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Transmission asymmetry in reciprocal systems offers an appealing alternative to bulkier non-reciprocal

implementations for certain applications. Common reciprocal routes to transmission asymmetry of linearly

polarized light involve a rotation of its polarization. Here, we explore a different route with a linear all-dielectric

metagrating that preserves polarization, while lacking inversion symmetry along the surface-normal direction.

Our all-angle transmission calculations reveal an abrupt transition from a symmetric to an asymmetric

transmission response that traces the Bragg critical wavelength of higher-order beam emergence as a function of

the incident angle. By adopting an analogy between scattering from a multi-port network and the metagrating

paradigm we establish why the only necessary condition for transmission symmetry breaking in this class of

systems, is the emergence of any higher-order Bragg diffracted beam. We further show how such a transmission

symmetry breaking is consistent with reciprocity and also demonstrate the underpinning symmetry-breaking

mechanism with a first-principle numerical experiment. Finally, we elucidate on some previous misconceptions

regarding transmission symmetry breaking related to the role of the substrate or need for change of diffraction

order number at each interface. Our proposed metagrating can exhibit a strong transmission asymmetry, with

contrast that can be as high as ∼ 75%, thus underlining its potential as a blueprint for passive asymmetric or

non-linear self-biasing non-reciprocal metasurfaces relevant to integrated and active photonics.

I. INTRODUCTION

Transmission asymmetry in photonic systems, i.e. a trans-

mission that depends on which side of the structure light is

incident from, is a highly desirable property in modern pho-

tonics as it opens-up additional degrees of freedom for de-

signed beam control across the EM spectrum. Transmission

asymmetry of linearly-polarized light is generally regarded as

synonymous to non-reciprocity and in its ideal form implies

optical isolation; a property needed, for example, in lasers to

protect the beam quality against back-reflections [1, 2]. Such a

non-reciprocal behavior is typically onset by an external static

magnetic field [1–4] which however leads to devices with a

large footprint. A weaker form of non-reciprocity [3, 5, 6] can

be triggered by the intensity of the impinging electromagnetic

(EM) wave in non-linear material systems that are asymmet-

ric along the propagation direction [7–14] (self-biasing non-

reciprocity [3]). The capability of a strong transmission asym-

metry in these non-linear systems, without necessarily isola-

tion [3, 6], is certainly winning on the trade-off of more com-

pact implementations.

A linear passive [15] route to transmission asymmetry is

most certainly attractive due to its simplicity but appears

counter-intuitive. However, many authors have reported trans-

mission symmetry breaking of linearly polarized light with-

out violating reciprocity in structures capable of rotating its

polarization [16–23]. The phenomenon stems from a planar

structural asymmetry [24, 25] that is different at each of the

structure’s faces. Specifically, in the aforementioned systems

transmission is asymmetric because S +yx , S −yx, with S yx rep-

resenting the respective scattering matrix element for light in-

cident with x- linear polarization transmitted into the y- linear

polarization channel (90 deg. polarization rotation), along the

forward direction [(+) superscript] and reverse direction [(−)
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superscript] respectively. This inequality is consistent with

reciprocity that requires S +yx to be equal only to S −xy but not

necessarily to S −yx [3].

Here, we explore an alternate reciprocal route to transmis-

sion symmetry breaking of linearly-polarized light without a

rotation of its polarization in a class of metagratings. We aim

to unveil a core general principle that can guide the design

of practically realizable structures for transmission asymme-

try relevant to applications from infrared to visible frequen-

cies while showing its consistency with reciprocity. Our study

focuses on a class of linear, passive, polarization-preserving

metagrating (LPPPMG) systems. It is assumed the metagrat-

ing systems of this class comprise only isotropic optical ma-

terials and may include a substrate but would not include any

elements made of photonic-band-gap (PBGs) [26, 27] or hy-

perbolic media [28]. While transmission asymmetry can be

engineered by structuring media like PBGs which possess cer-

tain directions of forbidden propagation (e.g. see Ref. 29),

these type of systems are out of the scope and discussions in

this work.

Although some previous works have reported transmission

asymmetry for linearly polarized light with systems falling

under the LPPPMG class there is no clear consensus over

the key underpinning mechanism. Specifically, an observed

transmission asymmetry has been attributed to having struc-

tural elements of a different lateral periodicity [30], to a dif-

ferent number of diffraction orders at each side of the structure

[31], or to the Raleigh-Wood anomaly [32] with dependence

on the substrate’s dielectric, suggesting the excitation of sur-

face waves as the key mechanism [33]. Other works [34, 35]

allude to the periodic pitch being the crucial controlling pa-

rameter but with no or true explanation on how the periodic

pitch relates to the cause of transmission symmetry break-

ing. Additionally, the observed transmission-asymmetry onset

for the case of normally incident light was correlated to the

emergence of two first-order Bragg diffracted beams in Ref.

36 but without an explanation as to why these Bragg beams
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[37, 38] enable the transmission symmetry breaking. Hence,

these previous works neither have established a general con-

sistent transmission symmetry breaking principle for linearly

polarized light applicable to the LPPPMG class nor have they

provided an explanation why the observed transmission sym-

metry breaking does not violate reciprocity. This will be the

focus of this paper.

In particular, this paper is organized as follows. In Sec.

II we perform an all-angle transmission study through an all-

dielectric paradigm of the LPPPMG class and show it can ex-

hibit a high degree of transmission asymmetry without optical

isolation [1]. We observe an abrupt phase transition from a

symmetric-transmission to an asymmetric-transmission phase

exactly at the Bragg critical wavelength where higher-order

beams start to emerge for a certain incident angle. In Sec. III,

we consider a multi-port-network framework and demonstrate

that the emergence of at least one higher-order Bragg beam

constitutes the necessary condition for transmission symme-

try breaking in LPPPMG systems with no inversion symme-

try along the propagation direction, while keeping reciprocity

intact. Furthermore, in Sec. IV, we present the results of a

numerical experiment on the metagrating paradigm of Sec. II

with the Finite Difference Time Domain (FDTD) method [39],

thus visualizing the mechanism of the transmission-symmetry

breaking phenomenon discussed in Sec. III. Subsequently,

in Sec. V, we discuss and elucidate on previous misconcep-

tions regarding the transmission asymmetry phenomenon in

the LPPPMG system class, as reported in some of the previ-

ous works discussed above. We further analyze all these as-

pects towards general design principles for practical set-ups.

Finally, we present our conclusions in Sec. VI and discuss

the relevance of this work to current and emerging photonic

applications.

II. THE METAGRATING PARADIGM SYSTEM AND THE

ONSET OF TRANSMISSION SYMMETRY BREAKING

Diffraction gratings are widely-researched [37, 38] popular

optical components. A diffraction grating embedded in

vacuum with interfaces cut along its periodic direction with

a pitch a gives rise to higher-order reflected and transmitted

beams (Bragg beams) for free-space wavelengths, λfree, such

that [27]:

|sinθinc + m
λfree

a
| < 1, (1)

for any integer m , 0, with θinc being the incident angle. Eq.

(1) still yields the higher-order Bragg beams existing in vac-

uum even if the grating rests on a substrate at both the grating

and substrate side; however, in practice if the substrate is thick

and lossy some Bragg orders may disappear. The role of the

substrate will be discussed more in Sec. V.

Here we consider a metagrating paradigm with its

periodically-repeated building block being a three-log dielec-

tric micropyramid lacking inversion symmetry along the prop-

agation direction. The permittivity value of the dielectric, ε, is

taken to be equal to 10.6, that is representative of semiconduc-

tors at mid-infrared frequencies. In the conceived metagrating

FIG. 1. (a) TM-light [40] incident from the tip side (left panel) and

base side (right panel) of the micropyramid metagrating. (b) The

metagrating’s unit cell (translational symmetry along the z− axis)

(c) TMM transmission results for TM light versus free-space wave-

length, λfree at θinc = 30 deg. Tip-side (base-side) incidence is desig-

nated as T↓ (T↑) and shown with a dashed-red (solid-black) line. λ1,

λ2 are indicative λfree values above and below a critical wavelength λc

where the transmission asymmetry onsets; associated results of the

numerical experiment of Fig. 3 are shown with filled circles for T↓

and open diamonds for T↑. (d) The transmission asymmetry Tasym

versus θinc and λfree (flat plotting format without interpolation); zero

values indicate a symmetric response. The solid, dashed, and dot-

ted white lines respectively represent the λfree value below which at

least one, two or three higher-order Bragg diffracted beams emerge,

at each side of the structure, as determined from Eq. (1).

design for either TM or TE incident light [40] polarization

rotation is forbidden by virtue of the translational symmetry

along one axis [41–43]. This means for either TM- or TE-

polarized light, all reflected and transmitted beams from the

metagrating, whether primary, m = 0 in Eq. (1), or higher

order, m , 0 in Eq. (1), will also be TM- or TE-polarized

respectively.

We consider here the case of TM-polarized light [40] in-

cident at an angle θinc on such meta-grating as depicted in

Fig. 1(a). Fig. 1(b) depicts the design parameters of the mi-

cropyramid’s unit cell comprising the metagrating. We calcu-

late the transmission with the transfer matrix method (TMM)

[44, 45], for θinc = 30 deg. and show the respective results

in Fig. 1(c) versus the free-space wavelength, λfree. The red-
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dashed line, represents the transmission, T↓, for light com-

ing from the top side, as in the left panel of Fig. 1(a), while

the black-solid line represents the transmission, T↑, for light

coming from the bottom side, as in the right panel of Fig.

1(a). Interestingly, we observe that T↓ and T↑ exactly match

for long wavelengths, and become different below a critical

wavelength, λc. To quantify such difference we introduce the

transmission asymmetry, Tasym:

Tasym = |T↓ − T↑|. (2)

We observe at λfree > λc, Tasym is zero designating a sym-

metric response, while at λfree < λc we see that Tasym varies

from small to significant, taking values as large ∼ 75% around

λfree ∼ 3.2 µm.

We aim to understand what is the physical reason behind

such a critical wavelength, λc, below which transmission sym-

metry breaking onsets. Clearly, polarization rotation enabling

transmission asymmetry in various reciprocal systems [16–

23] cannot be the responsible mechanism since it is forbidden

here [41–43]. To gain more insight, we calculate the transmis-

sion asymmetry, Tasym, versus the free-space wavelength and

incident angles. We start from normal incidence with a step

of 5 deg. until near-grazing incidence and show the results in

Fig. 1(d). We observe an abrupt separation of the (θinc, λfree)

space into two areas with corresponding zero, and non-zero

values of Tasym.

If we look closer at these limiting λfree values for certain

θinc at the boundary between these two aforementioned ar-

eas, we find that astonishingly, these are tracing the respective

values where at least one higher-order Bragg diffracted beam

emerges, as determined from Eq. (1). We represent the lat-

ter in Fig. 1(d) with the solid-white line. There may be more

than one higher-order Bragg beam. Conversely, dashed-white

and dotted-white lines represent respectively the λfree values

at different θinc, determined from Eq. (1), below which at

least two or three higher-order Bragg beams emerge. Indeed,

it is the emergence of the very first Bragg beam with m = −1

that abruptly changes the behavior of the system from having

a symmetric to having an asymmetric transmission response.

Such first-order Bragg beam is present on both sides of the

structure of Fig. 1. We note in passing while Fig. 1 depicts the

TM-polarization results, we have also verified that asymme-

try abruptly kicks-in when the first Bragg beam with m = −1

emerges for the case of TE-polarized light as well [40].

In the following, we consider a general LPPPMG system

and demonstrate why the emergence of at least one higher-

order Bragg beam enables transmission asymmetry of linearly

polarized light without violating reciprocity.

III. BRAGG BEAMS AS CHANNELS OF A RECIPROCAL

MULTI-PORT NETWORK: THE ROUTE TO

TRANSMISSION SYMMETRY BREAKING

We present here an analogy between Bragg-diffracted

beams at the surface of a LPPPMG system and networked

ports. For gratings resting on a substrate the LPPPMG sys-

tem would comprise both the grating and the substrate [46].

In other words, the ports are always defined in vacuum, where

FIG. 2. Multi-port network representing scattering of a linearly-

polarized plane-wave from the LPPPMG metagrating system. |ai|
2

(|bi|
2) yields the respective beam’s power through the ith port into

(out-of) the system. Beams into and out-of all ports are depicted al-

though some may have a zero associated coefficient. For incidence

from the top [bottom] side, Port (1) [(2)] denotes the channel of the

the input beam and the only or primary reflected beam, Port (2)[(1)]

the channel of the only or primary transmitted beam, Port (3) [(4)]

the channel of the first-order Bragg reflected beam and Port (4) [(3)]

the channel of the first-order Bragg transmitted beam.

transmission is measured in experiments, with each higher-

order Bragg beam contributing two ports, one for the reflec-

tion and one for the transmission channel. This means a

two-port system, as seen in Fig. 2(a), would represent cases

where no higher-order out-coupled Bragg beams may exist,

such as the metagrating system for (λfree, θinc) values above

the white solid line of Fig. 1(d). Conversely, a four-port sys-

tem [Fig. 2(b)] describes cases where one higher-order Bragg

beam emerges, such as the metagrating system for (λfree, θinc)

values between the white solid and dashed lines of Fig. 1(d)

while a six-port system corresponds to cases with two higher-

order Bragg beams, such as the metagrating system for (λfree,

θinc) values between the white dashed and dotted lines of Fig.

1(d) and so on and so forth.

We have that [b] = S [a], with [a], [b] being column arrays

contain the respective coefficients ai and bi yielding the power

throughput of the incoming and outgoing beams at the ith port

when their modulus squared is taken (see Fig. 2). S is the

scattering matrix, which must be symmetric for a reciprocal

system [2, 3, 47], i.e. S = S T, with T denoting the matrix

transpose. Then, after adopting the notation S i j to represent

the scattering matrix element from the jth to the ith port we

obtain for the two-port system:

T↓ =
|b2|

2

|a1|
2

∣

∣

∣

∣

∣

a2=0

= |S 21|
2, and,

T↑ =
|b1|

2

|a2|
2

∣

∣

∣

∣

∣

a1=0

= |S 12|
2. (3)

We see from Eq. (3) that reciprocity mandates T↓ and

T↑ to be equal. Hence, transmission must be symmetric

for LPPPMG systems where no higher-order Bragg beams

emerge, which effectively behave as a two-port system. If ad-

ditionally these systems are lossless, such as the metagrating

paradigm of Fig. 1, reflection must also be symmetric. On the
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other hand, if these systems have a loss, gain or both, then they

may exhibit an asymmetric reflection which however must be

offset by an equivalent asymmetry in absorption or gain, thus

resulting in a symmetric transmission (e.g. see Refs. [43, 48–

52]).

Conversely, for the four-port system [case of Fig. 2(b)],

taking into account that there is no input power in some ports,

we obtain:

T↓ =
|b2|

2 + |b4|
2

|a1|
2

∣

∣

∣

∣

∣

a2=0,a3=0,a4=0

= |S 21|
2 + |S 41|

2, and,

T↑ =
|b3|

2 + |b1|
2

|a2|
2

∣

∣

∣

∣

∣

a1=0,a3=0,a4=0

= |S 32|
2 + |S 12|

2. (4)

Hence, for a LPPPMG system behaving as a four-port sys-

tem, such as the metagrating system of Fig. 1 when one high-

order Bragg beam emerges, transmission will be in general

asymmetric with an asymmetry equal to:

Tasym =
∣

∣

∣|S 21|
2 + |S 41|

2 − |S 32|
2 − |S 12|

2
∣

∣

∣ =

∣

∣

∣|S 41|
2 − |S 32|

2
∣

∣

∣ , (5)

This is because while reciprocity requires S = S T and thus

S 21 to be equal to S 12, it does not require S 41 and S 32 to be

equal. In a similar manner we find that transmission is gener-

ally asymmetric for a LPPPMG system with two higher-order

Bragg beams, behaving as a six-port system, and so on and so

forth.

We note in passing that the higher-order Bragg channels on

one of the structure’s sides may be engineered to have no out-

put, e.g. like in the case of systems studied in Ref. 31. In the

latter cases, the higher-order channels on one of the structure’s

side are inactive/closed, i.e. effectively non-existent with a

zero corresponding scattering matrix element S i j. Engineer-

ing this behavior is rather challenging, with designs being

generally less practical, especially in the infrared and opti-

cal spectrum, without necessarily a higher asymmetry perfor-

mance. We discuss these type of cases in more detail in Sec.

V-C. The important take away of this section is, as Eq. (5) at-

tests, that it just takes the emergence of only one higher-order

Bragg beam to break transmission symmetry, whether the cor-

responding channels of such higher-order beam are open on

either or both sides of the structure. However, in general,

wherever any higher-order Bragg beams emerge these will act

as open channels on both sides of the structure, like in the case

of our metagrating paradigm of Fig. 1.

In the following, we perform a first-principle numerical

experiment with the metagrating of Fig. 1 at λfree = λ2,

demonstrating how transmission symmetry breaking occurs

by means of the first-order transmitted Bragg beams (m = −1)

that can out-couple from both structure sides, albeit with dif-

ferent strengths, |S 41|
2 and |S 32|

2, respectively.

IV. DEMONSTRATING THE MECHANISM OF

TRANSMISSION SYMMETRY BREAKING WITH A

FIRST-PRINCIPLE NUMERICAL EXPERIMENT

We simulate the metagrating’s response to a TM quasi-

monochromatic Gaussian beam [53] launched at 30 deg. with

FIG. 3. Numerical experiment (FDTD) of TM light impinging at 30

deg. at the metagrating (white rectangle) for the wavelengths λ1 [case

shown in (a)] and λ2 [case shown in (b)] designated in Fig. 1(c). The

y-component of the normalized time-averaged Poynting vector (ab-

solute value) is depicted (|S̃y|). The top (bottom) panels in (a) and

(b) correspond to incidence from the tip (base) side of the micropy-

ramid array. The slanted-black line designates the source launching

the incident Gaussian beam, marked with the black solid arrow. The

white dashed and red double arrows represent respectively the re-

flected (marked with r) and transmitted (marked with t) beams, with

the subscripts in (b) designating diffraction order. The dashed and

dotted horizontal line segments in all panels represent the respective

ports; the corresponding total power throughput would be propor-

tional to |S i j|
2, with S i j being the relevant Scattering matrix element.

the two-dimensional (2D) Finite-Difference Time Domain

Method (FDTD) [39] with Perfect Matched Layer (PML)

boundary [54, 55] conditions (translational symmetry is taken

out-of-the plane of incidence). We perform the FDTD experi-

ment for the two indicative wavelengths λ1 and λ2, designated

in Fig. 1(c), and show the respective results in Figs. 3(a)

and 3(b) for incidence from both sides of the micropyramid-

array. The micropyramid-array is represented as a white rect-

angle that has its tip side coinciding with the top rectangle

side and its base side coinciding with the bottom rectangle

side. The quantity depicted in Fig. 3 is |S̃y|, with S̃y being

the normalized time-averaged y-component of the Poynting
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vector, calculated in FDTD at steady-state by averaging the

y-component of the Poynting vector over a wave period, Tper,

and then dividing this by the corresponding value of the source

maximum.

For λfree = λ1 we observe in Fig. 3(a) only one reflected and

transmitted beam; their respective strengths appear the same

irrespective of the side the incident beam is launched from. To

check this further, we take the |S̃y| power throughput collected

over the line-segment port (dashed line) and normalize this

by dividing it with the respective power throughput collected

from an equivalent line-segment port at the same y distance

from the source, in the absence of the metagrating structure.

This process yields respectively for the top and bottom panels

of Fig. 3(a) |S 21|
2, and |S 12|

2; reciprocity mandates these to be

equal; to no surprise |S 21|
2 and |S 12|

2 are found to be equal in

the FDTD experiment [56].

On the other hand, for λfree = λ2 we observe two reflected

and transmitted beams; this is expected from Eq. (1) which

predicts that at this wavelength and launch angle a Bragg

beam of order m = −1 would emerge. It is interesting that we

see in Fig. 3(b) that while the strength of the primary trans-

mitted beams (m = 0) appear the same, whether the beam is

launched from the top or bottom side, the ones corresponding

to Bragg order m = −1 have visibly very different strength.

By performing, the detailed calculation of the power through-

put through the dashed and dotted line ports, as we did for

the case of Fig. 3(a), we confirm the initial visible observa-

tion. Indeed, the power throughput of the primary transmitted

beams, corresponding to |S 21|
2 and |S 12|

2 are equal [56].

However, the power though-put of the transmitted Bragg

beams with order m = −1, corresponds to |S 41|
2 and |S 32|

2,

for incidence from the top and bottom side respectively. Reci-

procity does not require these to be equal and our numerical

experiment reveals that in fact they do turn out to be signifi-

cantly different. It is that significant difference that caused the

significant transmission asymmetry we observed in Fig. 1(c).

Now that we have calculated with the FDTD method the scat-

tering matrix elements |S 21|
2 and |S 12|

2 for case of Fig. 3(a)

and |S 21|
2, |S 12|

2, |S 41|
2 and |S 32|

2 for the case of Fig. 3(b), we

can use them to calculate T↓ and T↑ from Eqs. (3) and (4).

We do this and show the respective results with filled circles

and open diamonds in Fig. 1(c); a very excellent agreement is

observed with the TMM results.

To recap, our FDTD experiment validated our hypothesis

that the transmission asymmetry of linearly polarized light in

the metagrating system stems from the introduction of addi-

tional transmission channels via higher-order Bragg beams.

V. ELUCIDATING ON PREVIOUS MISCONCEPTIONS

AND PRACTICAL CONSIDERATIONS

We briefly discussed in the introduction previous works that

have reported a transmission asymmetry of linearly polarized

light incident on a LPPPMG structure. Indeed, there was

apparent lack of consensus in these previous reports regard-

ing the key responsible mechanism for such a transmission

asymmetry in this class of systems. In the previous sections,

we have unveiled with our systematic all-angle calculations

and the multi-port network framework that the only neces-

sary condition is the emergence of at least one higher-order

Bragg beam in a LPPPMG system that lacks inversion sym-

metry along the propagation direction. In this section, we dis-

cuss in more detail how such previous misconceptions arose

while correlating the results of these previous works with our

findings here. We analyze different aspects of previous re-

ported structures, while highlighting interpretation mistakes.

The discussion below emphasizes how identifying correctly

the core mechanism of transmission asymmetry of linearly

polarized light in LPPPMG systems as stated above is crucial

towards transferable design principles for practical implemen-

tations across the EM spectrum.

FIG. 4. (a) Structural parameters of the designs in (b). (b) Unit cells

for variations I, II, III of the metagrating of Fig. 1 (c) Corresponding

TMM results of the transmission asymmetry, Tasym, [defined in Eq.

(2)] versus free-space wavelength λfree [TM-polarized light incident

at θinc = 30 deg]. The vertical line represents the wavelength where

at least one higher-order Bragg beam emerges as determined from

Eq. (1). The inset zooms around the regime of the onset of the

transmission asymmetry.

A. On the substrate’s role on the spectral onset of the

transmission asymmetry

The design variations I, II and III of Fig. 4 aim to address

the assertion of Ref. 32 that the transmission asymmetry re-
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lates to the Wood anomaly [33] and thus its spectral onset de-

pends on the permittivity of the substrate material. If the last

metagrating layer is widened until the unit cell limit, thus es-

sentially becoming a substrate layer we obtain design I; design

II has a thicker substrate layer, while in design III the substrate

layer is entirely dropped [see Figs. 4(a) and 4(b) for full de-

sign parameters]. We show in Fig. 4(c) the corresponding

TMM results for transmission asymmetry, Tasym, as defined

from Eq. (2), for TM- light incident at θinc = 30 deg.. We

observe the onset wavelength of the transmission asymmetry

is common for all three designs, which matches the prediction

from Eq. (1) seen with the brown vertical line. The tiny rel-

ative difference of ∼ 0.1% is due to numerical-grid errors in

TMM.

FIG. 5. (a) Structural parameters of the designs in (b) and (c). (b)

In the left panel the unit cell of design IV is depicted; the right panel

shows the corresponding TMM result for the transmission asymme-

try Tasym, [defined in Eq. (2)] versus free-space wavelength [TM-

polarized light incident at θinc = 30 deg]. The blue-dotted line shows

the corresponding Tasym of design I for comparison. The vertical

line represents the wavelength where at least one higher-order Bragg

beam emerges as determined from Eq. (1). The inset zooms around

the regime of transmission asymmetry onset. (c) Same as in (b) for

design V, that is compared with design II.

For LPPPMG structures [46], the result of Fig. 4 establishes

that the spectral onset of transmission asymmetry coincides

with the emergence of the first higher-order beam in vacuum

and is independent of the existence of any substrate or its per-

mittivity. The erroneous conclusion of the simulation work

of Ref. 32, stating the dependence of the transmission asym-

metry onset on the permittivity of the substrate, arose from

transmission being calculated within the substrate layer which

was taken to be semi-infinite along the y-direction. Transmis-

sion is defined however and indeed measured in experiments

through the substrate in vacuum; thus transmission should be

calculated in vacuum after the substrate as we have done for

the designs I and II that comprise a substrate layer. Note, that

the structures of Ref. 32 as well as all structures studied here

have been taken to be infinitely extending in the x-direction.

We alert the reader that the unavoidable finite lateral extent of

the structure may also come into play in experiments, that may

affect the transmission asymmetry. The cause of such lateral

finite-size effects is the possible beam leakage from the side

structural faces (along the yz plane), which would be more

likely to occur for thick substrates. So, when designing prac-

tical systems such lateral finite-size effects need to be taken

into account.

B. On the substrate’s role on structural inversion symmetry

breaking along the propagation direction

We established with Fig. 4 that adding a substrate on a

LPPPMG structure comprising structural elements lacking in-

version symmetry along the propagation direction (y direction

here) has no effect on the transmission asymmetry onset. Now,

structures that possess inversion symmetry along the propaga-

tion direction, would always show a symmetric transmission

response. For example, transmission would be always sym-

metric for a structure resulting from design III of Fig. 4 after

e.g. dropping the top layer, as the resulting structure would

have y-inversion symmetry. Things would change however if

we were to place the aforementioned structure on a substrate.

The substrate itself breaks the y-inversion symmetry, without

requiring the structural elements resting on the substrate to be

lacking y−inversion symmetry themselves.

To demonstrate this, we consider here designs IV and V,

which are systems comprising the same y−symmetric struc-

tural element, a rectangular-cross-section log with sides of

dx2 =2 µm, along the x− direction and dy =1 µm, along the

y− direction and infinite in the z− direction. Such a log is

resting on a substrate made of the same dielectric material,

with permittivity ε =10.6, and being 1 µm thick for design

IV and 4 µm thick for design V. The corresponding results

for the transmission asymmetry, Tasym, defined in Eq. (2), are

shown in Fig. 5, for the case of TM-light incident at a 30 deg.

angle. Indeed, these results attest for a broken transmission

symmetry for wavelengths below the value of 7.5 µm that is

designated with the brown vertical line in Fig. 5 and coin-

cides with the wavelength where a higher-order Bragg beam

with m = −1 emerges.

Note that Ref. 36 which we discussed in the introduction,

reported transmission asymmetry for a structure comprising

silver rectangular logs that are symmetric along the propaga-

tion direction and rest on a dielectric substrate. However, Fig.

5 additionally reveals that the substrate can introduce signif-

icant asymmetry in the transmission response even in a fully

dielectric system and even if the substrate material and the

material comprising the periodic structural elements are the

same. In the context of designs for practical systems, a key

question is how important is it to have a y−asymmetry for the

structural element alone that rests on the substrate.

To answer this we compare design IV with design I and de-

sign V with design II. The respective design pairs are the same

in every respect except for an extra top square log, with a side
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of 1 µm, that is present in designs I and II and makes them

y−asymmetric even without the substrate. The correspond-

ing Tasym of designs I and II is shown in Fig. 5 with a blue-

dotted line. The results in Fig. 5 reveal that there is no rule of

thumb. In fact, Fig. 5 shows that y−asymmetric structural el-

ements on a substrate may or may not yield a better transmis-

sion asymmetry performance in comparison to y−symmetric

ones; it depends on the particulars of the structure and the

frequency. However, y−asymmetric structural elements on a

substrate most certainly offer a broader parameter space for

design flexibility towards targeted applications in comparison

to y−symmetric ones.

C. Different number of higher-order Bragg beams at each side

of the structure and transmission symmetry breaking

The all-dielectric meta-grating systems of Figs. 1 and 3-

5 have the same number of Bragg beams at both sides of

the structure [46]. This would in general be true for most

all-dielectric systems. Actually, it takes quite complex en-

gineering to suppress higher-order Bragg beams on one side

of LPPPMG systems only and would certainly typically in-

volve material loss. So for normal incidence, the typical sit-

uation would involve two higher-order beams with m = −1

and m = 1 at each interface side for frequencies above the

first Bragg condition but below the second. Hence, as we dis-

cussed in Sec. III, the typical situation would involve a six-

port system [see Fig. 6(a)]. However, Ref. 31 considered a

meta-grating structure comprising connected air-waveguides

in a perfect metal background leading to interfaces having a

different pitch. The different pitch at each interface along with

the forbidden propagation inside the metal made it possible to

inactivate the higher-order Bragg beam channels on one of the

metagrating’s sides only in this particular system. Thus, this

system may be described by the four-port system seen in Fig.

6(b) [instead of that of Fig. 6(a)].

The authors of Ref. 31 concluded that the transmission

asymmetry occurs because of the emergence of higher-order

beams on one side of the structure only. Indeed, this is a

special case that yields transmission asymmetry with:

Tasym =
∣

∣

∣|S 41|
2 + |S 61|

2
∣

∣

∣ . (6)

However, the structure would have still yielded asymmetry

in transmission even if higher-order beams where present on

both sides of the interface [situation in Fig. 6(a)] given by:

Tasym =
∣

∣

∣|S 41|
2 + |S 61|

2 − |S 32|
2 − |S 52|

2
∣

∣

∣ . (7)

Not only it is not a requirement to have a different num-

ber of Bragg channel at each side of the structures for trans-

mission asymmetry, but also there is no guarantee this route

would give rise to a higher asymmetry either. One should

not be misled by Eq. (6) and (7) to conclude that transmission

asymmetry is necessarily larger when there is a different num-

ber of available Bragg channels at each side of the structure;

the latter corresponding systems typically would include ma-

terial loss or high reflection which limits the attainable |S 41|,

FIG. 6. Multi-port network representions, like in Fig. 3, but for

cases: (a) Where two higher-order Bragg beams exist on both sides

of the structure and (b) Two higher-order Bragg beams exist on one

side of the structure but no higher-order Bragg beams exist on the

other side. The ai, bi coefficients have the same meaning as in Fig. 2.

Here, for incidence from the top [bottom] side, Port (1) [(2)] denotes

the channel of the input beam and the only or primary reflected beam,

Port (2)[(1)] the channel of the only or primary transmitted beam,

Ports (3), (5) [(4), (6)] the channels of the Bragg reflected beams and

Ports (4), (6) [(3), (5)] the channels of the Bragg transmitted beams.

Ports (3) and (5) do not exist for case (b), where two higher-order

beams are present at one side of the structure only, like in the system

reported in Ref. 31.

|S 61| values. Indeed, the reported transmission asymmetry

in the metallic structure of Ref. 31, where two higher-order

Bragg beams exist on one side only, is about 30%. As an ex-

ample, we highlight the case of the all-dielectric metagrating

paradigm of Fig. 1 for TM-polarization and 30 deg. incident

angle, where we were able to obtain a transmission asymme-

try as high as ∼75% at about 3.2 µm. Two higher-order Bragg

channels (with m = −1 and m = −2) are present at both sides

of the structure in this example.

To resume, while having a different number of Bragg beams

at each of the structure sides may lead to transmission asym-

metry this is not a necessary condition and it does not guar-

antee a stronger transmission-asymmetry performance either.

Additionally, designs that can give a different number of

diffraction orders at each side are considerably more complex,

and likely needing material loss; these complex designs are

not as easily realizable for infrared and optical frequencies.

Hence, cost-benefit considerations certainly do not justify pur-

suing these complex designs for transmission asymmetry in

practical applications at these frequencies. In other words, the

design focus to obtain transmission asymmetry in LPPPMG

systems of interest in infrared and optical applications should

be towards systems with at least one higher-order Bragg chan-

nel existing at both sides of the structure [46].
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D. On the role of the pitch and incorporating structural

elements of different pitch for transmission symmetry breaking

In this sub-section we discuss in more detail the role of the

pitch, i.e. the lateral periodicity in LPPPMG systems, includ-

ing in cases of LPPPMG systems where structural elements of

a different lateral pitch have been incorporated.

Tunability, i.e. spectral shift, of the transmission asymme-

try onset by changing the pitch of the structure has been pre-

viously observed [34], albeit with no explanation why this oc-

curs, –although also in this work transmission is calculated

within a semi-infinite substrate, which means the spectral lo-

cation of the transmission asymmetry onset has been incor-

rectly identified for the same reason as in Ref. 32. However,

indeed, it is the pitch a that control the spectral onset of the

transmission asymmetry because it does control the spectral

emergence of the first Bragg beam; per Eq. (1) the important

parameter is λfree/a. So, by changing a, the first higher-order

Bragg beam at a certain incident angle, would emerge at a dif-

ferent free-space wavelength, λfree. For example, in all meta-

grating systems of Figs. 1, 3, 4 and 5, for an incident angle of

30 deg. transmission asymmetry onsets at λfree = 1.5a.

However, Ref. 35 additionally asserted that transmission

symmetry breaking occurs because a wavelength smaller than

the pitch allows the impinging wave to “see” the 2D struc-

turing of the system. Indeed a/λfree = 1 coincides with the

Bragg condition at normal incidence. However, the cause

for the transmission asymmetry is the mere emergence of the

higher-order Bragg beams. It is the emergence of the addi-

tional Bragg beam(s) that allows preserving reciprocity while

breaking transmission symmetry as we discussed in Sec. III.

The assertion of Ref. 35 that a wavelength smaller than the

pitch is needed for the wave to “see” the structure for trans-

mission asymmetry to emerge is certainly not correct and not

consistent with an all-angle analysis as we have done here.

Actually, as we observe in Fig. 1 for near-grazing incident an-

gles transmission symmetry breaks at free-space wavelength

values almost twice the pitch.

Also, there was a previous report of transmission asymme-

try in an LPPPMG system that included structural elements of

different lateral periodicity [30]. For such systems it is the

larger pitch that controls the spectral onset of transmission

asymmetry. For example, at normal incidence transmission

asymmetry onsets at λfree = a, with a here being the period-

icity of the larger pitch, which is consistent with the results

of Ref. 30. In the systems of Ref. 30 the role of struc-

tural elements of different pitch basically just boils down to

breaking inversion symmetry along the propagation direction.

However, if such inversion symmetry was broken by any other

way without having elements of different periodicity, the sys-

tem would still show an asymmetric transmission whenever

higher-order Bragg beams exist beyond the structure’s inter-

faces [46]. In other words, while incorporating elements of

different periodicity is a route to breaking inversion along the

propagation direction, this is not the only route and certainly

not the most practical. Accordingly, there is no apparent ad-

vantage in targeting LPPPMG designs comprising elements

with a different lateral periodicity.

VI. CONCLUSIONS

With all-angle transmission calculations and the aid of a

multi-port network analysis, we showed that a reciprocal route

to transmission asymmetry of linearly-polarized light without

rotation of its polarization is to excite at least one higher-order

Bragg diffracted beam on either or both sides of a LPPPMG

structure [46] that has broken inversion symmetry along the

propagation direction. We have further demonstrated this core

mechanism in a metagrating paradigm with a numerical ex-

periment. Moreover, we established that asymmetric trans-

mission can occur even when the same number of diffracted

beams are present at both sides of the structure, contrary to

previous reports asserting the need for a different number [31].

We further disproved the conclusion of Ref. 32 and showed

that the onset wavelength of the transmission asymmetry is ac-

tually independent on the presence of a substrate. Finally, our

results and analysis revealed that complex designs incorporat-

ing structural elements of different pitch are neither necessary

nor have an apparent advantage.

Thus, this work offers transferable design insights for trans-

mission symmetry breaking of linearly polarized light across

the EM spectrum with simple LPPPMG systems that lack in-

version symmetry along the propagation direction. The mech-

anism uncovered here for transmission asymmetry would be

applicable to linear passive periodic metasurfaces [57] as well,

however the contribution from polarization rotation that is

possible in these systems would need to be accounted as

well. We believe this work will further inspire non-linear self-

biased non-reciprocal [3, 12] metasurfaces and metagratings

that are highly relevant to applications like integrated infrared

photonics [58], self-isolating lasing architectures [59] and di-

rectional second-harmonic generation [60, 61]. Other inter-

esting asymmetric effects that have been reported involve the

lack of transmission mirror symmetry with respect to the sur-

face normal caused by the excitation of topological surface

waves [62], i.e. a transmission that is different for incident

angles θ and −θ. Hence, the metagrating systems reported

here may further inspire functional designs for highly versatile

light flow control with both mirror and propagation-direction

transmission asymmetry.
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