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Abstract 17 

Mitigating greenhouse gas emissions by underground carbon dioxide storage or by 18 

coupling intermittent renewable energy with underground hydrogen storage are 19 

solutions essential to the future of energy. Of particular importance to the success of 20 

underground storage is the fundamental understanding of geochemical reactions with 21 

mineralogical phases and flow behavior at the length scale at which interfaces are well 22 

resolved. Fast synchrotron-based three-dimensional (3D) X-ray micro-computed 23 

tomography (μ-CT) of rocks is a widely used technique that provides real-time 24 

visualization of fluid flow and transport mechanisms. However, fast imaging results in 25 

significant noise and artifacts that complicate the extraction of quantitative data beyond 26 

the basic identification of solid and void regions. To address this issue, an image-27 

processing workflow is introduced that begins with unpaired domain transfer by 28 

CycleGAN, which is used to transfer synchrotron-based micro-CT images containing 29 

fast-imaging-associated noise to long-scan, high-quality μ-CT images that have paired 30 

ground truth labels for all phases. The second part of the workflow is multi-mineral 31 

segmentation of images using convolutional neural networks (CNNs). Four CNNs were 32 

trained using the transferred dynamic-style μ-CT images. A quantitative assessment of 33 

physically meaningful parameters and material properties is carried out. In terms of 34 

physical accuracy, the results show a high variance for each network output, which 35 

indicates that the segmentation performance cannot be fully revealed by pixelwise 36 

accuracy alone. Overall, the integration of unpaired domain transfer with CNN-based 37 

multi-mineral segmentation provides a generalizable digital material framework to 38 

study the physics of porous materials for energy-related applications, such as 39 

underground CO2 and H2 storage. 40 

 41 

 42 
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1. Introduction 46 

The adoption of the Paris Agreement in 2015 renewed enthusiasm toward greenhouse 47 

gas emission mitigation and the transition from fossil fuels to renewable-energy-based 48 

systems [1–3]. The capture and geological storage of emitted CO2 (CCS) is a promising 49 

method for reducing atmospheric greenhouse gas, and underground hydrogen storage 50 

(UHS), which stores excess renewable energy in the form of hydrogen in geological 51 

structures, is an emerging means of resolving renewable energy intermittency [4–8]. 52 

When it comes to the research regarding containment, capillary trapping and hydrogen 53 

loss are two key factors that determine the feasibility of CCS and UHS. The 54 

performance of CO2 capillary trapping significantly depends on the wettability of the 55 

surrounding minerals [9,8], and hydrogen loss is mainly controlled by the mineral types 56 

and their dissolution and precipitation processes [10–12]. Therefore, understanding 57 

reservoir rock mineralogy and the corresponding flow behavior is essential for 58 

deciphering the CO2 and H2 storage efficiencies.  59 

 60 

With the aid of digital rock physics (DRP), rock mineralogy and flow dynamics can be 61 

characterized comprehensively on the length scale at which interfaces are well 62 

resolved [13,14,10,15]. The workflow for DRP provides a generalizable technique for 63 

mineralization and flow analyses in complex micrometer-sized structures, which starts 64 

with image acquisition, image processing, and subsequent physical measures and/or 65 

numerical simulation of flow and transport mechanisms [16,17,17,18,13,19]. To date, 66 

the focus has extended from static to dynamic analysis, such as dynamic image 67 

acquisition by synchrotron-based X-ray micro-computed tomography (μ-CT), which 68 

provides 3D real-time images of fluid flow and transport phenomena in porous 69 

media [20,21]. This dynamic imaging technique can be potentially used to capture the 70 

dynamics of CO2 and H2 distribution, flow behavior, and reaction with minerals in 71 

porous rocks. However, the fast acquisition time results in a relatively low-intensity 72 

signal in comparison to standard imaging techniques, where acquisition times are an 73 

order of magnitude greater. The low signal-to-noise ratio results in images that are 74 

challenging to process, especially for image segmentation. Therefore, these images are 75 

segmented into void and solid phases; however, for many physical processes, the actual 76 

distribution of the constitutive minerals and their interactions with the flowing fluids 77 

are important. With multiphase flow, the varying mineralogy and associated wetting 78 

properties are important. Thus, without the development of an image processing 79 

workflow for dynamic data, it is challenging to capture accurate pore structures for the 80 

simulation of physical processes within a digital framework.  81 

 82 

3D μ-CT is a non-invasive and non-destructive imaging tool that has been used to 83 

capture rock features and fluid/gas distributions to support compositional 84 
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characterization, pore network modeling, and the assessment of mineralogy and other 85 

petrophysical parameters [22–25]. Numerical simulations of fluid flow at the pore scale, 86 

such as multi-mineral reactive transport and single-phase and two-phase flow, can be 87 

directly performed on μ-CT images, which are highly related to underground CO2 and 88 

H2 storage [26,27]. Several studies have substantiated that numerical simulations of 3D 89 

μ-CT images reasonably agree with experimental results [28–31]. However, several 90 

hours are required to obtain high-quality 3D μ-CT images, which limits their utilization 91 

for the imaging of dynamic processes [32,33]. Important fundamental scientific 92 

questions remain regarding the role of transient processes during multiphase 93 

flow [20,34]. To address these issues, synchrotron-based μ-CT imaging has attracted 94 

attention owing to its extremely high photon flux, which makes it possible to capture 95 

full 3D images within seconds [35]. Therefore, real-time 3D dynamic imaging can be 96 

achieved with synchrotron-based μ-CT [20] but at the expense of image quality [36]. 97 

 98 

Accurate feature characterization and flow simulation of μ-CT images rely on image 99 

segmentation. Image segmentation in DRP refers to the process of partitioning μ-CT 100 

images into multiple mineral phases, pores, and fluid/gas phases [18]. To date, several 101 

studies have performed μ-CT image segmentation by proposing machine-learning 102 

methods, especially the use of advanced convolutional neural networks (CNNs) [37–103 

41]. A CNN is built within a deep learning framework that performs multiphase 104 

segmentation with the benefit of eliminating user judgment of the parameters associated 105 

with segmentation. CNNs can capture informative features and semantics from images 106 

with receptive fields by stacking several convolutional layers with nonlinearities and 107 

down-sampling layers. CNNs have been widely used in the field of computer vision, 108 

including object detection [42], image classification [43,44], super-resolution [45], 109 

image-to-image translation [46] and image segmentation [47,48]. In regards to CNN-110 

based semantic segmentation, compared to traditional segmentation techniques 111 

including edge detection methods, thresholding methods, or region-based methods, 112 

CNN relies less on the voxel intensity frequency distribution and reduces the 113 

requirement of expert intervention [49,50].  A study of segmentation with both a 114 

watershed segmentation technique and CNN methods demonstrated that CNN gives a 115 

better segmentation result in terms of phase boundaries and connectivity [51],. A study 116 

of dual-energy X-ray absorptiometry images to distinguish between bone and soft tissue 117 

compared the segmentation accuracy between Otsu’s thresholding and a deep learning 118 

method [52]. The pixel-based accuracy using deep learning was significantly higher 119 

than Otsu’s thresholding method. These results suggest that CNNs have matured to the 120 

point that they outperform other methods for semantic segmentation [52–54]. 121 

 122 

Specifically to DRP, multi-mineral segmentation of μ-CT images can be a complex and 123 

time-consuming task using traditional segmentation algorithms because the voxel 124 

values for different minerals are incompletely differentiated due to similar X-ray 125 

attenuation coefficients and Poisson–Gaussian noise [55]. Therefore, most studies treat 126 

all minerals as a single solid phase and pores as the other phase [56,57]. However, this 127 

is not appropriate in all cases, especially for CCS and UHS. Certain types of minerals 128 
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will cause hydrogen loss, which is observed in the reaction between H2-saturated brine 129 

and calcite [12]. In addition, CO2 trapping is characterized by the wettability of 130 

different types of minerals [25,58,59]. The utilization of CNN-based multi-mineral 131 

segmentation could be one approach to resolve this issue.  132 

 133 

For CCS and UHS studies, high pixelwise accuracy does not necessarily guarantee that 134 

petrophysical parameters such as permeability or relative permeability are accurately 135 

captured. As shown in previous studies, petrophysical parameters are highly sensitive 136 

to small segmentation errors [39]. Therefore, the sensitivity of quantitative 137 

measurements to these errors must be considered. A segmentation of six mineral phases 138 

on a sandstone sample was performed using several CNNs, including SegNet and U-139 

Net [37]; segmentation errors were evaluated in terms of both pixelwise accuracy and 140 

physical accuracy. Overall, 95% pixelwise accuracy was achieved, whereas the 141 

segmentation results displayed high variance in terms of physical measurements. The 142 

commonly occurring phases such as quartz are the main contributors to pixelwise 143 

accuracy, while the accuracy of the less commonly occurring mineral phases is lower 144 

than the overall accuracy. For example, A study reported that in zircon the phase 145 

accuracy was only 60% with an overall pixelwise accuracy of 94% [38]. The issue is 146 

that networks tend to overestimate commonly occurring phases and underestimate the 147 

less commonly occurring phases when the training data of each phase are imbalanced. 148 

This issue was exemplified in the dataset used by [37,38], which contained 61% quartz 149 

phase but only 0.21% mica phase as a volume fraction. Less commonly occurring 150 

phases are likely recognized as noise by the network and networks; therefore, they train 151 

for the commonly occurring phases that dominate the accuracy. It is difficult to balance 152 

sparse phases because these minerals are rare in rocks, and obtaining training data in 153 

the first place is difficult because of the high expense. Data argumentation of sparsely 154 

occurring phases and judicious selection of the loss function during training can be 155 

carried out to reduce the imbalance to an extent; for example, focus loss reduces the 156 

weight of the easy-to-segment phases and forces the network to focus more on the loss 157 

of less common phases [60]. However, because the CNN-based segmentation method 158 

is a data-driven task, such imbalances are unavoidable when it comes to less commonly 159 

occurring phases. 160 

 161 

In addition, μ-CT scanning noise, which is commonly regarded as a random signal and 162 

is characterized by a probability density function, is known to significantly influence 163 

segmentation results [61,62]. The noise mainly includes Gaussian and Poisson 164 

processes [55]. Gaussian noise results from the random distribution of independent 165 

signals, whereas Poisson noise is commonly found in situations where photons are 166 

accumulated over a detector, such as charge-coupled device (CCD) cameras [63]. The 167 

boundary of each mineral phase is difficult to define with Poisson and Gaussian noise 168 

because edge detection is highly sensitive to noise, and the image quality is reduced 169 

significantly. Therefore, it is common to leverage several noise removal filters before 170 

segmentation. These filters mainly include the non-local mean filter and Gaussian filter, 171 

which were introduced as edge-preserving denoising and blurring filters to remove 172 
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additive Gaussian noise [64]. Laplacian, Canny, and Sobel filters are sharpening and 173 

edge-detection filters commonly used for boundary detection and feature extraction for 174 

supervised machine learning segmentation [65]. However, denoising filters can cause a 175 

certain degree of degradation of the details in images and remove the “real information” 176 

and fine structures, especially for less-common mineral phases [66]. Although these 177 

degraded effects might be acceptable for binary segmentation, they should be strictly 178 

avoided in multi-mineral/phase segmentation because these fine structures need to be 179 

preserved for segmenting the less-prevalent minerals. For real-time synchrotron-based 180 

μ-CT imaging, noise associated with dynamic imaging occurs across all images because 181 

the exposure time for each collected radiograph is significantly reduced. Therefore, it 182 

is difficult to segment the images. Moreover, CNN-based segmentation is becoming 183 

increasingly difficult to perform because of the limited availability of real-time ground-184 

truth datasets due to the time and cost expense. Overall, performing accurate multi-185 

mineral segmentation on real-time data with common Gaussian and Poisson noise is 186 

essential for fine structure characterization and dynamic image processing. 187 

 188 

The aim of this study is to develop an advanced digital material workflow that is 189 

generalizable to various physical problems, particularly imaging systems that have 190 

complex micrometer-sized structures composed of multiple phases. Our target system 191 

is sandstone rock for CCS and UHS applications, while other applicable systems 192 

include but are not limited to fuel cells [67], negative compressibility materials [68], 193 

flexible metal-organic frameworks [69] and high-thermal-conductivity porous 194 

media [70]. We investigated the potential of unpaired domain transfer between real-195 

time synchrotron-based μ-CT images with associated noise and long-scan traditional μ-196 

CT images to provide a framework for the imaging of dynamic processes. Domain 197 

transfer is performed to provide a robust framework because ground-truth segmented 198 

data for real-time, synchrotron-based μ-CT images are not always readily available. 199 

CycleGAN is widely used for unpaired image-to-image translation [71] and is thus used 200 

for transferring synchrotron-based noise to a long-scan μ-CT dataset with a ground-201 

truth counterpart. A total of four CNN architectures were trained to segment the real-202 

time data into six mineral phases. In terms of error assessment, in addition to the 203 

commonly used pixelwise accuracy, region-based and physical accuracy are essential 204 

metrics. This is because the purpose of segmentation is to facilitate the quantitative 205 

assessment of physically meaningful quantities such as interface determination, 206 

topological connectivity, and permeability, which are key design parameters for CCS 207 

and UHS applications. Overall, this study evaluates a digital material platform for the 208 

quantitative assessment of complex porous materials using an unpaired domain transfer 209 

mothed for dynamic synchrotron-based μ-CT, providing real-time analysis of physical 210 

processes where multiple phases and complex structures are present.  211 

 212 

2. Materials and Methods 213 

2.1 Datasets 214 

Unpaired domain transfer was performed between raw μ-CT data and synchrotron-215 
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based μ-CT data. A miniplug from the Mt. Simon sandstone reservoir was cored to 5 216 

mm in length and 3 mm in diameter and scanned using μ-CT at the University of New 217 

South Wales. The surface of the sample was polished for subsequent mineral 218 

classification by quantitative evaluation of minerals using scanning electron 219 

microscopy (QEMSCAN). The 2D QEMSCAN mineral maps were then registered to 220 

the corresponding cross section of the 3D μ-CT voxel [26]. Following this process, 3D 221 

mineral segmentation in the μ-CT image was performed based on the X-ray intensity 222 

differences of minerals as guided by the registered 2D QEMSCAN images, which serve 223 

as ground truth for the 3D Mt. Simon sandstone μ-CT data. Further details on the data 224 

preparation can be found in [37]. In total, the full-size, raw μ-CT data and 225 

corresponding GT data were 1100×1100×2200 voxels, as shown in Figure 1 (a) and 226 

(b). The GT images are comprised of six phases, labeled from 0 to 5: pore, clay, quartz, 227 

feldspar, micas, and a mixed group of less-common high-density minerals.  228 

 

 

 

Figure 1: (a) Full-size, raw μ-CT data with a voxel size of 1100×1100×2200. (b) Segmented 229 

GT dataset with six phases presented. (c) Full-size, synchrotron-based μ-CT data containing 230 

fast-imaging-associated noise, measuring 1000×1000×1200.  231 

 232 

Synchrotron-based μ-CT images were obtained from GeoSoilEnviroCARS Sector 13 233 

at the Argonne National Laboratory Advanced Photon Source (APS). Miniplug 234 

Bentheimer sandstone was obtained by cutting the rock to 5 mm in diameter and 10 235 

mm in length. The real-time, 3D-synchrotron-based μ-CT scan was then conducted with 236 

X-ray photon fluxes of approximately 1012–1014 photons s−1 during a waterflooding 237 

experiment. The 3D images were collected in approximately 20 s at a resolution of 3.5 238 

μm; further details are provided in [32]. It is noted that there is always a tradeoff 239 

between sample size and image resolution. While a higher resolution mage may capture 240 

fine features of geometry, it will limit the field of view and spatial information at a 241 

larger scale that are affecting determination of properties of porous media. For typical 242 
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flow characterization of sandstone, the resolution is often around 2 to 5 μm  [72–74]. 243 

The synchrotron-based μ-CT image of the dry Bentheimer sandstone is 244 

1000×1000×1200 voxels in size, as shown in Figure 1 (c). This dataset contains fast-245 

imaging-associated noise that exists across all phases, which makes any attempt at 246 

multiphase segmentation challenging. Table 1 gives a summary of the samples and 247 

datasets used in this study.  248 

 249 

Table 1: Basic information for the samples and datasets used in this study. The nomenclature of 250 

each dataset is used throughout this paper. 251 

Samples Datasets Nomenclature Voxel Size 

Mt. Simon 

Sandstone 

Long-scan Mt. Simon 

sandstone μ-CT data 
Raw μ-CT data 1100×1100×2200 

Mt. Simon 

Sandstone 

Domain-transferred Mt. Simon 

μ-CT data 

Dynamic-based μ-

CT data 
1100×1100×2200 

Bentheimer 

sandstone 

Synchrotron-based Bentheimer 

sandstone μ-CT data 

Synchrotron-

based μ-CT data 
1000×1000×1200 

Bentheimer 

sandstone 

Domain-transferred 

Bentheimer synchrotron-based 

μ-CT data 

Static-styled 

synchrotron data 
1000×1000×1200 

 252 

2.2  Domain transfer by CycleGAN and image degradation  253 

Noise from the real-time, synchrotron-based μ-CT data was transferred to the raw μ-254 

CT data using CycleGAN. CycleGAN comprises two generators and two discriminators 255 

that perform unpaired image-style transfer. The generators were based on an encoder–256 

decoder structure that applies three convolutional layers in the down-sampling steps, 257 

followed by nine residual blocks and sequential decoding steps using up-sampling 258 

layers instead of transposed convolutional layers to avoid prediction artifacts [75]. 259 

Instance normalization was used because of its advantage in image style transfer, which 260 

normalizes each image individually without considering the image content of the entire 261 

batch [76]. Using this process, the features of the two μ-CT sandstone datasets were 262 

captured and transferred between each other by the generators. Two styles of fake μ-CT 263 

sandstone images and real μ-CT sandstone images were then processed through two 264 

discriminators; PatchGAN [46] was used as a discriminator to determine whether an 265 

N×N output was fake or real. Overall, two discriminators were trained to distinguish 266 

the fake and real images, while the two generators were trained to produce fake images 267 

that appear similar to real images. The detailed workflow of the CycleGAN is shown 268 

in Figure 2.  269 



8 
 

 270 
Figure 2: Architecture for CycleGAN. Two generators and two discriminators were used, and 271 

the PatchGAN was used as the output for the discriminators. Unpaired domain transfer is 272 

performed between raw μ-CT data and synchrotron-based μ-CT data. The letter k refers to the 273 

kernel size of the layer, n to the number of channels, s to the stride, and sf to the scale factor for 274 

upsampling. 275 

 276 

The objective loss function for training the CycleGAN contains two types of loss: (1) 277 

adversarial loss and (2) cycle consistency loss. Adversarial loss acts as the loss for the 278 

discriminator, whereas the cycle consistency loss acts as the loss for the generator. The 279 

total objective loss function is 280 

   𝐿(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌) = 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌) + 𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑋 , 𝑋, 𝑌) + 𝐿𝑐𝑦𝑐(𝐺, 𝐹)       (1) 281 

where 𝑋, 𝑌  are the two different domains. 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌)  includes the loss 282 

between the fake image generated by the mapping function G and the real image that 283 

needs to be minimized and the loss for the discriminator 𝐷𝑌 to distinguish the fake and 284 
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real image that needs to be maximized. A similar objective loss, 𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑋 , 𝑋, 𝑌), is 285 

used for another mapping function F and discriminator 𝐷𝑋. 𝐿𝑐𝑦𝑐(𝐺, 𝐹) refers to the 286 

losses during feature mapping, including the loss between the real image and the fake 287 

image, the fake image with the reconstructed real image, and the real image with the 288 

reconstructed real image. The loss function for the adversarial loss is 289 

      𝐿𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦 − 𝑓(𝑥𝑡))2𝑛

𝑡=1                   (2) 290 

The L1 function used for cycle consistency loss is 291 

      𝐿𝐿1 =
1

𝑛
∑ |𝑦 − 𝑓(𝑥𝑡)|𝑛

𝑡=1                      (3) 292 

where 𝑦 is the GT pixel value and 𝑓(𝑥𝑡) is the network prediction. CycleGAN was 293 

trained with an initial learning rate of 0.0001 using the Adam solver with a batch size 294 

of 8×192×192. In total, the 2D datasets comprised 4800 raw μ-CT images and 4800 295 

synchrotron-based μ-CT images. The data were then split into 4000 images for training 296 

and 800 images for testing.  297 

 298 

2.3  Image degradation 299 

Gaussian–Poisson noise that commonly exists in μ-CT images results in reduced image 300 

quality and subsequently affects segmentation results and further DRP analyses. In 301 

addition, the utilization of denoising filters may add additional artifacts and/or smooth 302 

finer details of the pore structure. Therefore, by considering the fine structure and 303 

topology as highly essential for the segmentation of sparsely occurring minerals, we 304 

simulated a scenario where there is a certain degree of Gaussian–Poisson noise in our 305 

raw μ-CT data and tested the capability of CNN-based multi-mineral segmentation 306 

methods to distinguish minerals with such noise. Gaussian and Poisson noises were 307 

manually added to the raw μ-CT data by using a Gaussian filter and Poisson distribution 308 

in Numpy and Scipy packages in Python after domain transfer. Random Gaussian noise 309 

was added to each image using a Gaussian filter with a standard range of 2–3. Poisson 310 

noise was added with the expectation of intervals based on the pixel values of each 311 

image. To test whether the degree of noise was realistic, no-reference image quality 312 

metrics called BRISQUE and NIQE were calculated using the statistical features of the 313 

input image to evaluate the similarity of our data to other dynamic synchrotron-based 314 

μ-CT data. Overall, after domain transfer and image degradation, the raw μ-CT data 315 

that contained noise associated with dynamic synchrotron scanning and commonly 316 

occurring Gaussian–Poisson noise were used to mimic the realistic fast synchrotron-317 

based scanning results. Therefore, instead of attempting to segment directly on the 318 

synchrotron-based μ-CT data, the CNN-based network could be trained using the 319 

domain-transferred Mt. Simon μ-CT image. This trained network could then be used 320 

later to segment a real synchrotron-based μ-CT image.  321 

 322 

2.4  Segmentation CNNs architectures and training schedules  323 

Multi-mineral segmentation was performed in 2D using four CNN architectures based 324 

on the encoder–decoder structure, which exploits features from the encoding step and 325 
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recovers the spatial resolution from the decoding step. We decided to train all networks 326 

in 2D because the QEMSCAN image was generated in 2D and the domain transfer by 327 

CycleGAN was performed in 2D. As shown by [37], networks in 2D and 3D provide 328 

similar pixelwise and physical accuracy, while networks in 2D are computationally 329 

more efficient compared to 3D because they have fewer trainable parameters. The CNN 330 

networks that contain both pre-trained and non-pre-trained models are U-331 

ResNet [37,43], U-ResNet-cGAN [46], U-Net with EfficientNet-B3 as the backbone 332 

(EfficientU-Net), and EfficientU-Net-cGAN. The advantages of each network and the 333 

main differences are listed in Table 2. The main reasons for selecting these networks 334 

are as follows: 335 

 336 

(1) U-ResNet has been proven to perform better in multi-mineral segmentation 337 

than SegNet and U-Net, which are commonly used for semantic-segmentation 338 

CNN networks [37]. Therefore, U-ResNet is tested as a baseline to check 339 

whether other networks can perform better. 340 

(2) With the addition of the cGAN module, both binary-cross-entropy loss and 341 

cross-entropy loss have been used to regulate training, which is beneficial in 342 

preventing overfitting and edge determination.  343 

(3) One of the state-of-the-art network architectures in image classification is 344 

EfficientNet, which has the advantage of a high-balancing network depth, 345 

width, and resolution. Therefore, we used EfficientNet for feature extraction to 346 

improve the training efficiency. In addition, although EfficeintU-Net has more 347 

trainable parameters than U-ResNet, the total network size is only 60% of that 348 

of U-ResNet. 349 

(4) EfficientU-Net-cGAN, which is combined with the cGAN module, has been 350 

proposed to regulate training with high efficiency. 351 

 352 

Table 2: A comparison of the tested networks. 353 

Networks Total 

parameters 

Total 

network 

size (MB) 

Pre-

trained 

Loss function Advantages 

U-ResNet 8,761,858 3107 No Cross Entropy loss Utilization of long 

skip connection 

and short skip 

connection 

U-ResNet-

cGAN 

19,926,211 3233 No Cross entropy loss + 

Binary cross entropy 

loss 

cGAN module is 

used to further 

distinguish the 

output image and 

binary-cross-

entropy loss 

added to regulate 

the training 
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EfficientU-

Net 

26,063,594 2043 Yes Cross-entropy loss Efficient feature 

extraction by 

balancing depth, 

width, and 

resolution 

EfficientU-

Net-cGAN 

37,225,899 2169 Yes Cross-entropy loss + 

binary-cross-entropy 

loss 

Combines the 

advantages of 

cGAN module 

and EfficientNet 

 354 

A non-pretrained, symmetric U-ResNet with a structure similar to that used by [37] was 355 

employed in this study instead of the U-Net with pretrained ResNet as an encoder. The 356 

main reason for this choice is that ResNet was originally designed for image 357 

classification that contains several repeated residual blocks. However, when it comes 358 

to segmentation, a particularly deep and complex encoding process for a symmetric 359 

encoder–decoder structure would require a similarly complex decoding process. This 360 

means that a large amount of feature information is lost because of the many 361 

upsampling layers in the decoding process. Therefore, the U-ResNet used herein 362 

requires short-skip connections between each block to preserve shallow image 363 

information. Moreover, long-skip connections, which link the encoder blocks to their 364 

equivalent decoder blocks and are used in the U-Net, are also used to retain the shallow 365 

features of the input image. The U-ResNet architecture is shown in Figure 3.  366 

 367 

Figure 3: Architecture of the U-ResNet, containing both a short-skip and long-skip connection. 368 

The input image contains three channels, and the output has six channels, indicating six 369 

different phases.  370 

 371 

Based on the U-ResNet structure, an advanced U-ResNet architecture combined with a 372 

conditional adversarial network (U-ResNet-cGAN) was introduced. Conditional 373 

adversarial networks are designed mainly for image-to-image translation tasks. For the 374 
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segmentation task, output segmented images are produced after the encoder–decoder 375 

structure, and then both the GT and segmented outputs are passed through a 376 

discriminator to distinguish whether the image is real or fake. PatchGAN is used here 377 

because of its advantage of generating a fixed-size patch instead of a single number 378 

after the discriminator. By applying conditional adversarial networks, U-ResNet works 379 

as a generator and then competes with the discriminator during training. The detailed 380 

architecture of the U-ResNet-cGAN is shown in Figure 4. 381 

 382 
Figure 4: Architecture of the U-ResNet-cGAN. The encoder–decoder structure is similar to the 383 

early U-ResNet structure. The output for the U-ResNet with the corresponding GT image is 384 

further passed to the discriminator. After application of the Sigmoid function, the output for the 385 

patch ranges from 0 to 1. 386 

 387 

As discussed previously, for symmetric encoder–decoder structures—particularly for 388 

deep, pretrained CNNs that are designed for image classification tasks—are inefficient 389 

during the decoding step. However, an encoder–decoder asymmetric structure that 390 

contains a deep, complex network structure in the encoding step and a simple network 391 

structure in the decoding step could solve this issue and further improve feature 392 

extraction and identification. Therefore, in this study, EfficientNet-B3 [44] which 393 

achieves high accuracy and efficiency in image-classification tasks, was used as a 394 

feature extractor in the encoding step. Several transposed, convolutional layers were 395 

used directly to increase the feature shape to the same size as the input image to avoid 396 

feature loss. Several long-skip connections were used to retain the shallow features of 397 

the input image. The network architecture of the EfficientU-Net-B3 is shown in Figure 398 

5. The core structure contained 25 blocks that use a structure similar to MobileNet [77]. 399 

The overall design concept was based on the utilization of inverted residual structures 400 

and residual blocks. A 1×1 convolution was used before the 3×3 or 5×5 network 401 

structure to increase the dimension, and an attention mechanism that assigns a weight 402 

to each feature of the image was added after the 3×3 or 5×5 network structure.  403 

 404 
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An advanced EfficientU-Net was then proposed by introducing a conditional 405 

adversarial network called EfficientU-Net-cGAN, and its architecture is shown in 406 

Figure 6. The discriminator that distinguishes the output segmented image from the GT 407 

had a similar structure to that of the U-ResNet-cGAN, as shown in Figure 4. 408 

 409 

Figure 5: Architecture of the EfficientU-Net-B3. The encoder contains a Stem layer, 25 410 

MBConv blocks, and Head layer. The decoder contains five upsampling layers with long-skip 411 

connections between encoding layers. 412 

 413 

Figure 6: Architecture of EfficientU-Net-cGAN. The encoder–decoder structure is identical to 414 

the previous EfficientU-Net-B3 structure. The addition of a discriminator would further force 415 

the output segmented image to appear similar to GT. The discriminator structure is identical to 416 

the discriminator depicted in Figure 4. 417 

 418 
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All networks were trained for 40 epochs with an initial learning rate of 0.0001 using 419 

the Adam solver. The input images were cropped to 454×454 with a batch size of five. 420 

The learning rate is reduced by a factor of 0.5 when the loss reaches a plateau for eight 421 

epochs. The loss function used to train all networks is the cross-entropy loss: 422 

                𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ (𝑝𝑘𝑙𝑜𝑔𝑞𝑘)𝑁
𝑘=1                  (4) 423 

where 𝑝 is the GT target in scalar, and 𝑞 is the prediction after the softmax function. 424 

For the U-ResNet-cGAN and EfficientU-Net-cGAN, an extra binary cross-entropy loss 425 

is applied to regulate the training of the discriminator: 426 

 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑤𝑘[𝑝𝑙𝑜𝑔𝑞𝑘 + (1 − 𝑝)𝑙𝑜𝑔 (1 − 𝑞𝑘)𝑁
𝑘=1      (5) 427 

The training dataset contained 8,800 degraded μ-CT images split into 7,200 for training 428 

and 1,600 for testing. The training was implemented on PyTorch, using an Nvidia RTX 429 

3090 graphics-processing unit. 430 

 431 

2.5  Physical Accuracy Measurements  432 

Aside from pixelwise accuracy, physical accuracy was also important to measure 433 

because in DRP the objective of segmentation is to isolate each mineral phase for 434 

subsequent physical analyses. In this study, physical accuracy was first evaluated by 435 

connectivity and porosity. Other non-trivial physical parameters that reveal the behavior 436 

of fluid displacement in rock are absolute permeability and relative permeability. 437 

Absolution permeability is sensitive to porous structure, while relative permeability is 438 

sensitive to both porous structure and mineral occurrence that are determined by multi-439 

phase segmentation [78]. These parameters are calculated based on a mixed-wetting 440 

condition that commonly occurs in reservoir rock and can be qualified by comparing 441 

the network output with the GT [79,58,80]. The Euler characteristic (χ) is used as an 442 

indication for connectivity, which is calculated as the difference between the number of 443 

loops and the number of disconnected pixels. The equation for calculating χ is 444 

                     χ = objects − loops + holes                    (6) 445 

In addition, the volume fraction was determined for all phases, which was calculated 446 

by dividing the phase volume by the total volume; the pore-phase volume fraction is 447 

the porosity of the sample. The absolute permeability was calculated using an MRT-448 

LBM (multirelaxation time lattice Boltzmann method) preconditioned with a domain-449 

decomposed Laplace solver [81–83], and the relative permeability was solved using the 450 

MorphLBM method [27]. 451 

MorphLBM utilizes a multiphase LBM simulation routine directly in the pore space of 452 

the image and performs morphological updates on the phases to emulate steady-state 453 

fluid configurations in an accelerated manner compared to directly simulating the co-454 

injection of fluids, which requires significant simulation time to move through the 455 

domain. Fluid configurations are updated with small increments of erosion or dilation 456 

(depending on drainage or imbibition) to target saturation. LBM simulation was 457 

performed continuously as these small morphological increments were performed, and 458 
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when the target saturation was reached, the LBM simulation was run until the capillary 459 

number converged. When the capillary number converges, the steady-state relative 460 

permeability point is recorded, and the morphological updates are started again. In this 461 

study, morphological imbibition was performed on the domains initialized by simulated 462 

primary drainage to residual saturation. The morphological updates were performed at 463 

a distance of 0.1 by interpolating the phase indicator value, and relaxation was 464 

performed for 1000 LBM timesteps between morphs. The saturation increments were 465 

5%, and the capillary number tolerance was set to less than 1 × 10–3 per 1000 time steps 466 

of the 50,000 timestep exponential moving average, and the relative variance was less 467 

than 0.01. The system capillary number was maintained at 1 × 10–5
 to emulate capillary-468 

dominated two-phase flow. Mixed wettability was easily modeled using the LBM 469 

method (Color LBM) by simply assigning the contact angle as an affinity between –1 470 

(water) and +1 (oil) for various solid voxels, where the static contact angle is equivalent 471 

to the inverse cosine of the affinity [84]. 472 

 473 

3 Results and Discussion 474 

3.4 Image degradation results 475 

The raw μ-CT data was degraded by transferring fast-imaging-associated noise from 476 

the synchrotron-based μ-CT data, followed by the addition of Gaussian–Poisson noise. 477 

This unpaired domain transfer was performed using CycleGAN. A sample output from 478 

CycleGAN is provided in Figure 7, which includes the dynamic-styled μ-CT data and 479 

static-styled synchrotron data. Because this study mainly focuses on the segmentation 480 

of degraded images, only the domain transfer from raw μ-CT data to dynamic-styled μ-481 

CT data was required. Furthermore, the output dynamic-styled μ-CT data was further 482 

degraded by adding Gaussian–Poisson noise, as shown in Figure 7 (e). Figure 7 (f) 483 

shows an example of a GT image. To determine whether the degree of noise added was 484 

realistic, two image-quality metrics were calculated using predictable statistical 485 

features to compute a quality score: the blind/referenceless image spatial quality 486 

evaluator (BRISQUE) and the naturalness image quality evaluator (NIQE), which 487 

provide a qualitative measure of noise. These two methods do not require a paired 488 

reference image for image quality measurement, as required for the presented data, 489 

because domain transfer is performed between unpaired images. A detailed theoretical 490 

background of BRISQUE and NIQE can be found in [85,86]. The BRISQUE and NIQE 491 

metrics were compared between the raw μ-CT data, synchrotron-based μ-CT data, and 492 

degraded dynamic-styled μ-CT data, as well as two other existing dynamic-493 

synchrotron-based μ-CT images that are accessible on the Digital Rock Portal 494 

(https://www.digitalrocksportal.org). The first dataset is the synchrotron-based μ-CT 495 

image of Ketton limestone [87] and the second is the synchrotron-based μ-CT image of 496 

Gildehauser Sandstone [88]. The results of the BRISQUE and NIQE metrics for each 497 

dataset are listed in Table 3. For both metrics, a lower score reflects better image quality. 498 

As shown in Table 3, the raw μ-CT data had the best image quality, while the other 499 

dynamic datasets were of lower quality. For the degraded dynamic-styled μ-CT data, 500 

both metrics demonstrated that the image quality after domain transfer and degradation 501 

https://www.digitalrocksportal.org/
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was within a reasonable range of commonly used dynamic synchrotron-based μ-CT 502 

data. 503 

 504 

Table 3: Image-quality measurement of five datasets. Both BRISQUE and NIQE were 505 

calculated slice by slice, and the average value of all slices was taken. The final degraded 506 

dynamic-styled μ-CT data had a similar image quality as the other three synchrotron-based μ-507 

CT datasets. 508 

 BRISQUE NIQE 

Raw μ-CT data 17.9 3.4 

Synchrotron-based μ-CT data 42.3 11.0 

Degraded dynamic-styled μ-CT data 43.4 8.9 

Synchrotron-based Gildehauser Sandstone μ-CT data 30.5 6.8 

Synchrotron-based Ketton limestone μ-CT data 40.8 6.2 

 509 

Comparing the red regions in Figure 7 (c) and (e), it can be seen that the pixel value 510 

difference between feldspar and quartz is reduced after degradation, which could result 511 

in errors during segmentation. To evaluate the performance of CycleGAN, the voxel 512 

distribution of the 3D volume (500×500×1200) of raw μ-CT data, synchrotron-based 513 

μ-CT data, and dynamic-styled μ-CT data were compared, as shown in Figure 8. The 514 

variances of the normalized images that show the difference in voxel distribution were 515 

then measured to validate the performance of the domain transfer. It should be noted 516 

that because both Mt. Simon sandstone and Bentheimer sandstone consist of a 517 

significant amount of quartz, the pixel distribution peaks (indicating the quartz phase) 518 

for the raw μ-CT data and synchrotron-based μ-CT data are at the same location. In 519 

addition, the results demonstrate that the raw μ-CT data and synchrotron-based μ-CT 520 

data have different pixel distributions in a range lower than the pixel value of 100 and 521 

at the location where the pixel value is 255 (with a variance of 0.015). After applying 522 

domain transfer, the pixel value of the dynamic-styled μ-CT data was consistent with 523 

the synchrotron-based μ-CT data, with a variance of 0.002, indicating that CycleGAN 524 

is sufficient for the domain transfer of synchrotron noise. The degraded dynamic-styled 525 

μ-CT data were subsequently used in the next step of multi-mineral segmentation. 526 
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 527 

Figure 7: (a) Sample image transferring from synchrotron-based μ-CT data to the (b) static-528 

styled synchrotron data, and (c) raw μ-CT data to the (d) dynamic-styled μ-CT data. (e) 529 

Further degradation of dynamic-styled μ-CT data by the addition of Gaussian–Poisson noise. 530 

(f) Ground truth QENSCAN slice of the corresponding μ-CT slice. 531 

 532 

Figure 8: Pixel value comparison between long-scan μ-CT images, synchrotron images, and 533 
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the domain-transferred, dynamic-styled Mt. Simon images before adding Gaussian–Poisson 534 

noise. 535 

 536 

3.5 Multi-mineral Segmentation Accuracy 537 

All networks were trained on data containing dynamic-styled μ-CT data that were 538 

cropped into a domain of 454×454×7200 voxels and test images of 454×454×1600 539 

voxels. The weighted accuracy, which considers the correctly labeled pixels as well as 540 

the volume fraction of each mineral, was utilized to evaluate each network. Phase 541 

accuracies were also calculated to evaluate the ability of the networks when dealing 542 

with different minerals. This was performed by averaging the phase accuracies of the 543 

last 10 epochs, where the testing accuracy curve of each network reached a plateau. The 544 

testing accuracies are shown in Figure 9, with the visualization of a region of interest 545 

in Figure 11. The accuracy of all networks converged to approximately 0.94. The 546 

accuracy for EfficientU-Net and EfficientU-Net-cGAN was marginally better than that 547 

of U-ResNet and U-ResNet-cGAN, with a difference of approximately 0.1% in 548 

pixelwise accuracy. Compared to the weighted accuracy used by [37], which included 549 

the μ-CT image as input, the accuracy was reduced by 3% as a result of degradation. 550 

Overall, all networks performed well, even with synchrotron and Gaussian–Poisson 551 

noises, which is also supported by the data given in Figure 10. In this figure, all 552 

segmented outputs are visually similar to the GT slice, even for sparse minerals. For 553 

example, in the black box presented in Figure 10, the clay and feldspar are sparsely 554 

distributed across the quartz; these sparse clay and feldspar phases are easily 555 

distinguishable as noise because the input synchrotron-styled Mt. Simon images 556 

already contain several types of noise across the entire pore region. However, the 557 

networks could correctly label these two minerals in the pore space (black region). 558 

Some errors occur in the feldspar (black region) due to the reduction of the pixel value 559 

difference between quartz and feldspar, as discussed further in Section 3.1. 560 

 561 

Figure 9: Testing accuracy for four networks. The accuracy for all networks converged to 562 
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around 0.94 after 15 epochs. An amplified curve shows that EfficientU-Net and EfficientU-563 

Net-cGAN slightly outperformed the other two networks. 564 

 565 

Figure 10: A slice of the testing dataset and output of four networks. All networks visually 566 

performed well; however, in the black section, all networks failed to capture the fine bodies of 567 

feldspar and clay that exist in quartz. 568 

 569 

Because all networks performed similarly in terms of total accuracy, it was necessary 570 

to investigate how they performed for each mineral phase; therefore, the phase accuracy 571 

was calculated during each epoch. The average phase accuracy was obtained by 572 

averaging the phase accuracy of the last 10 epochs, as listed in Table 4. U-ResNet and 573 

U-ResNet-cGAN architectures achieved a higher pore-phase accuracy than the two 574 

EfficientNet-based architectures, whereas EfficientU-Net and EfficientU-Net-cGAN 575 

could better identify the clay phase. All networks performed best in the quartz phase, 576 

with an accuracy higher than 0.96, because all networks tended to learn well with a 577 

commonly occurring phase. EfficientU-Net-cGAN showed marginally higher accuracy 578 

in the feldspar and mica phases. In sparsely occurring micas and mixed-mineral phases, 579 

all networks resulted in low accuracy, with approximately 0.7 in micas and 0.5 in the 580 

mixed-mineral phase, which further indicated that the volume fraction of each phase is 581 

an essential factor that influences the CNN segmentation. Owing to the low phase-582 

volume fraction, the quantity of phase labels was imbalanced, and the networks tended 583 

to learn more from the commonly occurring phases, sacrificing accuracy in sparsely 584 

occurring phases. In general, all networks could achieve an accuracy in the 85–97% 585 
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range for the four most-common phases, indicating that even for the μ-CT image with 586 

synchrotron-based noise and for a certain degree of degradation, CNN networks 587 

arguably provided accurate pixelwise results for multi-mineral segmentation.  588 

 589 

Table 4: Average phase accuracy for identified minerals using four networks as well as the 590 

volume fraction of each phase. Overall, each network has its strength in different mineral phases. 591 

  Vol (%) U-ResNet U-ResNet-cGAN EfficientU-Net EfficientU-Net-cGAN 

Pore 7.941 0.924 0.926 0.898 0.905 

Clay 11.781 0.855 0.852 0.869 0.860 

Quartz 63.185 0.963 0.966 0.965 0.963 

Feldspar 16.460 0.901 0.891 0.895 0.904 

Micas 0.293 0.694 0.708 0.675 0.713 

Mixed 0.339 0.540 0.476 0.536 0.502 

 592 

Furthermore, the Euclidean distance of the wrongly labeled pixels and the region-based 593 

error from an interface were calculated for each 530×530×1600 voxel dataset. This 594 

approach was used because the interface between phases is considered to be the most 595 

complicated region to segment [89]. It is not directly evaluated by pixelwise accuracy 596 

because the majority of the pixels are internal to a given phase and are thus easy to 597 

segment. Considering that the objective of segmentation for DRP is to perform further 598 

physical analyses, the interface-region-based accuracy and the influence of 599 

segmentation on sequential pore characterization and pore-scale simulation should be 600 

thoroughly evaluated to show how well each network segments difficult regions, thus 601 

revealing the “true” phase structure [90,91]. Therefore, the data were prepared 602 

according to the following steps:  603 

1. Each phase’s wrongly labeled pixel distribution was first determined by 604 

subtracting each network’s output from the GT. Meanwhile, the Euclidean 605 

distance maps for each phase based on the GT images were generated. 606 

2. The incorrectly labeled pixel distribution was multiplied with the Euclidean 607 

distance map for the respective phase, which provides the Euclidean distance of 608 

the wrongly labeled pixels from the interface of the given phase.  609 

3. A histogram of the Euclidean distances for the GT data was generated to provide 610 

the total number of pixels that are located at a given distance from the interface.  611 

4. The region-based error was calculated by dividing the number of incorrectly 612 

labeled pixels that are located at a given distance by the total number of pixels 613 

in the GT that correspond to the given distance.  614 

 615 

In Figure 11, wrongly labeled pixels in all six phases mainly arise from the Euclidean 616 

distance within 1 pixel, indicating that most of the error for all networks is derived from 617 

the interface determination. EfficientU-Net-cGAN shows the lowest error near an 618 

interface in terms of pore and feldspar phases, indicating that EfficientU-Net-cGAN 619 

provides better segmentation at the boundary of these phases. Moreover, U-ResNet 620 

provides a better interface segmentation in the clay and mixed phases, whereas U-621 
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ResNet-cGAN can handle the interface segmentation of the quartz and mica phases. It 622 

is noteworthy that not all networks can provide an accurate segmentation of the mixed 623 

phase near the interface, with the lowest region-based error being only 62%. This is 624 

mainly because the mixed phase has an extremely high pixel value in the grayscale 625 

image in the raw μ-CT data, but in the synchrotron-based μ-CT data, it does not contain 626 

high-density mineral components. Therefore, after domain transfer, in the dynamic-627 

styled μ-CT data, the grayscale value between the mixed phase and other phases 628 

decreased, making the segmentation of the mixed phase more difficult.  629 

 630 

Figure 11: Histograms of the region-based segmentation error of the wrongly labeled pixels in 631 

the interfaces of six phases for four networks. The main segmentation error arises from the 632 

pixels closed to the phase interface. 633 

 634 

3.6 Physical accuracy measurement 635 

In addition to the pixelwise accuracy of each network, the physical accuracy of the 636 

segmented outputs is critical for the DRP. Connectivity, volume fraction, absolute 637 

permeability, and relative permeability were the physical parameters considered for a 638 

mixed-wet condition. The physical accuracy was measured in the domain of 639 

530×530×1600 voxels. First, the volume fraction of each phase was calculated, as 640 

shown in Figure 12. It can be observed that U-ResNet-cGAN performed best in the 641 

volume fraction of the pore phase, with a difference of less than 0.1% (i.e., porosity), 642 

whereas EfficientU-Net yielded an accurate prediction for the quartz and feldspar 643 

phases, with differences of 0.2% and 0.3%, respectively. Moreover, U-ResNet 644 

performed best in clay, micas, and mixed phases, with differences of 0.4%, 0.6%, and 645 

0.9%, respectively. 646 
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 647 
Figure 12: Bar charts showing the volume fraction of each phase compared to the ground-truth 648 

result for four networks. Porosity is described by the pore volume fraction. Error bars represent 649 

the range of volume fraction calculated based on the top-five most accurately trained epochs of 650 

each network.  651 

 652 

The connectivity, as described by the Euler number (χ) of each phase, was determined 653 

from the segmented images, where χ is a topological invariant defined by the number 654 

of objects, loops, and holes in a given phase [92]. The χ values for each phase are 655 

presented in Figure 13. In terms of connectivity, it was found that none of the segmented 656 

datasets compare well with the GT data. In addition, the variability of the results across 657 

all networks was relatively high. The percent differences of χ measured by each network 658 

in relation to the GT result are listed in Table 5. Interface pixel errors and existing 659 

disconnected small bodies are likely the main reasons for the variations in χ.  660 

 661 

Specifically with respect to χ, as shown in Eq. 6, a more positive value for a phase 662 

means that there are more isolated objects or fewer loops, indicating that the phase is 663 

less connected. On the other hand, a more negative value means that there are more 664 

loops than isolated objects, indicating that the phase is well connected. Therefore, it can 665 

be seen in Figure 13 that in the pore phase, the χ value for GT is more negative than for 666 

any other network result. This suggests that all networks provided segmented images 667 

that were less connected than the GT. EfficientU-Net-cGAN provides the most accurate 668 

result in terms of the pore phase, being only 6% less negative compared to the GT. For 669 

Mt. Simon sandstone, clay fills the pore space, and the less-connected pore phase results 670 

in a more-connected clay phase. Therefore, all networks yielded a more negative value 671 

of χ in the clay phase. U-ResNet performed best in the clay phase, with only a 1% 672 

difference compared to the GT, while the other three networks produced a larger 673 

difference compared to GT in the range of 17– 38%. The most accurate result for all 674 

networks was found for the χ of the quartz phase. It might be concluded that because 675 

quartz is the most abundant phase, the networks tended to train for it more often 676 

compared to the other phases, resulting in the highest physical accuracy in terms of 677 

connectivity. Moreover, U-ResNet-cGAN provides the best result in the feldspar phase, 678 

but the difference was still ≈33% compared to GT, while all other networks provided a 679 

significantly negative value of χ compared to GT. In addition, in the mixed-mineral 680 
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phase, the χ of U-ResNet showed a mere 10% difference compared to GT, while other 681 

networks yielded a difference greater than 30%. In addition, all networks 682 

underestimated χ in the mica phase, with a difference greater than 50%. This is because 683 

the mica phase is rare and mainly consists of many small bodies; in many cases, the 684 

networks misidentify these small bodies, which results in fewer isolated objects.  685 

 686 

Figure 13: Bar charts depicting the Euler Characterization of each phase compared with the 687 

ground-truth result for four networks. The value of χ was calculated by averaging the χ of the 688 

network outputs with the top-five pixelwise accuracy. The error bars represent the range of χ 689 

calculated based on the top-five most accurately trained epochs of each network.  690 

 691 

Table 5: Differences of χ measured by each network compared with GT. 692 

 EfficientU-Net EfficientU-Net-cGAN U-ResNet U-ResNet-cGAN 

Pore 27% 6% 48% 45% 

Clay 24% 38% 1% 17% 

Quartz 24% 20% 19% 21% 

Feldspar 107% 96% 122% 33% 

Micas 60% 50% 73% 65% 

Mixed 34% 39% 11% 32% 

The flow characteristics of segmented images are an essential measure of the physical 693 

accuracy. The absolute permeability of the pore phase was determined using single-694 

phase flow simulation. After simulating the whole volume, it was further cropped into 695 

24 subblocks with a domain size of 2563 voxels. The absolute permeability was then 696 

calculated for each block, and the results are shown in Fig. 14. A close match was 697 

achieved by the EfficienU-Net-cGAN output in terms of the absolute permeability of 698 

the bulk volume, as shown in Figure 14 (a). A possible reason for this is that the 699 

EfficienU-Net-cGAN provides the closest match in terms of χ in the pore phase; the 700 

absolute permeability is known to be sensitive to the pore-phase connectivity [93]. To 701 

further test the absolute permeability, 24 subblocks were generated and simulated, as 702 

shown in Figure 14 (b). The mean square error (MSE) is reported in Table 6, using these 703 

subblocks for each network. It is noted that the absolute permeability could not be 704 

calculated in the case where the subblock is formed without a pore phase. All networks 705 

provided accurate absolute permeabilities in the majority of the subblocks, with 706 
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EfficientU-Net-cGAN providing a marginally lower MSE value; this further confirmed 707 

that the connectivity of these blocks is an essential parameter that affects the bulk 708 

absolute permeability. The accurate EfficienU-Net-cGAN result for the bulk absolute 709 

permeability is highly related to the matched pore-phase connectivity. 710 

 711 

Table 6: MSE results for the absolute permeability of these subblocks for each network. 712 

EfficientU-Net-cGAN gives a marginally lower MSE, which is consistent with the whole block 713 

absolute permeability result. 714 

  U-ResNet U-ResNet-cGAN EfficientU-Net EfficientU-Net-cGAN 

MSE 0.1459 0.1460 0.1475 0.1453 

 715 

 716 

Figure 14: (a) Absolute permeability comparison of each network’s output domain, with the 717 

closest match achieved by EfficientU-Net-cGAN; EfficientU-Net yielded the second-most-718 

accurate prediction. (b) Absolute permeability comparison of subblocks. All networks showed 719 

an accurate estimation in the subblocks. (c) Visualization of the velocity field of the GT and the 720 

best-matched network output, as obtained from MRT-LBM on a 530×530×1600 voxel domain. 721 

The velocity field images are visually similar, but at some locations EfficientU-Net-cGAN 722 

resulted in a higher velocity due to the narrow flow path. 723 

 724 

The same domain used for the absolute permeability simulation was used for the 725 

relative permeability simulation based on a mixed-wetting condition. The wettability 726 

of the quartz phase varies from water wet (contact angle typically ranging from 0°–55°) 727 

to intermediate oil water (contact angle typically ranging from 100–140°) [94]. In the 728 

Mt. Simon sandstone sample, feldspar exists with quartz to form the grain, and the 729 

wettability of both the quartz and feldspar phases in the simulation was assigned as 730 

intermediate water wet, with contact angles of 45° and 60°, respectively [58]. For the 731 

clay phase, the wettability ranges from intermediate water wet to intermediate oil wet, 732 
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which depends on the composition (e.g., kaolinite, illite, and montmorillonite) of the 733 

clay minerals [58,95,96]. In this simulation, we assigned the clay phase as oil-wet with 734 

a contact angle of 120° to provide a mixed-wetting condition. Micas and mixed phases 735 

were sparsely occurring phases, so they were set to have a contact angle of 0°. The 736 

relative permeability results for all datasets are shown in Figure 15.  737 

 738 

The morphLBM method [27] first performs morphological initialization of primary 739 

drainage using a local distance maximum transform with hydraulic connectivity 740 

considered. Then, multiphase LBM simulations are performed until the system reaches 741 

a steady-state configuration for the given saturation. This is determined by tracking the 742 

system capillary number and identifying when the relative exponential moving average 743 

of relative permeability diverges by less than 1 × 10–3
, and the relative variance is less 744 

than 0.01. Once this point is reached, the relative permeability values for the given 745 

saturation are recorded, and a negative morphological shell aggregation operation is 746 

performed until the fluid saturations reach a desired incremental change, that is, 5% 747 

saturation. Once this saturation is reached by morphological shell aggregation, LBM 748 

relaxes phase distributions and redistributes the phases among the pore space until a 749 

steady state is reestablished, as defined previously. An in-depth description of this 750 

method is available in [80]. The shape of the relative permeability of the GT domain 751 

simulated using mixed wetting conditions resembles the curves obtained in a similar 752 

study of relative permeability in mixed-wetting Mt. Simon sandstones [58]. However, 753 

for the U-ResNet-cGAN output domain, the simulation did not converge because of the 754 

existence of an extremely narrow flow path. The extremely low absolute permeability 755 

of U-ResNet-cGAN is also due to the same reason. Therefore, only the relative 756 

permeability curves based on the output domains of the other three networks were 757 

reported.  758 

 759 

Figure 15: Relative permeability curves for (a) U-ResNet output with GT, (b) EfficeintU-Net 760 
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output with GT, and (c) EfficeintU-Net-cGAN with GT, which have a similar shape. The U-761 

ResNet output gives the best match for the endpoint oil and water relative permeability relative 762 

to GT, while EfficientU-Net gives the closest crosspoint value and irreducible oil saturation to 763 

GT.  764 

 765 

The simulation begins with a water saturation of 0.1 and oil saturation of 0.9, ending 766 

when the two phases are hydraulically disconnected. The shape of the relative 767 

permeability curves for all simulation domains was similar to that of the GT domain. 768 

To further analyze the accuracy of the relative permeability, endpoint relative 769 

permeability, irreducible saturation, and crosspoint values were compared for each 770 

network’s output with the GT results, as shown in Table 7. These are particularly 771 

important parameters for CCS and UHS applications with irreducible saturations, 772 

defining how much of a given phase is trapped in the rock and the crosspoint defining 773 

how saturation waves propagate through a reservoir [97]. The endpoint relative 774 

permeability for the GT domain is 0.44 for water and 0.78 for oil. The best-performing 775 

network is U-ResNet, where the relative permeability value is 0.35 for the water 776 

endpoint and 0.74 for the oil endpoint. In addition, the crosspoint relative permeability 777 

value for GT is approximately 0.4; the best performance was achieved by the domain 778 

of EfficientU-Net, with a crosspoint value of 0.39. The most-accurate result in terms of 779 

irreducible oil saturation was also produced by EfficientU-Net, with a value of 0.56 780 

compared to 0.57 for the GT domain. It is worth noting that small clay features that are 781 

easily washed-out during segmentation play a significant role in the relative 782 

permeability; therefore, this further stresses the importance of preserving fine regions 783 

such as fine clay structures and mineral interfaces during segmentation. Figure 16 784 

visualizes the fluid-phase distributions, which shows the fluid distributions at high and 785 

low oil saturations. The fluid distributions differ for each segmentation domain, which 786 

means that the fluid flow and displacement in the porous media is directly influenced 787 

by the multi-mineral phase segmentation. Overall, EfficientU-Net and U-ResNet are 788 

visually more like the GT than EfficientU-Net-cGAN. 789 

 790 

Table 7: Comparison of endpoint relative permeability value, irreducible oil saturation, and 791 

crosspoint values between each network with the GT. The parameter krwr refers to water 792 

endpoint relative permeability, kror to oil endpoint relative permeability, swcp to the water 793 

saturation at the crosspoint, and sor to irreducible oil saturation. 794 

 GT UResNet EfficientNet EfficientNetGAN 

krwr 0.44 0.35 0.33 0.34 

kror 0.78 0.74 0.61 0.65 

Swcp  0.40 0.34 0.39 0.39 

Sor 0.57 0.51 0.56 0.55 

 795 
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 796 

Figure 16: Visualization of the simulated domain from top to bottom at 1,001,000 LBM 797 

timesteps (high oil saturation) and 2,484,000 LBM timesteps (low oil saturation). The blue 798 

region corresponds to water and red to oil.  799 

 800 

To summarize the overall performance of the four tested networks, Table 8 includes all 801 

the metrics that were used to evaluate the network performance. Only four commonly 802 

occurring phases are considered here because both the mica phase and mixed phase are 803 

rare. All networks have their own best metrics, e.g., EfficientU-Net-cGAN has a higher 804 

number of accurate metrics. However, the network selection should be based on the 805 

application they are designed for. For example, to capture the flow behavior ina clay 806 

coated sample (such as Mt. Simon sandstone) where the clay commonly exists in the 807 

pore, EfficientU-Net and U-ResNet might be more suitable, EfficientU-Net has a better 808 

clay phase segmentation as well as relative permeability while U-ResNet show a better 809 

clay connectivity and clay interface determination. If the sample contains insignificant 810 

clay in the pore (Bentheimer sandstone), EfficientU-Net-cGAN is a better choice that 811 

gives a better segmentation of pore phase. For mineral identification application, where 812 

the flow behavior is not essential, the EfficientU-Net-cGAN might be selected since it 813 

provides better segmentation result in the minerals apart from quartz. Additionally, if 814 

there is limited training data, to avoid overfitting, U-ResNet might be the best option, 815 

because the architecture is simpler than other three and has less training parameters 816 

(Table 2). When considering these metrics, it should also be considered that consistency 817 

in the processing workflow is of upmost importance, which is an attribute that all 818 

networks provide.   819 

 820 

Table 8: Summary of accuracy measurements for the four networks. The symbol√refers to the 821 

best result in terms of the given metric, while ⚪ refers to the second-best result. For those 822 
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networks that have only one acceptable result, only the best performance is ticked. EfficientU-823 

Net-cGAN had the best overall performance, including five best-performance metrics and three 824 

second-best metrics. 825 

 

Overall  

Pixel 

Accuracy 

         Phase Pixel Accuracy 

 

Pore    Clay     Quartz    Feldspar 

Relative 

Permeability 

U-ResNet  ⚪  ⚪ ⚪ 
 

U-ResNet-

cGAN 
 √  √  

 
EfficeintU-

Net 
√  √   √ 

EfficientUnet

-cGAN 
⚪  ⚪  √ 

 
  

     

 

          Euler Characteristic 

 

  Pore      Clay    Quartz   Feldspar 

Porosity 

 

U-ResNet  √ √   
 

U-ResNet-

cGAN 
 ⚪  √ √ 

 
EfficeintU-

Net 
⚪    ⚪ 

 
EfficientUnet

-cGAN 
√  ⚪   

 

       

 

Region-based Accuracy 

 

Pore      Clay    Quartz   Feldspar 

Absolute 

permeabilit

y 

 

U-ResNet  √ ⚪ ⚪   

U-ResNet-

cGAN 
  √    

EfficientU-

Net 
⚪ ⚪     

EfficientUnet

-cGAN 
√   √ √  

 826 

4 Conclusion 827 

To perform multi-mineral segmentation on dynamic synchrotron-based images with a 828 

certain degree of noise associated with fast imaging, unpaired domain transfer was 829 

implemented using CycleGan. It performs unpaired domain transfers of synchrotron-830 

based μ-CT data into raw μ-CT data with ground-truth labels. Dynamic-styled μ-CT 831 

data are further degraded by adding Poisson and Gaussian noises, which are the 832 
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common noise in μ-CT imaging. Four deep-convolutional neural networks were used 833 

to segment the degraded synchrotron-style Mt. Simon sandstone images. The pixelwise 834 

accuracy for all networks converged to approximately 94%. The accuracy for 835 

EfficientU-Net and EfficientU-Net-cGAN was marginally better than that of U-ResNet 836 

and U-ResNet-cGAN. Physical accuracy was also determined to further compare the 837 

segmentation results of each network. The physical measurements of connectivity 838 

showed higher variance, especially in the less-common phases. All networks provided 839 

an accurate prediction in the volume-fraction measurement, with a maximum difference 840 

of less than 5%. EfficientU-Net-cGAN provided an accurate measurement of absolute 841 

permeability and yielded the best performance for interface segmentation, whereas 842 

EfficientU-Net provided an accurate prediction in terms of relative permeability 843 

simulations for mixed-wetting conditions. From the high pixelwise and physical 844 

accuracy, we demonstrate that the unpaired domain transfer by CycleGan can capture 845 

the semantic or style from an image and transfer into another image. It is helpful in 846 

reducing the quantity requirement of ground truth for semantic segmentation tasks. 847 

With the integration of the dynamic-based image processing workflow of unpaired 848 

domain transfer and CNN methods, this research presents a application of real-time 849 

imaging and DRP for pore-scale CCS and UHS investigations. More specifically, the 850 

proposed image-processing workflow performs multi-mineral segmentation on a real-851 

time image by transferring dynamic information from synchrotron-based scanning of a 852 

rock sample to a long-scanned, high-quality rock image without the requirement of real-853 

time ground-truth data. A DRP with multiple phases can then be implemented with the 854 

validation of multiphase-flow experimental data generated during dynamic image 855 

scanning. The workflow is generalizable to studying any type of porous media with 856 

multiphases, flow, or transport. For example, it could be applied to H2 diffusion 857 

experiments with dynamic scanning in order to understand the relationship between 858 

diffusion and rock mineralogy, as well as to mineral dissolution and precipitation or the 859 

development of gas pockets within a hydrogen fuel cell that reduces overall transport 860 

efficiencies  [98].  861 

In addition to the specific case described in this study, the workflow serves as a semi-862 

automatic process for the image processing of porous materials. Traditionally, the μ-CT 863 

image is first subjected to several preprocessing steps such as filtering and pixel 864 

matching before segmentation, which requires a great amount of human effort, 865 

including human biases. By using the proposed workflow, an automatic “filtering” and 866 

“pixel matching” is implemented by unpaired domain transfer with CycleGAN, which 867 

is the major objective and contribution of the study. Domain transfer is then followed 868 

by an automatic multiphase segmentation without any human effort or bias. The 869 

objective is that training data and learning mappings from previous works can be 870 

applied to unseen works from completely different instruments and settings. Thus, the 871 

methodology allows for applying trained algorithms to a broad range of data in a 872 

consistent and objective way. A step toward the development of a fully automatic 873 

workflow is to couple the CycleGAN with the CNN segmentation networks into a 874 
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single network; this requires a more complex network structure and hyperparameter 875 

tuning to balance the loss functions along with a means to dynamically adjust the 876 

learning rate. Meanwhile, additional image information could also help to increase the 877 

segmentation performance. This could be different image modalities or the same 878 

modality with different settings, such as dual energy images or phase contrast images. 879 

The overall workflow provides a digital material platform for the study of physical 880 

processes within complex porous structures containing multiphases that can deal with 881 

the noise associated with dynamic real-time imaging.  882 
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