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Time-dependent interphase diffusion processes in multiphase heterogeneous media arise ubiqui-
tously in physics, chemistry and biology. Examples of heterogeneous media include composites,
geological media, gels, foams and cell aggregates. The recently developed concept of spreadability,
S(t), provides a direct link between time-dependent diffusive transport and the microstructure of
two-phase media across length scales [Torquato, S., Phys. Rev. E., 104 054102 (2021)]. To in-
vestigate the capability of S(t) to probe microstructures of real heterogeneous media, we explicitly
compute S(t) for well-known two-dimensional and three-dimensional idealized model structures that
span across nonhyperuniform and hyperuniform classes. Among the former class, we study fully
penetrable spheres and equilibrium hard spheres, and in the latter class, we examine sphere packings
derived from “perfect glasses”, uniformly randomized lattices (URL), disordered stealthy hyperuni-
form point processes and Bravais lattices. Hyperuniform media are characterized by an anomalous
suppression of volume fraction fluctuations at large length scales compared to that of any nonhy-
peruniform medium. We further confirm that the small-, intermediate- and long-time behaviors of
S(t) sensitively capture the small-, intermediate- and large-scale characteristics of the models. In
instances in which the spectral density χ̃

V
(k) has a power-law form B|k|α in the limit |k| → 0, the

long-time spreadability provides a simple means to extract the value of the coefficients α and B that
is robust against noise in χ̃

V
(k) at small wavenumbers. For typical nonhyperuniform media, the

intermediate-time spreadability is slower for models with larger values of the coefficient B = χ̃
V
(0).

Interestingly, the excess spreadability S(∞)− S(t) for URL packings has nearly exponential decay
at small to intermediate t, but transforms to a power-law decay at large t, and the time for this
transition has a logarithmic divergence in the limit of vanishing lattice perturbation. Our study of
the aforementioned models enables us to devise an algorithm that efficiently and accurately extracts
large-scale behaviors from diffusion data alone. Lessons learned from such analyses of our models
are used to determine accurately the large-scale structural characteristics of a sample Fontainebleau
sandstone, which we show is nonhyperuniform. Our study demonstrates the practical applicability
of the diffusion spreadability to extract crucial microstructural information from real data across
length scales and provides a basis for the inverse design of materials with desirable time-dependent
diffusion properties.

I. INTRODUCTION

Time-dependent interphase diffusion processes in mul-
tiphase heterogeneous media arise in a wide range of
physical, chemical and biological contexts, including
magnetic resonance imaging [1], surface catalysis [2, 3],
material design [2, 4, 5], cell-behavior modeling [6] and
controlled drug delivery [7]. Heterogeneous media are
ubiquitous; examples include composites, geological me-
dia, gels, foams, cell aggregates, among other natural and
synthetic media [2, 8–11]. It is well known that the ef-
fective transport properties of heterogeneous media gen-
erally depend on an infinite set of correlation functions
that characterize the microstructure [2, 12, 13].
The spreadability concept, as very recently developed
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and explored by Torquato [14], makes a direct link be-
tween time-dependent diffusive transport and the mi-
crostructure of a given heterogeneous material across
length scales. Consider the time-dependent problem of
mass transfer of a solute in a two-phase media, where
phases 1 and 2 occupy volume fractions φ1 and φ2, re-
spectively. Assume that at time t = 0, the solute is uni-
formly distributed throughout phase 2, and completely
absent from phase 1. Assume also that the solute has
the same diffusion coefficient D in each phase at any t.
We call the fraction of total solute present in phase 1 as a
function of time S(t) spreadability, since it is a measure
of the spreadability of diffusion information as a func-
tion of time. Generalizing a formula due to Prager in
three-dimensional physical (direct) space [15], Torquato
showed that S(t) in any Euclidean space dimension d is
exactly related to the microstructure via the autocovari-
ance function χ

V
(r) in direct space, or equivalently, via
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the spectral density χ̃
V
(k) in Fourier space [14]:

S(∞)− S(t) = 1

(4πDt)d/2 φ2

∫

Rd

χ
V
(r) exp[−r2/(4Dt)]dr (1a)

=
1

(2π)dφ2

∫

Rd

χ̃
V
(k) exp[−k2Dt]dk, (1b)

where S(∞) = φ1 is the infinite-time limit of S(t), and
S(∞)−S(t) is called the excess spreadability, i.e., spread-
ability in excess to its infinite-time value. Equation (1)
is a singular result because it represents one of the rare
examples of transport in two-phase random media where
an exact solution is possible only in terms of the first two
correlation functions, namely, φ1 and two-point statistics
via either the autocovariance function or spectral density.
Torquato [14] has shown that the relation (1) implies

that small-, intermediate- and long-time behaviors of
S(t) are directly determined by the small-, intermediate-
and large-scale structural characteristics of the two-phase
medium. Thus, the spreadability has the potential to
serve as a simple and powerful dynamic figure of merit to
probe and classify all translationally invariant two-phase
microstructures that span from hyperuniform to nonhy-
peruniform media across scales. Hyperuniform two-phase
media are characterized by an anomalous suppression
of volume-fraction fluctuations relative to garden-variety
nonhyperuniform disordered media [16–18]; see Sec. II B
for exact mathematical definitions. Hyperuniformity is
an emerging field, playing vital roles in a number of fun-
damental and applied contexts, including glass forma-
tion [19, 20], jamming [21–25], rigidity [26, 27], photonic
band-gap materials [28–30], biology [31, 32], localization
of waves and excitations [33–36], antenna or laser ar-
ray designs [37], self-organization [38–40], fluid dynam-
ics [41–43], quantum systems [44–48], random matrices
[46, 49, 50] and pure mathematics [51–55]. Because disor-
dered hyperuniform two-phase media are states of matter
that lie between a crystal and a typical liquid, they can
be endowed with novel properties [13, 18, 56–67].
Torquato [14] showed that in instances in which the

spectral density has the power-law form

χ̃
V
(k) ∼ B|k|α (2)

in the limit |k| → 0, the long-time excess spreadability
for two-phase media in R

d is given by the inverse power-
law decay

S(∞) − S(t) ∼ BΓ[(d + α)/2]φ2

2dπd/2Γ(d/2)(Dt/a2)(d+α)/2
, (3)

where a represents some characteristic heterogeneity
length scale. The power-law (3) holds except when
α → +∞, which corresponds to stealthy hyperuni-
form media with a decay rate that is exponentially fast.

The spreadability was computed for certain idealized or-
dered and disordered model microstructures across di-
mensions. Torquato [14] also showed that S(t) has re-
markable connections to covering problem of discrete ge-
ometry [68, 69] and nuclear magnetic resonance (NMR)
or magnetic resonance imaging (MRI) measurements [70–
72]. Specifically, Torquato [14] identified precise map-
pings between the long-time formulas of the spreadability
and the NMR pulsed field gradient spin-echo (PFGSE)
amplitude [70, 71] as well as diffusion MRI measurements
[72]. Thus, any analysis of the large-time behaviors of
S(t) translates immediately into corresponding analyses
of NMR or MRI data, which enables one to extract large-
scale microstructural information of real heterogeneous
media from diffusion measurements alone.

Figure 1 schematically shows the “spectrum” of
spreadability regimes in terms of the exponent α. The
long-time excess spreadability for antihyperuniform me-
dia (−d < α < 0) have the slowest decay among all
translationally invariant media, the slowest being when
S(∞) − S(t) approaches a constant. A long-time decay
rate of S(∞) − S(t) ∼ t−d/2 corresponds to a nonhype-
runiform medium (α = 0) in which the spectral density
is a bounded positive number at the origin. The spread-
ability for nonstealthy hyperuniform media (0 < α < ∞)
has the aforementioned power-law decay S(∞) − S(t) ∼
t−(d+α)/2. The limit α → +∞ corresponds to media in
which the decay rate of S is faster than any inverse power
law, which is the case for stealthy hyperuniform media.
Figure 2 shows specific examples of model microstruc-
tures corresponding to the generic ones indicated in Fig.
1. The reader is referred to Sec. II for terminology.

In this work, we further study the applicability of the
spreadability concept as a dynamic measure to probe a
wide range of hyperuniform and nonhyperuniform two-
phase media. We explicitly compute spreadabilities of
2D and 3D models heretofore not previously considered
that represent diverse hyperuniform and nonhyperuni-
form classes (see Sec. II B), including fully penetrable
spheres [2, 73], equilibrium hard spheres [2, 74, 75], as
well as sphere packings derived from uniformly random-
ized lattices (URL) [76], perfect glasses [26] and disor-
dered stealthy point processes [18, 77]. These are com-
pared and contrasted with spreadabilities for hyperuni-
form and nonhyperuniform media previously obtained by
Torquato [14], including those for Debye random media



3

FIG. 1. “Phase diagram” that schematically shows the spectrum of long-time spreadability regimes in terms of the exponent
α, which depends on the large-scale properties of the microstructure. As α increases from the extreme antihyperuniform limit
of α → d, the spreadability decay rate at long times decays faster. i.e., the excess spreadability follows the inverse power law
1/t(d+α)/2, except when α → ∞, which corresponds to stealthy hyperuniform media with a decay rate that is exponentially
fast. This figure is reproduced from the one presented in Ref. [14].

(a) (b) (c) (d) (e)

FIG. 2. Specific examples of microstructures corresponding to the generic ones indicated in Fig. 1. (a) Antihyperuniform
media (α = −d). (b) Typical disordered nonhyperuniform media (α = 0). (c) Disordered nonstealthy hyperuniform media
(0 < α < ∞). (d) Disordered stealthy hyperuniform media (α = ∞). (e) Ordered stealthy hyperuniform media (α = ∞).

[78, 79] and sphere packings derived from Bravais lat-
tices. We find that the small-time behavior of S(t) is
determined by the derivatives of the autocovariance func-
tion χ

V
(r) at the origin, the leading term of order t1/2

being proportional to the specific surface s. The corre-
sponding long-time behavior is determined by the form of
the spectral density χ̃

V
(k) at small wavenumbers, which

enables one to easily and robustly ascertain the class of
hyperuniform or nonhyperuniform media. We also find
that for URL packings, the excess spreadability has ex-
ponential decay (characteristic of the unperturbed lattice
packing) at small to intermediate times, but transforms
to power-law decay for t larger than a well-defined tran-
sition time. Our study of the spreadability of the afore-
mentioned models enables us to formulate an algorithm
that efficiently and accurately extracts large-scale char-
acteristics from spreadability data (or equivalently, NMR
and MRI data) alone. Lessons learned from such analyses
of our models is used to characterize the large-scale be-
haviors of a sample Fontainebleau sandstone [80], which
we show is nonhyperuniform. Our study demonstrates
the practical capability of the diffusion spreadability to

extract crucial microstructural information of a class of
heterogeneous media across length scales. We note that
using reconstruction techniques that target autocovari-
ance functions [79, 81, 82], one could potentially con-
struct two-phase media that realize prescribed functional
forms of S(t), thereby designing materials with desired
diffusion properties.

In Sec. II, we provide basic definitions and prelim-
inaries. We then describe the models that we con-
sider in our study for d = 2, 3 and methods to com-
pute their spreadabilities (Sec. III). Section IV presents
and discusses the spreadabilities of the aforementioned
two-phase media models. Section V describes the algo-
rithm for extracting large-scale structural characteristics
from time-dependent diffusion behaviors, as measured by
the spreadability, or equivalently, by NMR or MRI mea-
surements. Section VI applies the lessons learned from
the spreadabilities of the idealized models to analyze the
structural characteristics of a sample Fontainebleau sand-
stone. Finally, Sec. VII provides some conclusions and
proposes potential future work.
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II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce some fundamental defini-
tions and concepts that describe microstructures of two-
phase media, including correlation functions, hyperuni-
formity, as well as the classification of hyperuniform and
nonhyperuniform media.

A. Two-point statistics

Consider a two-phase medium, i.e., a partition of space
into two disjoint regions of phase 1 with volume fraction
φ1 and of phase 2 of volume fraction φ2. For a statis-
tically homogeneous medium, the autocovariance func-
tion χ

V
(r) is directly related to the two-point correlation

function S
(i)
2 (r) of phase i [2]:

χ
V
(r) ≡ S

(1)
2 (r)− φ2

1 = S
(2)
2 (r) − φ2

2. (4)

The two-point function S
(i)
2 (r) gives the probability that

the two end points with displacement vector r are in
phase i. At the extreme limits of its argument, χ

V
(r) has

the following asymptotic behavior: χ
V
(r = 0) = φ1φ2

and lim|r|→∞ χ
V
(r) = 0 if the medium possesses no long-

range order. If the medium is statistically homogeneous
and isotropic, then the autocovariance function χ

V
(r) de-

pends only on the magnitude of its argument r = |r|, and
hence is a radial function. In such instances, its slope
at the origin is directly related to the specific surface s,
which is the interface area per unit volume. In particu-
lar, the well-known three-dimensional asymptotic result
[78] is easily obtained in any space dimension d:

χ
V
(r) = φ1φ2 − κ(d)s |r|+O(|r|2), (5)

where

κ(d) =
Γ(d/2)

2
√
πΓ((d+ 1)/2)

. (6)

The nonnegative spectral density χ̃
V
(k), which can be

obtained from scattering experiments [78], is the Fourier
transform of χ

V
(r) at wave vector k, i.e.,

χ̃
V
(k) =

∫

Rd

χ
V
(r)e−ik·rdr ≥ 0, for all k. (7)

A particular class of two-phase media is sphere pack-

ings, i.e. a collection of spheres in d-dimensional Eu-
clidean space R

d in which no two spheres overlap. The
packing fraction of a packing of identical spheres of ra-
dius a is φ2 = ρv1(a), where ρ is the number density and
v1(a) is the volume of a sphere:

v1(R) =
πd/2Rd

Γ(1 + d/2)
. (8)

The spectral density of such a packing can be expressed
as

χ̃
V
(k) = φ2 α̃2(k; a)S(k), (9)

where α̃2(k; a) is the Fourier transform of the scaled inter-
section volume of two spherical windows, which is given
by [16]

α̃2(k; a) = Γ(d/2 + 1)
J2
d/2(ka)

kd
, (10)

and the structure factor S(k) is defined as

S(k) = 1 + ρh̃(k), (11)

where h(r) is the total correlation function, and h̃(k) is
the Fourier transform of h(r).
For a single periodic configuration containing number

N point particles at positions r1, r2, . . . , rN within a fun-
damental cell F of a lattice Λ, the scattering intensity

I(k) is defined as

I(k) =

∣

∣

∣

∑N
i=1 e

−ik·ri

∣

∣

∣

2

N
. (12)

For an ensemble of periodic configurations of N parti-
cles within the fundamental cell F , the ensemble average
of the scattering intensity in the infinite-volume limit is
directly related to structure factor S(k) by

lim
N,VF→∞

〈I(k)〉 = (2π)dρδ(k) + S(k), (13)

where VF is the volume of the fundamental cell and δ(x)
is the Dirac delta function [18]. In simulations of many-
body systems with finite N under periodic boundary con-
ditions, Eq. (12) is used to compute S(k) directly by
averaging over configurations.

B. Hyperuniformity

The hyperuniformity concept generalizes the tradi-
tional notion of long-range order in many-particle sys-
tems to not only include all perfect crystals and perfect
quasicrystals, but also exotic amorphous states of mat-
ter [16, 18]. For two-phase heterogeneous media in d-
dimensional Euclidean space R

d, which include cellular
solids, composites, and porous media, hyperuniformity is
defined by the following infinite-wavelength condition on
the spectral density χ̃

V
(k) [17, 18], i.e.,

lim
|k|→0

χ̃
V
(k) = 0. (14)

An equivalent definition of hyperuniformity is based on
the local volume-fraction variance σ2

V
(R) associated with

a d-dimensional spherical observation window of radius
R. A two-phase medium in R

d is hyperuniform if its
variance grows in the large-R limit faster than Rd. This
behavior is to be contrasted with those of typical disor-
dered two-phase media for which the variance decays like
the inverse of the volume v1(R) of the spherical observa-
tion window given by (8). The hyperuniformity condi-
tion (14) dictates that the direct-space autocovariance
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function χ
V
(r) exhibits both positive and negative cor-

relations such that its volume integral over all space is
exactly zero [18, 83], i.e.,

∫

Rd

χ
V
(r)dr = 0, (15)

which is a direct-space sum rule for hyperuniformity.

C. Classification of hyperuniform and
nonhyperuniform media

The hyperuniformity concept has led to a unified
means to classify equilibrium and nonequilibrium states
of matter, whether hyperuniform or not, according to
their large-scale fluctuation characteristics. In the case
of hyperuniform two-phase media [17, 18], there are three
different scaling regimes (classes) that describe the asso-
ciated large-R behaviors of the volume-fraction variance
when the spectral density goes to zero as a power-law
scaling (2) in the limit |k| → 0 [18]:

σ2
V
(R) ∼











R−(d+1), α > 1 (Class I)

R−(d+1) lnR, α = 1 (Class II)

R−(d+α), 0 < α < 1 (Class III).

(16)

Classes I and III are the strongest and weakest forms
of hyperuniformity, respectively. Class I media include
all crystal structures, many quasicrystal structures and
exotic disordered media [17, 18]. Stealthy hyperuniform
media are also of class I and are defined to be those that
possess zero-scattering intensity for a set of wavevectors
around the origin [83], i.e.,

χ̃
V
(k) = 0 for 0 ≤ |k| ≤ K. (17)

Examples of such media are periodic packings of spheres
as well as unusual disordered sphere packings derived
from stealthy point patterns [77, 83].
By contrast, for any nonhyperuniform two-phase sys-

tem, the local variance has the following large-R scaling
behaviors [25]:

σ2
V
(R) ∼

{

R−d, α = 0 (typical nonhyperuniform)

R−(d+α), −d < α < 0 (antihyperuniform).

(18)

For a “typical” nonhyperuniform system, χ̃
V
(0) is pos-

itive and bounded, and one has B = χ̃
V
(0) due to Eq. (2)

[18]. In antihyperuniform systems, χ̃
V
(0) is unbounded

[25], i.e.,

lim
|k|→0

χ̃
V
(k) = +∞, (19)

and hence are diametrically opposite to hyperuniform
systems. Antihyperuniform systems include systems at
thermal critical points (e.g., liquid-vapor and magnetic
critical points) [84, 85], fractals [86], disordered non-
fractals [87], and certain substitution tilings [88].

III. TWO-PHASE MEDIA MODELS

To further explore the potential of the spreadability
as a dynamic-based figure of merit to probe microstruc-
tures of two-phase media, we compute it for a variety
of models in two and three space dimensions that repre-
sent diverse hyperuniform and nonhyperuniform classes,
as described in Sec. II C. The nonhyperuniform models
that we study include fully penetrable spheres [2, 73],
equilibrium hard spheres [2, 89] and Debye random me-
dia [78, 79]. The hyperuniform models that we study
include monodisperse sphere packings derived from per-
fect glasses [26], uniformly randomized lattices (URL)
[76], disordered stealthy hyperuniform point processes
[77] and Bravais lattices. We describe each model below
and the methods to compute their spreadabilities. We
choose the volume fraction φ2 of phase 2, (i.e., the phase
initially containing the solute,) to be 0.25 for 2D models
and 0.20 for 3D models. These relatively small values of
φ2 were chosen so that we could derive sphere packings
from the aforementioned point processes by decorating
each point with a circular disk for d = 2 or a sphere for
d = 3. We also note that for our chosen φ2’s, the values
of φ2/φm,d are similar for d = 2, 3, where φm,2 = 0.9069
and φm,3 = 0.7405 are the maximum packing fractions
for sphere packings in R

2 and R
3, respectively. This fa-

cilitates comparison of spreadabilities across dimensions.
For all packings, phase 2 is chosen to be the particle
phase. Figures 3 and 4 show snapshots of all the models
considered in this study.

A. Nonhyperuniform fully penetrable spheres

We consider the well-known model of “fully penetrable
spheres” (FPS) [2, 73], which is nonhyperuniform. It is
constructed by decorating each point of a Poisson point
process by a d-dimensional sphere of radius a that gen-
erally may overlap with one another. The simplicity of
the n-body statistics of the Poisson process enables us to
exactly express χ

V
(r) of the matrix phase, i.e., the space

unoccupied by the particles, which is designated phase 2
in this work [2]:

χ
V
(r) = exp

[

−η
v2(r; a)

v1(a)

]

− φ2
2, (20)

where η = − ln (φ2) and v2(r; a) is the union volume of
two d-dimensional spheres of radius a. Specifically,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

FIG. 3. Two-phase media in two dimensions with φ2 = 0.25 studied in this work. A square portion of side length 70.90a is
shown for each medium. Phase 2 is colored red. (a) Debye random media. (b) Fully penetrable circular disks. (c) Equilibrium
hard disks. (d) Perfect glass disk packing with α = 1. (e) Perfect glass disk packing with α = 2. (f) Disk packing corresponding
to URL with b = 0.3. (g) Disk packing corresponding to URL with b = 0.2. (h) Sphere packing corresponding to URL with
b = 0.1. (i) Disordered stealthy hyperuniform disk packing with Ka = 1.3. (j) Square-lattice disk packing. (k) Triangle-lattice
disk packing.

v2(r; a)

v1(a)
= 2Θ(r − 2a) +

2

π

[

π +
r

2a

(

1− r2

4a2

)
1

2

− cos−1
( r

2a

)

]

Θ(2a− r) , d = 2, (21)

v2(r; a)

v1(a)
= 2Θ(r − 2a) +

[

1 +
3r

4a
− r3

16a3

]

Θ(2a− r) , d = 3. (22)

The specific surface for fully penetrable spheres is given
by [90]

as = −dφ2 ln(φ2). (23)

B. Nonhyperuniform equilibrium hard spheres

Equilibrium hard sphere packings provide good mod-
els of condensed matter in both liquid and crystal states
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

FIG. 4. Two-phase media in three dimensions with φ2 = 0.20 studied in this work. Unless otherwise stated, a cubic portion
of side length 8.21a is shown for each model. Phase 2 is colored red. (a) Debye random media, a cubic portion of side length
16a is shown here to better represent the distribution of the phases. (b) Fully penetrable spheres. (c) Equilibrium hard
spheres. (d) Perfect glass sphere packing with α = 1. (e) Sphere packing corresponding to URL with b = 0.3. (f) Sphere
packing corresponding to URL with b = 0.2. (g) Sphere packing corresponding to URL with b = 0.1. (h) Disordered stealthy
hyperuniform sphere packing with Ka = 1.5. (i) Cubic-lattice sphere packing. (j) BCC-lattice sphere packing.

when the interactions are dominated by strong short-
range repulsions [89, 91]. We study such systems along
the stable fluid branch [2, 18]. We generated ensem-
bles of 1,000 equilibrium hard-sphere configurations using
Monte Carlo simulations in 2D and 3D at the aforemen-
tioned values of φ2. The simulations used square or cu-
bic simulation boxes under periodic boundary conditions.
The ensemble-averaged structure factors were then com-
puted from Eq. (12). The specific surface for all sphere
packings is given by [90]

as = dφ2. (24)

C. Nonhyperuniform Debye random media

Useful models of nonhyperuniform two-phase media
are Debye random media [78, 79], defined entirely by the
following monotonic radial autocovariance function:

χ
V
(r) = φ1φ2 exp(−r/a), (25)

where a > 0 is a length-scale parameter. Such media
can never be hyperuniform because the sum rule (15)
requires both positive and negative correlations [83]. De-
bye et al. [78] hypothesized the simple exponential form
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(25) to model three-dimensional media with phases of
“fully random shape, size, and distribution. Such auto-
covariance functions were shown to be realizable in two
[79, 82, 92] and three [93, 94] dimensions. Torquato ob-
tained explicit expressions of S(t) for Debye random me-
dia in any space dimension [14]. We consider them in this
study as they are good approximation of certain realis-
tic heterogeneous materials [78], including Fontainebleau
sandstones [80]. They also serve as “benchmark” models
to test our algorithm that extracts large-scale microstruc-
tural information from time-dependent diffusion data, as
their spreadabilities are exactly known. The specific sur-
face for d-dimensional Debye random media is given by
[14]

as =
φ1φ2

κ(d)
, (26)

where κ(d) is given by (6).

D. Hyperuniform sphere packings derived from
“perfect glasses”

Perfect glasses proposed by Zhang et al. [26] are hy-
peruniform many-body systems with positive bulk and
shear moduli that banish any crystalline or quasicrys-
talline phases and are unique disordered states up to
trivial symmetries [95]. Thus, they form soft-interaction
analogs of the maximally random jammed (MRJ) pack-
ings [96] of hard particles. These latter states can be re-
garded as prototypical glasses since they are out of equi-
librium, maximally disordered, hyperuniform, mechani-
cally rigid with infinite bulk and shear moduli, and can
never crystallize due to configuration-space trapping. A
perfect glass is created by cooling many-body systems
with a potential that involves certain two-, three-, and
four-body soft interactions upon cooling from high tem-
perature to zero temperature [26]. Using this procedure,
Zhang et al. [26] generated perfect-glass point configu-
rations with various values of α > 0 in both 2D and 3D.
Specifically, their 2D and 3D perfect glasses with α = 1
and α = 2 can be transformed into packings with our pre-
scribed packing fractions by decorating each point with a
sphere of radius a [77]. We obtained numerical structure
factors for these perfect glasses, which are available as
supplementary material of Ref. 31.

E. Hyperuniform sphere packings derived from
uniformly randomized lattices (URL)

Perturbed lattices serve as important models in cos-
mology, crystallography and probability theory [97, 98].
Consider a perturbed lattice in which each point x of a
lattice L is perturbed independently by a displacement
vector ux that follows the probability density function
f(ux). The structure factor S(k) of this point process is

given by [99, 100]

S(k) = 1− |f̃(k)|2 + |f̃(k)|2SL(k), (27)

where SL(k) is the structure factor of the unperturbed

lattice L and f̃(k) is the characteristic function, i.e., the
Fourier transform of f .
Here, we study a special class of hyperuniform sphere

packings associated with uniformly randomized lattice

(URL) models derived from cubic lattices, introduced by
Klatt et al. [76]. In these models, each point in a d-
dimensional simple cubic lattice L = Z

d is displaced by a
random vector that is uniformly distributed on a rescaled
unit cell bC = [−b/2, b/2)d, where b > 0 is a scalar fac-
tor, C is a unit cell of the lattice, Note this definition
implies that lattice constant is unity. Equation (27) im-
plies that URL point processes are Class I hyperuniform
with α = 2. The Appendix gives explicit formulas for the
characteristic function f̃(k) of the uniform perturbation
on [−b/2, b/2)d, as well as plots of the angular averaged

function 1− |f̃(k)|2, which is equal to the diffuse part of
the structure factor S(k) and can be numerically evalu-
ated with arbitrary precision. It can be shown that in the
limit b → 0 and k → 0, one has 1 − |f̃(k)|2 ∝ b2k2 [76].
Remarkably, Klatt et al. showed that the Bragg peaks
of URL models disappear when b takes integer values
[76]. We derived monodisperse 2D and 3D sphere pack-
ings from URL models by decorating each point with a
sphere of radius a, which is determined by the prescribed
φ2 values. We verified that the spheres do not overlap
for b ≤ 0.3 in both 2D and 3D.

F. Disordered stealthy hyperuniform sphere
packings

Disordered stealthy hyperuniform materials are exotic
amorphous states of matter that have unusual struc-
tural characteristics (hidden order at large length scales)
and physical properties, including desirable photonic
and transport properties [77, 83]. Disordered stealthy
hyperuniform packings have been generated using the
collective-coordinate optimization procedure [101, 102]
by decorating the resulting ground-state point configu-
rations by nonoverlapping spheres of radius a [60, 77].
The degree of order of such ground states depends on
a tuning parameter χ, which measures the extent to
which the ground states are constrained by the size of
the cut-off value K relative to the number of degrees
of freedom. For χ < 1/2, the ground states are typ-
ically disordered and uncountably infinitely degenerate
in the infinite-volume limit [101]. Using the fact that
ρχ = v1(K)/[2d(2π)d] [101], it immediately follows that
for identical nonoverlapping spheres of radius a that the
dimensionless stealthy cut-off value Ka in terms of the
packing fraction φ2 for any space dimension d is given by

(Ka)d = d2d+1Γ2(1 + d/2)φ2χ. (28)
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TABLE I. Values of the characteristic dimensionless length
scale a∗ = as for the models in this study.

Model a∗ = as
2D Debye 0.589
2D FPS 0.693

2D disk packings 0.5
3D Debye 0.64
3D FPS 0.966

3D sphere packings 0.6

We obtained numerical structure factors for disor-
dered stealthy hyperuniform many-body systems with
N = 1000, ρ = 1 in 2D and 3D described in Ref. [103].
The stealthy systems haveKa = 1.3 for 2D andKa = 1.5
for 3D.

G. Ordered hyperuniform sphere packings

For models of ordered hyperuniform media, we con-
sider sphere packings derived from Bravais lattices in 2D
and 3D, including the triangle lattice, the square lattice,
the body-centered cubic (BCC) lattice and the cubic lat-
tice. For each medium, the lattice points are decorated
with identical spheres with radius a. The structure factor
of the sites of a Bravais lattice in R

d is given by [14]

S(k) =
(2π)d

vc

∑

Q6=0

δ(k−Q). (29)

where vc is the volume of a fundamental cell in direct
space and Q denotes a reciprocal lattice (Bragg) vector.

IV. RESULTS FOR THE SPREADABILITIES

In this section, we present the results for the spread-
abilities of the models in Sec. III. We use the angular-

averaged versions of Eq. (1) derived in Ref. [14], which
were shown to be exact for translationally invariant two-
phase media. To compare the spreadabilities of different
models, we scale the microstructures such that all mod-
els possess unit specific surface, i.e, s = 1. This simple
microscopic length scaling choice has been previously ap-
plied by Kim and Torquato [103] because it has the ad-
vantage that s is easily computable for many well-known
models and 1/s is directly proportional to the arithmetic

mean of the mean chord length ℓ
(i)
C of both phases [2].

Specifically, given the chosen values of φ2 in this study,
Table I lists the values of the characteristic dimension-
less length scale a∗ = as for the models that we consider,
obtained from (26), (23) and (24).

It is instructive to compare our results for the spread-
abilities for the aforementioned models to that for non-
hyperuniform Debye random media [78, 79, 82, 104], as
by Eq. (25). Torquato [14] obtained closed-form expres-
sions of the spreadability for a Debye random media in
any space dimension d:

S(∞) − S(t) = dωdφ1

(4πDt/a2)d/2
Id(t), (30)

where

Id(t) =
1

ad

∫ ∞

0

rd−1 exp(−r/a) exp[−r2/(4Dt)]dr. (31)

Specifically, in 2D and 3D,

I2(t) =
2Dt

a2

{

1− exp(Dt/a2)
√

πDt/a2
[

1− erf(
√

Dt/a2)
]}

, (32)

I3(t) =
2Dt

a2

{

exp(Dt/a2)
√

πDt/a2
[

1− erf(
√

Dt/a2)
]

[

1 + 2Dt/a2
]

− 2Dt/a2
}

. (33)

The spreadabilities associated with fully penetrable
spheres were computed from (1a) and (20). For this
particular model, the direct-space representation (1a) is
the preferred method to compute spreadability than the
Fourier-space representation, as χ

V
(r) is known exactly

and vanishes identically for r ≥ 2a. Therefore, the inte-
gration in (1a) can be evaluated to arbitrary precision.
On the other hand, the spreadabilities for all the sphere-

packing models were computed by substituting (9) into
the Fourier-space representation (1b), because structure-
factor data for sphere packings are readily available. For
periodic sphere packings, Torquato [14] obtained

S(∞)− S(t) = φ2

∑

Q6=0

α̃2(|Q|; a)
v1(a)

exp[−|Q|2Dt]. (34)
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In practice, we truncated the numerical integration in
(1b) at |k|a = 100. Similarly, the summation in (34) was
truncated at |Q|a = 100. We verified that errors due to
this truncation are negligible.

A. Two-point statistics for the models

To get a sense of how two-point statistics vary across
the models considered here, we plot in Fig. 5 the angular-
averaged autocovariance functions χ

V
(r) and spectral

densities χ̃
V
(k) for the 3D models, except for the BCC

packings, for which the spectral density just consists of
Bragg peaks. Figure 5(a) shows that all autocovariance
functions have the same the slope at the origin due to
our choice that each model possesses the same specific
surface s. It is also obvious that all the sphere packings
possess very similar forms of χ

V
(r) for r ≤ a = 0.6/s,

because at low packing fractions, S2(r) at small r is pre-
dominated by the probability that the two end points
of r are in the same sphere. It has been shown that
s2 = d2χ

V
(r)/dr2 |r=0 vanishes for unjammed sphere

packings [2], which is the case for all the sphere packings
in this study. On the other hand, it is clear from (25)
and (20) that s2 > 0 for the Debye random media and
FPS. We also note that all the hyperuniform media pos-
sess both positive and negative correlations, whereas the
nonhyperuniform Debye random media and FPS possess
only positive correlations.
Figure 5(b) shows the small-k behaviors of the 3D

models that we study. Among these models, the De-
bye random media has the largest value of limk→0 χ̃V

(k),
followed by FPS and equilibrium hard spheres. For the
hyperuniform models, the perfect glass packing, the URL
packing and the disordered stealthy sphere packing repre-
sent two-phase media with α = 1, 2 and ∞, respectively.
As expected from Eq. (27), χ̃

V
(k) for the URL pack-

ing is composed of a smooth function and Bragg peaks
characteristic of the unperturbed cubic lattice packing.

B. Small-, intermediate- and large-time behaviors
of the spreadabilities

Spreadabilities for the 3D models with φ2 = 0.20 are
shown in Fig. 6. Figure 6(a) gives the spreadabilities as-
sociated with the three nonhyperuniform media in 3D at
small dimensionless times (0 ≤ Dts2 ≤ 0.01). Torquato
[14] derived short-time asymptotic expansion for S(t):

S(t) = s

φ2

(

Dt

π

)1/2

− 2 d s2
φ2

(Dt) +O(Dt/a2)3/2. (35)

The initial decay rates are very similar for all models
due to their identical specific surfaces. However, as soon
as Dts2 > 0.002, the second term in Eq. (35) plays an
important role in the distinguishing the spreadabilities.
The positive values of s2 for the Debye random media and

TABLE II. Spreadability at Dts2 = 1 for the 3D models with
φ2 = 0.20.

Model S(∞)− S(1/Ds2)
Debye 0.0560
FPS 0.0289

HS equil. 0.00437
α = 1 perfect glass 0.00285

URL b = 0.3 5.05× 10−4

URL b = 0.2 2.27× 10−4

URL b = 0.1 5.73× 10−5

Disord. stealthy 8.27× 10−5

Cubic 1.78× 10−7

BCC 5.72× 10−9

TABLE III. Values of the coefficients B and C for the nonhy-
peruniform models and the URL packings in three dimensions
with φ2 = 0.20.

Model B C
Debye 1.054 0.107
FPS 0.3254 0.355

HS equil. 0.0384 0.00389
URL b = 0.3 0.00356 5.60 × 10−4

URL b = 0.2 0.00158 2.49 × 10−4

URL b = 0.1 3.95 × 10−4 6.25 × 10−5

FPS contribute to their slower spreadabilities compared
to sphere packings, for which s2 = 0.
Figure 6(b) shows the spreadabilities for the 3D models

at intermediate dimensionless times (0.01 ≤ Dts2 ≤ 1).
Table II lists the values of S(t) at dimensionless time
Dts2 = 1 for all the models. Note that the intermediate-
time behavior of S(t) clearly captures intermediate-scale
correlations of the two-phase media. Among the non-
hyperuniform media, the intermediate-time spreadabili-
ties are highly dependent on the coefficient B = χ̃

V
(0),

which is positive and bounded [18]. For example, Debye
random media has a much larger value of B than the
other models, and its intermediate-time excess spread-
ability is also much larger. To explain this observation,
we note that the spectral densities are nonnegative by
definition and are continuous functions of k for the non-
hyperuniform models. Therefore, a larger value of B im-
plies that χ̃

V
(k) must be larger over a finite range [0, k∗)

of wavenumbers, where k∗ is some positive number. Inte-
grating larger values of the integrand χ̃

V
(k) exp[−k2Dt]

over the range [0, k∗) in Eq. (1b) then results in slower
spreadabilities at intermediate and large times. We also
find similar correspondence between B and intermediate-
time spreadabilities for the URL packings in which α = 2.

Interestingly, Fig. 6(b) shows that the spreadability
curve for the disordered stealthy packing crosses those for
the URL packings at intermediate dimensionless times.
At small times, the latter spreadabilities are faster due to
the presence of Bragg peaks in their associated spectral
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FIG. 6. Spreadabilities for the 3D models considered with φ2 = 0.20 versus dimensionless time Dts2, where s is the specific
surface. (a) Spreadabilities for the nonhyperuniform media for small dimensionless times (0 < Dts2 < 0.01). (b) Spreadabilities
for the 3D models for intermediate dimensionless times (0.01 < Dts2 < 1). (c) Spreadabilities for the 3D models for intermediate
and large dimensionless times (0.01 < Dts2 < 200).

densities. On the other hand, at large times, the spread-
ability for the disordered stealthy packing is faster be-
cause the associated spectral density vanishes for a finite
range of wavenumbers around the origin. The aforemen-
tioned crossing points represent the times beyond which
the contribution from the stealthiness behavior of the
disordered stealthy packing outcompetes the contribu-
tion from the Bragg peaks for the URL packings. The
crossing time increases with decreasing b, since smaller
b values result in larger Bragg peaks for the URL pack-
ing [cf. (27)], and thus faster spreadabilities at small to
intermediate times. Therefore, we have shown that in ad-
dition to probing microstructures on the very-small and

very-large length scales, S(t) provides a powerful tool to
study important intermediate-scale phenomena in het-
erogeneous media.

To highlight large-time behaviors of the spreadabilities,
Fig. 6(c) plots S(∞)−S(t) against Dt on a log-log scale
in the dimensionless time range 0.001 < Dts2 < 10. It is
clear that the large-t behaviors of the spreadabilities is
determined by the form of the spectral densities at small
wavenumbers. Specifically, the excess spreadabilities for
typical nonhyperuniform media (for which α = 0), which
include Debye random media, fully penetrable spheres
and equilibrium hard spheres, decay asymptotically as
t−3/2 [14]. The spreadabilities for nonstealthy hyperuni-
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form media (for which 0 < α < ∞), including sphere
packings derived from perfect glasses and URL, decay
as t−(3+α)/2. The fastest decay rates are achieved by
stealthy hyperuniform media (for which α = ∞), in-
cluding sphere packings derived from disordered stealthy
point processes and Bravais lattices. The values of α can
be very easily and accurately extracted from the slopes
of the curves on the log-log plot at large times.
For nonstealthy models with the same value of α, Eq.

(3) predicts that the asymptotic decay rate of S(∞)−S(t)
is directly proportional to the coefficient B. Table III
shows values of B and C, where C is the numerically de-
termined coefficient for the long-time excess spreadabil-
ity, i.e., S(∞) − S(t) ∼ C/t(d+3)/2. The results confirm
the predicted proportionality between B and C. Among
the three typical nonhyperuniform models (α = 0), the
Debye random media possesses the largest value of the
coefficient B = χ̃

V
(0), and therefore has the slowest

large-time spreadability among the models that we have
considered. For the URL packings (α = 2), Table III
suggests that B ∝ C ∝ b2. Indeed, it can be shown
from (27) that χ̃

V
(k) for URL packings is proportional

to b2k2 at small k [76]. For stealthy hyperuniform me-
dia, our calculations confirm the trend predicted in Ref.
[14] that the large-time spreadability is faster for mod-
els with larger values of K, where in the ordered case
K = Q1 is the first (smallest positive) Bragg wavenum-
ber. Torquato [14] showed that the long-time behavior of
spreadabilities for both ordered and disordered stealthy
media involve exponential decay rate exp(−K2Dt), and
hence possess faster decay rates than any hyperuniform
medium governed by a power-law decay. Torquato [14]
has shown that the BCC lattice gives the optimal pack-
ing for the spreadability among all packings of identical
spheres in three dimensions, as it possesses the largest
value of Q1/s. Our findings are consistent with this op-

timal property of the BCC packing.

C. Spreadabilities for URL packings

Notably, we find that for the sphere packings derived
from URL, the spreadabilities at small to intermediate
dimensionless times are very similar to that of the un-
perturbed cubic-lattice packing, i.e. their initial decay
rates are nearly exponential. However, at large t, the
spreadabilities tend to a power-law decay, which is con-
sistent with the small-wavenumber behavior (α = 2) of
such packings. The nearly exponential decay up to in-
termediate times is due to the fact that the small- to
intermediate-scale two-point correlations are mainly de-
termined by the Bragg peaks in the URL packing [76].
On the other hand, it has been shown that the uncorre-
lated stochastic displacements of the lattice points de-
grade the stealthy hyperuniformity of the lattice into
nonstealthy hyperuniformity described by the power-law
(2) with α = 2 for URL [76, 100]. We remark that
for the URL packing with b = 0.1, the snapshot in di-
rect space [Fig. 4(g)] is visually very similar to that
of the unperturbed lattice packings [Fig. 4(i)]. How-
ever, their spreadabilities are markedly different at large
t. Therefore, S(t) sensitively captures long-range corre-
lations that are not obvious in direct space.

To quantitatively analyze the transition time t∗ of the
spreadabilities for a URL packing, we note that for any
monodisperse sphere packing derived from a perturbed
lattice in which the perturbation characteristic function
f̃(k) for the lattice points are independent and identical,
the excess spreadability can be obtained by substituting
(9) into (1b), where S(k) in (9) is given by (27), i.e.,

S(∞) − S(t) =

φ2





∫ ∞

0

α̃2(k; a)(1 − |f̃(k)|2) exp(−k2Dt)dk+
∑

Q6=0

α̃2(Q; a)

v1(a)
|f̃(Q)|2 exp(−Q2Dt)



 .
(36)

From relation (36), one can extract the transition time
t∗ that separates small-time nearly exponential decay and

large-time power-law decay of the spreadability by equat-
ing the Bragg-peak part and the diffuse part of the excess
spreadability:

∫ ∞

0

α̃2(k; a)(1 − |f̃(k)|2) exp(−k2Dt∗)dk =
∑

Q6=0

α̃2(Q; a)

v1(a)
|f̃(Q)|2 exp(−Q2Dt∗). (37)

The specific form of f̃(k) for URL packings derived from the hypercubic lattice for any space dimension d and its
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FIG. 7. (a) Spreadabilities for 3D URL packings and the cubic-lattice packing with φ2 = 0.20 for intermediate dimensionless
times (0.01 < Dts2 < 10), where s is the specific surface. The dimensionless transition times Dt∗s2 [see (37)] for these values
of b are indicated by solid dots. (b) Plot of dimensionless transition time Dt∗s2 against b for 3D URL packings with φ2 = 0.20.

angular average for d = 2, 3 is given in the Appendix.
Figure 7 shows the spreadabilities for the URL pack-
ings with the corresponding transition times indicated
by solid dots, as well as the spreadability for the un-
perturbed simple-cubic lattice packing. Note that on
the log-log plots of S(t) for the URL packings, gradual
changes of slope occur in the vicinity of t∗. Figure 7(b)
plots the values of t∗ against b for 3D URL packings
with φ2 = 0.20, in which we observe that t∗ is a decreas-
ing function of b and has a logarithmic divergence in the
limit b → 0, i.e., t∗ ∼ − ln b. To derive this logarithmic
divergence behavior, we first presume that t∗ is large in
the limit b → 0. The factors multiplying exp(−k2Dt∗)
on the left-hand side of (37) can then be replaced by

their small-k behaviors, i.e., 1− |f̃(k)|2 → b2k2 [76], and
α̃2(k; a) → exp(−ck2), where c is a constant [18]. There-
fore, the left-hand side of Eq. (37) has the small-b limit

∫ ∞

0

exp(−ck2)b2k2 exp(−k2Dt∗)dk

=
b2 exp(−ck2)

√
π

4t3/2
.

(38)

The small-b behavior of the sum on right-hand side of
(37) is dominated by the Bragg peak with the smallest
wavenumber Q1. Therefore, the right-hand side of (37)
has the small-b limit

α̃2(Q1; a)Z(Q1)

v1(a)
exp(−Q2

1Dt∗), (39)

where Z(Q1) is the coordination number at radial dis-
tance Q1. Equating (38) and (39) yields

2 ln b ∼ 3 ln t∗

2
−Q2

1Dt∗, (40)

which corresponds to a logarithmic divergence of t∗ as
b → 0. Our numerical solution of Eq. (37) at small b
confirms the asymptotic relation (40).

D. Effects of dimensionality on the spreadability

To compare spreadabilities across dimensions, we show
spreadabilities of the 2D models in Fig. 8. We observe
in Fig. 8(a) that for the same value of α, the excess
spreadability decays asymptotically as t−(2+|α|)/2, slower
than that for 3D models. This confirms the large-t trend
predicted in Ref. [14], i.e., S(∞) − S(t) ∼ t−(d+α)/2.
Again, we notice that the excess spreadabilities for the
URL packings transform from exponential decay at small
and intermediate t to power-law decay at large t. Fig-
ure 8(b) compares the spreadabilities of equilibrium hard
spheres at small to intermediate t. The small-time decay
of the excess spreadability is faster for the 3D model.
This is evident from Eq. (35), as s/φ2 is larger for the
3D model.

V. ALGORITHM FOR EXTRACTING
LONG-TIME BEHAVIORS FROM
TIME-DEPENDENT DIFFUSION

MEASUREMENTS

Based on our study of spreadabilities of the idealized
models, we introduce here an algorithm that extracts
large-scale behavior from time dependent diffusion be-
haviors as measured by spreadability, or equivalently, by
NMR or MRI data. For simplicity, we first describe the
algorithm using the spreadability. Subsequently, we dis-
cuss the adaption of the algorithm to NMR and MRI
measurements using the precise mappings identified in
Ref. [14]. For purposes of illustration, we treat the
spreadability data as if they were directly given by diffu-
sion measurements when applying the algorithm, despite
the fact that we computed S(t) from two-point correla-
tions in this study.
To extract the asymptotic form of any spreadability
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FIG. 8. (a) Spreadabilities of two-phase media in two dimensions with φ2 = 0.25 for intermediate dimensionless times (0.01 <
Dts2 < 1), where s is the specific surface. (b) Spreadabilities of two-phase media in two dimensions with φ2 = 0.25 for
intermediate and large dimensionless times (0.01 < Dts2 < 200). (c) Spreadabilities for equilibrium hard spheres for d =
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data S(t), we introduce a “set-in” time tS(ǫ), defined
as the time such that |S(t) − Sl(t)| = ǫ for t = tS and

|S(t) − Sl(t)| < ǫ for all t > tS . Here, Sl(t) is the long-
time excess spreadability given in Ref. [14]:

S(∞) − Sl(t) = Ct−ϕ Nonstealthy media, (41)

S(∞)− Sl(t) = C exp(−ϕt)/t Disordered stealthy media, (42)

S(∞) − Sl(t) = C exp(−ϕt) Ordered media, (43)

where ϕ and C are parameters to be determined from
the spreadability data. The self-consistent relations (41),
(42) and (43) can be solved via the following iterative
procedure.

1. Set i = 0 and choose initial guesses of tS,i, ϕi and
Ci as well as the stopping criterion σ.

2. Find ϕi+1, Ci+1 by fitting the spreadability for
t > tS,i and obtain the large-time spreadability ap-
proximant Sl,i(t) using (41), (42) or (43).

3. Find tS,i+1, which is the time such that |S(tS,i+1)−
Sl,i+1(tS,i+1)| = ǫ and |S(t) − Sl,i(t)| < ǫ for all
t > tS,i+1.

4. If |ϕi+1 − ϕi| < σ, stop and set tS = tS,i+1, ϕ =
ϕi+1, C = Ci+1. If not, set i = i + 1 and go to
Step 2.

Because it is not known a priori whether a two-phase
media is nonstealthy, disordered stealthy or ordered, the
aforementioned procedure must be executed three differ-
ent times, using Eq. (41), (42) and (43) alternatively

each time. The equation that yields the smallest tS is
then accepted as the functional form that best describes
the asymptotic behavior of the spreadability. Specif-
ically, assuming nonstealthy media, ϕi+1 and Ci+1 in
Step 2 are obtained from a linear regression on the plot
of ln[S(∞) − S(t)] against ln(t). Assuming disordered
stealthy media, the linear regression is performed on the
plot of t ln[S(∞) − S(t)] against t. Assuming ordered
media, the linear regression is performed on the plot of
ln[S(∞)−S(t)] against t. We chose the stopping criterion
to be σ = 10−6 for all executions of the algorithm.

Table IV and V list the values of tS(10
−6), ϕ and C

determined from the algorithm for the 2D and 3D models
studied in this work, as well as the expected values of ϕ
and C. These parameters are known exactly for Debye
random media, FPS, URL packings and Bravais-lattices
packings, whereas those for the other models in Sec. III
are inferred from the corresponding spectral densities.
As these idealized models span a wide range of nonhy-
peruniform and hyperuniform classes, they serve as good
benchmarks for testing the general capability of the algo-
rithm to accurately extract ϕ and C from diffusion data



15

of realistic heterogeneous media. Table IV and V show
that for all the models that we study, the values of ϕ and
C extracted using our proposed algorithm agree closely
with their expected values. In cases in which these pa-
rameters are exactly known, the extracted ϕ values devi-
ate less than 1% from the exact ones and the extracted
C values deviate less than 5% from the exact ones. In-
deed, we find that the extracted ϕ and C converge to
their exact values as ǫ → 0, and that ϕ can be estimated
with reasonable accuracy (less than 10% error) as long
as ǫ < 10−4.
We also observe a general trend that tS decreases

with increasing nonhyperuniform or hyperuniform class.
Among models with the same value of α, tS decreases
with decreasing B. Among the stealthy models, tS de-
creases with increasing K. This is because for models
with a higher degree of hyperuniformity, the correspond-
ing spectral densities can usually be approximated by the
power law (2) over a larger range of wavevectors. How-
ever, we point out that for URL packings with extremely
small b, the “set-in” time of the power-law decay is ex-
pected to increase due to large Bragg peaks.
We remark that due to the connection between

the spreadability and NMR measurements, including
the pulsed field gradient spin-echo (PFGSE) amplitude
M(k, t) [70, 71] and the MRI-measured water diffusion
in biological media [72], our algorithm can be directly
applied on NMR or MRI data to infer large-scale mi-
crostructural information of real materials. Specifically,
consider a fluid-saturated porous medium, which invari-
ably contains paramagnetic impurities at the interface,
resulting generally partially absorbing boundary condi-
tions. Torquato [14] found that one can map the spread-
ability problem to the PFGSE amplitude problem via the
transformations S(∞) − S(t) → M(q = 0, t) − φ2 and
D → D(t), where φ2 is the porosity and D(t) is the time-
dependent diffusion coefficient for the porous medium.
For diffusion-weighted MRI of water-saturated biological
media, one has a similar mapping S(∞) → De = D(∞)
and S(t) → D(t) [14]. Therefore, our algorithm can be di-
rectly adapted to analyze experimental data for PFGSE
or MRI to extract the coefficients ϕ and C.

VI. APPLICATION TO FONTAINEBLEAU
SANDSTONE

In this section, we apply the lessons learned from the
spreadabilities of the idealized models to analyze the
structural characteristics of a sample Fontainebleau sand-
stone [80]. Because Fontainebleau sandstone is a porous
medium with a pure mineral composition (almost 100%
quartz) and free of any clay, it has frequently been used
to study the relation between pore geometry and effective
properties. [80, 106–110]. Understanding its microstruc-
tures is of importance in many applications, including
benchmark flow experiments [108, 109], petroleum engi-
neering [106, 107] and geological dating [111]. The mor-

phology and physical properties (e.g. fluid permeability)
of Fontainebleau sandstone samples have been accurately
studied via X-ray tomographic imaging [80, 110]. Here,
we further characterize their microstructures via diffusion
spreadability measurements using the analysis described
in Sec. IV and V.

Figure 9(a) shows a sample filtered slice of
Fontainebleau sandstone [80]. Figure 9(b) and (c) show
the autocovariance function and spectral density, respec-
tively, for a sandstone sample with porosity φ2 = 0.157
and specific surface s = 0.0154µm−1, which we obtained
from the corresponding two-point correlation function
S2(r) published in Ref. [80]. We observe that χ

V
(r)

for Fontainebleau sandstone contains slightly negative
correlations in the range 2.2 < rs < 3.7, and vanishes
identically for rs ≥ 3.7, which indicates that the sam-
ple is not hyperuniform. The negative correlations in
χ

V
(r) corresponds to a maximum away from the origin

in χ̃
V
(k). Indeed, the plot of the spectral density, shown

in Fig. 9(c), definitively enables us to conclude that the
sandstone is nonhyperuniform of the typical kind; see Eq.
(18). Therefore, it is instructive to compare its two-point
correlations to those for the idealized typical nonhyper-
uniform models with φ2 = 0.157, including the Debye
random media and FPS. Figure 9(b) shows that χ

V
(r)

for the sandstone closely resemble that for the Debye ran-
dom media at small to intermediate values of rs. Figure
9(c) shows that the value of B = χ̃

V
(0) for the sand-

stone lies in between those for the Debye random media
and FPS. As in the case of FPS, the fact that χ

V
(r) for

the sandstone has finite support enables us to accurately
compute the corresponding spreadability using Eq. (1a)
in this study. As we have stressed earlier, we can infer
structural characteristics across length scales by direct
dynamic measurements via the time-dependent spread-
ability or NMR/MRI techniques [70–72].

Figure 10 shows the spreadabilities for Debye ran-
dom media, Fontainebleau sandstone and FPS with
φ2 = 0.157 at small, intermediate and large dimension-
less times 0.001 < Dts2 < 200, and the inset shows
these spreadabilities at intermediate and large dimen-
sionless times 1 < Dts2 < 10. The spreadability for
the sandstone closely resembles that for the Debye ran-
dom media at small to intermediate dimensionless times
(0 ≤ Dts2 ≤ 1), which reflects their similar small-scale
correlations. We applied the algorithm described in Sec.
V to extract large-time behaviors of these spreadabilities.
As noted earlier, we treat the spreadability data for the
sandstone as directly given when applying the algorithm.
The extracted ϕ value for the Fontainebleau sandstone is
ϕ = (3 + α)/2 = 1.501, which indicates clearly that the
sandstone is nonhyperuniform of the typical kind (Table
V). The set-in time for the spreadability of the sand-
stone sample DtS(10

−6)s2 = 24.9 is also on the order of
magnitude for typical nonhyperuniform media. Since all
microstructures in Fig. 10 are typical nonhyperuniform,
they possess the same large-time power law decay behav-
ior S(∞)−S(t) ∼ Ct−3/2. However, their spreadabilities
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TABLE IV. “Set-in” times tS and large-time parameters ϕ and C for the spreadabilities of the 2D models considered in this
work.

Model φ2 DtS(10
−6)s2 ϕ C Expected ϕ Expected C

Debye 0.25 309 1.003 0.133 1 0.130
FPS 0.25 43.1 0.999 0.0592 1 0.0594

HS equil. 0.25 17.2 1.002 0.0211 1 0.0209 [105]
Perfect glass α = 1 0.25 13.06 1.499 6.12 × 10−3 3/2 6.15× 10−3 [105]
Perfect glass α = 2 0.25 5.67 2.013 1.06 × 10−3 2 9.87 × 10−4 [105]]

URL b = 0.3 0.25 4.71 1.997 1.44 × 10−3 2 1.48 × 10−3

URL b = 0.2 0.25 3.63 1.997 6.41 × 10−4 2 6.56 × 10−4

URL b = 0.1 0.25 2.34 1.996 1.60 × 10−4 2 1.64 × 10−4

Disord. stealthy 0.25 1.04 6.662 0.0329 6.648 [105] 0.0370 [105]
Square 0.25 0.710 12.55 0.418 12.57 0.430
Triangle 0.25 0.600 14.450 0.548 14.50 0.558

TABLE V. “Set-in” times tS and large-time parameters ϕ and C for the spreadabilities of the 3D models considered in this
work.

Model φ2 DtS(10
−6)s2 ϕ C Expected ϕ Expected C

Debye 0.2 110 1.494 0.113 3/2 0.118
FPS 0.2 28.1 1.499 0.0361 3/2 0.0365

HS equil. 0.2 7.23 1.500 4.30× 10−3 3/2 4.31× 10−3 [105]
Perfect glass α = 1 0.2 4.02 2.001 3.14× 10−3 2 3.14× 10−4 [105]

URL b = 0.3 0.2 3.39 2.495 6.06× 10−4 5/2 6.25 × 10−4

URL b = 0.2 0.2 2.66 2.494 2.68× 10−4 5/2 2.78 × 10−4

URL b = 0.1 0.2 1.80 2.494 6.69× 10−5 5/2 6.94 × 10−5

Disord. stealthy 0.2 1.06 5.377 0.0176 5.341 [105] 0.0168 [105]
Cubic 0.2 0.410 14.43 0.388 14.43 0.387
BCC 0.2 0.380 18.18 0.554 18.18 0.556
Debye 0.157 48.1 1.496 0.0686 3/2 0.0704

Fontainebleau 0.157 24.9 1.501 0.0379 - -
FPS 0.157 21.9 1.499 0.0253 3/2 0.0255

can be easily distinguished by their C coefficients, which
is directly proportional to B = χ̃

V
(0) of the correspond-

ing spectral densities. As shown in Table V, the C val-
ues extracted by our algorithm for Debye random media,
Fontainebleau sandstone and FPS are 0.0686, 0.0379 and
0.0253, respectively. Since our algorithm typically gives
less than 5% error for extracted C values, the aforemen-
tioned values of C are significantly different. Moreover,
the inset of Fig. 10 clearly shows the distinction in the
three spreadability curves due to their difference in C
coefficients. The trend of C values for the three nonhy-
peruniform media confirms that the spectral density for
the sandstone at small to intermediate wavenumbers lies
in between those for Debye random media and FPS.

VII. CONCLUSIONS

In this work, we investigated the practical applicabil-
ity of the spreadability to probe microstructural informa-
tion of real heterogeneous materials by accurately com-
puting S(t) for idealized 2D and 3D models that repre-
sent a wide variety of hyperuniform and nonhyperuni-
form classes. These models include Debye random me-
dia, fully penetrable spheres, equilibrium hard spheres,
which are nonhyperuniform, as well as sphere packings

derived from “perfect glasses”, uniformly randomized lat-
tices, disordered stealthy hyperuniform point processes
and Bravais lattices, which are hyperuniform. Our calcu-
lations confirm the previously predicted trends [14] that
the small-, intermediate and long-time behavior of S(t)
sensitively captures the small-, intermediate- and long-
range characteristics of the models. For typical nonhy-
peruniform models, the intermediate-time spreadability
is slower for models with larger values of the coefficient
B = χ̃

V
(0). Our study of the aforementioned models en-

abled us to devise an algorithm that efficiently and accu-
rately extract large-scale structural characteristics from
time-dependent diffusion behaviors, as measured by the
spreadability, or equivalently, by NMR or MRI data. The
algorithm also determines the “set-in” time of the large-
time behavior of time-dependent diffusion measurements.
Such analysis was used to characterize the large-scale be-
haviors of a sample Fontainebleau sandstone, which we
show is typical nonhyperuniform. Therefore, we have
demonstrated that the spreadability provides a simple
and robust probe of crucial microstructural information
across length scales of realistic heterogeneous media. Our
proposed algorithm in Sec. V is shown to be capable of
accurately extracting large-scale behaviors of real sam-
ples from time-dependent diffusion data.

Remarkably, in the case of URL packings, we found
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FIG. 9. (a) Sample filtered slice of Fontainebleau sandstone. The black region corresponds to the grain phase. The diameter
of the cylindrical core is 3 mm with a voxel resolution of 7.5 µm. This figures is reproduced from the one in Ref. [80].
(b) Autocovariance functions χ

V
(r) versus dimensionless distance rs for Fontainebleau sandstone [80], Debye random media

and fully penetrable spheres with φ2 = 0.157, where s is the specific surface and s = 0.0154 µm−1 for the sandstone. (c)
Dimensionless spectral densities χ̃

V
(k)s3 versus dimensionless wavenumber k/s for Fontainebleau sandstone, Debye random

media and fully penetrable spheres.
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FIG. 10. Spreadabilities for Fontainebleau sandstone, Debye
random media and fully penetrable spheres with φ2 = 0.157
for small, intermediate and large dimensionless times 0.001 <
Dts2 < 200, where s is the specific surface. The inset plots on
a linear scale these spreadabilities at intermediate and large
dimensionless times 1 < Dts2 < 10.

that S(∞) − S(t) has nearly exponential decay at small
to intermediate times, but transitions to power-law decay
at large t, i.e., S(t) clearly captures both the lattice-like
order on small to intermediate length scales and the non-
stealthy hyperuniform behavior on large length scales.
We showed that the transition time t∗ that separates
small- and large-time decay behaviors is well-defined and
has a logarithmic divergence as b → 0. The behaviors
of the spreadability for URL packings stand in sharp

contrast with those for disordered stealthy hyperuniform
packings, which are characterized by a relatively slow
small-time decay and an exponentially fast large-time de-
cay.
We remark that the spreadability formula derived in

Ref. [14] can be regarded as a type of Gaussian smooth-
ing of the spectral density, since it is weighted by a Gaus-
sian function [2]; see Eq. (1b). Indeed, we observe that
the numerically obtained spectral densities in this study
contain some degree of noise at small wavenumbers [Fig.
5(b)]. However, their corresponding excess spreadabili-
ties are very smooth functions of time and exhibit unam-
biguous power-law or exponential decay at large t [Fig.
6(a) and 8(a)], which can be analyzed using our proposed
algorithm to extract large-scale structural characteristics.
Therefore, extracting the exponent α from spreadability
offers a more robust and accurate means to compute it
from real data compared to the direct numerical fitting
of the small-k data of the spectral density.
It is noteworthy that the microstructural character-

istics extracted from time-dependent diffusion measure-
ments are capable of predicting other effective proper-
ties that depend on two-point correlations. For example,
Torquato recently derived a formula for the fluid perme-
ability of porous media that depends on the spectral den-
sity χ̃

V
(k), which has been shown to provide reasonably

accurate permeability predictions of certain of hyperuni-
form and nonhyperuniform porous media [94]. He used
this formula to show that the dimensionless fluid perme-
ability, i.e., (permeability multiplied by s2), for stealthy
hyperuniform media is expected to be lower relative to
nonhyperuniform ones and that the BCC lattice packing
minimizes the fluid permeability among common crystal
lattices (simple cubic, FCC and BCC) at fixed poros-
ity [94]. Thus, the BCC lattice packing yields the fastest
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spreadability and relatively low values of the fluid perme-
ability for packings of identical spheres at a given poros-
ity.
Our findings on the spreadabilities for the idealized

models in this study provide the basis for inverse de-
sign of materials with desirable time-dependent diffusion
properties. Specifically, one could realize desired short-,
intermediate- and large-time diffusion rates by construct-
ing two-phase media with the corresponding values of s,
α and B (or K in the case of stealthy media). Thus,
a promising avenue for future study is the determina-
tion of microstructures of two-phase media that real-
ize prescribed functional forms of S(t). This is an in-
verse problem that can be potentially tackled by adapt-
ing methods employed to construct microstructures with
prescribed autocovariance functions and physical proper-
ties [79, 81, 82, 104].
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Appendix: Characteristic function for a certain URL
point process

The characteristic function f̃(k) of the uniform distri-
bution on [−b/2, b/2)d in Eq. (27) is given by

f̃(k) =

(

2

b

)d d
∏

i=1

sin(bki/2)

ki
, (A.1)

where ki is the i-th component of the wavevector k. Fig-
ure A shows plots of the diffuse part of S(k), 1− |f̃(k)|2,
versus k for 2D and 3D URL point processes with b =
0.1, 0.2 and 0.3.
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FIG. A. (a) Plot of 1−|f̃(k)|2 versus dimensionless wavenum-
ber k (in units of the lattice constant) for 2D URL point pro-

cesses. (b) Plot of 1− |f̃(k)|2 versus dimensionless wavenum-
ber k for 3D URL point processes.
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