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Benchmarking and characterizing quantum states and logic gates is essential in the development of
devices for quantum computing. We introduce a Bayesian approach to self-consistent process tomog-
raphy, called fast Bayesian tomography (FBT), and experimentally demonstrate its performance in
characterizing a two-qubit gate set on a silicon-based spin qubit device. FBT is built on an adaptive
self-consistent linearization that is robust to model approximation errors. Our method offers several
advantages over other self-consistent tomographic methods. Most notably, FBT can leverage prior
information from randomized benchmarking (or other characterization measurements), and can be
performed in real time, providing continuously updated estimates of full process matrices while data
is acquired.

I. INTRODUCTION

In developing technology and devices for fault-tolerant
quantum computing [1], the diagnosis and mitigation of
errors in quantum gates is critical. A now-standard ap-
proach to assessing the performance of single- and two-
qubit gates for quantum processors is to use randomised
benchmarking (RB) [2–5] as well as variants built on this
approach [5–11]. The success of RB and related schemes
comes from their efficiency for small systems as well as
their robustness to state, preparation and measurement
(SPAM) errors. However, a key limitation is their in-
ability, in general, to provide full diagnostic information
about the types of errors. This information is essential
for these errors to be mitigated or eliminated.

When full characterization of a gate or process is re-
quired, tomography remains the gold standard. Similar
to RB, there are many methods to perform such charac-
terization, including tomography for unitary gates [12–
15] and for general channels [16]. An important step in
the development of process tomography was the recog-
nition that the operations used in the state preparation
and measurement (SPAM) steps were also faulty, and
required simultaneous characterization with the gates
themselves. Process tomography that is capable of
this simultaneous characterization is said to be self-
consistent [17]. Currently available implementations of
self-consistent process tomography such as gate set to-
mography (GST) [16] require the tailoring of specific se-
quences for specific gate sets. Typically, the number of
sequences for two-qubit characterization is very large,
with commensurate computational requirements. The
non-linear nature of tomographic reconstruction makes it
difficult for non-expert users to understand the simplify-
ing assumptions and technical insights required to make
the numerical methods reliable in practice [18], which
may explain its limited adoption for characterizing two
or more qubits. Another limitation of all such systems

is their inability to incorporate additional data or to up-
date (without a full re-run of the non-linear, non-convex
solvers) when more data become available. Other tomog-
raphy methods addressing some of these issues include
Bayesian approaches [19–21], which provide the ability
to encode prior information and so reduce the required
data. However, this efficiency is usually traded-off for
computational cost due to the need for extensive sam-
pling methods.

In this paper we present a Bayesian method for self-
consistent process tomography, called fast Bayesian to-
mography (FBT). Our approach is able to extract tomo-
graphic information about a whole gate set from arbi-
trary sequences of gates. Our goal with FBT was to cre-
ate a tomography method that was operationally simple
and efficient in both the experimental and computational
cost. The computational efficiency is achieved by defining
a statistically optimal linearization of the self-consistent
objective function. Moreover, the Bayesian model can be
continuously updated as data becomes available, provid-
ing ongoing improvement to the linearization. The data
from standard randomized benchmarking experiments
can be used to bootstrap the model. As we demonstrate,
re-interpreting the RB data can already give good initial
estimates of the process matrices of each of the gates, to-
gether with related uncertainties. Where required, such
matrices and the uncertainties in their values can be up-
dated with information from experiments as further data
is extracted from the device.

To illustrate FBT and its performance, we use it to
characterize a 2-qubit gate set using the spins of electrons
in a silicon-metal-oxide semiconductor (SiMOS) quan-
tum dot device. Spin qubits in silicon are among the
most promising semiconductor architectures for scalable
quantum information processing due to their compat-
ibility with modern semiconductor manufacturing pro-
cess [22], nanoscale footprint, and capability for host-
ing highly coherent qubits [23, 24]. High performance
single-qubit gates are well characterized and have reached
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charge noise limits [25, 26]. Moreover, two-qubit gates
have recently demonstrated fidelities exceeding 99% [27].
Although some experiments have attempted to probe the
type of noise affecting two-qubit gates [28, 29], the lim-
iting factors remain unclear. Identifying the key noise
sources and failure modes for two-qubit gates lies at the
heart of the development of semiconductor spin qubits,
and it is here that a fast, flexible approach to self-
consistent process tomography to characterize the noise
is expected to be invaluable.

Specifically, we reconstruct a two-qubit native and
non-standard gate set in a silicon spin qubit device,
as demonstrated in Ref. [30], in a self-consistent man-
ner. We bootstrap data from an RB characterization of
the gate set, followed by additional randomized gate se-
quences. The results are high-accuracy estimates of the
process matrices describing the gates, together with ro-
bust quantification of the uncertainties (error bars) on
these estimates, highlighting the ability of the protocol
to characterize non-standard gate sets as well as to lever-
age benchmarking data. The processing of data takes
less time than the data acquisition itself, demonstrating
that FBT can be performed in real time during an ex-
periment. From the reconstructed process matrices we
can infer SPAM-free Bell state metrics [27], as opposed
to directly performing state tomography [31]. We infer
Bell state fidelities in the range 94.6%−98.3%, compara-
ble to those reported in Ref. [27], and concurrences from
88.3%−92.0%, the highest reported in silicon quantum
dots. We find the individual two qubit conditional ro-
tation (CROT) gate fidelity are between 96.1%−97.4%,
consistent with the gate fidelity reported in a previous
experiment using the same device [30]. Finally, to illus-
trate the flexibility of FBT for data that was not tailored
specifically for tomography, we show that data from an
RB characterization of the device can be repurposed and
can yield high-precision estimates of the gate set.

Section II presents an overview of the FBT protocol
and a summary of the experimental demonstration. We
then present a more detailed description and analysis of
the FBT protocol in Section III.

II. RESULTS

A. FBT protocol

In this section we outline the FBT protocol and demon-
strate its performance on a two-qubit gate set in a Si-
MOS device. FBT provides a means of performing pro-
cess tomography over a primitive gate set, in a self-
consistent manner. Moreover, it is efficient in its use
of resources, both experimental and computational, and
operationally simple, requiring no tailoring of complex
experimental settings.

In an experiment involving a sequence of gates, the
measurement outcomes are governed by Born’s rule, and
this provides us with the functional relationship between

the gate parameters and our data. Tomography is the
procedure to invert this relationship to solve for the gate
parameters given the measurement outcomes. All tomo-
graphic methods suffer from the central problem that
this function is a high-dimensional polynomial, of po-
tentially high degree (for repeated gates). Solving for
the gates requires a nonlinear optimization that is typi-
cally intractable without simplifying assumptions, lead-
ing to large non-linear, non-convex optimizations that
risk local-minima traps and can lead to long difficult com-
putations [18]. For this reason, the initial proposal of self-
consistent methods [17] relied on linearization to reduce
the computational demand. However, linearizing around
the identity imports a number of assumptions that can
lead to poor performance.

The Bayesian approach proposed in this paper gives
us the ability to address this problem, and to do so in a
way that is efficient in experimental and computational
resources. First, we show how to use prior information
that we may already have about the gates, such as av-
erage gate fidelities from RB experiments, to provide an
improved initial linearization. Second, the Bayesian ap-
proach allows us to update our estimates of the gate set in
real time (online), as data becomes available. Not only
does this feature allow for data collection to be halted
when reconstructions are of a desired accuracy, but also
for additional data to be incorporated into the estimates
without the need to re-run the entire computation.

Third, and most importantly, it provides us with an
optimal linearization. Rather than linearizing the model
about the identity, FBT instead uses the prior distribu-
tion as a starting point. We believe that this observa-
tion, albeit simple, has a significant impact on the utility
and accuracy of the protocol. The online nature of the
protocol further supplements this feature as the mean
is iteratively updated, improving the linearization ev-
ery time additional measurements are performed. By al-
lowing linearization around increasingly better estimates
we believe that this also means that gate sets of arbi-
trary (e.g., lower) fidelity can be reconstructed, some-
thing many characterization methods such as RB can
struggle to do. Moreover, the Bayesian model provides
an accurate quantification of the approximation error in-
curred by the linearization process. As a result, we can
take this error into account during the reconstruction.
By knowing our estimate of the error we can prevent the
model over-fitting to this error.

The Bayesian model uses a multivariate Gaussian prior
over all of the selected channel parameters. Each gate in
the set is decomposed into the ideal implementation of a
unitary gate G followed by a gate-dependent noise chan-
nel ΛG, such that G̃ = ΛGG. We are interested in recon-
structing ΛG for each G, quantified by a mean Λ̄G and
a covariance ΓG. In principle, one would desire a prior
that is constrained to be a physical quantum channel.
A Gaussian distribution does not necessarily guarantee a
physical quantum channel and requires us to project onto
one, but this limitation is far outweighed by the utility
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and robustness of the Gaussian model.
With non-Bayesian methods where reconstruction oc-

curs after data acquisition, such reconstruction can often
take many tens of hours for full two-qubit reconstruction
of a gate set. By comparison the computational costs of
FBT occur mainly as the data is initially processed and
the model error needs to be calculated, and then quickly
reduces to fast calculations that can be done as data is
generated (we discuss this more detail in II D). This com-
putation includes the calculations necessary to constrain
the estimations to physical priors (see later discussion
in B 6). The complexity of quantum sampling will, of
course, depend on the accuracy required. By using prior
data (such as randomized benchmark data), we reduce
the number of quantum circuits that are required. As
we show below, FBT achieved very high accuracy results
with fewer runs than we estimate is required for other
gate-set tomographic protocols. However, if our priors
are incorrect or there are unfortunate runs of random se-
quences then it may be that more data is required for
satisfactory convergence.

Full details of the FBT protocol are given in Sec-
tion III. Here, we demonstrate FBT on a gate set for
a two-qubit device based on electron spins in silicon.

B. Device and gate implementation

Figure 1 shows a scanning electron microscope (SEM)
image of a silicon-metal-oxide-semiconductor (Si-MOS)
double quantum dot device, identical to the device used
in this experiment. Qubits are defined in single electron
quantum dots formed underneath gates G1 and G2. An
external magnetic field B0 = 1.42 T creates a Zeeman
splitting of EZ = gµBB0 ≈ 0.16 meV, corresponding
to an average electron spin resonance (ESR) frequency
f = EZ/h = 39.33 GHz, where g is the electron g-factor,
µB is the Bohr magneton and h is Planck’s constant. The
device is operated in a dilution refrigerator at an elec-
tron temperature of Te ≈ 180 mK, allowing us to read
the electron spin state sequentially via spin-dependent
tunneling [32] and selectively load a |↓〉 electron for ini-
tialization. Single- and two-qubit control are enabled by
a Zeeman energy difference of δEZ/h = 13.42 MHz and
the exchange coupling J/h = 3.77 MHz.

Two-qubit gates are commonly implemented in spin
systems such as the

√
SWAP [33], the controlled

phase [28, 34, 35] or the controlled rotation (CROT) [30,
36]. In our experiment, the 6 primitive gates (Eq. (1))
for universal qubit control consist of variations of CROT
gates and virtual-Z gates. This choice of primitive gates
allows us to control the qubits with constant exchange
coupling, alleviating the requirement for high-bandwidth
gate electrode voltage pulse and accurate synchronization
between signal sources. High-fidelity one- and two-qubit
gates were previously benchmarked on this device and
reported in Ref. [30].

Our process tomographic characterization will be at

FIG. 1. False color SEM image of the device. Two quantum
dots are formed underneath gates G1 (blue) and G2 (red).
The gates CB, G3 and G4 form confinement barriers that
laterally define the quantum dots. RG is the reservoir gate
that supplies electrons to the quantum dots. The gate elec-
trodes ST, SLB and SRB define a single-electron transistor
(SET), designed to sense charge movement in the quantum
dot region. An alternating current running through the ESR
line generates an oscillating magnetic field B1 (light blue) to
manipulate the electron spins. The direction of the external
magnetic field B0 is indicated by the white arrow.

the level of the device’s native primitive (π/2-pulse) gate
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respectively. See Ref. [30] for further details about this
gate set.

As mentioned, the single qubit Z gates are imple-
mented by a virtual change of reference. As a result, the
fidelity of these gates can be expected to be significantly
higher than the pulsed CROT-type gates. Despite their
virtual nature, we still consider the Z gates as unknowns
in the self-consistent protocol.

We also need to consider state preparations and mea-
surements (SPAM), and the noise associated with them.
We assume that this can be modeled as a noise channel
prior to the readout. The gauge degree of freedom be-
tween state preparation and measurement persists in this
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scenario, however based on early characterization of this
and similar devices it is reasonable to assume that the
SPAM errors are dominated by the measurement. This
is limited by the signal strength as the qubits being read
out are far away from the charge detector. Furthermore,
we ensure the high initialization fidelity by choosing a
readout time ~3.5 ms for both qubits which is sufficiently
longer than the tunneling time of both ground and ex-
cited states.

C. Randomized benchmarking

We envisage our FBT protocol being used immediately
following an initial characterization of the device using
RB, and in particular FBT is specifically designed to
leverage the average gate fidelities from RB as prior infor-
mation. We present the RB protocol used for the initial
characterization of the device, following Ref. [30]. In this
protocol we generate gate sequences of varying lengths
L−1, where all gates are randomly chosen from the two-
qubit Clifford group. The final L-th Clifford gate at the
end of each sequence is randomly chosen from those that
would ideally return the final state to |↑↑〉. The decay is
fit to the function P = A(1− 4

3rC)L+B, where the fitting
parameters A and B absorb the SPAM errors, and rC is
the error per Clifford gate. The resonance frequencies
are re-calibrated after every 2 RB sequences.

From the decay, we extract an average Clifford gate
fidelity of FClifford = 1− rC = 90.5± 1%. With the esti-
mated average primitive fidelity Fπ/2 = 98.2 ± 0.2% we
can update our prior distribution to be consistent with
this benchmark. Since randomized benchmarking is de-
signed to eliminate all coherent error and to average out
incoherent error, we can only learn so much from the sin-
gle parameter it returns. Applied to the whole gate set,
this will mean the corresponding prior estimates for each
noise channel will be pure depolarizing channels. The
benefit of the RB protocol is that these estimates are
unaffected by SPAM errors, and this benefit will assist
in separating the SPAM errors from gate errors in the
subsequent experiment.

D. Self-consistent process tomography

The initial characterization using RB is used to con-
struct nontrivial prior distributions for all of our gates
based on the average gate fidelities from RB (see
Sec. III B). We then performed a series of tomogra-
phy experiments. We measured 7140 settings consist-
ing of sequences of primitive gates, with a frequency re-
calibration after every sequence. We randomly generated
the set of tomographic settings of length L=0 (i.e., pre-
pare and measure) to length L=14. As we explain in the
Methods, Section III, FBT is not prescriptive as to the
sequences that need to be performed, but we note that
we have chosen shorter-length sequences for tomography

compared with the longer sequences used in RB. The
circuits contained sequences of randomly-selected primi-
tive gates in Eq. (1), and data acquisition took approx-
imately 86 hours. We note that this experiment goes
well beyond what would traditionally be considered as
an informationally-complete set of measurements.

Results are presented in Fig. 2. Between each setting,
the measurement outcomes are used to update the pos-
terior distribution of the gate sets. This update then
improves the linear model for the subsequent data. Be-
cause we are using a linear approximation to the true
nonlinear model, we end up with two sources of error:
one from standard shot noise and the other from the lin-
earization. The latter we refer to as the approximation
error, and if this error is ignored (as in Refs. [17, 37])
it can lead to over-fitting, especially if the fitting func-
tion is linearized about the identity noise channel. The
FBT protocol is robust to both of these error sources.
Once our estimates are accurate enough, the approxima-
tion error can become insignificant relative to the shot
noise, and so if certain conditions are met we can omit
the approximation error from the update which speeds up
the inference significantly. The point at which we omit
the approximation error is illustrated in Fig. 2. (We de-
fine these conditions more formally in Section III.) This
means the posterior distribution has contracted around
the ‘true’ gate set such that our linearization performs
as well as the exact nonlinear model, given the amount
of shot noise in our measurements.

For this experiment, the data were analyzed after all
measurements were taken. Nonetheless, we can simulate
the real time use of FBT, and note that it is capable of up-
dating estimates faster than measurements can be taken,
despite not optimizing the code for speed. Fig. 2 e) shows
that, on average, each sequence takes ~26 s. While the
approximation error is being sampled, FBT takes ~4 s to
update for each sequence, and this reduces to ~1 s once
the approximation error becomes negligible. This affirms
the potential for FBT to be used in real-time while a
device is being operated.

Figure 2 shows a high level detail of the experiment
and the corresponding reconstruction error throughout
the experiment. The benefit of having a full Bayesian
model for the gate set is that we always have a full co-
variance describing the uncertainty in the fits, including
correlations between parameters as well as between sep-
arate gates. The reconstruction error shown in Fig. 2 is
given by the mean square error of the estimate. The log
scale inset plot shows the rate at which the fits improve
throughout the experiment. As we expect, the mean
square error approaches a central limit rate of ~N−1

settings,
where Nsettings is the number of experimental settings
measured. The full set of tomographic results for the
gate set can be found in Appendix C.

From the gate set estimates we can extract metrics and
benchmarks of interest. Gate dependent fidelities f(G),
unitarities u(G), along with error bars, are all available
to be extracted from the posterior distribution. In place
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FIG. 2. High level schematic of the FBT protocol and experiment, with the U
π/2
1,↓ gate used as an illustrative example. a)

the estimated noise channel Λ̄, presented as a Hinton diagram of the noise residual, (I − Λ̄), for the U
π/2
1,↓ gate at three key

stages during data acquisition: 1 the initial estimate based only on the fidelity; 2 the estimate after half of the total number
of sequences; and 3 the final estimate after all sequences have been measured. The noise residual (I − Λ̄) reveals greater,
clearer detail than the Pauli transfer matrix itself. b) the estimates for three parameters (indicated in a)), with mean values
and uncertainties, as they are updated throughout the experiment. The three parameters were chosen only for clarity of
presentation, having non-zero, non-overlapping mean values. c) the expected reconstruction error, as determined by the trace
of the covariance for the gate, throughout the experiment. Inset: as in the main plot, but using a logarithmic scale. d) the
magnitude of the two error processes – the approximation error and shot noise – throughout the experiment, characterized by
the trace of their respective covariances. The approximation error is calculated as a moving average with window size of 100
(the darker line shows the moving average, the lighter lines the raw values). A threshold for approximation error, at 2 orders
of magnitude less than the shot noise, indicates when it can be neglected. For ease of reference this point is indicated by a
vertical dotted line in all graphs b)–e).e) the speed of the FBT protocol compared to the time to perform each sequence in the
experiment.The light blue lines show the raw time of execution of each sequence (which varies with the length of any particular
sequence), the darker line the moving average.

of the unitarity we present the gate dependent incoher- ence [25], ω(G), defined as

ω(G) := d−1
d

(
1−

√
u(G)

)
. (2)
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The incoherence is bounded above by the infidelity, and
gives a measure of how much of the gate infidelity
can be attributed to incoherent errors and stochastic
noise sources. Figure 3a) presents a summary of the
gate-dependent primitive infidelities and incoherences ex-
tracted by FBT.

E. Bell-state tomography

Our FBT protocol can also be adapted to perform
state tomography self-consistently. Although conceptu-
ally simpler than process tomography, state tomography
generally requires the use of (noisy) gates to measure an
informationally-complete set of observables. Typically,
state tomography is performed under the assumption
that the uncharacterized, noisy gates are ideal, or that
all measurements are described by a single ‘measurement
fidelity.’ To perform state-tomography self-consistently,
it is necessary to perform tomography on the gate set
first.

Having performed a characterization of the primitive
gate set using FBT, we can directly infer the states
that can be generated in our device. A common and
important characterization of a quantum processor is
the quality of the entangled states that can be pre-
pared. Figure 3b) presents the fidelities inferred from
self-consistent state tomography for the four different
Bell states, Φ+,Φ−,Ψ+,Ψ−, generated from the same
circuits as in Ref. [30]. These fidelities range from
94.6% to 98.3%, with concurrences ranging from 88.3%
to 92.0%. We note that these Bell-state fidelities and
concurrences are larger than those presented in Ref. [30].
These improved metrics are not due to any performance
improvement in the experiment; rather, they reflect im-
proved statistical analysis as a result of using FBT.

F. Measurement tomography

A common approach [25, 30, 38] to characterizing read-
out assignment errors is to prepare and measure the var-
ious basis states by using gates to rotate between the de-
sired basis state and the computational basis. These as-
signment errors can be used to define a correction matrix
which can applied to measurement data. This approach,
however, violates self-consistency as many of these mea-
surements will also contain gate errors.

To complete the self-consistent characterization of our
device, we can add the measurement noise channel to the
gate set, treating it as another random variable in the
Bayesian model. We model the SPAM as a single noise
channel ΛE experienced by the state prior to readout, as
in this device the readout errors dominate errors in state
initialization. By including this measurement noise into
the model, we are able to separate SPAM errors from gate
errors. This is aided by incorporating the RB inference
into the prior. By providing the SPAM-free metric data

into our model, we can more easily distinguish gate errors
from SPAM errors in the subsequent experiments. From
the full SPAM noise channel ΛE we can infer the read-
out assignment error matrix for the spin states, shown
in Fig. 3c).

G. Repurposing RB data

In the experiment reported above, we acquired new
tomography data following the initial RB experiment in
order to characterize the gate set. One of the key benefits
of FBT is that it is able to extract tomographic informa-
tion from any primitive gate sequence. Since the RB
sequences can be decomposed from Clifford circuits into
sequences of primitive gates, we can bootstrap this data
and perform FBT over each primitive sequence as de-
picted in Fig. 4. We can extract more information about
the gates by asking more of our RB data than fitting
only the usual decay curve, and in particular we can ex-
tract information about the coherent action of the noise
present in the gates beyond the decoherent components
that RB otherwise measures.

In this RB data, we have access to 3430 measurement
settings ranging from primitive length of 1 up to 1069
primitive gates, all sampled for 125 shots. Figure 4 shows

the reconstruction of the U
π/2
1,↑ gate throughout the exper-

iment and we observe that we are able to reconstruct the
process matrix to a moderate accuracy from the RB data
alone. We note that, due to the longer sequences used in
RB, a longer period of data acquisition is needed before
the approximation error becomes negligible. Regardless,
even when the approximation error is large, FBT remains
robust to it. The fact that this was achieved with a stan-
dard RB dataset, from which a single average gate fidelity
is usually all that is extracted, highlights the utility and
flexibility of FBT [39].

III. METHODS

Here, we provide details of the FBT protocol and how
it performs.

A. Tomography and self-consistency

Consider a system consisting of n qubits. Let P = {Pi}
denote the set of all n-qubit normalized Pauli operators.
Suppose we have a set of NG gates G = {G̃i} that we can
perform and that we are interested in characterizing.

Each G̃i ∈ G is formally described by a completely
positive trace preserving (CPTP) map. We will work in
the Pauli transfer matrix (PTM) representation, which
as detailed in Ref. [14], has many useful features that we
can take advantage of when parameterizing our channels.
Standard quantum process tomography (QPT) attempts
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a) b) c)

FIG. 3. Device benchmarks. a) Gate infidelity and incoherence for each individual primitive gate, extracted from the final
posterior distribution. All error bars are 2 standard deviations which corresponds to a 95%-credible interval. b) Fidelity and
concurrence for each of the 4 Bell-states Φ+,Φ−,Ψ+,Ψ−. Having tomographic estimates for the primitive gates allows us
to infer SPAM-free estimates of these benchmarks, compared to the conservative estimates in Ref. [30] via state-tomography.
c) Readout assignment matrix indicating assignment error rates for different preparations and measurements. The x-axis
represents the prepared two-qubit state and the y-axis represents the corresponding measurement basis.
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FIG. 4. Repurposing randomized benchmarking data for FBT. a) the RB sequences can be repurposed as tomographic data
for FBT by decomposing Clifford gates Ci into their primitive components Gi. b) the RB decay curve for the projected state
probability as a function of the number of Clifford gates in each sequence. c) the iterative estimates for two parameters (selected

as examples and indicated in d)) throughout the RB experiment. d) the final estimate for U
π/2
1,↓ gate, presented as a Hinton

diagram of the noise residual (I − Λ̄). e) the magnitudes of the two error processes. The approximation error is significantly
larger in the repurposed RB sequences than the tomography data due to the use of much longer sequence lengths in RB.

to reconstruct this matrix by performing an information-
ally complete set of measurements {Mi} and input prepa-

rations {ρj}. Given measurements of a gate G̃ of the form

mk = 〈〈Mi|G̃|ρj〉〉 = Tr
(

[Mi ⊗ I] ◦ G̃ ◦ [I⊗ ρj ]
)

= Tr
(

[I⊗ ρj ] ◦ [Mi ⊗ I] ◦ G̃
)

= Tr
(

[Mi ⊗ ρj ] ◦ G̃
)

= 〈〈Mi ⊗ ρj |G̃〉〉 =: Ak|G̃〉〉 (3)
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where we have used the cyclic property of the trace, I is

the appropriately normalized identity, |G̃〉〉 ∈ Cd2 denotes

the vec(G̃) operation using the row-major order conven-
tion and (i, j) 7→ k is some labelling of the experimental
settings.

If we stack our measurements such that

m :=

m1

...
mN

 , A :=

A1

...
AN


then

m = A|G̃〉〉 (4)

defines a linear inverse problem in the entries of |G〉〉.
The estimator for standard QPT is usually taken as the
maximum likelihood, given by

Ĝ = argmin
X∈Cd⊗d

∥∥m−A|X〉〉∥∥2

2
(5)

=
(
A†A

)−1
A†m. (6)

where Eq. (6) makes use of the Moore-Penrose pseudoin-
verse.

The shortcomings of this approach have been well ex-
plored: with high probability the estimator will not be a
CPTP map; the estimated fidelity can disagree with es-
timates from RB; the assumption is made that measure-
ment errors are i.i.d; etc. However, the most concerning
shortcoming is the lack of self-consistency, introduced in
Ref. [17]. This arises because the input states and mea-
surements are generated by gates that have yet to be
characterized, and which are themselves noisy.

Self-consistent process tomography addresses this
problem by performing a simultaneous reconstruction of
the entire gate set, including preparations and measure-
ments. Without loss of generality we can decompose each
noisy gate G̃i = ΛiGi into the ideal gate Gi followed by
a noise channel Λi. Then each experimental setting is
described by a sequence of Nk gates where

mk = E
∏
i∈Sk

G̃i|ρ0〉〉

= E
∏
i∈Sk

ΛiGi|ρ0〉〉

=: Ak(λ) . (7)

Here, Sk : ZNk → ZNG is a tuple of indices corresponding
to which gates were performed in the kth measurement

setting and λ := [〈〈Λ1|, . . . , 〈〈ΛNG |]† contains all of the
unknown parameters of the noise channels. The readout
is a POVM {E1, ..., EM} (often, the set of n-qubit com-
putational basis projective measurements) which can be
combined in matrix form as

E :=

 〈〈E1|
...

〈〈EM |

 .

In this self-consistent picture, there is no longer a single
gate for which we collect tomographic data by varying the
inputs and outputs. Rather, each choice of experimental
setting mk contains tomographic data of all gates in that
setting.

The tomographic reconstruction in this self-consistent
scenario is much more challenging than just applying the
simple formula of Eq. (6), with a non-linear inversion of
a high-degree (with many settings) polynomial required
for Eq. (7). This problem of non-linear inversion can
be addressed by linearization. The approach used in
Ref. [17] expresses each noise channel Λi = I + Ei and
linearizes Eq. (7) to obtain

mk ≈ E
∏
i∈Sk

Gi|ρ0〉〉

+

Nk∑
j=1

E

∏
i∈Sk
i<j

Gi

 EjGj
∏
i∈Sk
i>j

Gi

 |ρ0〉〉

=: mideal +Akx (8)

where mideal is the ideal (noiseless) output and now
x = [〈〈E1|, · · · , 〈〈ENG |]†. This linear model yields a more
efficient estimation of the gate set contained in x. Com-
putational speed is crucial so that insights from tomogra-
phy can be used for error mitigation [40] before the noise
in the system drifts. However, by linearizing about the
identity I for each channel Λi, this approach will only be
accurate for gates with high fidelity (i.e., noise channels
close to identity). However, process tomography is pre-
dominantly employed to understand noise processes for
the purpose of error mitigation, and demanding high fi-
delity gates is prohibitive in many experimental settings.
Ideally, process tomography should be suitable for use
with gates of arbitrary fidelity for the purposes of early
characterization and tune-up.

To linearize the nonlinear function Eq. (7) about a bet-
ter location requires some a priori information about the
noise in the gates. In the next section we will describe
how FBT uses a Bayesian approach to construct a lin-
ear model that outperforms Eq. (8). Moreover, our ap-
proach gives rise to an online model that can be updated
as data becomes available, improving both the computa-
tional speed as well as the accuracy of the model.

B. Fast Bayesian tomography (FBT)

In this section, we formally introduce the FBT pro-
tocol. Appendix B contains an overview of the entire
process as well as some of the constructions we use. Here
we introduce the model and assumptions of the FBT pro-
tocol. Before we can define a linear model for FBT we
need to construct a Bayesian structure for the random
variables involved. Different prior models that reflect
physical constraints have been previously proposed [19–
21, 41, 42]. However, these approaches all lack scala-



9

bility beyond single or two qubit processes as they rely
on sampling methods such as sequential monte-carlo or
importance sampling. We instead propose the use of a
Gaussian multivariate prior in order to pursue a conju-
gate posterior model that is computationally tractable
and scalable. Although this prior lacks the ability to con-
strain our parameter space to physical (CPTP) maps, we
will show in Appendix B 6 how this prior can still be used
effectively to reflect physical constraints.

Firstly, let each noise channel |Λi〉〉 be distributed as
a multivariate Gaussian |Λi〉〉 ∼ N (|Λ̄i〉〉,Γi) with mean

|Λ̄i〉〉 and covariance Γi ∈ Rd2×d2 . In plain words, the
mean Λ̄i represents our best guess a priori for the noise
channel and similarly, the covariance Γi encodes how
much we trust the guess. We will also abuse notation and
interchangeably refer to both Λ̄i and |Λ̄i〉〉 as the mean
channel depending on the context. We will also include
SPAM noise channels Ẽ = EΛE and ρ̃0 = Λρ|ρ0〉〉

One of the best parts of using Gaussian distributions
is that we can efficiently sample from our prior. We can
likewise efficiently project a sample onto the convex set
of CPTP maps. We can combine these to inform a prior
that will preclude channels that are very far from CPTP.
The goal here is to envelope the region of CPTP maps
contained within the larger space of d2 × d2 random ma-
trices. We will build on this in the next section, where we
consider how we can incorporate prior information from
benchmarking experiments, such as RB.

With prior knowledge about our gate set we have the
ability to improve our model by linearizing Eq. (7) about
the mean, λ̄. This gives us the FBT model

mk ≈EΛ̄E
∏
i∈Sk

Λ̄iGiΛ̄ρ|ρ0〉〉

+

Nk∑
j=1

EΛ̄E

∏
i∈Sk
i<j

Λ̄iGi

 EjGj
∏
i∈Sk
i>j

Λ̄iGi

 Λ̄ρ|ρ0〉〉

mk ≈ m̄k + Ākx

mk =: m̄k + Ākx+ ek (9)

where m̄k is the expected output of the setting, Āk is
our linear model acting on the centralized variable x and
ek is the combined finite statistic and model error (the
noise in the tomographic measurement process). It is
imperative in Bayesian inference to accurately quantify
the noise in the measurement process as this informs the
model of how strongly data should be weighted relative
to the current prior information. We have two sources
of error in Eq. (9): the measurement noise due to finite
averaging of experiment outcomes, and the model error
incurred by the use of an approximate model. We will
treat both of these errors separately, ek := εk + ηk where
εk and ηk are the shot noise and approximation error [43],
respectively.

The approximation error is defined as

ηk(x) := Ak(x+ λ̄)−
(
m̄k + Ākx

)
(10)

which we assume to be mutually independent of the sta-
tistical shot noise εk. The approximation error plays an
important role when using a linearized model; omitting it
can lead to over-fitting. We can approximate both noise
processes to be Gaussian as detailed in Appendix B and
it can be efficiently computed or directly sampled via our
prior. Having a Gaussian noise process and prior implies
the posterior is also Gaussian, with mean and covariance
that we can compute in closed form.

FBT is an online protocol, meaning the posterior dis-
tribution over our gate set can be updated as measure-
ments are received. Throughout the protocol all we need
to keep track of are our prior statistics (λ̄,Γλ). When
a new measurement mk is taken, we can compute our
posterior distribution x|mk which immediately becomes
the prior for the following measurement. This means the
approximate model is iteratively improved between ev-
ery measurement setting. Appendix B gives the explicit
construction of this Bayesian model.

C. Initialization via benchmarking

One of the key benefits of having a Bayesian model
is that we have the ability to include prior information,
including benchmarks such as the average gate fidelity
obtained from RB. Although these benchmarks are typ-
ically limited in their ability to diagnose detailed noise
processes, they do provide tight error bounds on gate
set metrics. The majority of randomized benchmarking
experiments are also robust to SPAM. This means that
prior information extracted from benchmarking can in-
herit this SPAM-free property. Also the more informa-
tion we use prior to performing tomography, the better
our approximate model will be, meaning less approxi-
mation error and a shorter time required before the ap-
proximation error can be ignored. Finally, the random
sequences performed in RB are suitable tomographic set-
tings for FBT, and can be reused as tomographic exper-
iments, as we demonstrated in Section II G.

We briefly review the properties of data from standard
RB [5], which yields an average fidelity over our gate set
obtained by fitting an exponential decay curve to the sur-
vival probability of Clifford circuits of increasing length.
Specifically, the average gate fidelity is

Favg(G) =
1

NG

∑
G∈G

f(G) (11)

where

f(G) =
Tr(ΛG)− 1

d2
. (12)

The estimate obtained by this procedure will contain un-
certainty, which we take as our prior belief. That is,
we now consider the average gate fidelity to be a random
variable, favg with some prior distribution. The distribu-
tion we choose to encode this average fidelity prior may
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vary on how accurately (i.e., how many sequences and
shots) the RB experiment was, and we only require that
this distribution can be efficiently sampled. Provided suf-
ficient samples are taken, the distribution of favg should
be well described by a univariate Gaussian distribution
with mean f̄ and variance σ2

f .
With this prior information from RB, we can now con-

struct priors for each gate in our gate set. Given a sample
of our gate set G = {G} from the prior (which is not nec-
essarily physical) we can take the projection onto the set
of CPTP maps with a given average gate fidelity f by
the following semi-definite program (SDP)

Pf (G) = argmin
{Xi}

∑
i

‖Λi −Xi‖

subject to Favg({Xi}) = f

choi(Xi) � 0. (13)

Algorithm 1 details how we can create a prior distribu-
tion that envelopes the set of CPTP maps such that the
average fidelity statistics are consistent with results ob-
tained via RB.

Algorithm 1 RB Update(x̄,Γx, f̄ , σ
2
f , Nsamples)

randomised Benchmarking prior update

Input: x̄,Γx, f̄ , σ
2
f

1: # x ∼ N (x̄,Γx) is the initial prior distribution
2: # favg ∼ N

(
f̄ , σ2

f

)
RB average fidelity prior distribution

3:

4: for i in 1, ..., Nsamples do
5: Sample an average fidelity f
6: Sample a gate set X
7: Store the projected sample Pf (X )
8: end for
9: take (x̄,Γx) to be the sample mean and covariance of the

projected samples
Output: (x̄,Γx)

Algorithm 1 provides a mechanism to inject the av-
erage fidelity of a gate set into the FBT protocol. We
should note that other benchmarks, such as unitar-
ity [8], can be used similarly, by adapting the projection
in Eq. (13) accordingly.

D. Including SPAM Errors

SPAM errors are central issue in characterizing quan-
tum devices. However, there is a distinction that should
be made between intrinsic SPAM errors [16], i.e., er-
rors in readout and state initialization, and gate SPAM
errors that result from the imperfect gate used when,
for example, preparing a specific state. Self-consistency
takes care of gate SPAM errors, since this is completely
captured by the modeling the noise on the gates. The
intrinsic SPAM errors can be modeled as a noise channel
on each of the state and measurement, i.e., Ẽ = EΛE
and |ρ̃〉〉 = Λρ|ρ〉〉. However, we note that there is a gauge

degree of freedom between these two operators. Theoret-
ically, these two operators can be distinguished by using
ancilla qubits [44]. In such a setting, this could then be
used to inform separate prior distributions on each of the
noise channels Λρ and ΛE . This is, however, beyond the
scope of this paper (as well as most other self-consistent
tomography methods).

Measurement errors are often characterized by esti-
mating error rates for all computational basis states and
measurements [25, 30, 38], which implicitly assumes that
the measurement errors are classical. Moreover, this ap-
proach requires the use of gates to initialize different in-
put and output states, meaning the corresponding mea-
surement fidelities will include gate noise, leading to un-
reliable estimates. By including a measurement noise
channel to the underlying model Ẽ = EΛE , this addi-
tional noise channel is added to the inference problem
and kept separate from gate errors in our model. An
advantage of this approach is that it allows for the re-
construction of a quantum noise channel on our mea-
surement, provided we can make assumptions about the
state preparation as in Section II F.

IV. DISCUSSION

Fast Bayesian tomography is an efficient, flexible
method for self-consistent tomography, with many fea-
tures that make it appealing for the rapid early charac-
terization of quantum gates. It is designed to be used im-
mediately following RB to provide immediate diagnostic
information about the gate performance and associated
errors, allowing for rapid decisions on how gate fidelities
can be improved. Gates that have initially low fidelity
are not a barrier as in previous methods. The ability to
incorporate prior information, such as the physics of state
preparation and measurement, means that the gates are
automatically constructed in a gauge familiar to those
working with the device, without the need for any arti-
ficial gauge optimization. FBT is very flexible in terms
of the data that is uses; as we have shown, it can repur-
pose RB data, and it can be run on data from GST or
other randomised sequences. When new data are avail-
able, these can be directly incorporated into FBT to pro-
vide further improved estimates. We believe that FBT
fills an existing gap in the broad suite of characteriza-
tion tools, complementing more prescriptive benchmark-
ing methods such as GST.

Our demonstration using a two qubit spin qubit device
in silicon shows the utility of FBT. While this device was
previously characterized using RB, we have shown how
FBT can bootstrap this RB data to provide the fidelity,
unitarity, and full process matrices for all primitive 1- and
2-qubit gates. The accuracy of our tomographic recon-
structions is very high, with the approximation error due
to our model becoming negligible. The Bell state fideli-
ties measured using FBT are higher than the conserva-
tive estimates in Ref. [30], because of the self-consistent
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nature of FBT. Although we do not explore it further
here, the detailed diagnostic information about the 2-
qubit gates in this device may potentially be used to op-
timise the pulses and gate operating points such as to
increase gate fidelities further.
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Appendix A: Experimental setup

The quantum dots are formed in a 900 nm thick iso-
topically enriched 28Si epi-layer (residual 29Si concen-
tration of 800 ppm [45]) on a natural silicon substrate.
They are laterally confined by aluminum gate electrodes
fabricated using multi-layer gate stack technology. All
measurements were performed in an Oxford Instruments
wet dilution refrigerator with base temperature Tbath ≈
30 mK and electron temperature Te ≈ 180 mK. Battery-
powered voltage sources (Stanford Research Systems,
SIM928) and an arbitrary waveform generator (LeCroy
ArbStudio, 1104 AWG) were used to generate DC volt-
ages and voltage pulses, respectively, which were added
through combiners with attenuation ratios 1:5 for DC
voltages and 1:25 for voltage pulses. Low-pass filters were
included for slow and fast lines (10 Hz to 80 MHz). An
Agilent E8267D microwave vector signal generator was
used to deliver ESR pulses to the on-chip microwave an-
tenna after being attenuated at the 1.5 K stage (10 dB)
and the 30 mK stage (3 dB). We used the internal ar-
bitrary waveform generator of E8267D to perform single
side-band modulation (by mixing the carrier with the
in-phase and quadrature signals) and generate the four
different ESR-drive frequencies.

Appendix B: Bayesian model for FBT

1. Overview

Algorithm 2 FBT(mk, x̄,Γx, Sk)
Fast Bayesian tomography

Input: mk, x̄,Γx, Sk
1: # mk, the data from current measurement
2: # x ∼ N (x̄,Γx) is the initial prior distribution
3: # Sk, the current gate sequence
4: Sample joint distribution of x, ηk
5: Compute noise statistics Γεk
6: Compute linear model Āk and m̄k

7: Γek|x ← Γεk + Γηk − ΓηxΓ−1
x Γxη

8: Le|x ←
√

Γ−1
e|x via Cholesky decomposition

9: Lx ←
√

Γ−1
x via Cholesky decomposition

10: B̄ ←
[
Le|x(Ā+ ΓηxΓ−1

x )
Lx

]
11: y ←

[
mk − m̄k − η̄k

0

]
12: Γx ←

(
Γ−1
x + Ā†kΓ−1

ek|x
Āk
)−1

13: x̄←
(
B̄TB̄

)−1
B̄Ty

Output: (x̄,Γx)

Overall FBT algorithm:

• Create initial ‘reasonable guess’ prior estimate of
the gates, for example from fidelity estimates.

• Update prior estimates using data such as that from
randomized benchmarking (see algorithm 1)

• For each experimental setting update Gate estim-
ages and Covariances using algorithm 2.

2. Construction of the likelihood

We want to construct a Bayesian model that will give
an updated estimate for our gate set given a new mea-
surement m. In general, m could be a set of measure-
ments but as we are only interested in running the FBT
protocol online, it suffices to consider the case where m
is the measurement outcome from a single experimen-
tal setting. This amounts to determining the conditional
probability distribution of x given m, known as the pos-
terior distribution which we will denote as π(x|m). By
Bayes theorem we have

π(x|m) ∝ π(m|x)π(x) (B1)

where π(m|x) and π(x) are the likelihood and prior dis-
tributions respectively. We will begin by determining the
likelihood for our approximate model.

Firstly, note that the linearization that we have
in Eq. (9) is affine in our gates, and linear in x contain-
ing the parameters of the centralized random variables
|Ei〉〉. We begin by assuming that our random variables
m,x and e are jointly normal with probability density
π(m,x, e). Through repeated use of Bayes’ theorem ob-
serve

π (m,x, e) = π (m|x, e)π (e|x)π (x)

= π (m, e|x)π (x)

hence

π (m, e|x) = π (m|x, e)π (e|x) . (B2)

Using our model, the distribution of our data m given
both the unknown gate parameters x and the noise e is
completely determined. This means

π(m|x, e) = δ(−m̄− Āx− e). (B3)

Hence, combining Eq. (B2) and Eq. (B3) we can
marginalize over the noise to get our likelihood

π(m|x) =

∫
π(m|x, e)π(e|x)de

=

∫
δ(−m̄− Āx− e)π(e|x)de

= πe|x(−m̄− Āx|x).

The above distribution πe|x(−m̄ − Āx|x) is the condi-
tional distribution of e|x. Usually noise in estimation
problems can be assumed to be mutually independent
of the unknown parameters, however the approximation
error η depends explicitly on our prior.



14

Hence, we have the likelihood

m|x ∼ N (m− Āx− ē|x,Γe|x). (B4)

In the next section we will compute the statistics of this
conditional noise process e|x = ε|x+ η|x.

3. Noise processes

In our model we have two separate noise processes: the
shot noise and the approximation error. To compute the
distribution of the noise consider the joint distribution

π(x, η, ε) ∝

exp

(
− 1

2

x− x̄η − η̄
ε− ε̄

T  Γx Γxη Γxε
Γηx Γη Γηε
Γεx Γεη Γε

−1 x− x̄η − η̄
ε− ε̄

)
(B5)

where each block in the joint covariance denotes
the corresponding covariance matrix, i.e. Γηx =
E
[
(η − η̄)(x− x̄)T

]
. Recall that we are interested in de-

termining the distribution of e|x = ε|x+ η|x.
Using standard identities for Gaussian conditional dis-

tributions [43] we can show

e|x ∼ N
(
ē|x,Γe|x

)
(B6a)

where

ē|x = η̄ + ε̄+ (Γηx + Γεx) Γ−1
x x (B6b)

and

Γe|x = Γη + Γε − (Γηx + Γεx) Γ−1
x (Γxη + Γxε) . (B6c)

Fortunately, all these distributions are easily and ef-
ficiently sampled due to being multivariate Gaussians.
This can be achieved by sampling from the prior and di-
rectly computing the corresponding samples of η and ε
using the exact and approximate forward models A(x)
and Āx which we detail further in the next section. This
gives us access to the full joint distribution π(x, η, ε)
in Eq. (B5) from which we can compute all of the neces-
sary statistics for the likelihood.

We say that the shot noise dominates the approxima-
tion error [43] if

Tr(Γε)� Tr(Γη) + ‖η̄‖22. (B7)

Initially, with little or no prior information, this is will
not be the case, especially for long sequences which we
see in Fig. 4 e). If Eq. (B7) is not satisfied, it is imper-
ative that the approximation errors are quantified and
accounted for. However, if the shot noise does dominate
the approximation error, then the approximation is accu-
rate enough for the approximation error to be neglected.
This means that our prior is ‘close enough’ to the true

gate set that the linear model, relative the statistical shot
noise, is as good as the nonlinear model.

The measurement noise ε in our model comes from the
nature of quantum measurement. Every setting requires
N repetitions of the same experimental setting: initial-
ize ρ0, apply the sequence of gates from S, readout and
collate the output of each run. In this way our data is
inherently multinomial, where the bias probabilities are
determined by the Born probabilities of the POVM op-
erators p = [Tr(E1ρ), . . . ,Tr(EMρ)]. Using central limit
theorem arguments we can assume that the correspond-
ing noise ε is well approximated as a multivariate Gaus-
sian random variable with mean zero, provided N is large
enough and the device isn’t completely noiseless.

We make this assumption for the two qubit gate set
results shown in Section II. This simplifies the computa-
tion of the noise as only the approximation error needs
to be computed and we instead have e|x ≈ ε+ η|x. The
multinomial covariance is given by

Γij =

{
Npi(1− pi) i = j

−Npipj i 6= j.
(B8)

To estimate the Born probabilities we can average the
outputs and take p ≈ m. This means that the noise
process ε ∼ N (0,Γε) where

Γε =
Γ

N
(B9)

from Eq. (B8).
Also, once we have the posterior has contracted suffi-

ciently such that the shot noise dominates the approxi-
mation error we can omit it from the noise model com-
pletely. This also means that we no longer need to sample
any noise statistics and e|x = ε, significantly speeding up
the protocol as shown in Fig. 2.

4. Computing the noise statistics via sampling

In this section we will detail how the noise statistics can
directly estimated via sampling. Recall from Eq. (B6a)
that we have

ē|x = η̄ + ε̄+ (Γηx + Γεx) Γ−1
x x

and

Γe|x = Γη + Γε − (Γηx + Γεx) Γ−1
x (Γxη + Γxε) .

As mentioned in Appendix B 3, we can sample from the
full joint distribution π(x, ε, η) by sampling from our
prior π(x) and computing the corresponding noise pro-
cesses given that sample.

A given sample xs from our prior defines a specific
noise configuration in our gate set. Given that noise we
can compute the expected output ps = A(x) using the ex-
act forward model. This defines the effective bias, which
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are the Born probabilities, for multinomial outputs we
will measure upon repeated sampling. We sample from
Multinomial(ps, N) a number of times equal to the exper-
iment samples and store the statistics of ε. We use the
same samples xs and ps to compute the corresponding
sample of ηs. Computing the sample ηs = ps−(m̄+Āxs),
we likewise add this to the samples of the full joint distri-
bution. By stacking these samples of x, ε, η we can em-
pirically estimate the joint covariance and mean which
we can then use in the FBT protocol for this experi-
mental setting. With access to full joint distribution we
can determine the necessary components for the posterior
computation, namely Γη,Γε,Γηx,Γεx and η̄.

5. Posterior distribution

Now, by Eq. (B1), we can determine the posterior
π(x|m) by applying the prior distribution. Since our
prior π(x) is multivariate Gaussian, it is conjugate [43]
to our likelihood. This means that the posterior is
likewise a multivariate Gaussian which we will denote
x|m ∼ N (x̄post,Γpost). The mean x̄post is the solution
to

minimise
x

‖Le|x(m− m̄− ē|x− Āx)‖22 + ‖Lxx‖22 (B10)

and the covariance is

Γxpost
=
(

Γ−1
x + ĀTΓ−1

e|xĀ
)−1

. (B11)

where Le|x and Lx are the cholesky factors of LT
e|xLe|x =

Γ−1
e|x and LT

xLx = Γ−1
x , respectively.

Importantly, Eq. (B10) has a global minimum that can
be efficiently computed using many approaches, including
gradient-descent. However, we can actually compute the
minimizer for Eq. (B10) in closed form. It is simple to
show that the objective function Eq. (B10) is identical to

minimise
x

∥∥B̄x− y∥∥2

2
(B12)

where

B̄ :=

[
Le|x(Ā+ (Γηx + Γεx) Γ−1

x )
Lx

]
(B13)

y :=

[
m− m̄− η̄|x

0

]
. (B14)

This is now in the form of a linear least-squares objective
where we can simply take

x̄post =
(
B̄TB̄

)−1
B̄Ty. (B15)

This defines the posterior which forms the basis
of FBT. However, the posterior distribution encodes our
knowledge of the gate set given the data, we must also
select a relevant point estimate from this distribution.
The maximum a posteriori estimator (the mode) is most
commonly used, however, in general this will not be phys-
ical gate set, as desired. We will consider this in the next
section.

6. Physical priors and estimates

One of the shortcomings of the Gaussian prior model
we introduced in Appendix B is does not necessarily guar-
antee the underlying random variables will be physical.
The multivariate Gaussian priors are used to trade-off a
physically-constrained prior for computational tractabil-
ity. We can, however, use the convexity of the set of
CPTP maps to our advantage to approximately update
our prior to assign low probability to regions that are far
from physical.

As motioned earlier, we use the PTM representation

of channels. For a CPTP map a PTM Λ ∈ Rd2×d2 takes
the following form

Λ =

[
1 ~0T

~τ U

]
. (B16)

The vector τ ∈ Rd2−1 corresponds to the non-unital part
of the channel and will be the zero vector for unital chan-
nels (map to the identity to the identity.) The top row
of the PTM is [1, 0, ..., 0] which corresponds to the trace-
preservation condition of quantum processes. This means
that we can trivially impose the trace-preserving con-
straint in our prior by fixing these parameters, whilst
also reducing the number of by parameters by d2 per
gate. This means that these entries are completely de-
termined in our prior and we only have to worry about
complete-positivity, however this is not as visible a con-
straint for the PTM. Complete positivity of a channel is
equivalent to ensuring the Choi matrix is positive semi-
definite.

This means we need to solve a semi-definite program
(SDP) to constrain our results to physical gates. To
project a sample gate from our prior, say Λi, onto the
set CPTP gates we take

Λ̂i = argmin
Λ

‖Λ− Λ̄i‖2

subject to choi(Λ) � 0. (B17)

which can be efficiently solved using methods in con-
vex optimization [46]. The SDPs in the results of this
paper were computed using the CVX library [47]. We
use Eq. (B17) to project the MAP estimate to a point
estimate for FBT, which we will refer to as the projected
maximum a posteriori (PMAP) estimate. Similar ap-
proaches for projected estimators have been studied in
the context of state tomography [48].

Appendix C: Gate set results

In this appendix we present the full results of all the
channels from the gate set tomography in Section II. For
each gate in the gate set we present the noise residual,
(I−ΛG), in Fig. 5 and the full gate PTM, ΛGG, in Fig. 6.
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FIG. 5. Gate set noise estimates presented as noise channel residuals (I − Λ̄).
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FIG. 6. Gate set estimates presented as full gate Pauli transfer matrices.


	Fast Bayesian tomography of a two-qubit gate set in silicon
	Abstract
	Introduction
	Results
	FBT protocol
	Device and gate implementation
	Randomized benchmarking
	Self-consistent process tomography
	Bell-state tomography
	Measurement tomography
	Repurposing RB data

	Methods
	Tomography and self-consistency
	Fast Bayesian tomography (FBT)
	Initialization via benchmarking
	Including SPAM Errors

	Discussion
	Acknowledgments
	References
	Experimental setup
	Bayesian model for FBT
	Overview
	Construction of the likelihood
	Noise processes
	Computing the noise statistics via sampling
	Posterior distribution
	Physical priors and estimates

	Gate set results


