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A series of ITI-V ternary and quarternary digital alloy avalanche photodiodes (APDs) have recently
been seen to exhibit very low excess noise. Using band inversion of an environment-dependent
atomistic tight binding description of short period superlattices, we argue that a combination of
increased effective mass, minigaps and band split-off are primarily responsible for the observed
superior performance. These properties significantly limit the ionization rate of one carrier type,
either holes or electrons, making the avalanche multiplication process unipolar in nature. The
unipolar behavior in turn reduces the stochasticity of the multiplication gain. The effects of band
folding on carrier transport are studied using the Non-Equilibrium Green’s Function Method that
accounts for quantum tunneling, and Boltzmann Transport Equation model for scattering. It is
shown here that carrier transport by intraband tunneling and optical phonon scattering are reduced
in materials with low excess noise. Based on our calculations, we propose five simple inequalities
that can be used to approximately evaluate the suitability of digital alloys for designing low noise

photodetectors. We evaluate the performance of multiple digital alloys using these criteria and

demonstrate their validity.

I. INTRODUCTION

The demand for efficient optical detectors is con-
stantly growing due to rapid developments in telecom-
munication, light imaging, detection and ranging (LI-
DAR) systems and other military and research fields [1-
7]. Photodetectors are increasingly being incorporated
in photonic integrated circuits for Internet of Things
and 5G communications [8-10]. These applications re-
quire higher sensitivity in comparison to traditional p-
i-n photodiodes [11]. Avalanche photodiodes (APDs)
are often deployed instead due to their higher sensitiv-
ity, enabled by their intrinsic gain mechanism. However,
the stochastic nature of the impact ionization process of
APDs adds an excess noise factor F'(M) = (m?)/{(m)? =
kM +(1—k)(2—1/M) to the shot noise current, (i%, ,) =
2qIM?F(M)Af |12-14]. Here, q is the electron charge, T
is the total photo plus dark current, m is the per primary
electron avalanche gain, M = (m) the average multipli-
cation gain and Af is the bandwidth. A low value of k,
which is the ratio of hole ionization coefficient  to the
electron ionization coefficient, «, is desirable for design-
ing low-noise n-type APDs. This ratio stipulates that for
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pure electron injection, a significantly lower hole ioniza-
tion than the electron ionization rate leads to reduced
shot noise. If impact ionization is caused by pure hole
injection, k in the equation will be replaced by 1/k. This
behavior is generally true for low electric fields, which
is usually applicable for thick avalanche regions. Addi-
tionally, dead space effects can be exploited to attain low
noise in thin structures.

Recently, several III-V digital alloys, i.e., short-period
superlattices with binary components stacked alternately
in a periodic manner, were found to exhibit extremely
low noise currents and a high gain-bandwidth product in
the short-infrared wavelength spectrum [15-17]. Char-
acterization of (In,Al)As, (AlIn)(As,Sb)and Al(As,Sb)
digital alloy APDs have shown very small values of k,
[15-17] whereas other digital alloys, like (In,Ga)As and
(Al,Ga)As, demonstrate much higher & value [18, 19].
The k values of these materials were determined using an
Agilent 8973 A noise figure analyzer to obtain the excess
noise factor, F(M). The total noise was measured when
the APDs were illuminated and in the dark. The dark
noise was then subtracted to determine the photocurrent
noise. Initially the noise was measured at the APD unity
gain point and then the bias was increased to obtain the
gain-dependent noise characteristic. Plots of the excess
noise factor versus the average gain, < M >, were fit to



the expression F(M) = kM + (1 — k)(2 —1/M) to find
the effective k values. Based on previous full-band Monte
Carlo simulations, [20-22] the low k has been attributed
to the presence of superlattice minigaps inside the valence
band of the material bandstructure, along with an en-
hanced effective mass arising from the lower band-width
available to the holes. Such valence band minigaps often
co-exist with similar (but not symmetrical) minigaps in
the conduction band. However, electrons in the conduc-
tion band typically have very low effective mass, which
allows quantum tunneling and enhanced phonon scatter-
ing to circumvent minigaps in the conduction band. Fur-
thermore certain digital alloys showing mini-gaps do not
exhibit low noise, and the reason behind that has not
yet been addressed. More recently, Sb-containing ran-
dom alloy (Al,In)(As,Sb) and (Al,Ga)(As,Sb) APDs have
demonstrated low excess noise as well and their underly-
ing mechanism is not understood properly [23, 24]. Oguz-
man et al. showed that at high electric fields the impact
ionization rate for the light-hole and split-off bands for
bulk Si and GaAs is much larger compared to the heavy-
hole bands [25]. In Si, ionization events originating in
the split-off band are comparable to that of the light-
hole rate, while for GaAs the split-off band rate clearly
dominates the hole ionization process. [ was shown to
be inversely proportional to the spin-orbit splitting [26].
Liu et al. demonstrated that the excess noise in GaAs
can be significantly reduced by alloying with small frac-
tions of bismuth [27]. The strong spin-orbit coupling of
the heavier Bi atoms results in a larger separation be-
tween light-hole and split-off bands which reduces the
hole ionization coefficient. Our postulate is that a com-
bination of valence band minigap, a large separation be-
tween tight-hole and split-off bands, and corresponding
enhanced hole effective mass tend to limit hole ionization
coefficient in the digital alloys. A comprehensive analy-
sis is clearly necessary to understand the carrier impact
ionization in these materials.

In this paper, we employ a fully atomistic,
Environment-Dependent Tight Bindng (EDTB) model,
[28] calibrated to Density Functional Theory (DFT)
bandstructure as well as wavefunctions, to compute the
bandstructures of several III-V digital alloys. Using a
full three-dimensional quantum kinetic Non-Equilibrium
Green’s Method (NEGF) formalism with the EDTB
Hamiltonian as input, we compute the ballistic trans-
mission across these digital alloys that accounts for in-
traband quantum tunneling across minigaps and light-
hole/split-off bands offset.  Additionally, a full-band
Boltzmann transport solver is employed to determine the
energy resolved carrier density distribution under the in-
fluence of an electric field in order to study the effect
of optical phonon scattering in these short-period super-
lattices. The calculations are performed using compu-
tational resources at University of Virginia and XSEDE
[29]. Using these transport formalisms, we elucidate the
impact of minigap sizes, light-hole/split-off band offset
and effective masses on carrier transport in the valence

band.

Our simulations demonstrate that the squashing of
subbands into tighter band-widths, such as arising from
minigap formation, or the engineering of large light-
hole/split-off band offset lead to the suppression in trans-
port of one carrier type, by resisting quantum tunneling
or phonon-assisted thermal jumps. For (In,Al)As, the
improved performance is primarily due to the minigaps
generated by the digital alloy periodicity and the cor-
responding enhanced effective mass. For (Al,In)(As,Sb)
and Al(As,Sb), the gain is a combination of minigaps,
large effective mass and LH/SO offset. The LH/SO off-
sets in these two alloys results arise from the strong spin-
orbit coupling due to the Sb atoms, a characteristic which
is also observed in their random alloy counterparts that
exhibit low noise. A quantitative comparison of the var-
ious alloy gains measured is presented in the last two
columns of Table IV.

The unique superlattice structure of the digital alloys
opens the possibility for designing new low-noise alloy
combinations for detection of other frequency ranges.
Ideally, it is easier and cheaper to at first computationally
study the suitability of the alloys for achieving low noise
before actually fabricating these. For this purpose, we
need a set of design criteria for judging the alloy perfor-
mance using theoretically calculated parameters. Based
on our simulations, we propose five simple inequalities
that can be used to judge the suitability of digital alloys
for use in low-noise APDs. We judge the aptness of five
existing digital alloys- (In,Al)As, (In,Ga)As, (Al,Ga)As,
(Al,In)(As,Sb) and Al(As,Sb). We observe that the in-
equalities provide a good benchmark for gauging the ap-
plicability of digital alloys for use in low-noise APDs.

II. SIMULATION METHOD

A. Environment Dependent Tight Binding and
Band Unfolding for atomistic description

In order to understand the influence of minigap filter-
ing in digital alloy structures, an accurate band struc-
ture over the entire Brillouin zone is required. The peri-
odic structure of the (In,Al)As digital alloy is shown in
Fig. 1(a) and Fig. 1(b) shows the typical structure of a p-
i-n APD. We have developed an Environment-Dependent
Tight Binding (EDTB) Model to accurately calculate the
band structure of alloys [28, 30]. Traditional tight bind-
ing models are calibrated directly to bulk bandstructures
near their high symmmetry points and not to the under-
lying chemical orbital basis sets [30]. These models are
not easily transferable to significantly strained surfaces
and interfaces where the environment has a significant
impact on their material chemistry. In other words, the
tight binding parameters work directly with the eigen-
values (E-k) and not with the full eigenvectors. While
the crystallographic point group symmetry is enforced
by the angular transformations of the orbitals, the ra-



dial components of the Bloch wavefunctions, which de-
termine bonding and tunneling properties, are left uncal-
ibrated. Previously, in order to incorporate accuracy of
radial components, an Extended Hiickel theory [31, 32]
was used that incorporated explicit Wannier basis sets
created from non-orthogonal atomic orbitals that were
fitted to Density Functional Theory for the bulk Hamil-
tonian. The fitted basis sets were transferrable to other
environments by simply recomputing the orbital matrix
elements that the bonding terms were assumed to be
proportional to. As an alternative, the EDTB model
employs conventional orthogonal Wannier like basis sets.
The tight binding parameters of this model are gener-
ated by fitting to both Hybrid functional (HSE06) [33]
band structures and orbital resolved wave functions. Our
tight binding model can incorporate strain and interface
induced changes in the environment by tracking changes
in the neighboring atomic coordinates, bond lengths and
bond angles. The onsite elements of each atom have con-
tributions from all its neighboring atoms. The fitting
targets include unstrained and strained bulk III-V ma-
terials as well as select alloys. We have shown in the
past that our tight binding model has the capability of
matching the hybrid functional band structures for bulk,
strained layers and superlattices [28, 34].

The band structures of the alloys contain a massive
number of spaghetti-like bands due to the large super-
cell of the system that translates to a small Brillouin
zone with closely separated minibands and minigaps. In
order to transform the complicated band structure into
something tractable, we employ the technique of band
unfolding [35-37]. This method involves projecting the
eigenvalues back to the extended Brillouin zone of the
primitive unit cell of either component, with weights set
by decomposing individual eigenfunctions into multiple
Bloch wavefunctions with different wave vectors in the
Brillouin zone of the original primitive unit cell. The su-
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FIG. 1. (a) Digital alloy structure (b) typical structure of an
APD
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percell eigenvector | K m) is expressible in terms of the
linear combination of primitive eigenvectors | k_;n> The
eigenstate £, of an atom with wavector k can be ex-
pressed as a linear combination of atomic-orbital wave-
functions. The supercell electron wavefunction |z/1i%>
can be written as a linear combination of electron wave-
functions in the primitive cell as [15]

where, [1)” kg ) is the electron wavefunction for the wave
nk;

vector k_; in the nth band of the primitive cell. Here, K
and k denote the reciprocal vector in supercell and prim-
itive cell respectively. The folding vector G i, g contains
the projection relationship and is expressed as

K=k-Gp g (2)

The projection of the supercell wavefunction |¢i %) into
the primitive cell wavefunction |@[15 kg ) is given as

P =2 [ @WSGwie) 1> . (3)

Plotting these projection coefficients gives a cleaner pic-
ture of the band evolution from the individual primitive
components to the superlattice bands.

B. Non-Equilibrium Green’s Function Method for
coherent transmission

Under the influence of a large electric field it is pos-
sible for carriers to move across minigaps by means of
quantum tunneling. Such transport involves a sum of
complex transmissions limited by wavefunction symme-
try between several minibands. We make use of the Non-
Equilibrium Green’s Function formalism to compute the
ballistic transmission and study the influence of mini-
gaps on quantum tunneling in digital alloys. The digital
alloys we are interested in studying are translationally
invariant in the plane perpendicular to the growth direc-
tion and have finite non-periodic hopping in the trans-
port (growth) direction. Thus, we need a device Hamil-
tonian H whose basis is Fourier transformed into k-space
in the perpendicular x — y plane but is in real space in
the z growth direction, i.e., H (r, ky, k). Convention-
ally, this can be done with a DFT Hamiltonian in real
space, H (r,,75,7y), which is Fourier transformed along
the transverse axes to get H (r., ks, ky). However, DFT
Hamiltonians are complex and sometimes do not match



with bulk material bandstructure. Thus, it is simpler
to utilize a tight binding Hamiltonian whose E — ks are
calibrated to bulk bandstructure, and inverse transform
along the growth direction.

The matrix elements of the 3D EDTB Hamiltonian are
given in the basis of symmetrically orthogonalized atomic
orbitals [nbR). Here R denotes the position of the atom,
n is the orbital type (s,p,d or s*) and b denotes the
type of atom (cation or anion). The Hamiltonian can
also be represented in k—space basis |nbk) by Fourier
transforming the elements of the real-space Hamiltonian.
The 3D Hamiltonian is then converted into a quasi-1D
Hamiltonian [38]. The Hamiltonian elements can be rep-
resented in the basis }nbjk||> with“paralle]” momentum
k| = (kz,ky) and “perpendicular” position z; = ar/4
as parameters. For a zinc-blende crystal, the distance
between nearest-neighbour planes is one-fourth the lat-
tice constant ay,. The 3D Hamiltonian is converted to the
the quasi-1D one by means of a partial Fourier transform
[38, 39]:

Inbjk|) :L;Z/Z’/d/gze*““zﬂ'ab/‘l Inbk) . (4)

Here Lpz = 87/ay, is the length of the one-dimensional
(1D) Brillouin zone over which the k. integral is taken.
The quasi-1D Hamiltonian is position dependent in the
growth direction. Thus, we are able to utilize the accu-
rate bandstructure capibility of the EDTB.
In presence of contacts, the time-independent open
boundary Schrédinger equation reads
(EI—H—-%1 —%)¥ =51+ 5 (5)
where, F represents energy, I denotes identity matrix and
Y1,2 are the self-energies for the left and right contact
respectively describing electron outflow, while S; o are
the inflow wavefunctions. The solution to this equation
is ¥ = G(S7 + S2), where the Green’s function [40]
GE)=[EI-H—-%, — %] " . (6)
Here H includes the applied potential, added to the
onsite 1D elements. Assuming the contacts are held
in local equilibria with bias-separated quasifermi levels
11,2, we can write the bilinear thermal average (Sl-S’;f )=
T;f(E — p;) where f is the Fermi-Dirac distribution and
T = (512 — EJ{ ) denoting the broadening matri-
ces of the two contacts. The equal time current I =
q(d/dt + d/dt"YTr{UT(t)¥(t'))|;=¢ then takes the Lan-
dauer form I = (g¢/h) [ dET(f1 — f2), where the coher-
ent transmission between the two contacts is set by the
Fisher-Lee formula
T(E) = Tr [I'1GI2G] (7)
where T'r represents the trace operator. The energy re-
solved net current density from the layer m to layer m+1
is expressed as[38]:

Jm,m-i-l (E) =

g [ K np
h/(27r) [ m+1,m mm+1 (8)

n,p
_Gm,m-l—le'i'lﬂn]

where, G" = (1) and GP = (yn)T) represent electron
(n) and hole density (p) correspondingly and H,y, 41 18
the tight binding hopping element between layers m and
m + 1 along the transport/growth direction.

C. Boltzmann Transport Model for incoherent
scattering

The NEGF approach is particularly suited to ballis-
tic transport where coherent quantum effects dominate.
Incoherent scattering requires a self-consistent Born ap-
proximation which is computationally quite involved. We
need a practical treatment of scattering. Under an ex-
ternal electric field, the carrier distributions in digital
alloys no longer follow a local Fermi-distribution, but
re-distribute over real-space and momentum space. To
understand the carrier distribution under electric field in
digital alloys, we employed the multi-band Boltzmann
equation.

v vrfn+ﬁkanzzs(ﬁvmfm(ﬁ
_ZS

Here, f = f(r,k) is the carrier distribution, n and m are
band indices, p' and p’ are the momenta of the carriers,
and S (p',p) is the scattering rate. The left hand side of
this equation alone describes the ballistic trajectory in
the phase space of carriers under electric field. The right
hand side of the equation corresponds to the scattering
processes including intra-band and inter-band scattering.
In a homogenenous system where the electric field is
a constant, the distribution function is independent of
position, V, f = 0 and the equation is reduced to

F-Vifo=> S@0) fm @) [1-fa(@)]  (10)

anS

For APDs, it is critical to consider optical phonon scat-
tering, which is the dominant process besides tunneling
that allows carriers to overcome the minigap arising in
the band structures of digital alloys. The optical phonon
has a non-trivial energy of hw,y: that can be absorbed or
emitted by carriers. The scattering rate S (p', p) has the
form set by Fermi’s Golden Rule

)1 = fn (D))9)

7)) fu (B) [1 = fon ()]

7') fn (D) [1 = fm ()] -

E(p) £ hwopt) -
(11)

2
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The E(p) and E(p’) are band structures of digital alloy
calculated by the tight binding model. H,, ,» can be calcu-
lated by evaluating electron-phonon coupling matrix ele-
ments explicitly. In this work, we extract a constant effec-
tive constant scattering strength Hj 7 from experimental
mobility p. The scattering lifetime 7, which is 1/S (', p),
can be extracted from the mobility using pu = g7/m*.
Due to lack of experimental mobilities of the digital al-
loys, we considered the average of the binary constituent
room temperature mobilities for extracting the lifetime.
A simple average is done since the binary constituents in
periods of most of the digital alloys considered here are
equally divided. In using room temperature values the
underlying assumption is that the dominant scattering
mechanism here is phonon scattering due to large phonon
population. Ionized impurity scattering is considered to
be much lower due to digital alloys having clean inter-
faces [16]. It is then possible to extract Hz from the
scattering lifetime. To get the equilibrium solution, we
solve Eq. 10 self-consistently, starting from an initial dis-
tribution f = 55)0.

A detailed model of carrier transport in APDs also
requires a NEGF treatment of impact ionization self-
energies and a Blanter-Buttiker approach to extract shot
noise, but we leave that to future work. Our focus here
is on conductive near-ballistic transport, and the role of
quantum tunneling and perturbative phonon scattering
in circumventing this.

III. RESULTS AND DISCUSSION

There are three common ways to achieve low noise and
high gain-bandwidth product - selecting a semiconduc-
tor with favorable impact ionization coeflicients, scal-
ing the multiplication region to exploit the non-local
aspect of impact ionization, and impact ionization en-
gineering using appropriately designed heterojunctions
[11]. Typically, the lower hole impact ionization coef-
ficient in semiconductors is due to stronger scattering in
the valence bands, as depicted in Fig. 2(a). Previously,
the lowest noise with favorable impact ionization char-
acteristics were realized with Si in the visible and near-
infrared range, [41-44] and InAs [45-49] and (Hg,Cd)Te
[50, 51] in the mid-infrared spectrum. In comparison,
(In,Ga)As/(In,Al)As [52, 53] random alloy APDs exhibit
significantly higher noise than Si, (Hg,Cd)Te or InAs,
which are the highest performance telecommunications
APDs. In the recent past, digital alloy (In,Al)As APDs
have demonstrated lower noise compared to their ran-
dom alloy counterpart [15]. This seems a surprise, as the
suppression of one carrier type (the opposite of ballistic
flow expected in an ordered structure) is necessary for
low excess noise. Initially, the low value of k in (In,Al)As
was attributed to the presence of minigaps [22]. How-
ever, minigaps were also observed in (In,Ga)As digital
alloy APDs which have higher excess noise[18, 54]. So, a
clearer understanding of the minigap physics was needed

E-field E-field

E

FIG. 2. Impact ionization process in normal (random alloy)
APD and superlattice APD. In both APDs, it is easier for elec-
trons to gain energy and reach the impact ionization threshold
(c). The low effective mass of the electrons in these materi-
als allow easy acceleration under applied electric field and
overcome any minigaps or scattering processes present in the
conduction band. In normal APDs (a), holes find it harder
to gain high energy compared to electrons because of ther-
malization. The hole energy is reduced by thermalization due
to various scattering processes as shown in (d).In superlattice
APD (b), the existence of minigaps makes it harder for holes
to reach higher energies. The minigaps acts as barrier that
prevent holes from moving to the lower valence bands. In
the plots, the y-axis FE is the total energy (kinetic+potential)
meaning in between inelastic scattering events the particles
travel horizontally.

and hence a comprehensive study was required.

Our recent results suggest that well defined minigaps
introduced in the valence band of digital alloys suppress
the density of high energy holes and thereby reduce the
impact ionization greatly, as shown in Fig. 2(b). In a
regular low-noise electron-injected APD, the electron ion-
ization coefficient is much higher than the hole ionization
coefficient. The conduction band minigaps in the digital
alloys can be bypassed by quantum tunneling due to the
low effective masses of the electrons. Thus, electrons can
easily climb to higher kinetic energies in the conduction
band, depicted in Fig. 2(c), and participate in the im-
pact ionization process by gaining the impact ionization
threshold energy. Random and digital alloys have simi-
lar electron impact ionization coefficients [19] which ver-
ify that conduction band minigaps do not limit electron
impact ionization. On the other hand holes lose energy
by various inelastic scattering processes (Fig. 2(d)), col-
lectively known as thermalization. Thermalization pre-
vents holes from reaching their secondary impact ioniza-
tion threshold. In superlattice APDs, minigaps provide
an additional filter mechanism that prevents holes from
reaching the threshold energy required to initiate sec-
ondary impact ionization.

The effect of minigaps is shown in Fig. 2(e). How-
ever, not all digital alloy APDs exhibit low noise. The
excess noise F'(M) vs. multiplication gain characteris-
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FIG. 3. Experimentally measured Excess noise vs.
Multiplication gain of (In,Ga)As, (Al,Ga)As, (In,Al)As,
(AlLIn)(As,Sb) and Al(As,Sb) digital alloys are shown here
[15-19]. The dotted lines for the corresponding k’s are plot-
ted using Mclntyre’s formula [12].

tics of experimental (In,Ga)As, (Al,Ga)As, (In,Al)As,
(Al,In)(As,Sb) and Al(As,Sb) digital alloy APDs are
shown in Fig. 3 [15-19]. (In,Ga)As APDs have the high-
est excess noise while Al(As,Sb) has the lowest. A key
observation from this compilation is that As-based APDs
have higher excess noise than Sb-based APDs. The dot-
ted lines represent the theoretical F'(M) vs. M calculated
using the well known McIntyre’s formula [12], introduced
in the first paragraph of this paper. In order to under-
stand the underlying physics in these digital alloys, an
in-depth analysis of the material bandstructure and its
effect on the carrier transport is required.

(a)

(b)

(c)

InAs 3ML

AlAs 3ML

InAs 3ML

GaAs 3ML

GaAs 3ML

AlAs 3ML

InP substrate

(d)
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We calculate the atomistic DFT-calibrated EDTB
bandstructure of these materials and unfold their bands
using the techniques described in section ITA, to un-
derstand the underlying physics of their noise perfor-
mance. In Fig. 4, we show the periods of the different
digital alloys considered- (a) 6ML (In,Ga)As, (b) 6ML
(Al,Ga)As, (c¢) 6ML (In,Al)As, (d) 10ML Alg 7Ing 3AsSb
and (e) 5ML Al(As,Sb). Here, 6ML (In,Ga)As includes
3ML InAs and 3ML GaAs, 6ML (Al,Ga)As has 3ML
AlAs and 3ML GaAs, and 6 ML (In,Al)As has 3ML InAs
and 3ML AlAs. 10ML Alg.7Ing 3AsSb consists of 3ML
AISb, 1ML AlAs, 3ML AlAs and 3ML InAs in its period.
Al(As,Sb) has 4ML AlSb and 1ML AlAs. The unfolded
bandstructures of these alloys are shown in Fig. 5. We
observe that minigaps exist in at least one of the valence
bands (heavy-hole, light-hole or split-off) for all the mate-
rial combinations. The (In,Al)As valence band structure
is magnified in Fig. 6. The minigap between the LH
and SO band is denoted in the figure. Additionally, the
large separation between the LH and SO bands at the I’
point is highlighted. In general, the minigap size shows
a decreasing trend with increasing period thickness, as
was observed for (In,Al)As digital alloy [15]. However,
the minigaps disappear for very short period (<=4M1L)
structures, as was recently observed by Wang et al. for
4AML (In,Al)As digital alloy [55]. This is primarily due to
increased edge roughness in these structures that result
in a larger smearing of the bands around the minigap
regions.

The role of the minigaps on hole localization is not
identical across different alloys. For instance, the pres-
ence of minigaps in material bandstructure is not suffi-
cient to realize low noise in APDs. Taking a closer look
at the bandstructures, we observe that the positions in
energy of the minigaps with respect to the valence band
edge differ from one material to another. Additionally,
the minigap sizes of the different alloys vary in magni-
tude. A complimentary effect of the minigap size is the
flattening of the energy bands, i.e., a large minigap size
results in flatter bands around the gap. This in turn re-
sults in an increased effective mass which tends to inhibit
carrier transport. Table I lists the energy location of the
minigap with respect to the valence band edge AFEj, the
minigap size AE,,, the light-hole (LH) and split-off (SO)
band effective masses and the energy difference between

cee (e)
InAs 3ML e
AISb 3ML AlAs 1ML
AlAs 1ML AISb 4ML
AISb 3ML oo
oo InP substrate
GaSb substrate

FIG. 4. Lattice structures of (a) (In,Ga)As, (b) (Al,Ga)As,
(¢) (In,Al)As, (d) (ALIn)(As,Sb) and (e) Al(As,Sb) digital
alloys considered in this paper.

Muterisl §) () ) me mme
(In,Ga)AJ0.63 034 0.03 031 0.13 0045 0.35
(ALGa)ABL.94 1.03 034 045 031 012 033
(In,A)Aq1.23 030 012 05 04 01 031
(ALIn)(AFSH) 0.33 0.06 042 033 008 048
[Al(As,SbJL.G 056 0.1 045 03 0.13 054

TABLE I. Material parameters of the different digital alloys
simulated in this paper.
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insets.

the LH and SO bands AELs at the I' point for the digital
alloys studied.

We can see in the table that there are significant vari-
ations in minigap size and position between different ma-
terials. At first glance, there seems to be no direct cor-
relation between these variations and the excess noise,
prompting us to do added transport analyses. Under high
electric field, a carrier must gain at least the threshold
energy, Fry, in order to impact ionize. Typically, Erx
is assumed to be approximately 1.5 times the material
bandgap, Fg. Thus, in the presence of minigaps, elec-
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FIG. 6. A magnified picture of the (In,Al)As valence band
shows the minigap closest to the valence band edge. The split
between the LH and SO at the I' point is also highlighted.

trons/holes must bypass these gaps by some transport
mechanism in order to gain energy equivalent to Erpp.
The two such major transport mechanisms are quantum
mechanical tunneling and optical phonon scattering. Our
transport study must incorporate these two mechanisms
to understand the effectiveness of minigaps on the APD
excess noise.

We employ the NEGF formalism described in Section
IIB to compute the ballistic transmission in the valence
band as a function of energy, T'(E), dominated by tun-
neling processes. The effect of different minigap sizes is
highlighted in Fig. 7. For our simulation, we set the
quasi-Fermi level of the left contact at —qV below the
valence band edge and quasi-Fermi level of the right con-
tact at another —qV below. This is done in order to only
observe the intraband tunneling inside the valence band
which is responsible for overcoming minigaps under bal-
listic conditions. In Fig. 7 (a), We demonstrate that a
small minigap in the valence band creates a small tunnel-
ing barrier for the holes. A hole with a small enough ef-
fective mass will be able to tunnel across this barrier and
render it ineffective. That is the case for (In,Ga)As which
has a LH effective mass of 0.13mg and AE,, = 0.03¢V.
The spectral current density for (In,Ga)As under a bias
V = 0.25V is shown in Fig. 7 (b). We observe that the
current spectrum in the valence band is continuous in
the Fermi energy window and there is no drop in trans-
mission due to the minigap. For a large minigap, the
holes encounter a larger tunneling barrier, as shown in
Fig. 7 (c), preventing them from gaining the thresh-
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FIG. 7. Small minigaps in the valence band, as shown in
(a), create a small tunneling barrier which can be overcome
by holes with low mass. The spectral current density for
(In,Ga)As, which has a small minigap and small LH effective
mass, is shown in (b). The current spectrum for (In,Ga)As in
the Fermi window is continuous. The creation of a large tun-
neling barrier by a larger minigap is shown in (c). This bar-
rier prevents hole transmission. (In,Al)As has a larger mini-
gap and LH m™. Regions of low current density is observed
within the Fermi window in the (In,Al)As spectral current
density in (d). The large minigap in (In,Al)As results in re-
duced transmission as shown in the T'(E) vs. (E) plot of (e).
The simulations for (b), (d) and (e) were conducted under
bias of V = 0.25V.

old energy Erp for secondary impact ionization. This
case is operational in (In,Al)As digital alloys, as shown
in the spectral density plot in Fig. 7 (d). (In,Al)As has
a minigap size of 0.12eV and LH effective mass of 0.4my.
Within the Fermi window we see that there are regions
with extremely low current due to low tunneling proba-
bility across the minigap. This is further demonstrated
by the T'(E) vs. E plot in Fig. 7 (e). Here, it is observed
that there are regions of low transmission for (In,Al)As
whereas the (In,Ga)As transmission is continuous. This
signifies that the minigaps in the (In,Al)As valence band
are large enough to prevent holes from gaining in kinetic
energy, resulting in a low hole ionization coefficient.

In order to investigate the role of minigaps in the re-
maining digital alloys, we look at the transmission vs.
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FIG. 8. The Transmission T'(E) vs. Energy E for all the
digital alloys at V = 0.25V in (a) and V = 0.5V in (b). A
21 x 21 grid for transverse wavevectors is used.

energy plots for all the alloys. The T'(E) vs. E charac-
teristics for the five digital alloys are shown in Fig. 8 for
two bias conditions, (a) V = 0.25V and (b) V = 0.5V.
We use a 21 x 21 grid for the transverse wavevectors
(ks ky) within the first Brillouin zone. For this sim-
ulation, the structure length for (In,Ga)As, (Al,Ga)As,
(In,Al)As and Al(As,Sb) is considered to be two periods.
For (Al,In)(As,Sb) we consider one period length. This
allows us to keep the structure lengths as close as possi-
ble. We consider lengths of 3.48nm (In,Ga)As, 3.42nm
(Al,Ga)As, 3.54nm (In,Al)As, 3.06nm (AlIn)(As,Sb)
and 3.08nm Al(As,Sb) channels. The channel sizes cho-
sen are small compared to actual device lengths in or-
der to keep the computation tractable. For both the
bias conditions in Fig. 8 we see there are energy ranges
for (In,Al)As, (Al,In)(As,Sb) and Al(As,Sb) in which the
transmission probability drops drastically. This low tun-
neling probability can be attributed to two factors. The
first factor is the presence of a sizeable minigap in all
directions in the material bandstructure. The other con-
tributing factor is the separation between the LH and
SO bands. To a large extent this factor is responsible
for the low transmission regions in (Al,In)(As,Sb) and
Al(As,Sb), whose minigap sizes (from Table I) are smaller
than (In,Al)As but also demonstrate lower excess noise.
(In,Ga)As and (Al,Ga)As do not have any large drop in
transmission for both biases. This characteristic implies
that either the minigap size is too small to affect the car-
rier transport like in (In,Ga)As or there is no minigap at
all as in (Al,Ga)As.

To further underscore the role of the separation be-
tween the LH and SO bands, we looked at the band-
structure of Sb-containing random alloys in Fig. 9.
Here, for A10,791n0,21Aso,74Sb0,26, A1A80.44Sb0,56, and
A10,85Gao,15ASQ,5GSb0.44 the AELS values are 0.44€V,
0.46eV and 0.52¢V, respectively. The LH/SO offset val-
ues of the Al(As,Sb) and (AlIn)(As,Sb) random alloys
are comparable to their digital alloy counterparts which
are given in Table I. The different gap sizes of these alloys
most likely originate from variations in bonding/anti-
bonding interactions due to their different chemical com-
positions. The valence band effective masses of these
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FIG. 9. Unfolded bandstructure of Sb-containing random
alloys- (a) Alo.79Ing.21As0.745bo.26, (b) AlAs.44Sbo.s6 and (c)
Alp.s5Gao.15As0.565b0.44.

random alloys are also similar to the digital alloy masses.
However, there are no minigaps present in these random
alloys. Thus, the low excess noise observed recently in the
(Al,In)(As,Sb) and (Al,Ga)(As,Sb) random alloys can be
attributed to their large LH/SO offsets. This also indi-
cates that these offsets play a crucial role in achieving
low noise in Al(As,Sb) and (Al,In)(As,Sb) digital alloys.

For further confirmation of these observations on the
digital alloys, we compute the spectral current density
for the case of constant total period length of all the
structures. The period size of each unit cell stays the
same but the number of unit cells is increased to make
the total period length the same for all alloys. We con-
sider the case with total period of 30MLs and voltage
bias of 0.25V. The current spectral density plots for the
five digital alloys using a 15 x 15 transverse wavevector
grid are shown in Fig. 10. Smaller number of grid points
are used here to save computation time. In the figure,
a very small minigap is observed for (In,Ga)As within
the Fermi window and a continuous spectrum is seen
for (Al,Ga)As. Regions of low transmission/current are
observed for (In,Al)As, (AlIn)(As,Sb) and Al(As,Sb).
These observations are consistent with our previous cal-
culations. We can thus infer that at least under fully
coherent transport including tunneling, holes will not be
able to gain sufficient kinetic energy to achieve impact
ionization.

Besides tunneling processes it is possible for carriers to
jump across energy gaps through inelastic scattering. In
APDs, the dominant scattering mechanism is intervalley
optical phonon scattering. Using the BTE model de-
scribed in Section IT C, the effect of phonon scattering in
digital alloys is studied. The low-field carrier mobilities
and optical phonon energies of the binary constituents
of the alloys used in the BTE simulations are listed in
Table II. The low-field mobilities are generally valid for
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FIG. 10. Energy resolved current spectral density in the va-
lence band for (a) (In,Ga)As, (b) (Al,Ga)As, (c) (In,Al)As,
(d) (ALIn)(As,Sb) and (e) Al(As,Sb). The bias for the sim-
ulation is set to V' = 0.25V and total period length is 30
monolayers.

electric fields upto of 1 — 100kV/em depending on the
material. The effective mobility at high fields is propor-
tional to the low-field mobility [58]. Experimental data
for the high field mobilities or scattering lifetimes of the
digital alloys are not available. Thus, it is reasonable
to use the low-field mobilities because the relative dif-
ference in the scattering lifetimes of the different digital
alloys and their effects are preserved even at high elec-
tric fields. An effective scattering strength Hjzz is ob-
tained from the mobility values as described in Section
IIC. For our BTE simulations, we use the heavy-hole
effective masses outlined in Table. I. We compute the
carrier density distribution in the valence band under

Materiallun (cm®/Vs) Eopr (meV)
InAs 500 30
AlAs 200 50
GaAs 400 35
AlSb 400 42

TABLE II. Electron/hole mobilities and optical phonon ener-
gies of binary compounds that form the digital alloys [56, 57].
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valence band in the presence of optical phonon scattering
computed using BTE simulation. (In,Al)As, (Al,In)(As,Sb)
and Al(As,Sb) have lower occupation probability compared
to (In,Ga)As and (Al,Ga)As. This prevents holes from gain-
ing the ionization threshold energy.

a high electric field of 1MV /em, by solving the three-
dimensional Boltzmann equation with the entire set of
tight binding energy bands within the Brillouin zone of
the digital alloy. The optical phonon energy and mobili-
ties of each alloy are taken to be the average of the binary
constituent optical phonon energies and their mobilities.
The energy resolved carrier density distribution of the
valence band for all the alloys is shown in Fig. 11. The
valence band plot in Fig. 11 has contributions from dif-
ferent valence bands like heavy-hole, light-hole and split-
off bands. It shows that the occupation probability for
(In,Al)As, (Al,In)(As,Sb) and AlAsAsb is lower than the
other two alloys at high energies. The optical phonon en-
ergies of these alloys are not sufficiently large to overcome
their minigaps and thus prevent holes from ramping their
kinetic energies up to Erg.

The top few valence bands of (In,Ga)As are shown
on the left side of Fig. 12(a) and the valence band car-
rier density distribution is projected onto the bottom.
The bands are inverted for better view. For clearer un-
derstanding, the (In,Ga)As carrier density distribution
contour is also shown on the right. The valence band
carrier distributions for the other alloys are shown in
Fig. 12(b) (Al,Ga)As, (¢) (In,Al)As, (d) (AlIn)(As,Sb)
and (e) Al(As,Sb). By studying the contours of each
material, we observe that the densities for (In,Al)As,
(Al,In)(As,Sb) and Al(As,Sb) are more localized com-
pared to that of (Al,Ga)As and (In,Ga)As. This is once
again consistent with the lower hole impact ionization of
(In,Al)As, (Al,In)(As,Sb) and Al(As,Sb).

For (In,Ga)As and (Al,Ga)As, the bandwidths are
large enough to allow both holes and electrons to reach
Erpg easily. The resulting values of k for these ma-
terials are quite high. Correspondingly, these two al-
loys have higher excess noise. In contrast in (In,Al)As,
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FIG. 12. Carrier density distribution for (a) (In,Ga)As,
(b) (ALGa)As, (c¢) (In,Al)As, (d) (ALIn)(As,Sb) and (e)
Al(As,Sb).

(Al,In)(As,Sb) and Al(As,Sb), it is easy for electrons to
reach the threshold energy, but the holes are confined
close to the valence band edge. This results in asymmet-
ric ionization coefficients which give a low k, leading in
turn to low excess noise.

Armed with these results, we attempt to paint a clearer
picture on how the minigaps and band splitting can re-
duce the excess noise in APDs. Specifically, we propose
a set of empirical inequalities that can used to judge the
excess noise performance of a digital alloy.

IV. EMPIRICAL INEQUALITIES

Based on our experimental results and theoretical cal-
culations, five inequalities are proposed that use only ma-
terial parameters like effective mass and minigap size ob-
tained from our material bandstructures as inputs. In
this paper, the transport is in the [001] direction. Since
the minigaps considered lie in the LH band, we use the
unfolded LH effective mass value in the I' — [001] di-
rection for the inequalities. The masses are obtained
using the relationship h?k?/2m* = E(1 + aF) where
a = [(1 = m*/mp)?]/Ec [59]. In reality, the effective
masses are complicated tensors that cannot be included
in these empirical inequalities but are captured by the
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FIG. 13. Criteria for designing low noise digital alloy APDs.
Inequality (1) states that the bandwidth to the first minigap
is lower than the ionization threshold energy. Inequality (2)
asserts that the optical phonon energy has to be less than
the minigap size. The tunneling probability for holes to jump
across the minigap or from the light-hole band to the split-off
band must be low. These are described by Inequality (3) and
Inequality (4).

NEGF simulations described in Section. IIB. A digi-
tal alloy material should favor low noise if it satisfies the
majority of these inequalities. The four main inequalities
are:

Inequality (1)  AFE,/Erg <<1

Inequality (2)  Eop/AE, <<1

/I AE?
Inequality (3)  exp (—;an <<1
q

4B AEY}
Inequality. (4)  exp <—# <<1
q

Here, AFE, represents the energy difference between the
VB maximum and the first minigap edge in the VB, E,;
is the optical phonon energy and AFE,, gives the size of
the minigap. The longitudinal effective mass of the band
in which the minigap exists is represented by m;. AEpg
signifies the energy difference between the LH and SO
bands at the I' point. A pictorial view of the different
energy differences and inequalities mentioned above is
shown in Fig. 13.

The first inequality, Inequality (1), states that the en-
ergy bandwidth AF, must be less than the ionization
threshold energy Erp. This means a carrier cannot gain
sufficient kinetic energy to impact ionize before reaching
the minigap. When a carrier reaches a minigap it faces a
barrier (Fig. 13), which it can overcome by phonon scat-
tering or quantum tunneling. Within the parabolic band
approximation, Erg = [(2u+ 1)/(p + 1)]Eg, where for
holes p is the ratio between valence band effective mass
and conduction band mass. According to this equaiton
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FErp varies between Fg and 2FEg depending on the value
of . For the minigaps to be effective ideally they should
be located within an Eq value away from the valence
band edge. Inequality (2) sets the condition for phonon
scattering across the minigap. If the E,,: of the mate-
rial is less than AFE,,, then the phonon scattering of the
carriers across the minigap is inhibited because carriers
cannot gain sufficient energy to jump across the gap. It
is possible for the carrier to still overcome the minigap
by tunneling, and the condition for that is given in In-
equality (3), in terms of the tunneling probability across
the minigap under the influence of an electric field. To
compute the tunneling probability we consider a triangu-
lar barrier in the minigap region and use the well-known
Fowler-Nordheim equation. Together Inequalities (2) and
(3) give the effectiveness of the minigap in limiting hole
ionization in digital alloys.

Electron injected digital alloys can in fact achieve low

HH/LH

SO

HH/LH

SO

FIG. 14. Effect of spin-orbit coupling on LH/SO separation.
(a) Weak coupling results in small AErs and (b) strong cou-
pling results in large AFELs.

Material JEsc (eV) Esc (eV) Erm (eV)
at 100kV/em Jat 500kV/cm

(In,Ga)As J0.029 0.149 0.95

(ALGa)As [0.036 0.181 3.01

(ImADAs J0.025 0.138 1.85

(ALIn)(AsFb024 0.119 1.79

Al(As,5b) 0.038 0.10 2.4

TABLE IIl. Esc values at F = 100kV/em and F =
500kV/cm, and Erg of the five alloys. For a material with
equal conduction and valence band effective masses, consider-
ing parabolic bands, the threshold energy Erg = 1.5E¢ [60].
The same assumption is made here for the fifth inequality as
this standard practice in the APD literature.
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k (digital alloy)}k (random alloy)

Material [Inequality 1JInequality 2JInequality 3}Inequality 4

(In,Ga)As

(Al,Ga)As

(In,Al)As 5.6 x 107*
(Al,In)(As,Sb) 0.53 7.9 %1077

Al(As,Sb) 0.3 _

TABLE IV. Suitability of digital alloys for attaining low noise is judged using the proposed inequalities. Here, the color green
means beneficial for low noise and red indicates it is detrimental. The impact of the inequality in determining the experimentally
determined ionization coefficient ratio k of the material is depicted by the color shades. A darker shade indicates that the
inequality has a greater impact on the value of k. The experimental random alloy k£ values of the five alloys are given in column

6.

noise even in the absence of minigaps, for instance in
a material with a large separation AFEpg between the
LH and SO bands, like Al(As,Sb). Holes within HH/LH
bands are limited near the valence band edge by ther-
malization (hole-phonon scattering) due to the heavy
effective masses in these bands, preventing them from
reaching the ionization threshold energy within the band.
An alternate pathway to ionization involves the split-off
band. Since the split-off band has a low effective mass,
holes require much smaller momentum to reach higher
energies in this band, so that holes entering this band
from HH/LH can quickly gain their ionization threshold
energy. The separation between HH/LH and SO bands
is controlled by spin-orbit coupling, as shown in Fig. 14.
Strong spin-orbit coupling due to inclusion of heavy ele-
ments, like antimony or bismuth, can increase the separa-
tion AFLg, as shown in Fig. 14(b). When AE} g is large
it becomes very difficult for holes to reach the thresh-
old energy. Inequality (4) is accordingly important for
APDs in which electron impact ionization is the domi-
nant process, and is a measure of hole tunneling from
the light-hole to the split-off band.

An inherent fifth inequality, satisfied by these five al-
loys, is

Esc < ETH (12)

Fgsc is the energy gained by a hole between successive
phonon scattering events, expressed as Egc = Apfp/F.
The z-directed mean free path, Ay, rp = VsetTsc /2, where
vsqt 18 the saturation velocity and 7g¢ is the scattering
lifetime. This inequality states that phonon scattering
events reduce the carrier energy and prevent them from
directly gaining the ionization threshold energy between
two successive scattering events. This makes it more dif-
ficult for the carriers to impact ionize. As a result, the
carriers need to traverse several mean free paths to gain
sufficient energy for ionization. FEg¢ values of the five
alloys at electric fields of 100kV/em and 5005V /em are
given in Table. III. We extract 7g¢ for an alloy by as-
suming a virtual crystal approximation of the component
binary alloy scattering times. Tsc values for InAs, GaAs,
AlAs and AlSb are 0.08ps, 0.09, 0.08ps and 0.11ps, re-
spectively [62]. A similar average is done for the ternary

alloy saturation velocities. Due to unavailability of AISb
Usat, INAS vgqr is used for (Al In)(As,Sb) and AlAs vga
for Al(As,Sb). InAs, GaAs and AlAs vy, values used are
5 x 10*m/s, 9 x 10*m/s and 8 x 10*m/s, respectively
[63].

In order to validate these inequalities as design criteria,
we apply them to the set of digital alloys mentioned in
this paper. We counsider a high electric field of 1MV /cm
for Inequalities (3) and (4). The values of the left sides of
the inequalities for the five alloys- (In,Ga)As, (Al,Ga)As,
(In,Al)As, (ALIn)(As,Sb) and Al(As,Sb), are given in the
first four columns of Table IV, while the measured k is
provided as reference in column 5. The table cells are
colored green or red. Green cells aid in noise suppres-
sion (left sides of the inequalities are relatively small)
and red is detrimental to reducing noise (left sides larger
and corresponding inequalities not satisfied). Addition-
ally, the color intensities highlight the strength of that
inequality (how far the left side is from equality with
the right side). A lighter shade represents a smaller im-
pact while a darker shade means that condition has a
greater effect on the impact ionization noise. For exam-
ple, in the case of (In,Ga)As, Inequality (1) is shaded
light green which means it does not effect noise perfor-
mance significantly. However, the remaining inequalities
for (In,Ga)As are shaded dark red, indicating their key
role in the high noise and hence high k of (In,Ga)As. The
inequalities for (Al,Ga)As, which has a slightly lower k,
have a lighter shade of red. There are no minigaps for
(Al,Ga)As in the light-hole band. There is a minigap in
the SO band of (Al,Ga)As which is very deep in the va-
lence band and there are other available states at that
energy. Thus, holes can gain sufficient momentum to
jump to other bands and bypass the minigap. So, we
consider AFE,, = 0 for it. We accordingly expect that
(Al,Ga)As has a lower noise. However, since the LH ef-
fective mass for (Al,Ga)As is greater than (In,Ga)As, it
has lower hole impact ionization and thus lower noise
compared to (In,Ga)As. The remaining alloys have sig-
nificantly lower noise compared to these two.

The boxes for (In,Al)As, (Al,In)(As,Sb) and Al(As,Sb)
are all green. This means these three alloys are quite fa-
vorable for attaining low excess performance. (In,Al)As



has a minigap size AFE,, = 0.12eV which is larger than
its optical phonon energy. It also has a large LH ef-
fective mass which prevents quantum tunneling across
the minigap, as well as the LH-SO separation AFEg
which is comparable to that of (Al,Ga)As and (In,Ga)As.
(Al,In)(As,Sb) has a low value for Inequality (1), so
that box is shaded dark green. However, for Inequali-
ties (2) and (3) the values for (Al,In)(As,Sb) are higher
than that of (In,Al)As and are thus shaded in a lighter
color. (AlLIn)(As,Sb) has a larger LH-SO separation
than (In,Al)As and hence its Inequality (4) has a darker
shade. In Al(As,Sb), the values for Inequalities (1)-(3)
have medium shades as they lie between the maximum
and minimum values in each of these columns for the
corresponding inequalities. However, Al(As,Sb) has a
large AELs = 0.54eV, so its Inequality (4) is shaded
dark green. The (Al,In)(As,Sb) and Al(As,Sb) minigaps
are larger than the optical phonon energies and have
favorable locations away from the valence band edge.
Thus, these gaps have secondary contributions in lim-
iting hole impact ionization in these Sb-containing ma-
terials. Based on the inequality values it would seem
(In,Al)As would have the lowest noise since it has the
darkest shades. However, looking at the Inequality (4)
values for these three materials we can infer that the
LH-SO separation plays a critical role in reducing noise.
Here, Al(As,Sb) has the lowest k& = 0.005 and also the
largest AFrg. On the contrary, (In,Al)As has the high-
est k£ = 0.1 and the smallest AEpg. Finally, inequality
5, discussed in the context of split-off states (Eq. 12), is
trivially satisfied by all five studied alloys. While impor-
tant, it is thus not tabulated here, as it does not alter
the status quo.

The random alloy k values are given in column 6 to
provide comparison with the digital alloy k values. In
general, the random alloy values are higher than the dig-
ital alloy values but there are some subtleties that should
be pointed out. The (Al,In)(As,Sb) random alloy value
is very close to the digital alloy value. The small dis-
crepancy might be within the experimental error limits.
Moreover, the thickness of the multiplication region in
the Al(As,Sb) digital APD is 1550nm [17] and is 250nm
for the random alloy counterpart [61]. In the thinner
Al(As,Sb) random alloy the larger k value can be due to
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the presence of higher electric fields where o and [ start
to converge. Data for thick random alloy Al(As,Sb) APD
is not available as it is very difficult to grow good qual-
ity thick random alloy Al(As,Sb) structures [64]. Also,
the period thickness in the Al(As,Sb) digital alloy is very
small (about 1.3nm). This can introduce some random-
ness in the alloy composition.

In short, the values of the inequalities in Table IV give
a fairly good understanding of the excess noise perfor-
mance of the set of digital alloys considered in this paper.
They can potentially serve as empirical design criteria for
judging new digital alloys in consideration as potential
material candidates for digital alloy superlattice APDs.

V. CONCLUSION

In this paper, we have studied the digital alloy va-
lence band carrier transport using NEGF and BTE for-
malisms. Based on our simulation results, we explain how
minigaps and LH/SO offset impede hole impact ioniza-
tion in APDs and improve their excess noise performance.
When these gaps/offsets are sufficiently large they can-
not bridged across by quantum tunneling or phonon scat-
tering processes. Furthermore, we propose five inequal-
ities as empirical design criteria for digital alloys with
low noise performance capabilities. Material parameters
calculated computationally are used as inputs for these.
We validate these criteria by explaining the excess noise
performance of several experimentally fabricated digital
alloy APDs. The design criteria can be used to compu-
tationally design new digital alloy structures and bench-
mark them before actually fabricating these.

ACKNOWLEDGMENT

This work was funded by National Science Foundation
grant NSF 1936016. The authors thank Dr. John P
David of University of Sheffield and Dr. Seth R. Bank of
University of Texas-Austin for important discussions and
insights. The calculations are done using the computa-
tional resources from High-Performance Computing sys-
tems at the University of Virginia (Rivanna) and the Ex-
treme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foun-
dation grant number ACI-1548562.

[1] A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, Low-
noise, low-jitter, high detection efficiency ingaas/inp
single-photon avalanche diode, IEEE Journal of Selected
Topics in Quantum Electronics 20, 192 (2014).

[2] J. C. Campbell, 8 - advances in photodetectors, in
Optical Fiber Telecommunications V A (Fifth Edition),
Optics and Photonics, edited by I. P. Kaminow, T. Li,
and A. E. Willner (Academic Press, Burlington, 2008)
pp- 221 — 268, fifth edition ed.

[3] N. Bertone and W. Clark, Avalanche photodiode arrays
provide versatility in ultrasensitive applications, Laser
Focus World 43 (2007).

[4] P. Mitra, J. D. Beck, M. R. Skokan, J. E. Robin-
son, J. Antoszewski, K. J. Winchester, A. J. Keat-
ing, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca,
J. M. Dell, and L. Faraone, Adaptive focal plane array
(AFPA) technologies for integrated infrared microsys-
tems, in Intelligent Integrated Microsystems, Vol. 6232,
edited by R. A. Athale and J. C. Zolper, International




[5]

[6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Society for Optics and Photonics (SPIE, 2006) pp. 70 —
80.

G. M. Williams, Optimization of eyesafe avalanche pho-
todiode lidar for automobile safety and autonomous nav-
igation systems, Optical Engineering 56, 1 (2017).

M. Nada, F. Nakajima, T. Yoshimatsu, Y. Nakanishi,
S. Tatsumi, Y. Yamada, K. Sano, and H. Matsuzaki,
High-speed iii-v based avalanche photodiodes for opti-
cal communications-the forefront and expanding appli-
cations, Applied Physics Letters 116, 140502 (2020),
https://doi.org/10.1063/5.0003573.

K. Pasquinelli, R. Lussana, S. Tisa, F. Villa, and
F. Zappa, Single-photon detectors modeling and selection
criteria for high-background lidar, IEEE Sensors Journal
20, 7021 (2020).

S. Li, L. Da Xu, and S. Zhao, 5g internet of things: A
survey, Journal of Industrial Information Integration 10,
1 (2018).

M. Z. Chowdhury, M. K. Hasan, M. Shahjalal, E. B. Shin,
and Y. M. Jang, Opportunities of optical spectrum for
future wireless communications, in 2019 ICAIIC (IEEE,
2019) pp. 004-007.

A. Y. Liu and J. Bowers, Photonic integration with epi-
taxial iii—v on silicon, IEEE Journal of Selected Topics in
Quantum Electronics 24, 1 (2018).

J. C. Campbell, Recent advances in avalanche photodi-
odes, Journal of Lightwave Technology 34, 278 (2016).
R. McIntyre, Multiplication noise in uniform avalanche
diodes, IEEE Transactions on Electron Devices , 164
(1966).

M. Teich, K. Matsuo, and B. Saleh, Excess noise factors
for conventional and superlattice avalanche photodiodes
and photomultiplier tubes, IEEE Journal of Quantum
Electronics 22, 1184 (1986).

N. Z. Hakim, B. E. A. Saleh, and M. C. Teich, Gener-
alized excess noise factor for avalanche photodiodes of
arbitrary structure, IEEE Transactions on Electron De-
vices 37, 599 (1990).

J. Zheng, Y. Tan, Y. Yuan, A. Ghosh, and J. Camp-
bell, Strain effect on band structure of inalas digital alloy,
Journal of Applied Physics 125, 082514 (2019).

S. R. Bank, J. C. Campbell, S. J. Maddox, A. K. Rock-
well, M. E. Woodson, M. Ren, A. Jones, S. March,
J. Zheng, and Y. Yuan, Digital alloy growth of low-noise
avalanche photodiodes, in 2018 IEEE RAPID (IEEE,
2018) pp. 1-3.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong,
M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P.
David, Extremely low excess noise and high sensitivity
alaso s6sbo.44 avalanche photodiodes, Nature Photonics
13, 683 (2019).

A. Rockwell, M. Ren, M. Woodson, A. Jones, S. March,
Y. Tan, Y. Yuan, Y. Sun, R. Hool, S. Maddox, et al.,
Toward deterministic construction of low noise avalanche
photodetector materials, Applied Physics Letters 113,
102106 (2018).

Y. Yuan, J. Zheng, Y. Tan, Y. Peng, A.-K. Rockwell,
S. R. Bank, A. Ghosh, and J. C. Campbell, Temperature
dependence of the ionization coefficients of inalas and
algaas digital alloys, Photonics Research 6, 794 (2018).
J. Zheng, S. Z. Ahmed, Y. Yuan, A. Jones, Y. Tan,
A. K. Rockwell, S. D. March, S. R. Bank, A. W. Ghosh,
and J. C. Campbell, Full band monte carlo simula-
tion of alinassb digital alloys, InfoMat 2, 1236 (2020),

21]

22]

(23]

[24]

[25]

[26]

27]

(28]

[29]

[30]

31]

32]

[33]

[34]

[35]

14

https://onlinelibrary.wiley.com/doi/pdf/10.1002 /inf2.12112.

J. Zheng, Y. Yuan, Y. Tan, Y. Peng, A. Rock-
well, S. R. Bank, A. W. Ghosh, and J. C. Camp-
bell, Simulations for inalas digital alloy avalanche pho-
todiodes, Applied Physics Letters 115, 171106 (2019),
https://doi.org/10.1063/1.5114918.

J. Zheng, Y. Yuan, Y. Tan, Y. Peng, A. K. Rockwell,
S. R. Bank, A. W. Ghosh, and J. C. Campbell, Digital
alloy inalas avalanche photodiodes, Journal of Lightwave
Technology 36, 3580 (2018).

S. H. Kodati, S. Lee, B. Guo, A. H. Jones, M. Schwartz,
M. Winslow, N. A. Pfiester, C. H. Grein, T. J. Ronnin-
gen, J. C. Campbell, and S. Krishna, Alinassb avalanche
photodiodes on inp substrates, Applied Physics Letters
118, 091101 (2021), https://doi.org/10.1063/5.0039399.
J. Taylor-Mew, V. Shulyak, B. White, C. H. Tan, and
J. S. Ng, Low excess noise of alg.85gap.15a80.565b0.44
avalanche photodiode from pure electron injection, IEEE
Photonics Technology Letters 33, 1155 (2021).

I. H. Oguzman, Y. Wang, J. Kolnik, and K. F. Brennan,
Theoretical study of hole initiated impact ionization in
bulk silicon and gaas using a wave-vector-dependent nu-
merical transition rate formulation within an ensemble
monte carlo calculation, Journal of applied physics 77,
225 (1995).

F. Osaka, T. Mikawa, and O. Wada, Analysis of impact
ionization phenomena in inp by monte carlo simulation,
Japanese journal of applied physics 25, 394 (1986).

Y. Liu, X. Yi, N. J. Bailey, Z. Zhou, T. B. Rockett, L. W.
Lim, C. H. Tan, R. D. Richards, and J. P. David, Valence
band engineering of gaasbi for low noise avalanche pho-
todiodes, Nature Communications 12, 1 (2021).

Y. Tan, M. Povolotskyi, T. Kubis, T. B. Boykin,
and G. Klimeck, Transferable tight-binding model for
strained group iv and iii-v materials and heterostruc-
tures, Phys. Rev. B 94, 045311 (2016).

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, R. Roskies, J. Scott, and N. Wilkins-Diehr,
Xsede: Accelerating scientific discovery, Computing in
Science & Engineering 16, 62 (2014).

Y. P. Tan, M. Povolotskyi, T. Kubis, T. B. Boykin, and
G. Klimeck, Tight-binding analysis of si and gaas ul-
trathin bodies with subatomic wave-function resolution,
Phys. Rev. B 92, 085301 (2015).

D. Kienle, J. I. Cerda, and A. W. Ghosh, Extended
hiickel theory for band structure, chemistry, and trans-
port. i. carbon nanotubes, Journal of Applied Physics
100, 043714 (2006), https://doi.org/10.1063/1.2259818.
D. Kienle, K. H. Bevan, G.-C. Liang, L. Siddiqui,
J. I. Cerda, and A. W. Ghosh, Extended hiickel the-
ory for band structure, chemistry, and transport. ii. sil-
icon, Journal of Applied Physics 100, 043715 (2006),
https://doi.org/10.1063/1.2259820.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid func-
tionals based on a screened coulomb potential, The Jour-
nal of chemical physics 118, 8207 (2003).

S. Z. Ahmed, Y. Tan, D. S. Truesdell, B. H. Calhoun,
and A. W. Ghosh, Modeling tunnel field effect transis-
tors—from interface chemistry to non-idealities to cir-
cuit level performance, Journal of Applied Physics 124,
154503 (2018), https://doi.org/10.1063/1.5044434.

Y. Tan, F. W. Chen, and A. W. Ghosh, First principles
study and empirical parametrization of twisted bilayer



mos 2 based on band-unfolding, Applied Physics Letters
109, 101601 (2016).

[36] T. B. Boykin, N. Kharche, and G. Klimeck, Brillouin-
zone unfolding of perfect supercells having nonequivalent
primitive cells illustrated with a si/ ge tight-binding pa-
rameterization, Physical Review B 76, 035310 (2007).

[37] T. B. Boykin, N. Kharche, G. Klimeck, and M. Ko-
rkusinski, Approximate bandstructures of semiconductor
alloys from tight-binding supercell calculations, Journal
of Physics: Condensed Matter 19, 036203 (2007).

[38] J. A. Stgvneng and P. Lipavsky, Multiband tight-binding
approach to tunneling in semiconductor heterostructures:
Application to I'x transfer in gaas, Phys. Rev. B 49,
16494 (1994).

[39] B. Stickler, Theory and modeling of spin-transport on
the microscopic and the mesoscopic scale (na, 2013).

[40] S. Datta, Nanoscale device modeling: the green’s func-
tion method, Superlattices and microstructures 28, 253
(2000).

[41] C. Lee, R. Logan, R. Batdorf, J. Kleimack, and W. Wieg-
mann, lonization rates of holes and electrons in silicon,
Physical review 134, A761 (1964).

[42] J. Conradi, The distribution of gains in uniformly mul-
tiplying avalanche photodiodes: Experimental, [EEE
Transactions on Electron Devices 19, 713 (1972).

[43] W. Grant, Electron and hole ionization rates in epitaxial
silicon at high electric fields, Solid-State Electronics 16,
1189 (1973).

[44] T. Kaneda, H. Matsumoto, and T. Yamaoka, A model for
reach-through avalanche photodiodes (rapd’s), Journal of
Applied Physics 47, 3135 (1976).

[45] A. Marshall, C. Tan, M. Steer, and J. David, Electron
dominated impact ionization and avalanche gain charac-
teristics in inas photodiodes, Applied Physics Letters 93,
111107 (2008).

[46] A. R. Marshall, P. J. Ker, A. Krysa, J. P. David, and
C. H. Tan, High speed inas electron avalanche photodi-
odes overcome the conventional gain-bandwidth product
limit, Optics express 19, 23341 (2011).

[47] W. Sun, S. J. Maddox, S. R. Bank, and J. C. Camp-
bell, Record high gain from inas avalanche photodiodes at
room temperature, in 72nd Device Research Conference
(IEEE, 2014) pp. 47-48.

[48] W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox,
H. P. Nair, and S. R. Bank, High-gain inas avalanche
photodiodes, IEEE Journal of Quantum Electronics 49,
154 (2012).

[49] P. J. Ker, A. R. Marshall, A. B. Krysa, J. P. David,
and C. H. Tan, Inas electron avalanche photo-
diodes with 580 ghz gain-bandwidth product, in

15

Materials for Infrared Detectors, Vol. 4454 (Interna-
tional Society for Optics and Photonics, 2001) pp. 188
197.

[61] J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robin-
son, P. Mitra, R. E. Scritchfield, F. Ma, and J. C.
Campbell, The hgcdte electron avalanche photodiode, in
Infrared Detector Materials and Devices, Vol. 5564 (In-
ternational Society for Optics and Photonics, 2004) pp.
44-53.

[652] Yu Ling Goh, Jo Shien Ng, Chee Hing Tan, W. K.
Ng, and J. P. R. David, Excess noise measurement in
ing.s3gap.a7as, IEEE Photonics Technology Letters 17,
2412 (2005).

[63] C. Lenox, P. Yuan, H. Nie, O. Baklenov, C. Hansing,
J. Campbell, A. Holmes Jr, and B. Streetman, Thin mul-
tiplication region inalas homojunction avalanche photo-
diodes, Applied physics letters 73, 783 (1998).

[64] S. Z. Ahmed, Y. Tan, J. Zheng, J. C. Camp-
bell, and A. W. Ghosh, Apd performance enhance-
ment: Minigap engineering in digital alloys, in
2018 IEEE Photonics Conference (IPC) (IEEE, 2018)
pp- 1-2.

[65] W. Wang, J. Yao, J. Wang, Z. Deng, Z. Xie, J. Huang,
H. Lu, and B. Chen, Characteristics of thin inalas digi-
tal alloy avalanche photodiodes, Optics Letters 46, 3841
(2021).

[56] J. Piprek, Semiconductor optoelectronic devices: intro-
duction to physics and simulation (Elsevier, 2013).

[67] M. S. Shur, Handbook series on semiconductor parameters,

Vol. 1 (World Scientific, 1996).

[68] D. Caughey and R. Thomas, Carrier mobilities in silicon
empirically related to doping and field, Proceedings of
the IEEE 55, 2192 (1967).

[69] W. Fawcett, A. Boardman, and S. Swain, Monte carlo
determination of electron transport properties in gallium
arsenide, Journal of Physics and Chemistry of Solids 31,
1963 (1970).

[60] B. K. Ridley, Quantum processes in semiconductors
(Oxford university press, 2013).

[61] J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, Excess noise
characteristics of thin alassb apds, IEEE Transactions on
Electron Devices 59, 1475 (2012).

[62] Q. L. Yang, H. X. Deng, S. H. Wei, S. S. Li, and J. W.
Luo, Materials design principles towards high hole mo-
bility learning from an abnormally low hole mobility of
silicon (2020), arXiv:2011.02262 [cond-mat.mtrl-sci.

[63] V. Palankovski, Simulation of heterojunction bipolar
transistors (2000).

[64] X. Yi, Impact ionization in AlAg.56Sbo.44 photodiodes,
Ph.D. thesis, University of Sheffield (2020).

2012 17th Opto-Electronics and Communications Conference

(IEEE, 2012) pp. 220-221.
[50] J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E.
Robinson, Mwir hgcdte avalanche photodiodes, in



