Middle: a few states with small binding energies 

from the I and II series. Right: states with small binding energy between the I and II excitonic series. 



parallel valence and conduction bands. In addition, large binding energy (around 1 eV or above) 

exciton states can be found within each series, suggesting that strongly bound excitonic states can 

form well above the fundamental gap. We further investigate the internal structure and formation 

mechanism of the excitonic states in C3N and C3B by analyzing the e-h pair amplitude functions 

in the band, energy and reciprocal space. The band and k-resolved electron and hole amplitudes 

clearly illustrate the band/wave-vector origins of the excitonic states, whereas the pair amplitude 

function provides a fresh perspective on the excitation modes in the reciprocal space.  
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