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We present general analytical criteria for the design of lossless reciprocal 2-port systems, which
exhibit prescribed scattering spectra S(ω) satisfying S22(ω) = eiϕS11(ω), including symmetric
(S22 = S11) or “antimetric” (S22 = −S11) responses, such as standard filters (Butterworth, Cheby-
shev, elliptic, etc.). We show that the non-normalized resonant (quasi-normal) modes (QNMs) of
all such 2-port systems couple to the input and output ports with specific unitary ratios, whose
relative signs determine the position of the scattering zeros on the real frequency axis. This allows
us to obtain design criteria assigning values to the poles, background response, and QNM-to-ports
coupling coefficients. Filter devices can then be designed via a well-conditioned nonlinear opti-
mization (or root-finding) problem using a numerical eigensolver. As an application, we design
multiple microwave metasurfaces configured for polarization-preserving transmission, reflective po-
larization conversion, or diffractive “perfect anomalous reflection”, to realize filters that precisely
match standard bandpass or bandstop filters of various types, orders and bandwidths, with focus
on the best-performing elliptic filters.

I. INTRODUCTION

High-order (multi-resonance) filters—especially stan-
dard filters (SFs) of Butterworth, Chebyshev, or elliptic
spectral shape [1]—have been designed for many types
of wave physics (electromagnetic [2–12], mechanical [13–
17], etc.) by a variety of techniques, including brute-
force optimization of the transmission/scattering spec-
trum [18–23], circuit theory in the microwave regime [24–
30], and coupled-mode theory (CMT) [31–33] for cas-
caded optical resonators [2–8]. Circuit theory and CMT
provide attractive semi-analytical frameworks for filter
design, but are restricted to systems composed of spa-
tially separable components (either discrete circuit ele-
ments or weakly coupled resonators, respectively), while
brute-force spectrum optimization faces several numeri-
cal challenges [21, 22]. To design ultra-compact filters, in-
volving strongly coupled elements and spatially overlap-
ping resonances, a precise, systematic and computation-
ally tractable methodology is missing. In this article, we
develop such a filter-design approach by deriving a mini-
mal set of explicit analytical criteria on the system reso-
nances, applicable to all symmetric and “antimetric” [34]
filters, including SFs. To derive these conditions, we use
the unitary and symmetric quasi-normal-mode (QNM)
expansion of the scattering matrix S from Ref. 35 to de-
rive the required coupling coefficients of the resonances
(QNMs) to the input and output ports in conjunction
with the net background response, in order to achieve
multiple configurations for the zeros of the S coefficients
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(generalizing previous work [36, 37]) and thus realize any
desired SF. We apply our procedure to computationally
design microwave metasurfaces with several 2-port con-
figurations, realizing filters that precisely match SFs of
various orders, bandwidths, and types—especially opti-
mal elliptic filters, which were demonstrated only approx-
imately in the past [23–25, 38, 39].

Large-scale optimization (including a variety of
inverse-design and machine-learning algorithms) is a
powerful approach to design complex structures by op-
timizing thousands of degrees of freedom [40, 41]. How-
ever, if the optimization problem is formulated directly
in terms of constraints on the transmission spectrum,
it can face severe numerical challenges [21, 22]: the
highly oscillatory nature of the transmission spectrum
can trap optimizers in poor local optima, and stringent
constraints (e.g. on stop- and pass-band transmission)
can lead to very “stiff” optimization problems with slow
convergence. For example, these issues forced one such
effort [21] to restrict the designs to spatially distinct res-
onators, as in CMT. However, when analytical solutions
to parts of the problem exist, the numerical side of the
optimization can be rendered simpler and more robust.
In particular, for filter design with given transmission-
spectrum constraints, signal-processing theory analyti-
cally defines many such “optimal” standard filters, char-
acterized by various rational transfer functions with spec-
ified poles and zeros [1], the latter necessary to achieve
a steep transition between the “pass” and “stop” fre-
quency bands. Therefore, when designing physical fil-
ters, it is advantageous to exploit these analytical solu-
tions. An exact methodology, called network synthesis,
was developed to implement these SFs in the extreme
quasi-static (subwavelength) limit, where structures can
be modeled precisely by networks of discrete elements, as
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in electronic circuits [1]. In the other limit of structures
spanning multiple wavelengths, the simple mapping be-
tween coupled resonators and transfer-function poles has
made temporal coupled-mode theory (CMT) [31–33] a
popular design tool, especially for (high-order) optical
add-drop filters [2–7], most of which are only Chebyshev
or Butterworth filters with no transmission-zeros, using a
symmetric topology. However, in the intermediate limit
of physical structures with size on the order of the wave-
length or only a few times smaller (metamaterials), no
complete filter-design methodology exists. Equivalent
circuits with elements calculated from analytical expres-
sions are not accurate and usually serve only as initial
guess for trial-and-error design [24–28]. For better accu-
racy, the effective element values should be obtained by
fitting to the actual spectral response [24, 26, 28], which is
not practical for optimization (especially for sharp spec-
tra). Moreover, these circuits often become overly com-
plicated [24, 30], they change for each different structural
topology [29] or, worse, they fail to provide any adequate
model (as is typically the case in dielectric photonic struc-
tures). Therefore, network synthesis may be useful for
the intuitive choice of an appropriate system topology
but not for the calculation of its exact parameters. CMT,
on the other hand, is typically based on weakly coupled
resonators and the knowledge of the “uncoupled” modes
of the system [33], but neither of these conditions usu-
ally hold for wavelength-scale structures with multiple
strongly inter-coupled/overlapping resonances [42]. Still
missing has been a unified, physics-independent, set of
exact conditions for the precise design of filters with mul-
tiple zeros that can be fed as a smooth objective to op-
timization algorithms. Using our QNM theory (QNMT)
of Ref. 35 (whose main results are summarized in Sec. II),
in Sec. III we derive such simple and general rules to de-
sign SFs using eigenmode solvers. In particular, we show
that the resonant QNM fields of all lossless reciprocal 2-
port systems with symmetric (S22 = S11) or “antimetric”
(S22 = −S11) [34] response couple to the input and out-
put ports with specific unitary ratios, whose relative signs
determine the position of the scattering zeros. Thus, for
filter design, apart from the obvious matching of sys-
tem resonant frequencies to the desired filter’s complex
poles, we explain that, to also obtain the desired-filter
zeros, these ratios must be enforced for the critical filter
resonances and the remaining QNMs must add up to a
required overall background response.

As an application of our theory, we design mi-
crowave frequency selective surfaces (FSS), which are
usually used to implement spatial (wave) filters for
communication antennas, radars, radomes [10–12],
lenses [43, 44] etc. FSSs typically take the form of
two-dimensional periodic metal-dielectric arrays exhibit-
ing specific frequency-dependent transmission or reflec-
tion under plane wave excitation. While older designs
were based on wavelength-sized unit cells (as in typi-
cal antenna design), the use of subwavelength dimen-
sions to form metasurfaces has attracted much atten-

tion in the past decade due to multiple advantages,
such as higher unit-cells density and smaller angular
sensitivity [27, 28, 45]. An important design chal-
lenge in frequency-selective metasurfaces is the ability
to obtain specific high-order frequency responses using
their strongly inter-coupled subwavelength resonances,
attempted usually through multilayer FSSs. Most pre-
vious efforts have been based on effective-circuit mod-
els [24–29]. The basic FSS building blocks are metal-
lic patches with gaps (effective capacitors C) and aper-
tures/loops (effective inductors L) that can be combined
to make effective LC resonators. Then, the shape, size
and arrangement of patches and apertures in the FSS
dielectric and metallic sheets are designed to accom-
plish the necessary circuit topology and element-values
for the transmission desired. While such circuit models
can give a good physical intuition about the expected
response of a FSS, they are too approximate and less
flexible for a precise design method (as explained above).
This is why, although particular attention has been given
to the design of elliptic filters, most of previous efforts
have only achieved an approximate “quasi-elliptic” re-
sponse [23–25, 38, 39]. In Sec. IV, we first discuss the re-
lation between QNMT and effective-circuit models to mo-
tivate appropriate structural-topology choices for differ-
ent filters and scattering-zero placements. Then, follow-
ing our systematic filter-design procedure, we implement
polarization-preserving transmissive microwave metasur-
faces that exhibit, for a normally incident plane wave,
transmission spectra matching SF responses of various
orders, bandwidths and types. Notably, we demonstrate
second- and third-order elliptic filters for both band-
pass and bandstop behaviors. We show that, in some
cases, even though symmetric performance is desired,
structural asymmetry should be used, while conversely,
in cases where the ideal performance is antimetric, we
also present approximate symmetric solutions. Lastly,
to highlight the generality of our method, we also de-
sign metasurface SFs for different 2-port configurations:
a reflective polarization converter [46–50] and a diffrac-
tive “perfect anomalous reflector” [51–55]. These have
been previously demonstrated mostly at single frequen-
cies, while here we match a desired spectral response.
The designed metasurfaces are compatible with fabrica-
tion by printed-circuit board technology, and also offer
potential electrical tunability.

Details regarding the optimization setup, including ob-
jectives and algorithm, are provided in Sec. V. Therein,
we also demonstrate the superiority of our QNMT-based
design method compared to the common approach of
brute-forcing the desired spectrum at few key frequen-
cies: for three different initial structures, our optimiza-
tion method always converged to structures matching
the target spectral response, while the direct frequency-
domain optimization always failed to find a good solu-
tion.
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II. S-MATRIX OF LOSSLESS RECIPROCAL
2-PORT SYSTEMS

We consider a linear time-independent reciprocal sys-
tem, without material absorption or gain (although these
could easily be included perturbatively [35]), coupled to
radiation only via two ports. These are used as channels
for an incoming excitation at frequency ω and outgoing
scattered waves, described by a 2 × 2 scattering matrix
S (Fig. 1). Here, we summarize some key properties of
S and its QNMT model, derived in Ref. 35, that we will
need in later sections.

To begin with, for port modes whose transverse field
does not depend on frequency (such as plane waves or
dual-conductor TEM microwave modes), the scattering
matrix can typically be written as S = eiτωS′eiτω, where
S′ is a “proper” rational function corresponding to ports’
reference cross sections taken on the surface of the scat-
terer and τ is a constant diagonal matrix with real pos-
itive elements corresponding to the propagation delay
through the ports (Ref. 35, Appendix A and section IV-
C). Hereafter, we always consider those unique reference
cross sections and drop the ′ so that S is rational and
any propagation phase can be easily added in the end.

Moreover, recall (Ref. 35, Appendix E) that (i) the
poles of S appear in pairs (ωn,−ω∗n) due to realness
[S∗(iω) = S(−iω∗)]; (ii) the zeros of S21 = S12 can only
appear as complex quadruplets (ωo, ω

∗
o ,−ωo,−ω∗o), real

or imaginary pairs (ωo,−ωo), or at ωo = 0; and (iii), for
each zero-pair (ωo,−ω∗o) of S11, (−ωo, ω∗o) is a zero-pair
of S22. These restrictions imply that Spq is a rational
function of iω with real coefficients and, in particular,
that the numerator of S21 is a polynomial of ω2 with real
coefficients, optionally with multiplicative iω factors.

The system poles correspond to resonant QNMs, which
can be obtained using a numerical eigensolver. The high-
Q modes have frequencies ωn and coupling coefficients
to the ports p = 1, 2 equal to Dpn, which can be com-
puted as an overlap surface integral between the n-QNM
field and the p-port mode at the boundary of the scat-
terer, as explained in detail in Ref. 35. Their ratios
σn = D2n/D1n do not depend on the normalization of the
QNMs (Ref. 35, Appendix D). Moreover, any system low-
Q resonances {ωCn , σCn } can admit a simplified description
in terms of an effective “background” response between
the two ports, quantified by a background scattering ma-
trix C [35]. When these background QNMs have Q→ 0,
they give a frequency-independent unitary symmetric C.
In this case, our formulation from Ref. 35 shows that

 

𝑠!"	

𝑠#"	

𝑠!$	

𝑠#$	

𝒔! = 𝑺(𝜔)𝒔"	

𝑪	(𝜔#, 𝜎#)	

FIG. 1. A lossless reciprocal 2-port scattering system excited
at frequency ω, with input and output amplitudes respectively
s±p, related by the S-matrix through s− = Ss+. The system
supports high-Q quasi-normal modes (QNMs) with frequen-
cies ωn and port-coupling ratios σn, while low-Q resonances
create an effective background response C.

enforcing energy conservation (unitary S) gives

S(ω) = S̄(ω)C

S̄{ωn,σn}(ω) = I +

N∑
n=1

S̄(n)

iω − iωn

S̄(n)
pq = σpn

N∑
l=1

M−1
nl σ
∗
ql

Mnl =
1 + σlσ

∗
n

iωl − iω∗n
, σ1n = 1, σ2n = σn,

(1)

where σn are further fine-tuned from the computed val-
ues using a simple constrained optimization, in order to
satisfy also the reciprocity condition (symmetric S)

[S̄(n)C]21 = [S̄(n)C]12. (2)

C itself can be computed as C = −S̄{ωCn ,σCn }. In prac-
tice, the background Qs are small but nonzero, so C(ω)
is slowly varying but not constant; nevertheless, Eq. (1)
provides a good approximation for S. The distinction
between high- and low-Q modes is, in fact, somewhat ar-
bitrary and based mainly on computational convenience.
In the limit where one includes all modes in S̄, then
C = −I.
S̄ in Eq. (1) is uniquely determined by the values
{ωn, σn} and can be easily shown [35] to satisfy, for a
constant γ = ±1 (extended to any complex γ = eiϕ in
Sec. III D),

S̄11{ωn,σnγ } = S̄11{ωn,σn}, S̄12{ωn,σnγ } = γS̄12{ωn,σn}

S̄21{ωn,σnγ } = 1
γ S̄21{ωn,σn}, S̄22{ωn,σnγ } = S̄22{ωn,σn}.

(3)
and, by swapping ports 1↔ 2,

S̄11{ωn,σn} = S̄22{ωn,1/σn}, S̄21{ωn,σn} = S̄12{ωn,1/σn}.
(4)

III. QNMT-DERIVED ANALYTICAL
CRITERIA FOR FILTER DESIGN

Our goal is to design physical 2-port systems
with multi-resonance network-synthesis filter responses,
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specifically, Nth-order band-pass and band-stop filters
of a finite bandwidth, which are given as rational func-
tions of frequency H(ω) with specified 2N complex poles
[appearing as N pairs (ωn,−ω∗n)], 2N zeros (abiding by
the restrictions of the previous section) and an overall
constant. In the case of the standard filter (SF) approx-
imations, these are given through “textbook” analytical
expressions [1].

It is obvious that the complex resonant frequencies ωn
of the physical system must match the complex poles of
the desired filter. In this work, we show how to also
enforce the desired zeros in the system response, by de-
riving the corresponding σn coefficients and the matrix
C. Specifically, |C21| must match the desired filter back-
ground transmission and then, for exact SFs, we find
that the ratios of couplings of the QNMs’ fields to the
two ports must be σn = ±1 for N odd or σn = ±i for N
even, with alternating signs for consecutive modes. We
also explain that good approximate solutions can be ob-
tained, if an overall common phase for all σn is allowed,
according to Eqs. (11–14).

A. Symmetric and antimetric filters

We explained that, for a general lossless reciprocal 2-
port system, the zeros of S11 and S22 are conjugates of
each other, but they do not necessarily coincide. In this
article, we are interested in the special cases of filters
where they do coincide, so that these zeros can only ap-
pear as complex quadruplets (ωo, ω

∗
o ,−ωo,−ω∗o), real or

imaginary pairs (ωo,−ωo), or at ωo = 0. Their numera-
tor is then also (as is always true for S21) a polynomial
of ω2 with real coefficients, optionally with multiplicative
iω factors. These cases include, in particular, common
practical amplitude filters, for which all zeros of reflection
(S11 and S22), corresponding to full transmission, lie on
the real frequency axis or at infinity. To satisfy realness
[S∗(iω) = S(−iω∗)], this class of filters is collectively de-
scribed by the condition S22 = ±S11, namely they are
either symmetric or “antimetric” [34] (note [56]). En-
ergy conservation and reciprocity then force

√
γS11S

∗
21

to be purely imaginary for γ ≡ S22/S11 = ±1, corre-
sponding to (+) odd or (-) even number of iω factors in
the numerator of S11 or S21.

The most important subclass comprises the stan-
dard filter (SF) approximations of the ideal rectangu-
lar filter [1]: Butterworth (flat passband and stopband),
Chebyshev (equiripple passband, flat stopband), inverse
Chebyshev (equiripple stopband, flat passband) and el-
liptic (equiripple passband and stopband) (see Fig. 4).
For a N th-order Butterworth or Chebyshev transmission
bandpass filter, S21 has N zeros at ω = 0 (N iω-factors
in numerator) and N zeros at ω → ∞ (2N zeros total).
For N th-order inverse Chebyshev or elliptic filters, which
have zeros at finite real frequencies, S21 still has one zero
at ω = 0 and one at ω →∞ for N odd, while all 2N zeros
are finite for N even (no iω factors). For a transmission

bandstop filter, the same observations hold instead for
S11. In all SF cases, we conclude that S11S

∗
21 is purely

imaginary (γ = 1), if N is odd, and purely real (γ = −1),
if N is even.

B. Conditions on C and σn

A partial-fraction expansion of the desired network-
synthesis symmetric/antimetric filter expresses H(ω) in
terms of the complex poles, their residues, and a direct
term t (which gives the limiting response at high frequen-
cies according to the filter’s type). For an actual physical
system, the S = S̄C formulation of Eq. (1) assumes that
C is approximately constant over the finite bandwidth
of interest, where C can generally be complex. Far from
the high-Q resonances (ω � |ωn|), Eq. (1) then dictates
S̄ → I and thus S → C. Therefore, for a transmission
filter, one must design |C21| = t, and to also ensure that
|C21| is indeed fairly constant within the filter operational
bandwidth, it may often be useful to impose additional
constraints (for example, dk|C21|/dωk ≈ 0 for k = 1, 2...
at the filter center frequency ωc). C = −S̄{ωCn ,σCn }, which
is used to calculate C, can also provide design intuition
for the topology of the structure, where appropriate low-
Q modes are utilized to get the desired C, as we will see
in practical examples later. [Note that, during structural
optimization, it may be difficult to find all the low-Q
modes contributing to C, when the relevant region of
the complex plane is polluted by other non-contributing
modes, such as diffraction branch cuts, PML modes, etc.
(see examples later and Ref. 35 Appendix F). Thank-
fully, C can always be calculated also as C = S̄−1S,
where S̄ from Eq. (1) includes only the filter-relevant
high-Q modes and S is obtained via (additional) direct
simulation of the structure (with the ports referenced at
the scatterer boundary), but some numerical precautions
should be taken (see section V A).]

For the class of filters of interest with S22 = γS11

(γ = ±1), S(ω � |ωn|)→ C means that the unitary sym-
metric C also satisfies C22 = γC11 and that

√
γC11C

∗
21 is

purely imaginary. Now, since S̄ = SC−1, we can write:

S̄ =
1

|C|

(
S11γC11 − S21C21 −S11C21 + S21C11

S21γC11 − γS11C21 −S21C21 + γS11C11

)
(5)

so that S̄11 = S̄22 and S̄21 = γS̄12. Further, for the QNM
parameters {ωn, σn} of this S̄, using Eqs. (3, 4) for the
dependence of S̄ on σn:

S̄11{ωn, 1
σn
} = S̄22{ωn,σn} = S̄11{ωn,σn} = S̄11{ωn,σnγ }

S̄21{ωn, 1
σn
} = S̄12{ωn,σn} = 1

γ S̄21{ωn,σn} = S̄21{ωn,σnγ }.

(6)
The same result applies to S̄22 and S̄12, so we obtain
S̄{ωn,1/σn} = S̄{ωn,σn/γ}. From the uniqueness prop-
erty mentioned earlier, we conclude that 1/σn = σn/γ.
Therefore, for a lossless reciprocal 2-port system:

S22 = γS11 ⇔ σn = ±√γ, (7)
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so that all modes have σn = ±1 for a symmetric filter
(γ = 1), while σn = ±i for an antimetric (γ = −1).
(This generalizes the well-known CMT result for a single
resonance, where transmission reaches 1 only for equal
decay rates into the two ports [57].) Moreover, with this
σn choice, iσnC11C

∗
21 is purely real.

When C is exactly constant over all frequencies (as it
is for exact SFs), it must be real, to satisfy the realness
condition. Consistently with iσnC11C

∗
21 real, odd-order

SFs have σn = ±1 and C11C21 = 0, while even-order
have σn = ±i.

As detailed in Appendix A, Eq. (7) can be also derived
using general arguments based on the transfer matrix.
However, the scattering-matrix QNMT we used here fur-
ther helps specify the choice of σ-signs to enforce the
desired positions of S-coefficients zeros, as we show in
the remainder of this section.

C. Types of Filters

For each mode n, the appropriate choice of sign for
σn in Eq. (7) depends on the specific filter type that is
being designed. We find the adequate choice analytically
in the limit of large Qs, or more specifically when Γn,l �
|Ωn − Ωl| for ωn = Ωn − iΓn. Under such condition, the
matrix M is dominated by its diagonal terms Mnn =(

1 + |σn|2
)
/2Γn, so Eq. (1) becomes:

S̄pq ≈ δpq +
∑
n

Γn
i (ω − Ωn)− Γn

2σpnσ
∗
qn

1 + |σn|2
, (8)

with σ1n = 1, σ2n = σn. Then, away from the resonances
(Γn � |ω−Ωn|) and to lowest order in Γn, further using
|σn| = 1 from Eq. (7), transmission is

S21 ≈ C21 − i
∑
n

Γn
ω − Ωn

(σnC11 + C21) . (9)

As the overall background transmission C21 ≈
S21 (ω � Ωn) determines the filter type, we will study
its different cases separately.

Case (a) C21 = 0 ⇔ |C11| = 1: This is a band-pass
filter with zero transmission at ω →∞. From Eq. (9), we
have S21 ∝

∑
n Γnσn/(ω − Ωn), which, under condition

Eq. (7), is proportional to a real function that can be
easily used to determine the placement of its zeros. As
an example, we look at the simple scenario of two modes
with Ω1 < Ω2 and calculate the zero at

ωo ≈
Ω2Γ1σ1 + Ω1Γ2σ2

Γ1σ1 + Γ2σ2
. (10)

One can easily confirm that, when σ1 = σ2, the zero ap-
pears between the modes (Ω1 < ωo < Ω2), a feature of-
ten observed in interference phenomena, such as electro-
magnetically induced transparency (EIT) [36, 58]. When
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FIG. 2. Second-order filter responses, using QNM expansions
of the form S = S̄C, with two modes of frequencies ωn =
(0.98 − 0.01i, 1.02 − 0.005i) and coupling ratios (±σ,±σ) in

S̄, and with unitary reciprocal C =

(
iσ∗r t
t iσr

)
where r =

√
1− t2 and such that iσβ = −1 and C22 = σ2C11 (⇔ S22 =

σ2S11), for different values of real background transmission t
indicated in the plots. We use the RWA of ignoring negative-
frequency poles, so the amplitudes of S-matrix coefficients are
exactly the same for any complex σ =

√
γ = eiϕ/2. A zero

always occurs between modes of same coupling ratio (red),
so filters with no zeros between the poles require opposite
signs of the ratios (blue). Including negative-frequency poles
would result to the same qualitative behavior and only slightly
change the response away from the resonances.

σ1 = −σ2, it appears on the side of the mode with the
smallest loss rate (ωo < Ω1 if Γ1 < Γ2 and ωo > Ω2 if
Γ2 < Γ1), while there is no zero if Γ2 = Γ1 (explaining
the lack of transmission zeros predicted by traditional
CMT for two equal-loss coupled resonances [33] and in
symmetric “Fabry-Perot” systems where all Γ’s are the
same [31]). These points are illustrated in Figure 2(a).

These conclusions can be extended to the scenario of
multiple high-Q modes: a real zero always occurs be-
tween two consecutive modes of same σn, there can only
be an even (or zero) number of real zeros between two
consecutive modes of opposite σn and, below the lowest
mode or above the highest mode, a zero can exist only if
there is at least one change in σ-sign. Examples of such
high-order filters are given in Appendix B.

For the SFs with no transmission at infinity, such as
a Butterworth, Chebyshev, odd-order inverse Chebyshev
or odd-order elliptic, where the transmission zeros are
always outside the passband, it is necessary to design σn
with alternating signs, namely

σn = ±√γ (1,−1, 1,−1, ...) = ±√γ (−1)
n−1

. (11)

Case (b) 0 < |C21| � |C11| < 1: This is a band-pass
filter with finite small transmission at ω → ∞. From
Eq. (9), we have S21 ≈ C21 − iC11

∑
n Γnσn/(ω − Ωn).

If we denote β = C11C
∗
21/|C11C21|, then, from the pre-

vious discussion, iσnβ = ±i√γβ = ±1. Therefore, S21

is proportional to a real expression, whose zeros can be
easily predicted, as in the previous case. In particular, a
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real zero always occurs between two consecutive modes of
same σn. Moreover, there is an odd number of real zeros
below the lowest mode, when iσ1β = −1, and an even
(or zero) number when iσ1β = 1, with a similar result
above the highest mode but for opposite signs of iσNβ.
This is simply illustrated in Figs. 2(b,c) for two high-Q
modes and in Appendix B for higher filter order.

For SFs, in this case inverse Chebyshev or elliptic of
even order N (γ = −1 ⇔ β = ±1), with a total of N/2
positive-frequency transmission zeros on each side of the
passband, it is necessary to have

σn =
1

β
(−1)

n−1
iN−1; β =

C11C
∗
21

|C11C21|
. (12)

Case (c) 0 < |C11| � |C21| < 1: This is a band-stop
filter with finite small reflection at ω →∞. Similar anal-
ysis by considering S11 dictates, for even-order inverse
Chebyshev or elliptic SFs,

σn =
1

β
(−1)

n−1
iN+1; β =

C11C
∗
21

|C11C21|
. (13)

Case (d) C11 = 0 ⇔ |C21| = 1: This is a band-stop
filter with zero reflection at ω →∞ and a SF implemen-
tation requires again simply

σn = ±√γ (−1)
n−1

. (14)

By designing σn to satisfy the appropriate condition
from Eqs. (11–14) according to the filter type, the pole
residues in the partial-fraction expansion of H(ω) are also
matched and thus the filter design is complete.

D. S22(ω) = eiϕS11(ω) filters

To exactly satisfy realness, we remind that negative-
frequency modes are necessary and only γ = ±1 is al-
lowed. However, for some systems, realness may not be
a strict condition. For example, for filters with high-Q
modes, the response can be well approximated (at posi-
tive frequencies ω) by the well-known rotating-wave ap-
proximation (RWA) of including only positive-frequency
modes in QNMT. In this case, all previous results hold
for any complex phase factor γ = eiϕ. Therefore, in filter
design, Eqs. (11–14) permit σn to be tuned to the desired
values up to an overall common phase factor (expressed
via γ or β = ±i/√γ). Then, the resulting filters, even af-
ter including also negative modes with their correspond-
ing σ∗n to satisfy realness, will be good approximations of
SFs within the bandwidth of interest.

As seen from Eq. (4), for σ = ±1 (γ = 1), S̄ is al-
ways a symmetric matrix, so S = S̄C is also symmetric
(reciprocal system) if C22 = C11. Similarly, for σ = ±i
(γ = −1), S always satisfies reciprocity if C22 = −C11.
However, when γ is complex, reciprocity and realness of
S = S̄C cannot be satisfied with a constant C. Since
an actual physical system is obviously reciprocal, even

when designed for complex γ, this means that, in this
case, C(ω) is necessarily non-constant, but rather slowly
varying due to other modes, in a way that guarantees
reciprocity. In other words, it is not possible to obtain
high-Q modes verifying Eq. (7) with complex γ without
additional modes proximal enough to form a frequency-
dependent C(ω).

E. Geometrical symmetry

σn = ±1 means that the radiative part of the modes is
even or odd, which can be easily obtained using a struc-
ture with geometrical (e.g. mirror) symmetry between
the two ports [57]. This can explain the increase in trans-
mission previously observed in symmetric structures [59].
However, we will later see filter designs where it is prefer-
able for the structure to not be symmetric, so the modes
themselves are not even or odd, even though their radia-
tive far fields may in fact be (satisfying σn = ±1).

On the other hand, for γ 6= 1, the mode and struc-
ture have to be asymmetric anyway. In particular, even-
order antimetric SFs (γ = −1) can be made only from
asymmetric structures, as confirmed for example by their
known corresponding electric-circuit topologies [1]. How-
ever, we explained that good approximate filters can be
obtained with γ deviating from its optimal value by a
phase factor [as long as the background C(ω) is slowly
varying, in contrast to being constant for exact SFs].
Therefore, approximate even-order SFs can be designed
also with γ = 1. To highlight this point, we later show
implementations of such filters, using symmetric struc-
tures.

F. Summary

A N -order 2-port filter, whose reflection is zero at N
real frequencies, obeys S22 = γS11 (γ = ±1, for symmet-
ric/antimetric) and consists only of modes whose radia-
tion couples to the two ports with the ratios σn = ±√γ.
To design standard filters, these σn ratios must alter-
nate sign among consecutive resonances, with complex
frequencies matching the “textbook” filter poles [1], and
a roughly constant background scattering C, appropriate
for the desired filter type, must be established [Eqs. (11–
14)]. With other choices of complex pole values or σn-
sign orders, one can design also non-standard filter spec-
tra (see examples in Fig. 2 and in Appendix B). Approx-
imate filters can also be designed with complex unitary
γ. Once the QNMT design objectives (constant back-
ground transmission |C21|, eigenfrequencies ωn and port-
coupling ratios σn) have been determined for the desired
filter profile, an implementing physical structure can be
found using adequate optimization/nonlinear-solver tools
to force the structure to satisfy these objectives. Details
on this optimization procedure are given in section V. It
is also shown there that, for the same filter design objec-
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tives, different optimal structures can be found with the
same desired spectral response, up to small errors aris-
ing from other modes outside the bandwidth of interest,
leading to a non-constant C(ω).

IV. APPLICATION TO MICROWAVE
METASURFACE FILTERS

The analytical criteria we have presented in this arti-
cle give a direct pathway to precisely design high-order
2-port filters in all kinds of wave physics (acoustics, pho-
tonics, quantum, etc.). As a demonstration, we will ap-
ply our method to microwave metasurface filters. It is
important to clarify up front that, in all examples pre-
sented hereafter, we do not use any topology optimiza-
tion algorithms to determine the structures (although
our method can be combined with those, in principle).
Instead, for each desired filter response, we choose a
fixed topology expected to give roughly qualitatively the
desired spectral shape (bandpass vs. bandstop, num-
ber of resonances, etc.) by using physical intuition,
which is based on circuit-theory principles and sometimes
also on QNMT itself to devise low-Q pole configurations
generating the required background scattering C (e.g.,
see Ref. 35, section IV). The chosen topology for each
metasurface has few unknown physical parameters (geo-
metric feature sizes and dielectric permittivities), which
are then optimally identified by simply applying a mul-
tivariable solver of nonlinear systems of equations on the
filter conditions derived in section III to precisely quanti-
tatively match the desired SF. This rather “traditional”
approach leads to rapid computational design, as physics
and analytics have already been used to facilitate the job
of the optimizer.

For comparison, all filters designed in this article have
specifications: center frequency fc = ωc/2π = 10 GHz,
passband ripple of at most 0.25 dB, and stopband atten-
uation of at least 25 dB; so only the filter type and band-
width may differ. For standard filters (all except for sub-
section A1), we easily calculate the ideal/desired “text-
book” poles ωopt

n via the MATLAB [60] “Signal Process-
ing Toolbox” functions “butter”, “cheby1”, “cheby2”,
and “ellip”, while their corresponding σopt

n are given by
the appropriate from Eqs. (11)–(14). All ideal-filter spec-
tra in Figs. 3–8 (dashed lines) are computed using Eq. (1)
with these ideal parameters {ωopt

n , σopt
n , Copt} (including

the corresponding negative modes).
For all microwave metasurfaces: we use a square pe-

riodic lattice of period a (with its principal axes along
x̂, ŷ), the conducting material is taken as perfect metal
with thickness 18µm, and the tiny volume of any etched
out metal (e.g., inside slits) is taken simply as air. 18µm
corresponds to 0.5oz copper, whose finite conductivity
has at these frequencies only a small attenuation effect,
which is known to get worse as the filter bandwidth
decreases [31], as also demonstrated in examples later.
The COMSOL Multiphysics [61] finite-element software

is used (with mesh resolution fine enough to ensure ac-
curacy for the desired spectral features) to carry out the
numerical computation of the eigenmodes {ωn, σn} dur-
ing our QNMT-based design, as well as of the “exact”
frequency-domain response S(ω) for plane wave excita-
tion of the final optimized structures. Specifically, for
plane-wave ports (Ep,Hp), the QNM-to-port couplings
are evaluated from the COMSOL non-normalized eigen-
fields (En,Hn) as

Dpn ∝
∫
p

(
E∗p ×Hn + En ×H∗p

)
· dS (15)

at the two (p = 1, 2) external port boundaries of
the metasurface (dS points outwards), and then σn =
D2n/D1n (independent of the QNM scaling ampli-
tude). More details regarding the finite-element compu-
tations (especially regarding low-Q-modes) can be found
in Ref. 35, Appendix F. In the Supplemental Mate-
rial [62], we provide tables with the calculated QNMs
for every metasurface presented.

A. Polarization-preserving transmissive metasurfaces

In this section, the 2-port metasurface filters we design
are for transmission of a normally incident plane wave
through the metasurface. We choose the period a small
enough for filter operation (centered around fc) below the
first diffraction cutoff (fcut = c/a at normal incidence),
so only transmission and reflection need to be consid-
ered. The metasurface topologies have planar p4mm
(90◦-rotational plus 4-mirror) symmetry, so the response
for normal incidence is independent of the polarization
ê, no cross-polarization coupling occurs, and thus indeed
only 2 ports are needed. In this scenario, Eq. (15) simpli-
fies to Dpn ∝

∫
p
EnedS, where Ene is the ê-component of

the n-QNM electric field. To demonstrate the generality
of our design method, we obtain all types of bandpass
and bandstop transmission SFs with different orders and
bandwidths. In particular, we show SFs with different
|C21| values corresponding to all four cases (a)–(d) dis-
cussed earlier, as it is instructive for the reader to un-
derstand in each case the physical intuition for choosing
the appropriate metasurface topology and the required
phase relation between σn and C [Eqs. (12,13)].

Normal incidence was chosen here for simplicity. The
angle dependence of the designed filters’ response is be-
yond the scope of this paper, which solely aims to demon-
strate the 2-port design method. In principle, one can
add further constraints to minimize also the performance
drop-off away from normal incidence to achieve angle in-
dependence or one can apply this method directly for a
non-zero angle to design a precise filter at non-normal
incidence (in which case, fixed-angle QNMs should be
used [35, 63]). Still, for the sake of completeness, in
Appendix C, we show some comparative results, which
reinforce the intuition that, among different parameter
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sets giving the same normal-incidence filter, metasurfaces
with smaller period a (by using high permittivities) tend
to maintain better their performance at an angle.

1. Second-order bandpass filter - Circuit model

We start by studying a simple symmetric second-order
metasurface, in order to build some physical intuition
on how a particular structural topology can be mod-
eled by an effective circuit, to relate this circuit to the
QNMT, and to derive design guidelines for transmission-
zero placement. The metasurface, shown in Fig. 3(a),
is formed by two planar metallic sheets sandwiched be-
tween three uniform dielectric layers. A square array
(with period a) of narrow cross-like apertures is etched
in each metallic sheet, so that the centers of the crosses
are the same for all patterned sheets. Each aperture ar-
ray creates a resonance, which can be modeled in the
subwavelength limit (a � λ) as an effective shunt par-
allel LaCa (≡ 1/ω2

a) to a plane wave incoming from free
space with impedance Z. The inductance La originates
from the current flowing around the edge of the aperture,
while the capacitance Ca comes from the opposite-charge
accumulation across facing sides of this narrow gap [see
Fig. 3(a)]. The connected topology of the metallic sheets
represents a short-circuit to an incident plane wave at
long wavelengths (shunt La), leading to no transmission
at zero frequency. Moreover, a longitudinal inductance
Lb couples the apertures on the two metallic sheets, cor-
responding both to first-order transmission-line effects
of the thin dielectric layer and to the direct mutual in-
ductance between the apertures. Finally, capacitance Cb
builds up between the two metallic sheets [see Fig. 3(a)],
which is an interesting feature that has an important con-
sequence: it leads to the emergence, in series with the
path of incident-wave propagation (longitudinally), of a
parallel-resonant LbCb, which becomes an open circuit
at the frequency ωb = 1/

√
LbCb, thus leading to a zero

in the transmission function. The final equivalent-circuit
model is given in Fig. 3(b), corresponding to a passband
filter with a finite-frequency zero.

The transmission spectrum can be computed through
S21 = 2Vout/Vin [1], and with yj = Z (1/ωLj − ωCj) for
j = a, b we obtain:

S21(ω) =
2iyb

(1 + iya)(1 + i(ya + 2yb))
. (16)

This clearly shows transmission zeros at ±ωb, and also at
ω = 0, ω → ∞ (bandpass behavior). Denoting the loss
rates Γj = 1/(2ZCj), the denominator shows the system
poles at ±Ω1− iΓ1 and ±Ω2− iΓ2, where Γ1 = Γa, Ω1 ≈
ωa, Γ2 = 1/ (1/Γa + 2/Γb), Ω2 ≈ Γ2 (ωa/Γa + 2ωb/Γb).
One system resonance is identical to the single-sheet reso-
nance, while the second is affected also by the inter-sheet
couplings: it is always narrower (Γ2 < Γ1), and Ω2 ≷ Ω1

if ωb ≷ ωa.
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Ideal filter
Metasurface

FIG. 3. (a) Symmetric metasurface for a second-order band-
pass filter centered at 10 GHz with a single transmission-zero,
designed for 0.25 dB passband ripple and 25 dB stopband at-
tenuation (black dashed lines). (b) Equivalent circuit model.
The coupling LbCb gives the transmission-zero. (c) Transmis-
sion spectrum of two optimized symmetric structures with a
zero respectively on the left (L) and on the right (R) of their
transmission peaks. Parameters for structure (L): a = 6mm,
w1,2/a = 0.0479, l1,2/a = 0.846, t1,3/a = 0.493, t2/a = 0.257,
ε1,3 = 1.43, ε2 = 14.51. Parameters for structure (R): a =
9.34mm, w1,2/a = 0.00877, l1,2/a = 0.905, t1,3/a = 0.0237,
t2/a = 0.0966, ε1,3 = 4.12, ε2 = 3.80.

When ω is close to the positive resonances, the RWA
yj ≈ (ωj − ω)/Γj effectively drops the negative reso-
nances. Then, a partial-fraction expansion of Eq. (16)
can be obtained:

S21(ω) ≈ iΓ1

ω − (Ω1 − iΓ1)
− iΓ2

ω − (Ω2 − iΓ2)
, (17)

This is identical to the QNMT result in Eq. (1) with
σ = (1,−1) and C = −I.

As mentioned earlier, it is the two different values for
the decay rates Γ1,2 (of these two opposite-symmetry
modes with fully reflective background) that lead to
a transmission zero outside the resonant peaks, which
is usually not pointed out in typical CMT models for
lossless systems [33, 36, 64]. We saw from Eq. (10)
that this zero ωb appears on the side of the resonance
with the smallest loss rate, which is Γ2 in this case, so
ωb < Ω2 < Ω1 = ωa ⇔ LaCa < LbCb or the opposite
order. Therefore, we have a recipe to design the zero
for this metasurface, based on the equivalent circuit ele-
ments. To translate those to physical structural param-
eters, we observe that, in the quasi-static limit, Lb ∝ t2
(see Appendix D) and Cb ∝ ε2/t2, where t2 is the small
separation between the two metallic sheets and ε2 is the
dielectric constant of the separating layer. This means
that LbCb ∝ ε2 and does not depend on t2 to first order.
On the other hand, LaCa also does not depend on t2, but
it has a weighted dependence on ε1 and ε2. The location
of the transmission zero relative to the poles then mainly



9

depends on the ratio of permittivities of the two dielec-
tric materials. In particular, a zero at a frequency below
the poles is obtained using a large ε2/ε1 > 1.

We can also use Eq. (17) to compute the full-
transmission frequencies (|S21(ωt)| = 1):

ωt =
Ω1 + Ω2

2
±

√(
Ω1 − Ω2

2

)2

− Γ1Γ2. (18)

We see that there are two full-transmission maxima be-
tween Ω1 and Ω2, as long as the eigenfrequencies are well
separated (|Ω1 − Ω2| > 2

√
Γ1Γ2).

We can now use the QNMT to design second-order
bandpass filters with a transmission-zero either on the
right or on the left of the transmission peaks. These are
non-standard spectra and, in both cases, we numerically
find the two complex eigenfrequencies ωopt

n , for which
Eq. (17) gives the filter specifications stated at this sec-
tion’s introduction (0.25 dB passband, 25 dB stopband
ripples) and a 3dB-bandwidth of 6% centered around
10 GHz. Then, we use the multivariable nonlinear-
equation solver to find the structural parameters that will
make the eigenmodes ωn of the metasurface of Fig. 3(a)
match those desired eigenfrequencies ωopt

n and with port-
coupling ratios σ = ± (1,−1). Results for optimized
structures are shown in Fig. 3(c). We note that, as ex-
pected, the structure with a transmission-zero at smaller
frequencies has a larger dielectric constant for the inside
layer. We also see that the shapes of the transmission
spectra deviate somewhat from the ideal filters. This is
mainly due to higher-frequency resonances that affect the
scattering matrix (acting as a background C) and make
it different from the two-poles approximation of Eq. (17),
leading to slight reduction of transmission at low frequen-
cies and increase at higher ones.

Finally, if we wanted to design the structure using di-
rectly the circuit model, we would need to compute the
circuit elements La,b, Ca,b corresponding to the physical
metasurface. This typically requires fitting Eq. (16) to
the actual spectral response, which is not efficient for de-
sign optimization due to the large number of direct sim-
ulations required to locate and accurately fit the sharp
spectral features. This is exacerbated by errors intro-
duced by the aforementioned higher-order resonances not
encompassed by the circuit model.

2. Third-order bandpass (a) filters

Using the QNMT design method, as well as guidance
from the previous two-pole bandpass structure, we now
design all four SF types mentioned in section III for third-
order bandpass filters. We saw that all odd-order band-
pass SFs have C21 = 0 [case (a)], so Eq. (11) requires
port-coupling coefficients with ratios σopt ∝ (1,−1, 1)
for the three modes.

To implement these filters, we use a structure with the
same unit-cell topology as in Fig. 3(a), but with three

metallic sheets and four dielectric layers. Based on the
insight gained in section IV A 1 from the effective circuit
model, we realize that each of the inside layers will cre-
ate a longitudinal parallel LjCj ∝ εj resonance, which
will cause a transmission zero ∝ 1/

√
εj . For the inverse

Chebyshev and elliptic filters, two distinct zeros are re-
quired. Therefore, we need different dielectric constants
εj for the inside layers. This means that the physical
structure for these filter types must not be symmetric, so
their modes are not even or odd, even if their radiative
tails are [σ = ±(1,−1, 1)]. On the other hand, Butter-
worth and Chebyshev filters do not have real zeros, so
there we can choose a symmetric structure, which sim-
plifies the optimization problem, as only eigenfrequencies
need to be matched (in the correct order of modal sym-
metry). However, for these “zeroless” SFs, the challenge
with the chosen metasurface topology is to push away
from our bandwidth the unavoidable zero that will arise
from the inside layers. The simplest way to accomplish
this, is to look for solutions where these layers are thick
enough that the higher-order dependence of the longitu-
dinal parallel LjCj on tj moves the zero to sufficiently
high frequencies. Different topologies could also be de-
vised that eliminate either the mutual inductance or ca-
pacitance between sheets.

Again, for each filter, by optimizing the structural
topology, we force its three complex resonant frequencies
ωn and their corresponding σn to match the desired val-
ues {ωopt

n , σopt
n }. Transmissions of the optimized meta-

surfaces that implement the four filter types with ∼5-6%
3dB-bandwidth are shown in Fig. 4(a), while in Fig. 4(b)
only for elliptic filters with varying bandwidth (∼2-10%).
We note a good agreement with the ideal filters, except
for small discrepancies again due to effects from higher-
order modes and to small errors in the values of opti-
mized resonances. Notice that, indeed, Butterworth and
Chebyshev filters require thick inside dielectric layers to
move the zero away and that smaller bandwidths need
higher εj to increase the modal Qs. Moreover, we test the
effect of metal (here, copper) losses on the 6%-bandwidth
elliptic filter and find that it mainly just reduces the val-
ues of the transmission peaks (only by ∼ 0.5 dB at 10
GHz operation).

3. Third-order elliptic bandstop (d) filter

In order to design a third-order bandstop filter, we now
need to achieve a full-transmission background |C21| = 1
[case (d)], and then Eq. (14) dictates again three QNMs
with σopt ∝ (1,−1, 1). As reviewed in section II, the
background-C design can generally be understood us-
ing the system low-Q modes and, in particular, a fully-
transmissive C can be achieved by a mode with infinite
radiative rate, which effectively models free space [35].
Thus, as expected, we need a physical structure with a
very small effective index (∼ 1), while still able to sup-
port the required high-Q resonances. Moreover, since
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Ideal filter
Metasurface (perfect metal)
Metasurface (copper)

Butterworth
Chebyshev
Inv. Chebyshev
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(a)  

(b)  
Elliptic for different 

bandwidths 

FIG. 4. Optimized third-order bandpass filters (a) of different
types with same bandwidth and (b) elliptic only for different
bandwidths. We use the same structure as in Fig. 3 but with
three metallic sheets and four dielectric layers. Physical pa-
rameters and 3dB-bandwidths are provided in Appendix E.
We notice good agreement of lossless structures (solid lines)
with ideal filters (dashed lines), except for small deviations
mainly due to effects from high-order modes. Copper losses
(dotted line) reduce peak transmission while preserving the
filter’s shape.

we want full transmission at zero frequency, the metal-
lic components now should not have a fully-connected
topology. Therefore, relying on the principle of du-
ality, we choose, in place of each metallic sheet with
cross apertures, an array of non-connected thin metal-
lic crosses. These are supported by dielectric crosses,
also non-connected to minimize the total effective index.
The structure is shown as an inset in Fig. 5(a). Its ef-

fective circuit model now sees each array of crosses as
a shunt series-LC resonance, where L is the inductance
of the cross wires and C is the capacitance across ad-
jacent crosses within each array [see Fig. 5(a)]. Then,
the couplings between arrays are effectively longitudinal
parallel-LC, where C is the capacitance across facing (co-
centric) crosses and L is the first-order transmission-line
model of propagation through the free space, but also
includes the small contribution (a large in-parallel value,
see Appendix D) of the mutual inductance between fac-
ing crosses. This circuit can implement the desired SF,
where each shunt series-LC or longitudinal parallel-LC
can directly impose one of the required three distinct
transmission zeros.

An example of an optimized structure with a third-
order elliptic bandstop response of 11.7% 3dB-bandwidth
is shown in Fig. 5(a). We note again the very good agree-
ment compared to the ideal filter. Notice that, in duality
to the passband filter, the permittivity of one inside di-
electric turns out to be smaller than the outside layers.

4. Second-order elliptic bandpass (b) and bandstop (c) filters

To complete our set of design examples, we now
demonstrate second-order elliptic bandpass and band-
stop metasurface filters. In this case, we need to de-
sign a specific non-trivial background C, in particular,
C21 must be roughly constant within the bandwidth of
interest and its amplitude set respectively to the desired
stopband minimum attenuation value (−25 dB) [case (b)]
or passband maximum ripple value (−0.25 dB) [case (c)].
Furthermore, the coefficients σn should respectively sat-
isfy Eq. (12) or Eq. (13). As discussed in section III, for
even-order SFs, γ = −1 and C is a real constant matrix,
so β ≡ C11C

∗
21/ |C11C21| = ±1 and σopt

n = ±i, which cor-
responds to asymmetric structures, such as the standard
circuit topologies of even-order SFs. However, we ex-
plained that approximate solutions with a different uni-
tary γ are possible (using the RWA) and here we present
symmetric structures (γ = 1) exhibiting a second-order
elliptic filter response within the bandwidth of interest.
Since symmetry guarantees σn = ±1, Eqs. (12,13) be-
come design objectives for β, which must respectively
match βopt = ±i/σ1.

For the bandpass filter (with two transmission zeros),
we use as starting point for the structural topology that
from Fig. 3(a) corresponding to a second-order bandpass
filter with only one zero. There, the large metallic sheets
led to C21 = 0. In order to increase |C21| to the small re-
quired −25 dB around the filter center-frequency ωc, we
open holes through the entire metasurface, as shown in
Fig. 5(b), so that some of the incident wave will directly
go through without coupling to the high-Q resonances of
the crosses. Excluding those two high-Q modes, using
QNMT we calculate C = −S̄{ωCn ,σCn }, and it turns out
that even-odd pairs of almost degenerate low-Q modes
below ωc together with higher-order modes lead to a



11

(b) 
 

(c) 
 

(a) 
 

Ideal filter
Metasurface (PEC)
Metasurface (copper)
C background

 

𝑎 

ℎ 

𝑙! 𝑤!  

𝑎 

ℎ 

𝑙! 
𝑤! 

𝑤! 

𝑑 

𝑎 

ℎ 
𝑙!  

. 𝐿! 

𝐶! 

FIG. 5. (a) Third-order elliptic bandstop filter. The structure has three metallic-cross arrays and four dielectric layers
with parameters: a = 17.05mm, h/a = 0.03, d/a = 0.619, w/a = (1.53, 3.73, 1.61) × 10−3, l/a = (0.558, 0.589, 0.524),
t/a = (0.166, 0.358, 0.441, 0.183), ε = (4.76, 3.22, 4.05, 4.50). (b) Second-order elliptic bandpass filter. The symmetric structure
has two metallic sheets and three dielectric layers with parameters: a = 17.571mm, h/a = 0.456, w1,2/a = 6.08 × 10−3,
l1,2/a = 0.4355, t1,3/a = 0.3072, t2/a = 0.3169, ε1,3 = 3.82, ε2 = 1.893. (c) Second-order elliptic bandstop filter. The
symmetric structure has two metallic-cross arrays and three dielectric layers with parameters: a = 18.66mm, h/a = 0.181,
w1,2/a = 2.74 × 10−3, l1,2/a = 0.514, t1,3/a = 0.204, t2/a = 0.332, ε1,3 = 1.60, ε2 = 3.10. All filters satisfy quite well the
marked requirements (black dashed lines) and agree with the ideal filters.

background with a flat small |C21| and constant β over
a fairly large frequency range (see modes in Supplemen-
tal Material [62]). [Traditionally, one would approximate
C by simulating an effective background structure (e.g.
where the cross apertures which cause the high-Q reso-
nances are closed), but the result is inaccurate (−19 dB
instead of −25 dB).] The optimization then consists of
enforcing the values of the two complex eigenfrequencies,
|C21 (ωc)| = −25 dB and, from Eq. (12), β (ωc) = i/σ1.
The transmission of the designed structure is shown in
Fig. 5(b) and agrees very well with the SF spectrum of
1.1% 3dB-bandwidth. It turns out that the modal sym-
metry is σ = (−1, 1), so β (ωc) = −i. Note that, since
each metallic sheet is still connected (in a topological
sense), the transmission at very long wavelengths will
still go to zero.

For the second-order bandstop elliptic filter, we use as
starting point the structural topology from Fig. 5(a) for
the third-order bandstop filter, but with two metallic-
cross arrays sandwiched between three dielectric layers.
There, the effective refractive index of the entire metasur-
face was designed small to get |C21 (ωc)| ≈ 1. In order to
decrease |C21| to the required −0.25 dB, we connect the
dielectric crosses, as shown in Fig. 5(c), to reflect back
some of the incident wave. In QNMT terms, an averaging
over the metasurface leads to an effective slab of low re-
fractive index, which supports equispaced “Fabry-Perot”
low-Q modes ωCn = nΩC − iΓC [31]; the “Fabry-Perot”
transmission hits |C21| = 1 at ΩCn , but is less than 1 and
flat between modes [nΩC , (n+ 1)ΩC ], with roughly con-

stant β ≈ i if n even (and β ≈ −i if n odd). For this
structure, it turns out that these modes ωCn have such a
large ΓCn (see modes in Supplemental Material [62]) that
it is difficult to accurately find all higher-n modes still
contributing to C (ωc), as the relevant region of the com-
plex plane is polluted by the branch cut associated with a
higher-order diffraction port. Therefore, we instead cal-
culate it indirectly from C(ωc) = S̄−1(ωc)S(ωc), as ex-
plained in section III B. [Again, the traditional method of
an effective background structure (removing the metal-
lic crosses) gives a noticeably inaccurate estimate of C
(−0.11 dB instead of −0.25 dB).] The two high-Q modes
have symmetry σ = (−1, 1), consistent with β (ωc) = i
from Eq. (13), and the optimized final structure has
transmission shown in Fig. 5(c), matching precisely an
elliptic bandstop SF of 10.3% 3dB-bandwidth.

B. Polarization-converting reflective metasurfaces

To demonstrate different port configurations, we now
examine plane wave normal incidence on microwave
metasurfaces without planar p4mm symmetry, so the two
polarizations couple. To maintain the number of ports at
two, which is the scenario of applicability of our design
criteria, we consider metasurfaces that still have small
enough period a to avoid diffraction (fc < fcut = c/a),
but now also have a full metallic backing. In this way, a
plane wave of one polarization (port x̂) can only be re-
flected, either onto its own polarization or onto the other
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FIG. 6. Polarization-converting reflective metasurface with
third-order Chebyshev filter response. The symmetric (across
the x̂ ± ŷ planes) structure has two metallic sheets and two
dielectric layers, on top of a back reflector, with parameters:
a = 8.138mm, w1,3/a = 0.1024, w2/a = 6.035×10−3, l1,3/a =
0.7807, l2/a = 0.6783, t1/a = 0.5142, t2/a = 0.0556, ε1 =
7.492, ε2 = 7.789.

polarization (port ŷ). Note that, although a full x̂ → ŷ
polarization conversion may seem like a 90◦ rotation, this
is in fact merely a “polarization reflection” across a diag-
onal x̂± ŷ plane, since reciprocity prevents having an ac-
tual 90◦ rotator of any incident polarization, which would
require Syx = −Sxy. For example, when |Sxy| = 1, an
incident wave linearly polarized along x̂ ± ŷ keeps the
same polarization upon reflection from the metasurface.
Such metasurfaces are called “reflective polarization con-
verters” [46–50] and, since they are one-sided, they have
planar “wallpaper symmetry groups” [65].

For brevity, we only consider a third-order bandpass
Chebyshev filter in polarization conversion Syx. Namely,
an incident plane-wave wide-spectrum pulse will be re-
flected from the metasurface, keeping the same polar-
ization in the stopband, but having its polarization “re-
flected” with respect to the x̂ + ŷ axis in the passband.
For third-order bandpass, we need |Cyx| = 0 and three
resonances, while the Chebyshev shape can be imple-
mented most simply with a symmetric structure with an
x̂+ ŷ symmetry plane [so σ = ±(1,−1, 1) automatically,
where σn = Dyn/Dxn =

∫
EnydS/

∫
EnxdS, calculated

at the front face of the metasurface]. Using intuition
from our transmissive third-order bandpass topologies of
Fig. 4, we need slit apertures on metallic sheets, where
ports (polarizations) x̂ and ŷ couple respectively only to
the resonances of the first and third slits, which are only
cross-coupled via the second slit. This is accomplished by
the metasurface shown at the inset of Fig. 6, respecting
both x̂ ± ŷ symmetry planes: a symmetric-cross aper-
ture on a front metallic sheet provides two resonances
without mixing the polarizations and an additional di-

agonal slit on a second metallic sheet (between the front
sheet and the perfect metal reflector) is the only element
that breaks the wallpaper symmetry group p4mm (90◦-
rotational plus 4 mirrors) down to a c2mm (180◦, includ-
ing rotation centers off 2 mirrors) [65], so it couples the
two front slit resonances.

By optimizing over the structural parameters, we find
a set of slit dimensions and dielectric layers’ thicknesses
and permittivities that forces the QNMs of the structure
to match the poles of a 6.3% 3dB-bandwidth Chebyshev
SF. As seen in Fig. 6, the exact frequency domain sim-
ulation gives a spectral response for polarization conver-
sion upon reflection that matches remarkably the desired
Chebyshev shape.

C. Diffractive reflective metasurfaces

As our last application, we consider yet another meta-
surface 2-port configuration. A metal back reflector is
again present, but the plane wave now has a frequency
c/2a < f < c/a and is incident (with wave vector in
the ΓXx direction of the kxky Brillouin zone) at an
angle θ > arcsin(c/af − 1), so that the −1 diffracted
beam appears at the angle θ−1 = arcsin(sinθ − c/af),
while all other diffraction orders (spatial harmonics) are
evanescent (i.e., outside the light cone). With excitation
along ΓXx, a system with y-mirror symmetry still de-
couples the two polarizations, therefore, for one of them
incident, only two ports are again present (the 0,−1
beams). When full conversion from the 0 to the −1 or-
der is achieved, this phenomenon has been called “perfect
anomalous reflection” [51–55].

In this demonstration example, we choose the inci-
dence angle θ(f) = arcsin(c/2af), so that the meta-
surface operation is exactly at the Brillouin-zone edge
(Xx point) at all frequencies. Choosing a fixed Bloch
wave vector k0,xy = (π/a, 0) (instead of a fixed angle)
makes the simulations much simpler and also highlights
the “anomalous” reflection in that, within the filter pass-
band, the obliquely incident wave is reflected back to
where it came from [θ−1(f) = −θ(f), called “retroreflec-
tion”]. We target θ(fc = 10 GHz) = 45◦, so we need
a = 21.2 mm. The configuration of the ports and of
the propagating spatial harmonics are shown as insets
of Fig. 7. For the 2-port regarding the ŷ polarization,
we now wish to design for S−1,0 a second-order elliptic
bandpass filter of 1.6% 3dB-bandwidth. Namely, only for
a very narrow range of frequencies does anomalous reflec-
tion occur (back at −θ), otherwise (in the stopband) the
wave is regularly reflected (at θ). Here, Eq. (15) gives
σn = D−1n/D0n =

∫
Enye

−iπx/adS/
∫
Enye

iπx/adS.
The x̂-mirror symmetry ensures σ = ±(1,−1) for the
two high-Q resonances, so we have to achieve the neces-
sary |C−1,0| = −25 dB with βopt = ∓i, from Eq. (12).
We first design this slowly varying (softly diffracting) C
with a lattice of metallic stripes, disconnected at the cor-
ners by narrow slits to form square loops with cham-
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FIG. 7. Diffractive reflective metasurface with second-order
elliptic filter response. (bottom center inset) The structure
unit cell (a = 21.2 mm) is stacked, top to bottom, as follows:
square-loop metallic stripe of width d = 0.1354a and cham-
fered corners to get inter-loop gap w = 0.004406a; dielectric
layer ε = 9.8, t = 0.06804a; metallic sheet with etched center
cross of w1 = 0.009184a, l1 = 0.2731a, and corner crosses of
w2 = 0.0301a, l2 = 0.259a; dielectric layer ε = 2, t = 0.1455a;
back (PEC) reflector. The ŷ-polarized incoming “0” (black)
wave at angle θ is “anomalously” reflected back into the same
direction −θ of the “−1” (red) diffracted beam within the fil-
ter bandwidth. (top right inset) Among all Bloch wave vectors
(black dots), only the incident “0” wave at the Brillouin-zone
X edge (kx,0 = ωsinθ/c = π/a) and the “−1” diffracted order
(at kx,−1 = −π/a) are inside the light cone (ω/c circle in kxky
plane) and are thus propagating ports.

fered corners and placed on top of a metal-backed di-
electric layer. We roughly optimize parameters to get
a quite flat |C−1,0| ≈ −25 dB around fc and β = +i
(so we need σ1 = −1). Then, on the second metallic
sheet, we open two co-planar arrays of dissimilar slits
and add a final PEC-backed dielectric layer to form the
final (p4mm-wallpaper-symmetry) metasurface (see in-
set of Fig. 7). The parameters are then optimized (using
C = S̄−1S, since the diffraction branch cuts pollute the
low-Q region of the complex plane) to give resonances at
{ωn, σn = (−1, 1)}. We get a diffraction spectrum, which
once again matches the desired filter response (Fig. 7).
We also show the response of the designed structure at
a fixed angle θ = 45◦ (green curve) and we see that it is
almost identical to that at fixed kx.

It should be clear that one can also design such “per-
fect anomalous reflection” filters also away from Xx for
a different pair of incidence and diffraction angles.

D. Fabrication and tunability

All the metasurface filters that we presented were
based on a layered topology with metallic sheets sand-
wiched between dielectric layers. This layered form was
chosen, because it has the great advantage of allowing
easy fabrication. Especially in the cases where pattern-
ing is only on the metallic sheets, these metasurfaces can
be manufactured even with widespread printed-circuit
board (pcb) techniques. In fact, all designed SFs pre-
sented in this article used dielectrics with permittivities
less than 11.2, which is roughly the upper limit for low-
loss (typically Al2O3-based, tanδ . 0.0025) materials
compatible with pcbs. Furthermore, the clear separa-
tion between metallic sheets allows them to be connected
to separate electrodes, where voltage can be applied to
potentially tune the permittivity of the intermediate di-
electrics, if those are chosen to be tunable materials (liq-
uid crystals, ferro-electrics etc.) [66]. Previous attempts
at elliptic filters have usually employed topologies with
shunt metal paths connecting different metal sections
within the metasurface, which hinders both these ben-
efits [25, 38, 39].

V. DESIGN OPTIMIZATION

Device inverse design via optimization is widely ac-
cepted to be a challenging task. All possible methods face
difficulties, such as objective functions with a plethora of
local optima or with bad behavior (e.g., nonanalyticity),
slow convergence, violation of constraints, etc. Therefore,
to find an appropriate structural topology and a “good”
optimal solution, it may often take a few attempts, in-
cluding trying different optimization algorithms and set-
tings, several (random or intuition-guided) initial struc-
tures, etc. Similarly, the QNMT-based design method
we introduced in this article does not lead to trivial opti-
mization problems. To accelerate the solution of our mi-
crowave metasurface SF designs in the previous section,
we employed physical intuition (e.g., from circuit theory)
to choose the topology and we performed few preliminary
computations to determine an arbitrary but reasonable
initial structural-parameter set for optimization (e.g., to
ensure that the lowest-order slit resonances were used).
Here, we present more details regarding our optimiza-
tion (root-finding) procedure and demonstrate with com-
parative examples that, for strongly coupled wavelength-
sized systems, our QNMT analytical design criteria can
be more effective than a direct approach of brute-force
optimizing the desired spectral response at a finite set
of key frequencies. In particular, we show an example
where, using different initial structural-parameter sets
for the same filter design objective, our method leads to
different optimal structures with the same (up to small
deviations) desired spectral response within the band-
width of interest, while the brute-force approach fails to
converge to the desired response.
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A. Optimization objectives and settings

The analytical design criteria derived in Sec. III can be
enforced using a root-finding problem to set the QNM
parameters ωn ≡ Ωn − iΓn, σn, and background C (if
needed) to the required values ωopt

n ≡ Ωopt
n − iΓopt

n ,
σopt
n [from Eqs. (7) with necessary sign order], and Copt.

To precisely match the desired spectrum, the resonant
frequencies must converge to their target values in the
complex plane with an accuracy on the order of their
linewidths, so we rescale our complex-frequency errors as
δω = {(ωn − ωopt

n )/Γopt
n } → 0. (Note, however, that of-

ten the rates Γn have a slower dependence on structural
parameters than the real frequencies Ωn, so, in the first
optimization steps, it might be appropriate to use smaller
error weights for the δΩ.) When a geometric scaling law
can be used (e.g., for Maxwell’s equations) and no dimen-
sion must be fixed to a specific value, one can eliminate
one real-frequency objective Ωo → Ωopt

o by multiplying,
after each iteration, all dimensions with Ωo/Ω

opt
o or the

average < Ωn/Ω
opt
n >. For a N th-order system, this leads

to a system of 2N − 1 real equations for {Ωn,Γn}.
When the structure is symmetric with respect to the

two ports, so that σn = ±1 automatically, it is often ad-
vantageous to order the modes according to their desired
symmetry order before computing the frequency errors.
When there is no symmetry, since an overall phase factor
is allowed for all σopt

n , we extract the phase σl/|σl| ≡ eiχl
for some l and enforce only σn,l ≡ σne

−iχl → σopt
n,l ≡

σopt
n /σopt

l = ±1 (for n = l this is simply |σl| → 1).
During optimization, potential modal-frequency cross-
ings can be problematic, especially when numerically cal-
culating derivatives, so the modes should be tracked, for
example, using their σn,l values. The errors δσ → 0 can
be formed in many different ways, but |δσ| should ide-
ally be invariant under port swaps σ → 1/σ; for ex-

ample, one can choose δσ = (σn,l + 1/σn,l)/2 − σopt
n,l

[which could optionally further multiply by a factor

(σn,l − σopt
n,l )/(σn,l + σopt

n,l ) to maximize the error for

the wrong σn,l sign]. Note that, due to the reciprocity
Eq. (2), the real and imaginary parts of σn are not com-
pletely independent, so there may be ways to reduce the
number of target equations.

In the cases where a nonzero |Copt
21 | or |Copt

11 | is required
[e.g., Eqs. (12) or (13)], also a phase condition of the form
iσlβ = ±1 must be satisfied. Since phase χl was removed
from all σn, the C requirements can be written as a com-
bined directive δC = ieiχlC11(ωc)C∗21(ωc)/|Copt

11 Copt
21 | ±

1 → 0. Note that, when the structure is symmetric
(χl = 0, C11 = C22), unitarity of C immediately leads to
Im{δC} = 0, so one needs to design only Re{δC} → 0.
Moreover, since C must be fairly slowly varying around
the filter center frequency ωc, one may need to impose
additional constraints. This can be done, for example,
by minimizing δC also at other frequencies in the band-
width of interest or some derivatives dkC(ωc)/dωk for
k = 1, 2.... (Note that, when the convenient fitting for-

mula C = S̄−1S is used, approximation errors may lead
to small oscillations of C around the high-Q resonances
close to ωc, in which case it is better to use this for-
mula at a few frequencies outside the filter bandwidth,
and interpolate for the C value and derivatives at ωc

if needed. In contrast, when calculated directly from
QNMT, C = −S̄{ωCn ,σCn } does not have these issues and
may be preferable if accurate enough.) In some sense, our
method effectively isolates the fast spectral oscillations
due to high-Q resonances and applies the common brute-
force method only for the slowly varying background C.

Our analytical QNMT formulation allows also for al-
ternative objectives instead of σn and C. Eqs. (1) can
be used to write Spq as a rational function and then di-
rectly compute its zeros zpqm and an overall multiplica-
tive factor Apq. Those can then be used as alternative
variables to be directly set by optimization to the re-
quired values for the ideal filter. As mentioned earlier,
realness and reciprocity require the zeros z21

m to be either
real (z,−z) pairs or complex (z,−z∗,−z, z∗) quadruplets
(and z = 0 is matched with a z → ∞). Therefore,
for a N th-order system with total 2N zeros, targeting
only the independent degrees of freedom gives at most
N equations for Re{z21

m }, Im{z21
m }. For example, for a

third-order bandpass elliptic filter, this is means directly
setting (Re{z21

1 },Re{z21
2 }) to the two positive real elliptic

zeros (while the structural topology can often be chosen
to ensure the z21

0 = 0).
To optimize the structure, we pass the error vector

(δω, δσ, δC) [or alternatively (δω, δz, δA)] into a numerical
root-finding routine. We simply use MATLAB’s “fsolve”
function [60], mostly with the Levenberg–Marquardt al-
gorithm, with or without a Jacobian scaling, typically
with numerical derivatives based on central differences.
“fsolve” does not support parameter bounds, but we im-
plement them using a hyperbolic-tangent mapping. (To
speed up the initial iterations, one can also use a coarser
spatial-discretization mesh, larger numerical-derivative
step sizes, and/or different weights on the error vector.)

As a final remark, this optimization setup assumes
a rather small number of structural parameters. How-
ever, our QNMT design criteria can, in principle, be
combined with a full topology-optimization setup with
a large number of unknown parameters. Such a formula-
tion requires further research to maximize computational
efficiency and is beyond the scope of this paper.

B. Dependence on initial parameter sets and
comparison to brute-force optimization

In order to demonstrate the effectiveness of our QNMT
analytical criteria for optimization, we design the third-
order bandpass elliptic response with 6% bandwidth of
Fig. 4 (dashed red curve), using the same metasurface
topology of Fig. 4 (inset), but starting with three differ-
ent sets of initial parameters. The corresponding spec-
tral responses of the initial structures are shown with
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FIG. 8. Different optimization solutions for a desired third-
order bandpass elliptic SF (black dashed lines). Starting with
three different initial structures (blue lines), the solutions ob-
tained with our QNMT method (red lines) match the SF,
while local optima obtained by directly optimizing the trans-
mission spectrum at few key frequencies (green lines) fail.

blue curves in Fig. 8 and can be seen to deviate sub-

stantially from the target response. Using dimensional
scaling (the fixed 18 µm� λ, a metal thickness has min-
imal effects, which may only need to be addressed at the
very end of optimizations) and |C21| ≈ 0 automatically
from the connected-metal metasurface topology, we have
11 real optimization objectives (2 δΩ, 3 δΓ, 3 Re{δσ}, 3
Im{δσ}). We are indeed able in all cases to find different
structural parameters (Fig. 8, red curves) with a trans-
mission spectrum very close to the ideal response. The
small stopband discrepancies are due to a slowly varying
C, whose variations differ for each structure according to
each one’s resonant content outside this range. Basically,
there are many metasurfaces with the same topology that
have almost the same spectral response at normal inci-
dence, where each one of those structures can be an opti-
mization solution for some initial point and optimization
settings. However, these metasurfaces have different an-
gular responses. In particular, structures with smaller
periods tend to be less angle dependent (Appendix C).
The optimization time is obviously highly dependent on
the initial structures, the number P of optimized struc-
tural parameters, the optimization settings used (e.g.,
central-difference derivatives lead to 2P + 1 error-vector
evaluations per algorithmic iteration), and the termina-
tion criteria, but, to give a sense of its order of magni-
tude, the three designed systems of Fig. 8 took respec-
tively ∼ 150, 260 (P = 12), and 300 (P = 9) evaluations
(Maxwell eigenvalue solves).

We now compare to a direct optimization approach
based on directly computing the transmission using a
frequency-domain solver. To design structures, we min-
imize the mean-square transmission error compared to
the ideal third-order bandpass elliptic response at 9 key
frequencies (3 transmission peaks, 2 passband frequen-
cies with −0.25 dB transmission, 2 transmission zeros,
and 2 stopband frequencies with −25 dB transmission).
After trying a variety of error-vector formulations and
optimization settings, the best obtained local optima for
the three initial structures are shown in Fig. 8 (green
curves). We see that they substantially fail to match the
desired response.

There were initial parameter sets for which neither
design method managed to converge to a solution.
However, the above comparison supports our original
claim that, for highly resonant spectra, our QNMT
method achieves good solutions for more initial parame-
ter sets compared to brute-force transmission optimiza-
tion, which tends to converge to poor local optima.

VI. CONCLUSIONS

We have presented a systematic method using eigen-
solvers for designing symmetric or antimetric filters [such
as standard filters or other useful transmission/reflection
spectra (e.g., Appendix B)], especially ones with multi-
ple finite real zeros, allowing ultra-compact 2-port de-
vices with spatially overlapping resonances (unlike pre-
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vious circuit-theory or CMT approaches). It is based on
a non-normalized QNM expansion of the system scatter-
ing matrix S and entails identifying the necessary back-
ground response C, the exact complex eigenfrequencies
ωn of these modes, and the values of the ratios σn with
which these modes must couple to the system ports, to
achieve the desired scattering frequency profile. An ef-
ficient optimization procedure is then applied to deter-
mine the structural parameters (geometry and materi-
als) that meet these criteria. We have demonstrated the
method for microwave planar metasurface filters, with
2-port configurations involving same-polarization trans-
mission, cross-polarization reflection or diffractive reflec-
tion, for all standard amplitude-filter types (especially
the most challenging, elliptic), for both bandpass and
bandstop behaviors, and for a variety of frequency band-
widths.

Our design method was demonstrated for microwave
metasurfaces, but it can also be used for resonant sys-
tems with any qualitatively similar wave physics, such
as mechanical, acoustic, photonic, or quantum-scattering
filters. In our examples, we used fixed topologies, guided
by general physical intuition, and then applied a sim-
ple multi-variable equation solver to obtain a small set
of structural parameters. In principle, our conditions
can also be combined with various large-scale topology-
optimization algorithms (where every “point” in space is
a degree of freedom) and solver methods [40]. While we
provided analytical criteria for 2-port scattering systems
satisfying S22(ω) = eiϕS11(ω) and we focused our exam-
ples on the subset of amplitude standard filters, our de-
sign process can be used for any desired scattering spec-
trum, by fitting it to QNMT to extract the corresponding
optimization objectives {ωopt

n , σopt
n , Copt}. Moreover, it

should be clear that the accurate QNMT prediction of the
time delay [35] also makes the theory applicable to design
phase filters, such as all-pass delay filters [67] (useful also
for metalenses [68]). Our approach is likely most suited
to and advantageous for fast-varying spectra related to
sharp resonances, but nothing really prevents its appli-
cability to broadband systems. This design method as-
sumes lossless 2-ports, so it is best done ignoring all losses
and is thus limited to systems with only small absorp-
tion and weak additional radiation channels. Extension
to more than 2 ports should be possible, since a spectral
response Spn(ω) for any number of ports could be re-
duced via QNMT to a set of required {ωopt

n , Dopt
pn , C

opt}.
For example, in a multi-port scenario where full conver-
sion between only two ports 1, 2 is required, additional
conditions Dpn ≈ 0 for all other ports p 6= 1, 2 might suf-
fice. Our QNMT is more accurate for port modes with
frequency-independent transverse profiles (our metasur-
faces used plane wave ports), however, the design method
could also be extended to most other common ports
(e.g., wave guides, Gaussian beams, fixed-angle diffracted
waves), when their modal profiles have a slower fre-
quency variation than the desired spectral response, po-
tentially by approximating Dpn(ω) ≈ Dpn(Ωn).
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Appendix A: Transfer-matrix formalism

For a 2-ports system as in Fig. 1, the (forward) transfer
T matrix is defined as:(

s+1

s−1

)
=

(
T11 T12

T21 T22

)(
s−2

s+2

)
(A1)

and is related to the S matrix via the transformation:

T =
1

S21

(
1 −S22

S11 −det(S)

)
. (A2)

In terms of the T matrix, on the real-ω axis, realness is
expressed as T ∗(iω) = T (−iω) and energy conservation

as |T11|2 − |T21|2 = |T22|2 − |T12|2 = 1, T ∗11T12 = T ∗21T22,
while reciprocity holds anywhere on the complex-ω plane
and is written as det(T ) = 1.

At a system complex pole ωn, there are non-zero out-
going fields (s−1, s−2 6= 0) without an input (s+1 =
s+2 = 0), so T11(ωn) = 0. Since then D1n ∝ s−1

and D2n ∝ s−2, the ports-coupling ratio of the mode
is σn = 1/T21(ωn) and reciprocity further mandates
T12(ωn) = −1/T21(ωn) = −σn.

The types of filters we are interested in satisfy S22 =
γS11, namely T12 = −γT21. Therefore, for reciprocal
such filters, we get σ2

n = −T12(ωn)/T21(ωn) = γ, as in
Eq. (7) of the main text. (Reminder that, if realness must
hold, then γ = ±1.)

Inversely, consider a unitary reciprocal system where
all the modes satisfy σ2

n = γ. We write Spq(ω) =
Apq(ω)/P (ω), where P (ω) =

∏
n(ω − ωn) includes all

the 2N poles ωn and Apq(ω) is a polynomial of de-
gree at most 2N , so Eq. (A2) implies that T12(ω) =
−A22(ω)/A21(ω) and T21(ω) = A11(ω)/A21(ω). At a
pole, we have T12(ωn) = −σ2

nT21(ωn) = −γT21(ωn), thus
A22(ωn) − γA11(ωn) = 0 [because A21(ωn) 6= 0]. Since
the degree of A22 − γA11 is at most 2N , we then have
A22(ω)− γA11(ω) = αP (ω)⇔ S22 = γS11 + α, where α
is a constant. Now, since S is unitary, we have |S22|2 =
|γS11 + α|2 = |S11|2 ⇔ |α|2 + 2Re[α∗γS11(ω)] = 0 at all
real frequencies ω, leading to α = 0 and thus S22 = γS11.

Appendix B: Non-standard 2-port spectra

While standard filters are associated with alternating
σn-signs and specific “textbook” poles, other choices can
still give interesting spectra to design. QNMT allows for
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a quick computation of such spectra by simply plugging
values for ωn, σn and C. In Fig. 2, we showed possi-
ble non-standard S21(ω) spectra for N = 2, and here
we provide some more examples for N = 3, 4. The gen-
eral rules derived in Sec. III C still apply, so there is an
odd/even number of zeros between modes of respectively
same/opposite σn-sign and all spectra asymptote to |C21|
outside the resonances’ bandwidth.

 

(b)(a)

(d)(c)

FIG. 9. Non-standard S21 spectra of symmetric 2-ports

with C =

(
ir t
t ir

)
and resonances: (a) ωn = (0.968 −

0.02i, 0.99 − 0.02i, 1.02 − 0.01i), σn = (1,−1,−1), t = 0, (b)
ωn = (0.98, 1, 1.02)− 0.005i, σn = (1, 1, 1), t2 = 0.5, (c) ωn =
(0.94, 0.95, 1.05, 1.06) − 0.02i, σn = (1, 1,−1,−1), t = 0, (d)
ωn = (0.96−0.01i, 0.984−0.004i, 1.016−0.004i, 1.04−0.01i),
σn = (−1, 1,−1, 1), t2 = 0.96.

Appendix C: Angle dependence of third-order
bandpass elliptic transmission filters

We have shown four distinct physical designs for the
same third-order elliptic transmission filter with −0.25
dB passband of 6% bandwidth and with −25 dB stop-
bands: the red solid line in Fig. 4 and the three red solid
lines in Fig. 8. Although their performance is by design
very similar at normal incidence (matching the SF), they
have different responses for non-zero off-axis angle θ. In
Fig. 10, we show at θ = 15◦ along the ΓXx line of the
Brillouin zone the TM-to-TM transmission, which turns
out to deviate more from the designed (θ = 0◦) spec-
trum than the TE-to-TE transmission. (Note that, for
incidence along ΓXx, TE and TM polarizations are still
decoupled due to the ŷ-mirror symmetry.)

We see that the passband is shifted to lower frequen-
cies, and higher-order modes get closer to the passband,
reducing the stopband range. However, it can be ob-
served that structures with smaller periodicity a, at-
tained by using higher-ε dielectrics, tend to maintain

 

FIG. 10. TM-to-TM transmission at angle θ = 15◦ for the
different optimized structures in Figs. 4, 8 with (∼ 6% band-
width) elliptic response at normal incidence. The angle re-
sponse deviates more as the period increases.

better their performance. This matches common meta-
surface intuition, based on the rough principle that the
parallel incidence wave vector ωsinθ/c is a smaller frac-
tion of the Brillouin zone edge at π/a. As a conclusion, if
angle independence is important, a constrained optimiza-
tion can be performed, with our filter-design criteria as
constraints and some metric of this independence (e.g.,
flatness of resonant bands) as optimization objective.

Appendix D: Inductive coupling between
closely-spaced apertures

For two inductors L1, L2 with mutual inductance M ,
the standard T-type coupling network with elements
L1 − M , L2 − M and M is converted to the Π-type
network, used in our circuit models, with element val-
ues

(
L1L2 −M2

)
/ (L2 −M),

(
L1L2 −M2

)
/ (L1 −M)

and
(
L1L2 −M2

)
/M . The last element represents the

longitudinal inductive coupling Lb in our circuits, which
becomes small for large mutual inductance M <

√
L1L2

(and vice versa).
When L1, L2 are aperture-type, M scales linearly with

their on-axis distance t as M ≈M0−ξt for ξt�M0 [69],
so Lb ≈ L1L2/M0 −M0 + ξt. When the two apertures
are not too dissimilar, M0 ≈

√
L1L2, so we finally get

Lb ≈ ξt for M0

(
L1L2/M

2
0 − 1

)
� ξt � M0. Moreover

treating the dielectric layer as a very short transmission
line, its equivalent circuit model is also just an inductor
with L′b ≈ ξ′t, where ξ′ the inductance per unit length.
Combining the two sources of inductance we conclude
the rough scaling Lb ∝ t.
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Appendix E: Third-order bandpass filters’ structural
parameters

Below are the structural parameters for the third-order
bandpass filters of Fig. 4, followed by those of QNMT-

optimized structures of Fig. 8:

Type BW3dB a (mm) w1/a w2/a w3/a l1/a l2/a l3/a t1/a t2/a t3/a t4/a ε1 ε2 ε3 ε4
Butterworth 5% 13.49 0.024 0.003 0.024 0.805 0.709 0.805 – 0.445 0.445 – 1 2.41 2.41 1
Chebyshev 5% 12.02 0.0099 0.0027 0.0099 0.7896 0.6639 0.7896 – 0.483 0.483 – 1 3.45 3.45 1
Inv. Cheb. 5.6% 9.83 0.221 0.050 0.055 0.772 0.645 0.944 – 0.278 0.096 0.018 1 6.72 3.64 2.73

Elliptic 2.4% 10.00 0.28 0.034 0.009 0.501 0.535 0.849 – 0.451 0.026 0.020 1 8.21 3.95 3.00
Elliptic 6% 9.175 0.222 0.068 0.022 0.692 0.607 0.908 – 0.343 0.071 0.021 1 8.58 4.42 3.19
Elliptic 10.8% 10.45 0.207 0.012 0.071 0.806 0.710 0.992 – 0.187 0.066 0.014 1 5.72 2.61 3.41

Type BW3dB a (mm) w1/a w2/a w3/a l1/a l2/a l3/a t1/a t2/a t3/a t4/a ε1 ε2 ε3 ε4
Elliptic 6% 12.52 0.2395 0.110 0.0713 0.6117 0.5247 0.688 – 0.379 0.090 0.0567 1 4.963 2.987 3.579
Elliptic 6% 12.00 0.0438 0.2704 0.0433 0.7291 0.7611 0.7009 – 0.155 0.215 0.030 1 4.217 3.413 3.629
Elliptic 6% 8.619 0.233 0.163 0.0486 0.682 0.586 0.855 – 0.336 0.117 0.02 1 10 5.898 3.2

[1] H. G. Dimopoulos, Analog Electronic Filters: Theory,
Design and Synthesis (Springer Science & Business Me-
dia, 2011).

[2] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-
P. Laine, Microring resonator channel dropping filters,
Journal of Lightwave Technology 15, 998 (1997).

[3] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A.
Haus, Channel drop filters in photonic crystals, Optics
Express 3, 4 (1998).

[4] C. Manolatou, M. Khan, S. Fan, P. R. Villeneuve,
H. Haus, and J. Joannopoulos, Coupling of modes anal-
ysis of resonant channel add-drop filters, IEEE Journal
of Quantum Electronics 35, 1322 (1999).

[5] M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich,
L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith,
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