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All physical systems employed for quantum information tasks must act as unbiased carriers of en-
coded quantum states. Ensuring such indistinguishability of information carriers is a major challenge
in many quantum information applications, including advanced quantum communication protocols.
For photons, the workhorses of quantum communication networks, it is difficult to obtain and main-
tain their indistinguishability because of environment-induced transformations and loss imparted
by communication channels, especially in noisy scenarios. Conventional strategies to mitigate these
transformations often require hardware or software overhead that is restrictive (e.g. adding noise),
infeasible (e.g. on a satellite), or time-consuming for deployed networks. Here we propose and
develop resource-efficient Bayesian optimization techniques to rapidly and adaptively calibrate the
indistinguishability of individual photons for quantum networks using only information derived from
their measurement. To experimentally validate our approach, we demonstrate the optimization of
Hong-Ou-Mandel interference between two photons–a central task in quantum networking– finding
rapid, efficient, and reliable convergence towards maximal photon indistinguishability in the pres-
ence of high loss and shot noise. We expect our resource-optimized and experimentally friendly
methodology will allow fast and reliable calibration of indistinguishable quanta, a necessary task in
distributed quantum computing, communications, and sensing, as well as for fundamental investi-
gations.

INTRODUCTION

Algorithmic optimization of quantum systems plays a key role in quantum computing, simulation, and sensing (e.g.
see [1–10]), as well as for quantum system characterization [11–15]. Yet, there has been little effort on algorithmic
optimization of quantum communications and networks [16–19]. In particular, to use such methods to overcome
unavoidable channel-induced variations of properties (degrees of freedom) of photons, along with the well-known
impacts of loss and noise, which restrict demonstrations of advanced, multi-qubit, quantum networks, especially those
which crucially rely on interference [20–34]. These variations, which originate from changes in the environment, render
photons distinguishable, thereby restricting their ability to interfere [35]. This precludes crucial tasks in a multi-node
quantum network [20], like that schematized in Fig. 1, including two-photon Bell-state measurements [36] which
underpin measurement-device-independent quantum key distribution (MDI-QKD) [37] or quantum repeaters [38], for
example. The required indistinguishability for deployed networks is obtained by calibrating all degrees of freedom
of a photon, i.e. its polarization, temporal, spectral, and spatial modes. This is a process that requires additional
hardware and software, and relies on (often “brute-force”) methods that either restrict the communication rate, add
noise, do not scale to multi- photon or node networks, or are physically or financially infeasible for remote network
nodes [28–34].

Here we employ a Gaussian Process (GP) Bayesian optimization algorithm [39] to rapidly calibrate the degrees of
freedom of photons for quantum networks. (See Appendix A for an outline of Bayesian optimizaion and Appendix B
for details of the GP algorithm.) Our method operates with minimal resources: it requires only direct measurements
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FIG. 1. High-level overview of quantum network calibration using Bayesian optimization. Quantum network nodes emit single
or entangled photons into fibers and two-photon Bell-state measurements, whose fidelities are determined by Hong-Ou-Mandel
interference, are performed to facilitate quantum network protocols. Within the two-photon measurement node, a feedback
loop between the two-photon measurement apparatus and a Bayesian optimizer is used to automate the calibration of photon
indistinguishability using the objective function f(x(i)) which we introduce in the main text, and is plotted in the diagrammatic

computer screen. The value x(i) denotes the variable experimental degrees of freedom determined by the experimental apparatus
during the ith iteration of the algorithm, with two variables of x defining the axes of the plot on the screen.

of the low-rate streams of photons, which are inherent to quantum communications, with threshold detectors to
overcome the impact of sampling noise and network channel-induced photon variations. While Gaussian process
modeling has been successfully used in many physical applications, for example to describe the optical response of
plasmonic systems [40, 41], its use in the quantum networking context, here for calibration, is an exciting direction.
Specifically, we present and experimentally demonstrate an adaptive calibration algorithm that maximizes two-photon
Hong-Ou-Mandel (HOM) [42] interference to efficiently render photons indistinguishable despite their low probability
of detection (see Fig. 1, right). Hong-Ou-Mandel interference occurs implicitly within a Bell-state-measurement. For
instance, in the case of time-bin encoding, measuring both photons in early or late modes will allow the observation of
bunching, the signature of Hong-Ou-Mandel interference. Thus, our approach is readily extendable to qubit-encoded
networks.

Our proposed methodology for low-cost autonomous calibration leverages advantages of the Bayesian optimization
framework in that it is model-agnostic, sample efficient, i.e., demonstrates convergence with minimal samples, and
is robust to shot noise and, accordingly, is well-suited for the conditions of quantum communications. We also test
the Bayesian optimization algorithm with respect to the kernel, initial sampling strategy, and acquisition function to
improve its robustness, and show that it provides the best performance compared to other approaches. We expect that
our experimentally-friendly method will accelerate the development of high-fidelity quantum networks and reduce the
complexity of implementing workable quantum technology.

RESULTS

Bayesian Optimization

We envision using a GP Bayesian optimization algorithm [39] to maximize the indistinguishability of photons
generated at a quantum node and, after travelling through deployed fiber optics cable, arriving at a two-photon
measurement station, as sketched on the right hand side of Fig. 1. In addition to being a powerful optimization
framework, the final GP surrogate model allows for a deep analysis of a high-dimensional parameter space which, as
described below, corresponds to degrees of freedom of the photons in this work. The calibration problem consists of
optimizing an expensive objective function, f(x), corresponding to a measure of the change in coincidence detections
due to two-photon interference, as described in the next section. GP Bayesian optimization is based on the assumption
that the likelihood and prior distributions correspond to multivariate Gaussian distributions, where the objective
function is assumed to be a random variable sampled from a Gaussian Process,

f(x) ∼ GP[µ(x),K(x,x′)], (1)
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FIG. 2. Experimental setup used for HOM interference. A diode laser generates 766.35 nm wavelength light that goes through
a polarization controller (PC) before going through a periodically-poled lithium niobate crystal to generate a 1532.7 nm
wavelength photon pair by Type-0 spontaneous parametric down conversion (SPDC). A 50 GHz-bandwidth bandpass filter
(BPF) selects the degenerate photon pairs around 1532.7 nm wavelength and a beam splitter (BS), probabilistically separates
each photon, directing them to different output paths. The top path, in free-space, directs the photon through half- and
quarter-waveplates for control of the polarization, with the path length (i.e. time delay) controlled by a translation stage (TS),
before the photon passes through a fiber-based polarizing beam splitter (PBS). The bottom path, entirely in fiber, has a phase
modulator (PM) plus a polarization controller (PC) to maximize transmission through the PBS. The two paths meet back at a
fiber-based beam splitter (BS) which performs HOM interference, and the photons are detected by superconducting nanowire
single photon detectors (SNSPDs, identified as D1 and D2). Both paths also contain an optional 12 GHz-bandwidth tunable
bandpass filter (TBPF). The components within the dashed line are those adjusted by the Bayesian optimizer.

which is defined by the mean function, µ(x) = E[f(x)], and covariance (or kernel) function, K(x,x′) = E[(f(x) −
µ(x)(f(x′) − µ(x′))] respectively. The Bayesian optimization algorithm proceeds by feeding the optimizer, a single
function call which is equivalent to a single measurement result, f(x(i)), during the ith iteration of the algorithm,.

The variable x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)D ) is a D-dimensional vector corresponding to D experimental parameters. For

two-photon interference, these parameters control the photonic degrees of freedom that are adjusted to compensate
for channel transformations. For our proof-of-principle laboratory demonstration described in the next section, these
correspond to a time delay controlling the mutual arrival time of the photons, half-waveplate angle controlling the
polarization of the photons, and spectral filter pass-band determining the frequency detuning (offset) of the photons.
Once the ith measurement result has been fed into the Bayesian optimizer, it builds a Gaussian Process surrogate
model by performing an optimization with respect to kernel hyperparameters. An acquisition function, such as the
lower confidence bound, which we found worked best in this work, is then used to suggest the next measurement,
x(i+1). Various initial sampling strategies, kernel functions, and hyper-parameter optimization strategies are also
tested with details of the algorithmic fine-tuning provided in Appendix B.
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FIG. 3. Real-time Bayesian optimization results by calibrating the photons using two degrees of freedom. (a) Normalized
coincidence detections as a function of relative half-waveplate angle measured in degrees and relative translation stage position
measured in millimeters (acquired over 13 h). This experimental data set is considered as the baseline function for all benchmark
results. The results are symmetric about zero for negative relative polarization angles. (b) Full benchmark results using the
baseline data set in (a) as a black-box function for the Bayesian optimizer. The dark blue line is the average benchmark result
with respect to one hundred simulated trials. The true minimum corresponds to the minimum value from the baseline data
in (a). (c) Live demonstration results using the Bayesian optimizer in four different trials with detector integration time in
parentheses. Left: convergence plot. Right: Final surrogate model prediction. The black dots represent the sampled parameter
settings and the red star shows the optimal settings predicted by the GP algorithm.

Experimental setup

To test the algorithm, we performed a HOM interference measurement of two photons. When two indistinguishable
independent photons are sent to different input ports of a beam splitter, they will bunch at one of the output ports [42].
This results in a minimum (zero without imperfections) of the zero-delay-time normalized second-order correlation
function [43],

g(2)(0) =
C12T

S1S2∆τ
, (2)

where S1 and S2 (C12) denote the total number of photons detected at each (in coincidence at both) of the outputs
of the beamsplitter within time interval ∆τ over a total amount of time T . This quantity is related to the commonly
used HOM interference visibility V = (Cmax

12 − Cmin
12 )/Cmax

12 , where Cmax
12 (Cmin

12 ) denotes the maximum (minimum)
number of photons detected in coincidence as a degree of freedom of a photon is varied (e.g. its time of arrival)
[42, 44]. Either V or g(2)(0) are used to quantify the impact of imperfections in HOM interference, which ultimately
impacts Bell-state measurement fidelities, and hence the fidelity of qubit distribution in quantum networks [44–46].

In our experiment, which is depicted in Fig. 2, a continuous-wave laser emits near-visible-wavelength light that
pumps a periodically-poled lithium niobate crystal waveguide to create a photon pair at telecommunication wavelength
through spontaneous parametric down conversion (SPDC) [47]. The leftover pump light is removed with a 50 GHz
bandpass filter, and the photon pair is sent to an initial beam-splitter to probabilistically separate the photons.
Here we employ photons originating from the same source to demonstrate our principle even though photons would
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originate from independent sources in a quantum network. To avoid first-order interference between correlated photons
generated by the SPDC process, one of them passes through a fiber-based phase-modulator used to randomize the
phase difference between the photon pair [48]. The second photon goes through a free-space optics setup in which
a set of half- and quarter-waveplates adjust the photon polarization while mirrors on a translation stage vary the
path length difference (corresponding to a mutual time delay) between each of the photons. Each photon then passes
an optional, independent, and tunable 12 GHz-bandwidth bandpass filter. The waveplates, translation stage, and
tunable filters, surrounded by a dashed outline in Fig. 2, are adjusted according to the algorithm. Next, each photon
passes through fiber-based polarizing beam-splitters (PBSs), which ensure that the polarizations of both photons are
identical and that any polarization rotations are converted into intensity variations. Then, each photon is directed
into a different input port of a second fiber-based beamsplitter at which two-photon interference occurs. Finally, the
output photons are guided to two cryogenically cooled superconducting nanowire threshold single-photon detectors.
A time-to-digital converter records the time-of-arrival of the photons at the detectors.

A. Optimization using two degrees of freedom

In our first measurement, we remove the tunable band-pass filters such that the path-length difference and the half-
waveplate angle correspond to the experimental parameters x that are fed into the Bayesian optimization algorithm.
It is important to point out that there are several choices for possible objective functions f(x) one may use for the
optimization algorithm. Perhaps unsurprisingly, we find that

f(x) ≡ g(2)(0)[x] (3)

provides the best performance when compared to others and is what we employ for our scheme. For example, C12 can
vary for experimental settings that do not yield quantum interference, or V which requires adjustment of experimental
parameters to assess both Cmin

12 and Cmax
12 . Note here that the zero in g(2)(0) indicates that we always measure about

the same relative time-of-arrival of the photons (about ∆τ = 2 ns) when we vary the degrees of freedom, specifically
a time that corresponds to a minimum g(2)(0) when photons are rendered indistinguishable.

Before discussing the results of our optimization, note that we develop a theoretical model for g(2)(0) to validate
our experimental measurements and the predictions of the Bayesian optimization algorithm. The degenerate output
of our Type-0 SPDC crystal is described by a squeezed vacuum state, which is a Gaussian state, i.e. it is completely
characterized by a displacement vector and a covariance matrix. Since all optical operations in the experiment,
including the photon detection, can be described as Gaussian operations, that is, they map Gaussian states to other
Gaussian states, we can apply a characteristic function formalism [49, 50] to determine the final displacement vector
and the final covariance matrix, which allow us to predict S1, S2 and C12. In this model, the experimental degrees
of freedom are modeled as virtual beam splitters with variable transmittances ηu, ηd, and ζ, where ηu/d corresponds

to overall photon coupling efficiency in the upper/lower path (see Fig. 2) and ζ = exp(−x2) corresponds to the mode
overlap parameterization between the two photons. Details of the model are provided in Appendix C along with the
theoretical plot of g(2)(0).

Our optimization using two degrees of freedom is depicted in Fig. 3a, presenting a two-dimensional map of the
measured g(2)(0)[x] as a function of the full range of settings x of the translation stage and half-waveplate angle -
using 60 s for changing the parameter settings and T = 60 s of data-collection per setting. Our result shows good
agreement with that predicted by the theoretical model as plotted in Appendix C. In particular, g(2)(0)[x] displays
V ≤ 0.5, as expected for a squeezed vacuum input state as the input to the initial beam splitter, which splits the
pair probabilistically. Unlike the g(2)(0)[x] predicted by the theoretical model, the experimental data exhibits random
variations due to sampling noise.

To benchmark the Bayesian optimization algorithm, we used the baseline data in Fig. 3a as the source of values for
our objective function g(2)(0)[x] which are fed to the algorithm. Starting with a set of twelve measurement settings
[x(1),x(2), · · · ,x(12)] selected based on Latin hypercube sampling (see Appendix B for details), the algorithm proceeds
to select the next setting x(13), and then the next and so on, for a total number of measurements, n, that it deems
optimal for establishing the minimum of g(2)(0)[x]. As shown in Fig. 3b, we find that the Bayesian optimization
algorithm reliably converges to the minimum g(2)[x] = 20.2 in less than n = 30 measurements, on average, (dark blue
line). The light blue lines correspond to single instances of the Bayesian optimization algorithm, which converge more
slowly or more quickly depending on the random instance of initially sampled points. By benchmarking the algorithm
with over one-hundred independent trials, we are able to remove the effect of randomness, resulting in the average
(expected) convergence shown by the dark blue line.

While this benchmark confirms the validity of the approach, it is important to test the efficacy of our algorithm
in a live setting where every measurement is performed in real-time, as opposed to using the tabulated baseline data
from Fig. 3a. The results for four different real-time trials are shown in Fig. 3c. The plots for trials 1-3, for which
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FIG. 4. Real-time Bayesian optimization results using three degrees of freedom. (a) Convergence plot of the minimum g(2)(0)[x]
as a function of total number of measurements, n. (b) Partial dependence plots for each degree freedom (see main text for a
description). (c) Benchmarking the optimization using a simulated objective function derived from the theoretical model. Note
that theoretical model is based on same experimental parameters as those shown in Fig. 3a, however, the additional spectral
filtering for the three dimensional optimization lowers the mean-photon number and thus tends to increase g(2)(0)[x].

data was acquired for T = 60 s (same as for the baseline data), show that the minimum value of g(2)(0)[x] is found
within n = 15 in all three cases. The maps on the right of Fig. 3c show the final Gaussian Process surrogate model
prediction made after n = 30 measurements. It is worth noting that the surrogate models do not, and indeed are not
intended to, accurately reproduce g(2)(0)[x] over the entire parameter range of the input variables. The surrogate
models need only accurately predict the location of the minimum of g(2)(0)[x]. In fact, this pursuit of incomplete
but sufficient information is the underlying reason why GP Bayesian optimization is more efficient than brute-force
mapping of g(2)(0)[x]. In the fourth trial we reduce T to just 1 s, which significantly increases the level of shot noise.
Yet, the GP optimization still finds the minimum value after just n = 23, albeit the polarization setting is slightly
off the optimum value. As the PBS transmission follows a cosine of the half-waveplate angle g(2)(0)[x] becomes less
sensitive to small variations and, thus, renders the optimization more difficult. However, the consequence of a slight
offset of the polarization angle is also less significant due to the cosine dependence of the loss. On the other hand,
without the PBS the distinguishability would be directly proportional to the offset of the half-waveplate angle.

Our results using two degrees of freedom validate the effectiveness of the algorithm for a realistic signal that is
subject to various sources of noise including shot noise, while demonstrating fast convergence. In comparison, the full
experimental map (shown in Fig. 3a) consists of 350 data points acquired over 13 h.

B. Optimization using three degrees of freedom

Our next measurements test the Bayesian optimization algorithm in a higher-dimensional setting. Specifically, we
add the 12 GHz-bandwidth tunable filters to the experimental setup so as to include the frequency offset (between 0
and 6 GHz) of the photons as a third degree of freedom. At 0 GHz offset, both filters are resonant with the degenerate
spectral mode of the photon pair, while at the maximum detuning of 6 GHz between the two photons, the spectral
filters transmit correlated but partially non-degenerate photons. Compared to the previous setup, a broader region of
interference with respect to varied path-length difference is expected due to the spectral filtering. Since the parameter
space of settings in three degrees of freedom is too large to acquire a baseline data-set as that in Fig. 3a, we proceed
directly to a live demonstration, with results shown in Fig. 4a. We find excellent convergence towards the minimum
value within n = 25 measurements. Two-dimensional partial-dependence plots of the thirty-point surrogate model
are shown in Fig. 4b. The partial dependence plots illustrate the surrogate model prediction with respect to two
degrees of freedom, with the remaining degree of freedom averaged out. We note that the first two degrees of freedom,
corresponding to the half-waveplate angle and path length difference, display a near minimum at around 85 degrees
and 7.5 mm respectively, as expected. The final degree of freedom, corresponding to the frequency offset, displays a
near-constant dependence with a small slope predicting a minimum at X2 = 0 (zero-frequency offset).

Using our theoretical model, we generate a map of the predicted g(2)(0) for all possible parameter settings. Note
that our model captures the spectral offset of the two photons as a transition between degenerate squeezed vacuum to
non-degenerate two-mode squeezed vacuum states as inputs to the final beamsplitter, as shown in Appendix C. Thus,
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FIG. 5. Simulation results for Bayesian optimization using thermal input states. (a) Simulated baseline data using Poisson
sampling. (b) Final surrogate model prediction after 40 measurement calls. (c) Convergence plot averaged over 150 instances
(dark blue).

our theoretical model, instead of an experimentally acquired baseline map, is used as the source of the g(2)(0)[x] values
employed for systematically benchmarking the Bayesian optimization algorithm for the three-dimensional parameter
set. In Fig. 4c we plot the value of the predicted g(2)(0)[x] as a function of the total number of measurements n
averaged over a hundred trials. A set of fifteen measurement settings based on Latin hypercube sampling are used
as the initial sampling points. The results show excellent convergence towards the predicted minimum within n = 40
measurement calls, showing the efficacy of the result in the higher dimensional setting while also demonstrating the
utility of the theoretical model.

C. Optimization for simulated thermal input states

For deployed quantum networks, where photon sources are separated, one will not interfere correlated photons
as in our demonstration. Instead, two-photon measurements are typically performed on two uncorrelated coherent
photons, as in the case of MDI-QKD [37], or two photons, each entangled with another photon not partaking in the
measurement, as in the case of quantum repeaters [38]. For the latter case, photons from separate SPDC sources
will be independently calibrated in order to maximize the degree of photon indistinguishability. When one photon
from an SPDC source is observed without its correlated partner, it will follow a thermal photon number distribution
[47]. Hence, we provide additional benchmarks with thermal states at the input of the beamsplitter – corresponding
to two independent members of separate photon pairs – using our theoretical model for the predicted g(2)(0), see
Appendix C. We simulate the effect of finite sampling by performing Poisson sampling of the theoretical model, which
we define as the baseline data. The independent degrees of freedom correspond to ζ = exp(−x2) (due to path length
difference) and ηu (loss due to polarization misalignment), which in an experimental setting would be proportional
to the cosine of the polarization, see Appendix C for more details. The result is shown in Fig. 5a. The effect of finite
sampling is evident by the random noise, which reflects what a real acquired signal would look like, e.g. as in Fig. 3a.
The baseline objective function is, thus, used to test the Bayesian optimizer under experimental conditions for which
the photon detection rate can be very limited. The results shown in Fig. 5 provide the final benchmark results for
Bayesian optimization using thermal input states, averaged with 150 different instances. As before, a set of twelve
measurement settings based on Latin hypercube sampling are used as the initial sampling points. The results shown
in Fig. 5c show that the Bayesian optimizer finds the expected minimum within n = 30 measurements (located near
ηu = 0.2 and x = 0). These results are promising for in situ quantum network calibration.

DISCUSSION

It is worth discussing how another widespread optimization approach, gradient-based optimization methods, would
operate and compare to the Bayesian optimization framework presented in the manuscript. First-order gradient
descent based methods, such as conjugate gradient descent, find the local or global minimum by using the update
rule, x(i+1) = x(i)−γ∇f(x(i)), where γ is the step size value and ∇f(x(i)) corresponds to the gradient of the objective
function. While gradient descent scales well to high dimensions, it becomes very time consuming for expensive
functions where gradient information is not available. In principle, it is possible to obtain gradient information for
the current set-up, but it would require an additional measurement at each point in order to use the finite-difference
formula, ∂f∂θ |a = limδθ→0(f(a+δθ)−f(a))/δθ, resulting in a doubling of the total number of measurements. In addition,
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vanilla gradient descent methods typically converge with hundreds of function calls at a minimum, therefore, they
would be much more time-consuming than the Bayesian optimization presented here. Similar reasoning applies to
second-order methods which require second-order derivatives to construct the Hessian. While second-order methods
converge much faster than first-order methods, they come at the expense of additional function calls to construct the
Hessian at each optimization step.

The computational bottleneck of Bayesian optimization is also an important consideration for high-dimensional
problems. The computational cost of the inference step in Bayesian optimization involves solving the linear system of
equations, (K+σ2I)−1y, which scales as O(n3) with O(n2) storage, where n is equal to the total number of sampling
points. The predictive mean and variance prediction scales as O(n) and O(n2) respectively per test point. This
implies that for a large number of iterations, the computational cost can become prohibitive. To reduce computational
complexity, many approximation schemes have been proposed [51]. For example, it may be possible to use the KISS-GP
approach of Wilson and Nickisch [51] which reduces the inference complexity to O(n) and the test point prediction
complexity to O(1). This approach decomposes covariance matrices in terms of Kronecker products of Toeplitz
matrices, which naturally occur in 1D regularly spaced grids, which are then approximated by circulant matrices.
By performing local kernel interpolation, it then becomes possible to speed up Bayesian optimization resulting in
the much improved computational cost mentioned above. Other methods such as covariance matrix decomposition,
likelihood approximations, penalized likelihood, low-rank approximations, and graphical representation may also be
used for scalability and will be explored in future work [52–57].

Our method readily extends to real-world quantum networks, for instance, using fiber-optic links over several
kilometer distances. The challenge posed for optimization in deployed networks are the additional loss and noise and
dynamical fluctuations of long fibers, which cause variations of polarization and time-of-arrival of photons. These are
exactly the types of obstacles that we show our algorithm is able to overcome efficiently.

The advantage we have demonstrated in using Bayesian optimization for two-photon interference-based for quan-
tum communications is for the case where the parameters that we adjust are mutually independent. However, our
demonstration could be extended to more complex scenarios, such as linear quantum repeaters based on two-photon
interference and entanglement swapping, which may not allow for mutually independent adjustment, depending on
the approach. For instance, the emission wavelength of light from a laser may drift, and will need to be adjusted.
Thus, if photon pairs are created using SPDC, such adjustment will vary the wavelengths of both photons (or reduce
the distribution rate, depending on the filters used). More crucially, the use of entangled states fundamentally links
the properties of two photons together by way of the relative phase of the qubit bases [58], a property that is not
considered in our demonstration, and one that is also relevant for single photon-based repeaters [59] or twin-field QKD
[28]. For instance, the wavelength and phase of photons in an entangled pair are coupled, and thus an optimization
algorithm will need to account for the increased complexity when more links are employed to reach greater distances,
as well as for calibration of the measurement bases at the end of the communication channel (e.g. the relative phase of
an interferometer when using time-bin encoding). Investigation of our, as well as other optimization methods, includ-
ing its scaling advantage with communication distance, and how it applies to other network protocols, topologies, or
encodings (e.g. all-photonic repeaters [60], larger Hilbert spaces [61], or continuous-variables [21]), or other quantum
tasks [45] will be considered in future work.

CONCLUSION

We have presented and demonstrated a GP Bayesian optimization framework for both accelerating and automat-
ing the calibration of photonic degrees of freedom in order to maximize photon indistinguishability, which is an
inescapable task in future quantum networks. The methodology is sample-efficient, easy-to-use, and has small com-
putational overhead for a small number of optimization dimensions (ranging from two to ten). It is also robust
to noise and experimental imperfections, making it a suitable as a plug-and-play approach for calibrating quantum
network experiments from scratch. We have also implemented a theoretical model based on Gaussian operations to
validate our optimization and generate baseline data. We envision that our optimization approach should be appli-
cable to a wide variety of quantum optics experiments outside of the quantum network experimental focus for the
current manuscript. For example, this approach could be useful for calibrating quantum optical computational devices
[46, 62–64], in particular in distributed computing architectures, as well as quantum imaging and spectroscopic meth-
ods [65, 66], especially in prototype systems where loss and noise play a large role. In particular, as quantum networks
become more complex and with greater demands on performance, efficient and practical optimization methods must
be considered to overcome the deleterious impact of the environment on qubit transmission rates and fidelities.

By construction, quantum measurement schemes can incorporate quantum constraints and therefore the quan-
tum measurement results could be used to filter the “allowable” quantum states. There might be other ways of
incorporating quantum constraints but we will leave such studies for future work.
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Appendix A: Bayesian optimization overview

Bayesian optimization is a sample-efficient technique that performs sequential optimization of time-consuming
black-box functions. There are two main steps to any Bayesian optimization algorithm: (1) the construction of a
conditional probabilistic model for the objective function based on a set of observations, and (2) the construction of
an acquisition function that uses this model to predict future observations that optimize the objective function of
interest. The first step requires an understanding of Bayesian inference, which quantifies how we can update our belief
of a particular hypothesis of the objective function based on the current set of observations. The second step requires
defining an effective criterion that may be used to predict new observation points that will (most likely) be close to
the optimum. In the following section, we will introduce basic concepts related to Bayesian inference. The second
section will define Gaussian Processes (GP) which are often used as computationally tractable surrogate models for
Bayesian optimization. The third section will present various kernel functions relevant to Bayesian optimization. The
fourth section will define and discuss various acquisition functions which are often used in practice. The fifth section
will define the quantum network black-box objective used for this study.

Bayesian Inference

Bayesian inference aims to construct a conditional probability distribution p(H|D) for a hypothesis H based on
observed data D. For our purposes, the hypothesis represents the real values of an objective function f(x) where x is
a set of experimental knobs/parameters within the quantum optical experiment. In the context of quantum networks,
we are interested in maximizing photon indistinguishability in order to maximize the performance of a wide variety
quantum network operations and protocols. A single-measurement objective function which is able to quantify the
degree of photon indistinguishability is the normalized second order photon correlation function, f(x) ≡ g(2)(0)[x],
measured with the Hong-Ou-Mandel experimental set-up shown in the main text. Here, the goal is to minimize the
second order correlation function in order to maximize indistinguishability. For general Bayesian optimization, the
experimental knobs can be categorical, integer, or real-valued quantities but for our purposes, we will only consider
real-valued quantities such as the polarization rotation angle, position delay stage, and frequency filter bandwidth. In
the following, we define the basic concepts of Bayesian inference without reference to the photon correlation function,
however, we will later refine the likelihood functions and kernel functions for the Gaussian Process in order to refine
the Bayesian optimization algorithm to the quantum network problem.

Bayes Theorem

Let X = [x(1), · · · ,x(n)] represent the matrix of observed input vectors x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)D ) defined in a D-

dimensional space, and y = [y(1), · · · , y(n)]T represent the vector of observed outputs y(i). The posterior distribution
p(H|D) conditioned on the observed data D = {X,y} is computed using Bayes’ theorem,

p(H|D) =
p(D|H)p(H)

p(D)
, (A1)



10

where p(D|H) is the likelihood function and p(H) is the prior probability distribution for the hypothesis H. Bayesian
inference uses Bayes’ theorem (1) to update the probability of our hypothesisH as more information becomes available.
The Bayesian approach provides several advantages including: (i) providing a full probabilistic description of our
hypothesis (such as parameter estimates) rather than point estimates, (ii) it is generally more robust to noise and
outliers, (iii) it allows for inclusion of prior knowledge, (iv) and it is straightforward to use in the small sample size
limit. For a given posterior distribution, the posterior predictive distribution for a new data point D∗ = {x∗, y∗} is
defined as:

p(D∗|D) =

∫
p(D∗|H)p(H|D)dH. (A2)

This quantity predicts the distribution of new, unobserved data. Our hypothesis and prior knowledge will control the
convergence of the Bayesian optimization algorithm. We will discuss the Gaussian Process priors below. See Ref. [39]
for a more detailed discussion of Bayesian optimization and Gaussian processes.

Appendix B: Gaussian Processes

For arbitrary likelihood and prior distributions, the exact calculation of the posterior distribution is not tractable.
In particular, the denominator, which acts as a normalization constant for the posterior to remain a valid probability
distribution, requires the calculation of a high-dimensional integral that is generally intractable. It is possible to
use Monte-Carlo-based methods, however, these approaches are generally computationally expensive and ultimately
become intractable for high dimensions. By assuming that the likelihood and prior correspond to multivariate Gaussian
distribution functions, it is possible to calculate the posterior and predictive posterior exactly. In the Gaussian Process
framework, we assume that the training and test data have Gaussian noise and may be written in the form,

y(i) = f(x(i)) + ε(i), (B1)

where εi corresponds to Gaussian-distributed noise with zero mean, p(ε) = N (0, σ2). The likelihood of the observed
data D is then given by:

p(y|X, f) = N (f , σ2I). (B2)

The “noiseless” signal f = [f(x(1), f(x(2)), · · · , f(x(n))]T plays the role of the hypothesis H which corresponds to
the parameters we wish to estimate. In this regard, the Gaussian Process approach is model-agnostic, which may be
advantageous in scenarios where parametric models are not available, or perhaps undesirable to avoid the introduction
of model bias. Since the noiseless vector f plays the role of the effective parameters, we require defining a prior
distribution on these parameters. The Gaussian Process framework assumes the prior distribution is a Gaussian
Process written as, f(x) ∼ GP(µ(x), k(x,x′)), where the symbol “∼” is read as: “is sampled from” or “is distributed
as.” This implies that we treat the measured outputs fi as random variables that are sampled from the Gaussian
process distribution function. Note that a Gaussian process is a distribution over functions completely defined by
the mean function µ(x) = E[f(x)] and covariance function k(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. In practice,
µ(x) and σ act as a constant hyperparameters that are optimized during the hyperparameter optimization process
discussed, which discuss more thoroughly in the upcoming subsections. The prior distribution for f can therefore be
written as a multivariate Gaussian,

p(f) = N (µ(x),K) (B3)

where K is the kernel covariance matrix,

K ≡ K(X,X) =


k(x(1),x(1)) k(x(1),x(2)) · · · k(x(1),x(n))
k(x(2),x(1)) k(x(2),x(2)) · · · k(x(2),x(n))
· · · · · · · · · · · ·

k(x(n),x(1)) k(x(n),x(2)) · · · k(x(n),x(n))

 , (B4)

and must be a positive semi-definite matrix. Given the likelihood (B2) and prior distribution (B3), it is possible to
calculate the posterior as:

p(f |X,y) =
p(y|X, f)p(f)
p(y|X)

= N (K(K + σ2I)−1y, σ2(K + σ2I)−1K) (B5)
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where, as an aside, it is worth noting that σ2(K + σ2I)−1K = K −K(K + σ2I)−1K, and the latter quantity is often
found in textbooks. Let us now calculate the predictive distribution for unobserved data, D∗ = {X∗,y∗}. The joint
Gaussian process prior for the observed and unobserved data is written as:

p

(
f
f∗

)
= N

[(
µ(x)
µ(x∗)

)
,

(
Kx,x + σ2I Kx,x∗

Kx∗,x Kx∗,x∗

)]
. (B6)

The predictive distribution, p(f∗|D) =
∫
p(f∗|f)p(f |D)df , is then found to be:

p(f∗|D) = N (f∗|µp(x∗),Σp(x∗)) (B7)

with µp(x
∗) and Σp(x

∗) corresponding to the predicted mean and variance of the model at point x∗,

µp(x
∗) = µ(x∗) + kT∗ (K + σ2I)−1(f − µ(x)) (B8)

Σp(x
∗) = k(x∗,x∗)− kT∗ (K + σ2I)−1k∗ (B9)

where k∗ = k(x,x∗) is an (n×m) matrix corresponding to the n training points x and m test points x∗. Equations
(B8) and (B9) are the key equations which describe Gaussian-Process-based Bayesian inference.

Kernel functions

The covariance function encodes information about the shape and structure the objective function. The kernel
ultimately affects the convergence rate of the Bayesian optimization algorithm. Below, we write several well-known
kernel functions from the literature. For example, the squared exponential kernel is written as:

k(x,x′) = exp

(
−||x− x′||2

2`2

)
, (B10)

which ensures that nearby points have similar function values within the length scale given by `. The periodic kernel
is given by:

k(x,x′) = exp

(
−2 sin2(π||x− x′||/p)

`2

)
(B11)

where ` is a length scale parameter and p is the periodicity of the kernel. Finally, we also consider the Matern kernel,

k(x,x′) =
1

Γ(ν)2ν−1

(√
2ν

l
||x− x′||2

)ν
Kν

(√
2ν

l
||x− x′||2

)
, (B12)

where Kν is a modified Bessel function and Γ is the gamma function. The parameter ν controls the smoothness of
the function. The smaller the ν, the less smooth the function will be. A comparison of various kernels is given in Fig.
6, demonstrating that the Matern kernel provides the best performance compared to all other kernels.

Learning the hyperparameters of the kernel

Given data set D, the kernel hyperparameters such as ` and p (here, we denote them as θ) will strongly affect the final
GP surrogate model predictions. How do we choose the correct hyperparameters values that should be used for the
posterior p(f |D)? The idea here is to calculate the probability of observing the given data under our prior: p(y|X, θ) =∫
p(y|f)p(f |X, θ)df , which is referred to as the marginal likelihood. The hyperparameters θ can be determined by

performing maximum likelihood estimation of the marginal likelihood p(y|x, θ) = N (µ(x), kθ(x,x
′) + σ2I). Taking

the logarithm of this function, we obtain

ln p(y|x, θ) = −1

2
ln det(kθ(x,x

′) + σ2I)− 1
2 (y − µ)T (kθ(x,x

′) + σ2I))−1(y − µ)− N ln 2π

2
, (B13)

where the first term corresponds to the volume of the prior and becomes large when the volume of the prior is small (i.e.
when the model is simple), while the second term becomes large when the data fits the model very well. Assuming that
the posterior distribution over hyperparameters θ is well-concentrated, we can approximate the predictive posterior as

p(f∗|D) ≈ p(f∗|D, θMLE) (B14)

where θMLE corresponds to the hyperparameters that maximize the log-likelihood (B13),

θMLE = argmaxθ p(y|x, θ). (B15)
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FIG. 6. Convergence plots for different kernels including the radial basis function (RBF) kernel (also known as squared
exponential kernel), the periodic kernel, and the Matern kernel (ν = 5/2) using the 3D baseline model for testing purposes.

Acquisition Functions

An acquisition function a(x) aims to evaluate the expected loss associated with evaluating f(x) at point x, and
selects the point with the lowest expected loss. In the following, we compare three different acquisition functions which
are often used in the literature.

(i) Probability of improvement

Let f ′ denote the minimum value of the objective function that has been observed so far. The probability of im-
provement aims to evaluate f at the location most likely to improve upon this value. Here, we define the utility
function,

u(x) =

{
0 f(x) > f ′

1 f(x) ≤ f ′.
(B16)

This utility function implies that a unit reward is given if f(x) is less than f ′, and provides no reward otherwise. The
probability of improvement is the expected utility as a function of x:

aPI(x
∗) = E [u(x∗)|x∗,D] =

∫ f ′

−∞
N (µ(x∗),K(x∗, x∗)) df (B17)

= Φ(µ(x∗),K(x∗, x∗)).

The point with the highest probability of improvement is selected. Note that this acquisition function provides a
reward regardless of the size of improvement.

(ii) Expected improvement

The expected improvement improves on the previous result by defining a reward that is dependent on the size of the
improvement by defining the utility function:

u(x) = max(0, f ′ − f(x)). (B18)

The acquisition function for the expected improvement is then written as:

aEI(x
∗) = E [u(x∗)|x∗,D] =

∫ f ′

−∞
(f ′ − f)N (µ(x∗),K(x∗, x∗)) df (B19)

= [f ′ − µ(x∗)]Φ(µ(x∗),K(x∗, x∗)) +K(x∗, x∗)N (µ(x∗),K(x∗, x∗)).
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The first term is contingent on the size of the improvement, meaning that it will tend to be large for points that are
closer to the minimum relative to f ′. The second term is dependent on the variance of the point x∗. Points with
large variance will have a large degree of uncertainty, therefore, it makes sense that those points should be explored
in order to reduce our uncertainty of the surrogate model. Due to these two terms, this acquisition function encodes
a trade-off between exploitation due to the first term and exploration due to the second term.

(iii) Lower confidence bound

Here, the lower confidence bound is written as:

aLCB(x∗) = µ(x∗)− βσ(x∗), (B20)

where β > 0 is a trade-off parameter and σ(x∗) =
√
K(x∗, x∗) is the standard deviation of point x∗. Unlike the

previous two acquisition functions, this quantity cannot be interpreted in terms of computing the expectation of a
utility function, nevertheless, there are strong theoretical results that imply that this acquisition function will converge
to the true global minimum of f under certain conditions. A benchmark comparison of different acquisition functions
is shown in Fig. (7) demonstrating that the lower confidence bound acquisition function outperforms the other two,
where we used β = 2, as the trade-off parameter value.

FIG. 7. Convergence plots for different acquisition functions where LCB refers to Lower Confidence bound, PI refers to
probability of improvement, and EI corresponds to expected improvement.

Initial Sampling Scheme Comparison

While Bayesian optimization can start with zero knowledge of the objective function (i.e. the size of training data is
null), it is possible to accelerate the convergence of the Bayesian optimization algorithm by using a set of judiciously
chosen initial sampling points. Conventionally, there are many techniques available for sampling such as: uniform
or random sampling, Sobol sampling, Halton sampling, and Latin hypercube sampling (LHS). By using the skopt
initial sampling package, we performed additional benchmarks with respect to the number of initial sampling points
as well as the type of sampling used. In Fig. 8, we provide a comparison between Sobol, Halton, random, conventional
Latin hypercube sampling and Maximin Latin hypercube sampling showing that the maximin and conventional Lain
hypercube sampling provided the best performance. For live testing purposes, we opted to use the conventional Latin
Hypercube Sampling scheme, however, further work will be required to determine optimal initial sampling methods
for other response functions of interest for quantum network calibration experiments.

Summary of Bayesian Optimization Algorithm

The proposed Bayesian optimization algorithm can be summarized by the following steps:
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FIG. 8. Convergence plots with different initial sampling schemes including Sobol, Halton, random, Maximin Latin Hypercube
Sampling, and conventional Latin Hypercube sampling using the the 3D baseline model for testing purposes.

1. Perform n initial measurements y = (y1, · · · , yn) with respect to the experimental degrees of freedom, X =
[x1, · · · ,xn], using Maximin latin hypercube sampling.

2. Build Gaussian Process surrogate model based on existing measurements.

3. Suggest new measurement location xi+1 based on the acquisition function prediction.

4. Repeat 2-3 until stopping criterion is met.

The Gaussian Process model built in step 2 of the Bayesian optimization algorithm above can be further decomposed
into the following steps:

1. Build the covariance matrix, Eq. (B4), for Matern Kernel (ν = 5/2) based on Eq. (B12).

2. Optimize the Kernel hyperparameters based on the marginal likelihood, Eq. (B15)

3. Provide predictive mean and variances based on Eqs. (B8) and (B9).

1. Numerical Implementation

The numerical implementation and benchmarking of the Bayesian optimization algorithm was done with in-house
code written in Python with standard numpy and scipy linear algebra and optimization packages. However, there are
a wide variety of excellent open-source software implementations that are available through github. We recommend
skopt (Bayesian optimization) and GPytorch (Gaussian Process regression) [67] which provide an excellent starting
point for initial testing. It is worth noting that we found the customization of the open-source software difficult (for
example, adding custom acquisition functions, kernel functions, as well as other functionalities) which is why we opted
to perform the benchmarking (shown in this Appendix B) with our in-house code. The live testing was performed
with a modified version of the skopt Bayesian optimization algorithm.

2. Comparison to Adaptive Gradient Descent

Numerical experiments demonstrating the performance of the adaptive gradient descent algorithm (AdaGrad)[68,
69] are shown in Fig. 9. AdaGrad is an extension of the vanilla gradient descent algorithm allowing for the step
size of each parameter to be adapted at each iteration based on gradient information. The results are shown for a
simulated two-dimensional HOM dip optimization problem with thermal input states, similar to what we discussed
for Fig. 5 of the main text. The details of the thermal input state model can be found in the section below. In
Fig. 9, each of the three columns represents the effect of shot noise corresponding to different detector integration
times. The low-photon count regime is highlighted in the right-most column. The convergence plots in the bottom
row show the results of one hundred trials, each with different initial starting points. While some instances converge
quickly (within 20 to 30 measurement calls), other instances converge to local minima with flat regions and therefore
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do not find the true global minimum. The dark blue line corresponds to the average convergence of the AdaGrad
algorithm which is shown to be over three times slower compared to the proposed Bayesian Optimization algorithm
(i.e. compared to the convergence plots shown in Fig. 5 of the main text).

FIG. 9. AdaGrad convergence plots. See text for additional details.

Appendix C: Hong-Ou-Mandel interference model

To model the experiment we use methods of phase space quantum optics, in particular the characteristic function
formalism [49, 50]. This method allows us to describe many experimental imperfections, such as coupling losses,
non-perfect detector efficiencies, high photon number contributions, photon number statistics, etc., and is best suited
to deal with the Gaussian quantum optical states. Gaussian states are the states whose characteristic function, or in
fact any other phase space representation, is given by a multidimensional Gaussian function

χ(ξ) = exp(−1

4
ξT γξ − idT ξ), (C1)

with d and γ being displacement vector and covariance matrix of the system respectively, ξ ∈ R2n with n being the
number of independent bosonic mode of the system. The examples of the Gaussian states include the vacuum state,
coherent states, as well as squeezed vacuum and two-mode squeezed vacuum states. The later two are directly relevant
to our experimental studies since they describe the output states of degenerate and non-degenerate spontaneous
parametric down conversion process respectively. It is known that linear optic operations, such as beam splitters,
phase shifters etc., preserve Gaussian states [70, 71], i.e. they map Gaussian states onto Gaussian states. For the
characteristic function it means that for any linear optic operation there exists a symplectic matrix S that transforms
the initial displacement vector and the covariance matrix to the output form, γ′ = ST γS and d′ = Sd.

The model representation of the experimental setup is given in Fig. 10. The output of the SPDC crystal is mixed
with a vacuum input on the first beam splitter BS. The overall coupling efficiencies in the upper and the lower arm can
be modelled by the virtue of a virtual beam splitter with the transmittance ηu and ηd respectively. The polarization
degree of freedom can be modeled by a variable transmittance, e.g. ηu, that can take values from zero, corresponding to
crossed polarizations, to some finite value ηfu, corresponding to parallel polarizations. Another virtual beam splitter
with a transmittance ζ is used to model the path length or the time of arrival degree of freedom. ζ corresponds
to the mode overlap of the arriving photons and can take values from 0, corresponding to the case of completely
distinguishable photon wave packets with zero overlap, to 1, corresponding to the case of completely indistinguishable
photons. To resemble the experimental data more closely we parametrize the ζ parameter as a Gaussian function



16

FIG. 10. Representation of the model. The output of type-0 SPDC crystal, which is described by a squeezed vacuum state, is
mixed in with vacuum at a beam splitter. The coupling efficiencies of the two arms are modeled by a virtual beamsplitters with
a transmittance ηu and ηd for the upper and lower arm respectively. Assuming equal coupling efficiencies we can simulate the
polarization match by varying ηu from 0 to ηd corresponding to crossed and aligned polarizations respectively. Another virtual
beamsplitter with a transmittance ζ models the mode overlap of the two modes. Only the transmitted parts corresponding to
the indistinguishable proportion of the two photons, interfere with each other on the following beamsplitter, while the reflected
parts are mixed with vacuum. A controllable phase shift φ is also present in the bottom arm.

ζ = exp(−x2) reflecting the fact that the overlap of two Gaussian pulses is again a Gaussian function. As we can see
from the figure only transmitted parts interfere at the following beam splitter whereas reflected parts do not interfere
but are mixed with a vacuum input instead. To model the phase averaging we introduce a phase shifter in the lower
arm that shifts the relative phase between the two arms by an amount φ. To obtain the experimental values of the
(phase dependent) quantities we average over φ from 0 to 2π. In the experimental setup this averaging is achieved by
the phase-modulator in one of the arms continuously sweeping over a 2π phase-shift.

After determining individual symplectic transformations and combining them together we obtain the covariance
matrix that completely describes the final state. Using the characteristic function description we can now calculate
the probabilities for a single and coincidence photon detection as follows:

PD1/D2 = Tr{ρ̂(1− |0〉 〈0|1/2)} = 1− Tr{ρ̂(|0〉 〈0|)1/2} (C2)

PD1D2 = Tr{ρ̂(1− |0〉 〈0|1)(1− |0〉 〈0|2)}
= 1− Tr{ρ̂(|0〉 〈0|)1} − Tr{ρ̂(|0〉 〈0|)2}+ Tr{ρ̂(|0〉 〈0|)1(|0〉 〈0|)2}, (C3)

where |0〉1/2 corresponds to a vacuum state of all modes impinging on the detector D1/D2. From these we can now

easily determine the normalized g(2)(0) correlation function as:

g(2)(0) =
PD1D2

PD1PD2
. (C4)

FIG. 11. Normalized g(2)(0) correlation function for (a) degenerate single-mode squeezed vacuum input state, and (b) non-
degenerate two-mode squeezed vacuum input state, and (c) two thermal input states.

We studied the g(2)(0) correlation function for different input states corresponding to different physical situations.
If the underlying nonlinear process is a degenerate down conversion, i.e. two identical photons are created, the input
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state is described by a squeezed vacuum state with the corresponding covariance matrix

γSV =

(
e−2r 0

0 e2r

)
, (C5)

where r is the squeezing parameter. This is a good approximation if the broadband output of SPDC crystal is filtered
using narrow-band filters. More generally, one has to perform a Schmidt mode decomposition of the source’s JSA
to determine the number of relevant modes. Considering only one mode corresponds to neglecting all but the main
Schmidt mode, but since the Schmidt modes are independent and behave all in the same way it still captures the
qualitative behaviour of the experimental system. We use this input for all of the experimental two dimensional
parameter space scans, i.e., the data in Fig. 3. In Fig. 11a the g(2) is plotted as a function of ζ = exp(−x2) (path
length difference) and ηu (loss due to polarization misalignment of upper arm).

If the down conversion process is non-degenerate, i.e. two different photons are created for example at different
frequencies, the input state can be approximated as a two-mode squeezed vacuum state with the corresponding
covariance matrix

γTMSV =


cosh2(r) + sinh2(r) 0 2 cosh(r) sinh(r) 0

0 cosh2(r) + sinh2(r) 0 −2 cosh(r) sinh(r)
2 cosh(r) sinh(r) 0 cosh2(r) + sinh2(r) 0

0 −2 cosh(r) sinh(r) 0 cosh2(r) + sinh2(r)

 . (C6)

This input corresponds to the case in the three-dimensional parameter space for which the spectral filters in the two
arms have been shifted with respect to each other by an amount much greater than the bandwidth of the filters.
However, in this case the photons in each arm are clearly distinguishable, so the final HOM interference will always be
between distinguishable modes. We can tweak the model to accommodate this feature by introducing another virtual
beamsplitter with reflectivity ζ ′. Essentially, the same result can be achieved by fixing ζ = 0. The predicted g(2)(0) is
plotted as a function of ζ = exp(−x2) (path length difference and ηu (loss due to polarization misalignment of upper
arm in Fig. 11b. The cross-correlation function does not depend on ζ, but only on ηu, since the latter induces actual
loss in the PBS, i.e., changes the number of photons reaching the detector. In reality we do not fully achieve the
scenario in which the filters are detuned by more than bandwidth as the filters are maximally shifted by 6 GHz with
respect to each other while their bandwidth is about 12 GHz. Hence, the actual expected g(2) will be a combination of
the squeezed vacuum input case (Fig. 11a) and the non-degenerate two-mode squeezed state (Fig. 11b). The relative
weight of the two contributions can be found by calculating the spectral overlap of the photons after the filter, which,
for Gaussian filter pass-bands, will again yeild a Gaussian shaped weight parameter as a function of the spectral
separation of the two filters.

Finally, in a real world implementation of a quantum network the Bell state measurements will occur between two
different entangled photon sources. This means that the two partaking photons will originate from different SPDC
sources and, thus, not be correlated. The input state in this case will correspond to two thermal states with the
corresponding covariance matrix

γTMSV =

1 + 2µ 0 0 0
0 1 + 2µ 0 0
0 0 1 + 2µ′ 0
0 0 0 1 + 2µ′

 , (C7)

where µ and µ′ are the mean photon numbers at the two inputs. Figure 11c shows the g(2)(0) function for the thermal
input state scenario.
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D. D. Sukachev, et al., Experimental demonstration of memory-enhanced quantum communication, Nature 580, 60 (2020).

[26] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, and G. Rempe, A quantum-logic gate
between distant quantum-network modules, Science 371, 614 (2021).

[27] G. Guccione, T. Darras, H. Le Jeannic, V. B. Verma, S. W. Nam, A. Cavaillès, and J. Laurat, Connecting heterogeneous
quantum networks by hybrid entanglement swapping, Science Advances 6, eaba4508 (2020).

[28] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate–distance limit of quantum key distribution
without quantum repeaters, Nature 557, 400 (2018).

[29] T. Herbst, T. Scheidl, M. Fink, J. Handsteiner, B. Wittmann, R. Ursin, and A. Zeilinger, Teleportation of entanglement
over 143 km, Proc. Nat. Acad. Sci. 112, 14202 (2015).

[30] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, et al., Ground-to-satellite
quantum teleportation, Nature 549, 70 (2017).

[31] D. Du, P. Stankus, O.-P. Saira, M. Flament, S. Sagona-Stophel, M. Namazi, D. Katramatos, and E. Figueroa, An elementary
158 km long quantum network connecting room temperature quantum memories, arXiv:2101.12742 (2021).

[32] R. Valivarthi, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, W. Tittel, et al.,
Quantum teleportation across a metropolitan fibre network, Nat. Photonics 10, 676 (2016).

[33] D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, Telecom-heralded entanglement between
multimode solid-state quantum memories, Nature 594, 37 (2021).

[34] X. Liu, J. Hu, Z.-F. Li, X. Li, P.-Y. Li, P.-J. Liang, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, Heralded entanglement distribution
between two absorptive quantum memories, Nature 594, 41 (2021).

[35] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).
[36] M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, Interferometric Bell-state analysis, Phys. Rev. A 53, R1209 (1996).
[37] H.-K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108, 130503

(2012).
[38] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum

communication, Phys. Rev. Lett. 81, 5932 (1998).



19

[39] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Adaptive Computation and Machine
Learning (MIT Press, Cambridge, MA, USA, 2006).

[40] R. L. Miller, Z. Xie, S. Leyffer, M. J. Davis, and S. K. Gray, Surrogate-based modeling of the optical response of metallic
nanostructures, J. Phys. Chem. C 114, 20741 (2010).

[41] R. L. Miller, L. B. Harding, M. J. Davis, and S. K. Gray, Bi-fidelity fitting and optimization, J. Chem. Phys. 136 (2012).
[42] C.-K. Hong, Z.-Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference,

Phys. Rev. Lett. 59, 2044 (1987).

[43] M. Beck, Comparing measurements of g(2)(0) performed with different coincidence detection techniques, J. Opt. Soc. Am.
B 24, 2972 (2007).

[44] R. Valivarthi, S. I. Davis, C. Peña, S. Xie, N. Lauk, L. Narváez, J. P. Allmaras, A. D. Beyer, Y. Gim, M. Hussein, et al.,
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