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Mott materials such as vanadium oxides, when subject to a strong applied voltage, present an
inhomogeneous insulator-to-metal transition with formation of metallic filaments within the insulat-
ing bulk. This property is enabling the development of compact and power-efficient neuromorphic
devices known as Mott neurons. However, the nature of the transition has not been fully under-
stood yet, as it may be attributed to different effects, including Joule self-heating and hot carriers
injection. Moreover, the experimental determination of the threshold voltage needed to induce the
transition has proven to be challenging, as the transition becomes increasingly unpredictable when
the threshold is approached. The physical understanding of these issues would not only deepen our
understanding of Mott insulators, but would also be an important step toward the realization of neu-
romorphic devices based on such materials. In this work we use numerical simulations based on the
Mott resistor network model to study the nature of the filament incubation and formation process.
We show that both electronic and thermal effects, in the form of current density focusing and Joule
self-heating respectively, contribute to the filamentary incubation and growth. Remarkably, we find
that the percolation of the metallic filaments near the threshold is intrinsically stochastic, qualita-
tively similar to the familiar Arrhenius activated behavior and to the stochastic firing of biological
neurons. More precisely, we characterize the filament percolation as a Poisson point process, which
has the same probability distribution as mathematical models of neuronal firing with an exponential
escape rate. Finally, we support the numerical simulation results by performing experiments in VO2

that are in agreement with the exponential escape rate behavior. Thus, we establish a functionality
of Mott insulators that opens a path towards implementing neuromorphic hardware with quantum
materials.

I. INTRODUCTION

Large scale simulations of realistic neuronal models
with high density of synaptic connections pose a com-
putational challenge that has yet to be overcome by tra-
ditional von Neumann architectures [1]. Power efficiency
and scalability are of particular concern, as the result
of the different way in which the brain and comput-
ers are organized. More specifically, the separation of
memory and processing elements that characterizes tra-
ditional computers has no equivalent in the brain, where
neurons and synapses, the basic unit of computation and
storage, are tightly integrated. One possible solution
to this problem consists in the development of silicon
neurons, i.e. neuromorphic circuits implemented with
conventional semiconductor electronics, which mimic the
functionality of biological spiking neurons [2]. These sys-
tems range from complex circuits that aim at faithfully
reproducing mathematical neuron models [3, 4], to ex-
tremely simple ones counting very few components [5, 6].

However, the miniaturization and low energy consump-
tion requirements are motivating a search for radically
new devices based on quantum materials [7], such as Mott
compounds, which exhibit metal-insulator transitions [8].
In fact, one recent example of these efforts is the Mott
neuron [9], which is a realization of the leaky-integrate-
fire neuronal model based on a chalcogenide Mott ma-
terial [10]. Other notable examples of Mott materials

which are currently being adopted are transition metal
oxides, such as VO2 [11, 12] and NbO2 [13]. The po-
tential for miniaturization, low power consumption and
implementation of a wide variety of biological behaviours
[14], make Mott neurons particularly promising. How-
ever, Mott neurons still pose great challenges in terms of
reliable fabrication and, especially, electric control.

The spiking behavior of a Mott neuron device physi-
cally originates in the resistive collapse of the Mott in-
sulator material upon the perturbation of the system by
a strong electric field [15, 16]. The key insight is that
applied voltage pulses, if frequent enough and strong
enough, can induce the resistive collapse [17]. Thus, one
may assimilate the pulses to the excitatory post-synaptic
potentials of biological neurons, and the resistive collapse
and ensuing current spike to the emission of an action po-
tential [9].

Key to the neuromorphic functionality of Mott neurons
is the volatile character of the resistive collapse. Namely,
once the perturbation is terminated the collapsed re-
sistance of the system spontaneously returns back to
its original high insulating-state. This phenomenon is
therefore qualitatively different from the better known
and more common non-volatile resistive switching that
enables the fabrication of synapses for neural networks
and memory devices known as RRAM or memristors
[7, 18, 19].

From the theoretical standpoint, the description of the
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neuromorphic functionalities of Mott materials [20] re-
quires the solution of many-body models of strongly cor-
related systems out-of-equilibrium and at strong elec-
tric fields, which remains a significant challenge [16, 21].
Nevertheless, valuable theoretical insights can be ob-
tained from the study of mesoscopic-scale phenomenolog-
ical models. One such model is the Mott Resistor Net-
work (MRN) [11, 17, 22], which predicts the formation
of a conductive filamentary structure within the stable
insulator matrix as the triggering mechanism for the re-
sistive collapse. This model prediction has recently been
validated by direct observation of the filamentary incu-
bation and growth in VO2 [23]. An important aspect
of the model is the assumption of the meta-stability of
the metal phase, which is a characteristic of the metal-
insulator transition in 3D Mott materials [8, 24]. This
was recently put in evidence in a study of unexpected
long-lasting memory in the relaxation dynamics of the
resistive recovery of vanadium dioxide [11]. These effects
were traced to the meta-stability of the metallic state,
which causes a slow dissolution of the conductive fila-
mentary structures [11, 22].

Different physical phenomena have been proposed to
explain the filamentary formation process [25]. For in-
stance, the resistive collapse may clearly be achieved by
means of a purely thermal effect due to Joule self-heating.
Indeed, applying a strong electric excitation beyond the
ability of the device to dissipate the input power, would
increase its temperature up to the critical insulator-metal
transition temperature [16]. However, there is also an-
other possibility that does not depend on a thermal ef-
fect. Mott insulators are not conventional insulators, but
materials that would be metals if it were not for the cor-
relation gap due to the strong Coulomb interactions [8].
This phenomenon occurs at exactly integer fillings of the
conduction bands, so the Mott gap collapses upon elec-
tronic doping [20, 26]. Therefore, hot carrier injection at
strong electric fields may drive the collapse of the Mott
gap and the insulator state [15, 25, 27]. The relevance of
this alternative route to the resistive switch was recently
demonstrated in nanowire structures of vanadium oxides
[28].

Besides the above mentioned debate on the filamen-
tary formation process, other relevant questions on the
physical mechanism remain. A prominent one is the issue
of the voltage threshold, i.e. the minimal applied voltage
required to induce the resistive collapse, which, rather
surprisingly, is a challenge to precisely measure [11, 13].
Indeed, as the voltage threshold is approached the incu-
bation time of the filament not only becomes very long,
but it also becomes increasingly unpredictable. Under-
standing this feature is of key importance in order to
build devices based on Mott materials whose operational
limits can be reliably predicted.

In this paper we focus on this problem and clarify the
nature of this filamentary resistive collapse. By numer-
ical simulations of the MRN model, we gain insights of
the coexistence and interplay of thermal and electronic

effects in the filamentary formation. The former takes
the form of inhomogeneous Joule self-heating and the
latter of a current-density focusing effect resulting from
the resistive change at the insulator-metal transition. A
clarification is necessary at this point. By electronic ef-
fects we shall understand here not the many-body Mott
collapse that we mentioned earlier, but a phenomenon
that is driven by strong electric fields. As we shall see,
approaching the point of the resistive collapse, the inho-
mogeneity of the electric field (due to geometry or pos-
sibly defects in a real device) may be dramatically en-
hanced due to the coupling of local self-heating and the
insulator-metal transition phenomenon. This leads to the
above mentioned current focusing effect and the ensuing
conductive filament formation.

A significant result of our study is to show that the
conductive filament formation in Mott materials can be
understood as an activated phenomenon, qualitatively
analogous to the familiar Arrhenius activation law, which
is intrinsically stochastic. We validate our model simu-
lation results by performing resistive switching experi-
ments in vanadium dioxide devices. In addition, we also
establish an interesting and rather unexpected connec-
tion between our findings and the behavior of biologi-
cal neurons. Namely, we show that the statistical na-
ture of the incubation time of the filaments in the resis-
tive collapse closely mimics the intrinsic variability in the
timings of spike-emission observed in biological neurons.
More precisely, using the survivor function formalism,
we show that the probability distribution of the resistive
collapse follows the same form of the probability of spik-
ing in theoretical neuronal models with an exponential
escape rate [29–31].

II. RESULTS AND DISCUSSION

A. Mott Resistor Network Model

We focus on Mott materials that have a hysteretic first-
order insulator-metal transition driven by temperature.
Examples are VO2, V2O3 and NdNiO3, which have tran-
sitions at about TIMT = 340K, 160K and 100K, re-
spectively [8]. When these materials are in their Mott
insulating phase and subject to a strong applied voltage,
in the range of kV/cm, they may suddenly undergo a
sharp drop in their resistance after a certain time de-
lay. The delay depends strongly on the applied voltage,
and may span several orders of magnitude, from nsec to
msec [11, 17, 23]. The nature of this resistive collapse
has been explored in previous works, both experimen-
tally and through Mott resistor network (MRN) model
simulations [17, 22], and was found to be caused by the
formation of low-resistivity filamentary domains within
the material [9, 23, 32]. Since the MRN model is also at
the basis of the simulations presented in this work, we
shall describe it in this section. Further details can be
found in the Methodology Section of the Appendix.
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FIG. 1. Schematic diagram of the Mott Resistor Network
model and the experimental setup [11]. Cells in red are ideal
metal with zero resistivity and represent the electrodes. Cells
in white and grey represent the thin film Mott material, which
is assumed in thermal contact with a perfectly insulating sub-
strate that is at T0 = 300 arb. units (in blue). These cells can
be either in the insulating (white, ρins = 3.5 · 104 arb. units)
or metal (grey, ρmet = 10 arb. units) states. Green cells are
ideally insulating. The width of the sample is W = 100, that
of the electrodes is We = 42 and the length of the sample is
L = 106 cells. The gap between the electrodes is 100 cells
long. Each cell is characterized by a Landau-type free energy
that evolves with the temperature of the cell, as shown in the
bottom inset figure. The two minima of the function corre-
spond to either metal or insulating phase. The energy barrier
∆E of the insulating phase at three different temperatures is
shown. A resistive termination (50Ω) after the function gen-
erator in the experimental setup was used when measuring
the probability of transition (Fig.5) but not when measuring
the incubation times (Fig.3).

The Mott resistor network (Fig.1) is a mesoscopic-scale
phenomenological model where the device is divided into
cells, each of which represents a nano-size region of the
material. The size of the cells is assumed to be large
enough so that they can be considered to be in one of
two phases: either Mott insulator or correlated metal. In
order to incorporate the first order character of the tran-
sition, we assume that the stability of the two phases
depends on the local temperature via a free energy func-
tional [22]. To give some order of magnitudes, the typical
size of electrodes and the ”gap” that separates them in
experimental devices is 1-10µm, hence the size of of the
cells in the model 10-100 nm [33]

When a voltage is applied across the network, currents
start flowing through the resistors. Heat is locally gen-
erated in each cell in accordance with Joule’s first law
P = I2R. The resistor network is assumed in thermal
contact with a perfectly insulating substrate (depicted in
blue in Fig.1). Each cell dissipates the produced heat by

thermal conduction to its four neighbouring cells and to
the substrate, that is assumed at a fixed temperature T0.
The thermal conductivity κ determines the magnitude of
the heat transfer; for simplicity we assume the thermal
conductivity to be the same for the dissipation to the
substrate and to the nearest neighbours. Therefore, the
temperature of each cell results from the action of two ef-
fects: a positive contribution, due to Joule heating, and
a negative one, due to heat dissipation. The temperature
equation can be written as:

dTij
dt

=
Pij
C
− κ

C

(
5Tij −

nn∑
kl

Tkl − T0

)
(1)

where ij and kl are the indexes of the cell, nn denotes
nearest neighbours and C is its thermal capacity. In the
limit of the thermal conductivity κ going to 0 and small
applied voltages the film self-heats-up approximately ho-
mogeneously since the temperature gradients may be ne-
glected. Then, the temperature change for the film as a
whole can be written as:

dT

dt
=
I2R(T )

C
− K

C
(T − T0) (2)

where K is the thermal conductance of the interface,
and C now denotes the heat capacity of the film. The
temperature T0 is assumed to be below the insulator to
metal transition temperature TIMT , thus, initially, all
cells are in the insulating phase and have a high resis-
tivity value ρhigh. When the cells undergo the transi-
tion to the correlated metal phase, their resistivity value
changes to ρlow � ρhigh. For simplicity, both resistivities
are assumed to be independent of T , but the model can
be easily generalized to include any temperature depen-
dence [25]. One may think of the cells as qualitatively
corresponding to the small crystalline grains of the ac-
tual Mott material film, which are of the order of tens of
nanometers [33].

The transition of the cell is a thermally activated pro-
cess that may occur even for temperatures lower than
TC , in accordance with the following transition rate:

ν(T ) = ν0 exp

(
−∆E(T )

T

)
(3)

where T is the local temperature of the cell, ∆E(T )
is the energy barrier of the cell free energy when it is in
the insulating state, and ν0 is the attempt rate [17]. The
model can be simulated both in equilibrium and out of
equilibrium, for small and large applied voltages, and also
for arbitrary applied voltage protocols. In a simulation
in equilibrium conditions, a minimal voltage, needed to
probe the resistance, is applied. Then the temperature
of the substrate is slowly raised. Under these conditions
the system heats up in an approximately homogeneous
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FIG. 2. The left panel shows the drop of the resistance of
the simulated MRN when driven out of equilibrium by an ap-
plied voltage (blue curve, Vapp = 105 arb. units, K = 0.1 arb.
units). The top inset shows the experimental hysteresis curve
for a V O2 thin-film sample, the bottom one shows the curve
produced by the model simulations in equilibrium conditions.
The panels on the right show the resistivity map of the simu-
lated system and the filamentary percolation of metallic cells.
Similarly to Fig.1 the electrodes are in red, the cells in the
insulating phase in white and the metallic cells in grey; green
cells are perfectly insulating.

fashion. As the system crosses the critical T , the cells in-
dependently and randomly undergo local transitions and
relaxations and no filamentary structure forms. As the
temperature is raised beyond the transition temperature
eventually all cells are in the metallic phase. After the
transition, we gradually decrease the temperature of the
substrate to the initial value, and from the computed
R(T ) we obtain the hysteretic behaviour of the resistance.
This is shown in the insets of Fig.2, where we compare
the numerical results with experimental data on a VO2

thin film sample.
When a strong voltage is applied, the system is driven

out of equilibrium and the resistive transition is qualita-
tively different. The metallic phase takes a filamentary
percolation form as is observed in the simulation data
of Fig.2. We shall describe this phenomenon in further
detail in the next sections.

B. Filamentary formation

A seminal discussion on the formation of inhomoge-
neous spatio-temporal structures of conduction was done
by Ridley in the 60’s [34]. As he pointed out, the ori-
gin of those dynamic instabilities could be traced to the
presence of a negative differential resistance (NDR), as
seen in the negative slope of the I-V characteristics of
germanium with shallow impurity levels[34].

Mott materials do not have an evident intrinsic NDR.
However, as mentioned in the introduction, two routes
to NDR in thin-film devices are possible: self-heating
and hot carrier injection. These two effects are a pri-
ori present in any thin-film devices and are reported in
the phenomenon of non-volatile resistive switching in ox-

ides such as TiO2, HfO2 among many others, where they
lead to metallic filamentary structures [7, 18]. In those
cases, the thermal runaway and high electric fields lead
to electro-migration that changes the structure of the ox-
ide thin-film, often creating massive number of defects
such as oxygen vacancies. In contrast, Mott materials
are qualitatively different since the thermal runaway and
large fields are naturally quenched by the electronic Mott
transition without requiring any change of the film struc-
ture. Hence, the volatile nature of the resistive switch.

The presence of an insulator-metal transition, with
several orders of magnitude change in the resistivity, may
also dramatically boost the magnitude of the NDR. Un-
fortunately, a rigorous theoretical description of this phe-
nomenon is challenging. In fact, one is simulateneously
dealing with a strongly correlated system away from equi-
librium, inhomogeneous conduction states and large ther-
mal and electric gradients. Hence, the need to recur
to numerical simulations of the phenomenological model
that we introduced before, in order to gain further in-
sight on the origin and dynamics of the spatio-temporal
instabilities, and to make contact with experiments.

Within the phenomenological model, the filamentary
formation is a highly non-linear process that originates
in a local thermal imbalance at large current densities.
When a voltage is applied to the electrodes, a current
begins to circulate through the Mott resistor network,
and the cells start to generate heat, in accordance with
Joule’s law. At first, the rate at which the heat is gen-
erated is comparable to that at which it is dissipated to
the substrate, which is in thermal contact with all cells
and is kept at a fixed T0. However, if the applied volt-
age is increased, the injected power eventually overcomes
the ability of the substrate to absorb heat. In this sit-
uation, a local increase in the current (such as at the
edges of the electrodes due to the point effect) leads to
a local increase in temperature. Then, the probability
that a hot cell becomes metallic also increases, since the
transition is a thermally activated process. When a cell
becomes metallic, its resistance decreases dramatically,
since ρlow << ρhigh. This draws more current from the
neighboring cells to the metallic one, increasing its cur-
rent density. This current focusing effect translates into
further local heating, along with a dramatic increase of
the transition probability of the neighboring cells that
also heat up by Joule heating and by thermal conduction.
Eventually, this process leads to the formation of conduc-
tive filaments that connect the electrodes. It is important
to realize that for the resistive collapse to take place the
device as a whole does not need to homogeneously reach
the TIMT . It is merely necessary that TIMT is reached
locally and that the NDR be strong enough (i.e. a signif-
icant ρhigh/ρlow ratio [23]) to create the current focusing
effect.

The previous qualitative discussion of the filamentary
formation process is confirmed by the numerical simu-
lations that we show in Fig.2. There we observe that,
initially, the filaments emerge from the edges of the elec-
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trodes and grow in approximately symmetric fashion, un-
til they eventually connect. This is a manifestation of
the familiar point-effect, namely, the enhancement of the
electric fields near sharp angles. It is in these regions that
the current density is initially stronger, even though the
device cells are originally all identical and in the insu-
lating state. The current gradients of geometrical origin
act as seeds for the filamentary growth and have recently
been directly imaged [23]. The growth of the filaments
is correlated with the resistance of the device, as shown
by the right hand side panel of Fig.2 and the respective
points indicated along the collapse of the R(t) in the main
panel.

When the applied voltage is terminated, there is no
more power input and the temperature of the cells re-
laxes back to T0 < TIMT , thus the device recovers the
high resistance state. This relaxation of the filamentary
structures has been studied in recent works [11, 22] and
may be seen as the inverse of the filament incubation and
growth that we consider here.

C. Incubation time: Purely thermal versus
electro-thermal process

We would like now to systematically explore the pro-
cess of filamentary formation. We shall see that several
qualitatively different situations may be identified.

A useful quantity to characterize the formation of fil-
aments is the delay time between the application of the
external voltage and the observation of the resistive col-
lapse, which we call the incubation time τinc. This quan-
tity is directly accessible in experiments, which show that
τinc depends strongly on the applied voltage, spanning
several orders of magnitude. The lowest voltage that is
required to observe a finite τinc is denoted the threshold
voltage Vθ. As we shall discuss below, the determination
of the threshold voltage may be more subtle than naively
expected.

In the right panel of Fig.3 we show experimental data
for the incubation times of VO2 and V2O3 devices (see
Fig.1 for the experimental setup). We notice that, for a
relatively small variation of the applied voltage, τinc may
change by orders of magnitude. Upon a closer look, we
observe two qualitative features: one is a steep increase
of τinc as the threshold voltage for resistive collapse, Vθ,
is approached; the second is that the variability (i.e. the
experimental error bars) of τinc also grows when decreas-
ing the voltage. Moreover, in VO2 the error bars are
large and of the same order of magnitude as their respec-
tive mean τinc, and in the case of V2O3, they grow at
an even higher rate approaching Vθ. This behavior indi-
cates that the more the applied voltage approaches the
threshold value, the more unpredictable the filamentary
formation becomes, which questions the very notion of a
well defined threshold voltage value.

To understand these experimental findings we turn our
attention to the study of the MRN model. Since it has
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FIG. 3. In the left panel the incubation times produced by
numerical simulations of the MRN model at different K val-
ues. The dashed black line is a fit using the expression Eq.6,
while the other lines are simple guides to the eyes. In the
right panel the incubation times measured for a V O2 and a
V2O3 device, in contact with substrates at T = 334.9K and
132K, respectively. The experimental data are the same as in
[23].

several parameters, we need to choose a convenient way
to explore the behavior of the resistive collapse. It has
been experimentally observed that a relevant parame-
ter is the ratio of the insulating and metallic resistivities
ρhigh/ρlow across the IMT [23]. However, for the sys-
tematic numerical model studying this parameter is not
adequate. For instance, changing ρlow alone produces
little if any qualitative difference in the filamentary for-
mation dynamics, since in the initial insulator state the
power injection is determined by ρhigh. On the other
hand, changing ρhigh alone is not possible, since one is
forced to also modify the applied voltage to achieve the
resistive collapse, which render the analysis more diffi-
cult. Thus, we find it most convenient to keep the values
ρhigh, ρlow and T0 fixed and explore the different resistive
collapse modes with the variation of a single parameter,
the thermal conductivity K. In fact, it can be seen that
K allows to capture two qualitatively different limits.

In the limit K → 0 even a very low applied voltage
produces self-heating as the cells do not dissipate the in-
coming power. The local self-heating is more intense at
the edges of the electrodes, where the electric field and
the current density are relatively larger, hence where the
power is injected. Then it spreads out rather homoge-
neously in the bulk of the device. The self-heating con-
tinues at a rate set by the applied voltage, and since
there is little dissipation, eventually the temperature of
the bulk reaches TIMT and the resistance collapses.

In contrast, in the limit of large K, a strong voltage
must be applied to induce the resistive collapse, since the
dissipation to the substrate brings thermal equilibrium at
low injected power. Therefore, one expects stronger tem-
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perature gradients and, consequently, stronger gradients
of current density, which may lead to a less predictable
resistive collapse. As we shall see below, in such a case,
filamentary structures grow as in a sudden avalanche-like
process, especially close to the threshold voltage.

The results of the simulations are shown in the left
panel of Fig.3 where we plot the incubation time τinc
as a function of the applied voltage for various values
of the parameter K. We observe that several features
of the experimental data shown in the right panel are
present: Firstly, the range of τinc spans several decades
for relatively small variations in the applied voltage. Sec-
ondly, there are two different regimes in τinc(V ): The
first one is at higher voltages, where τinc(V ) shows a rel-
atively weaker V -dependence and smaller error bars (that
we thus refer to as ”deterministic” regime). The second
regime is at lower voltages, close to the threshold, which
shows a steeper increase in τinc with V . Thirdly, this
regime with relatively long incubation times also present
large error bars, as in the experimental data. We thus re-
fer to this regime as ”stochastic”, and is one of the main
findings of the present study.

We shall argue now that the proper way of understand-
ing the phenomenon of filament incubation in the latter
regime is as a stochastic process due to a strong non-
linearity that couples a thermal imbalance and a current
focusing effect, which results in a significant NDR.

A first insight comes from the observation that, in the
limit of K → 0, the transition becomes deterministic.
This feature can be observed in Fig.3 where, in the limit
of vanishing thermal conductivity, the variability of the
incubation times remains small even close to the (low)
threshold voltage. The deterministic nature of the resis-
tive collapse in this case is further underlined by the fact
that we can obtain an approximate analytic expression
for τinc(V ) by solving Eq.2 under the assumption of an
homogeneous system and that the resistance of the sam-
ple stays constant and equal to Rins before the transition.
We can thus integrate Eq.2 to obtain the evolution of the
temperature of the system as a function of time, then set
T=TIMT and invert the relation to get the thermal incu-
bation time τ thinc:

τ thinc = −C
K

ln

(
1− KRins

V 2
(TIMT − T0)

)
+ τ0 (4)

where we used as a boundary condition T (t = 0) = T0
for the film’s initial temperature. The small constant τ0
is the physical minimal time that it may take the system
to switch in the infinite V limit, which for the model is
of the order of a few time-step.

We may define the thermal threshold voltage, Vθ, as
the value of the applied voltage for which incubation
times diverge:

Vθ =
√
KRins(TIMT − T0) (5)

Thus, equation (4) can be rewritten as
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(Vapp = 9.5 · 104 arb.units), where the incubation times are
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istic regime (Vapp = 105 arb. units), which can be observed
for high applied voltage in the incubation times curve of Fig.3.
The panels capture snapshots of the state of the system as it
progresses from the beginning of the filamentary formation up
to the percolation, which corresponds to the resistive collapse
of the system.

τ thinc(V ) = −C
K

ln

(
1− V 2

θ

V 2

)
+ τ0 (6)

As shown in the left panel of Fig.3, this analytic expres-
sion provides an excellent fitting form for the numerical
simulation data obtained at the smallest K. Thus, we
may consider this behavior as the reference for a purely
thermal resistive collapse due to self-heating alone.

We can now examine the dynamical evolution of the
system as it evolves towards the resistive collapse at
τinc by taking snapshots of the temperature and resis-
tive maps of the MRN model. We find three different
characteristic regimes (Fig.4). The panels of the top row
depict the evolution when K is small, i.e. in the proto-
typical thermal case. We observe that the temperature
gradients are relatively small, except at the edges of the
electrodes. The heating in the central part of the system
is gradual and homogeneous. The color code shows that
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the temperature in the center reaches T ≈ TIMT just
before the resistive collapse (last panel).

The second row of panels of Fig.4 shows the temper-
ature and resistance maps in the deterministic regime
of large K. This occurs at voltages that are high com-
pared to the threshold, where the error bars of τinc are
relatively small (cf Fig.3). In this case we observe that,
in contrast to the previous one, the central part of the
system remains relatively cold, since the thermal con-
ductivity to the substrate is better. From the maps we
also observe the symmetrical and continuous growth of
thin filamentary structures that originate at the sharp
edges of the electrodes. The narrow metallic filaments
result from the current focusing effect, since a large cur-
rent density needs to develop to maintain those narrow
structures locally above TIMT when K is sizable. We
note that the length of those filamentary structure grows
rather linearly with time, until they span about half of
the distance between electrodes. Then they percolate at
the resistive collapse shown in the last panel. This lin-
ear in time progression is indicative of the deterministic
behavior, that translates into the relatively small error
bars in the respective incubation times (cf Fig.3).

In contrast to the previous cases, the third row of the
panels of Fig.4 shows the stochastic regime. Here, K
is relatively large and unchanged from the second row
of panels, but the applied voltage is reduced to approach
the threshold value. Consequently, the incubation time is
now much longer. A significant difference, in sharp con-
trast with the previous case, is that the filaments do not
grow but remain short stubs for most of the time. Even-
tually, one of them breaks the symmetry and a conduc-
tive filament suddenly grows and short-circuits the elec-
trodes.This growth mode is not deterministic as in pre-
vious cases, where homogeneous self-heating (first case)
or progressive linear growth of filaments (second case)
was observed. The stochastic growth in the third case
can be understood as a process with a very low probabil-
ity of occurring which is nevertheless attempted during
a very long time. In fact, the resistive collapse hinges
on the insulator-to-metal transition rate of the cells. At
low applied voltage this rate is relatively small, since the
sample remains at a temperature beneath the TIMT at all
times, as most of the input power is efficiently dissipated
to the substrate. Therefore, many attempts are needed
to observe the percolation of the filament, which requires
the simultaneous transition of several cells. Furthermore,
since the attempts are independent of each other, the
percolation event fulfils the conditions for a Poisson-like
process, as we shall see in the next section.

In summary, the transition can have both a thermal
and an electronic component. When the currents are not
densely concentrated and the heat dissipation is poor,
the sample heats up homogeneously and gradually to the
transition temperature. In contrast, the electric compo-
nent becomes significant when the thermal dissipation
is better and a bigger electric power is injected. In this
case, if the applied voltage is big compared to the thresh-

old, the current focusing effect is strong and produces an
inhomogeneous concentration of heat, which induces the
continuous growth of filamentary structures. However,
at applied voltages close to threshold, the generated heat
is comparable to dissipation, leading to long incubation
times that have a strong stochastic behavior.

Equipped with these insight, we can look back to
the incubation time data of VO2 and V2O3 samples
(right panel of Fig.3). These are similar compounds,
made on similar substrates and with similar K values
[28].Nevertheless, we may note that V2O3 has a larger
voltage threshold and larger resistivity ratio with larger
error bars, which can be characterized as a resistive col-
lapse with a stronger electric component. In contrast,
VO2 with smaller threshold voltage and smaller error
bars is relatively closer to the thermal paradigm, con-
sistently with previous experimental reports [28, 35, 36].
Nevertheless, the VO2 data near the threshold still show
a steep increase of incubation times and error bars that
remain of the same order of τinc. This indicates that the
electro-thermal effects also play a non-negligible role in
the resistive collapse, as has been also reported in other
previous experimental studies [37, 38]. Thus, our present
work sheds light on the long lasting debate on the nature
of the electrically triggered resistive transition in these
materials, classifying VO2 as a weak electro-thermal and
V2O3 as a strong electro-thermal compound.

D. Stochastic filamentary incubation

We now turn to another main result of our work, where
we shall demonstrate that vanadium oxide Mott neurons
are capable of stochastic spike emission as observed in
biological neurons. This is a remarkable feature that
constitutes an unexpected neuromorphic functionality of
these quantum materials.

Biological neurons emit spikes with an intrinsic
stochastic component even under constant stimulation
[29]. This feature is commonly described in mathemati-
cal models of neurons by an Arrhenius-like instantaneous
probability of firing or exponential escape rate [29–31]:

f(u− θ) =
1

τs
exp [(u− θ)/δu] (7)

where u is the neuron’s membrane potential, θ is the
membrane threshold, δu is the width of the membrane
potential spike emission zone and τs is the mean time to
spike emission at threshold [30]. From this mathematical
expression, we can derive the probability P (u, T ) for the
emission of a spike within a time window of duration T ,
when the potential is kept fixed at u. We shall show that
the resulting probability also describes the probability
of resistive collapse both in our Mott Resistor Network
model and also in experiments done on a vanadium diox-
ide device.
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The probability may be derived using the formalism
of the survivor function [29]. Here we shall describe the
main results (see Appendix for further details). The sur-
vivor function S(T ) is defined as the probability of not
firing within a window of time T :

S(T ) = 1− P (u, T ) (8)

Using the instantaneous probability of firing f(u − θ)
and keeping the potential u fixed, we may integrate the
survivor function to get:

P (u, T ) = 1− exp [−Tf(u− θ)] (9)

Inserting (7) and expanding the exponential, we finally
get an approximate expression for the probability:

P (u, T ) ≈ 1− 1

1 + T
τs

exp[(u− θ)/δu]
. (10)

A connection with the MRN model and with experi-
ments in Mott devices can be established by identifying
the parameters of P (u, T ) as follows: The membrane po-
tential u can be associated with the applied voltage V .
The parameters δu and θ respectively become the fitting
parameters δV and V0. Finally, we take the microscopic
time τs as equal to the time-step, which is the unit of
time for the model simulations. Thus, we shall adopt as
the fitting functional for the probability of filament for-
mation within a time window T at applied voltage V the
expression:

P (V, T ) ≈ 1− 1

1 + T exp[(V − V0)/δV ]
. (11)

From this expression we may provide a proper defini-
tion of the firing voltage threshold, for a given arbitrary
time window T . We call this quantity the stochastic
threshold VS(T ), which we define as the voltage value
where the probability of incubating a filament is 1/2, i.e.
P (VS , T ) = 0.5. Then, from Equation (11) we obtain:

VS(T ) = V0 − ln (T )δV (12)

Since T is in units of time-step, it can’t be smaller than
T = 1 and thus the logarithm is always greater than zero.
In Fig.(5), we show P (V ) for both the numerical simu-
lations of the MRN model and experiments on a VO2

device at room temperature. In this figure, P (V ) is the
probability of observing the resistive collapse as a func-
tion of a constant applied voltage V , for different time
windows T . The figure also shows how, in both cases,
the probability expression derived above provides an ex-
cellent fit for the data. Interestingly, we also observe in
the small panel of the figure that the behavior of VS(T )
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FIG. 5. The top panel shows the simulation results for the
probability distribution of filament percolation for K = 0.1
arb. units and different values of the pulse width T = 105,
5·104, 2500, 400 and 100 arb. units from left to right. Voltage
values are normalized by V = 1.4 ·105 arb. units and for each
point the total number of trials was 200. The fits were done
using Eq. (11). The bottom left panel is the probability
distribution obtained experimentally from a V O2 sample, for
two different pulse widths of T = 10 µs (red curve) and T = 1
µs (blue curve) and a substrate temperature of T = 300K. For
the experimental details of the setup see Fig.1. The bottom
right panel shows δV and VS , the parameters of the fit to the
simulation data in the top panel, evolve for different pulse
widths. The fits to the experimental data were also done
with Eq. (11) and the parameters are: V0(10µs) = 1.375,
V0(1µs) = 1.409, δV (10µs) = 0.002 and δV (1µs) = 0.003.
The size of the circles is comparable to the estimated binomial
confidence intervals.

and δV closely track each other. We note that the lat-
ter is two orders of magnitude larger than the threshold
voltage. This follows from the fact that δV characterizes
the voltage transition range of a single cell, while VS is
the voltage applied between the electrodes. Since the dis-
tance between electrodes is L=100, the voltage drop on a
single cell is of the order of VS/L. We may further argue
that since VS(T ) characterizes the typical voltage value
that induces a firing event in the time window T and δV
the range of its stochastic behavior, then the underlying
reason for the codependency is that the filamentary per-
colation, just like the firing event of spiking neurons, is a
stochastic point process described by a Poisson distribu-
tion, which has the property of the mean being equal to
its variance.

One final important observation is that our results also
clarify the debated issue of the threshold voltage. In fact,
in previous experimental work the problem of precisely
determining the threshold voltage was already evident
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[11]. This lack of precision was assumed to be caused
by some source of experimental uncertainty. However,
we now see that the dramatic enhancement of the error
bars in the determination of the long incubation times
at threshold is not an artifact but an intrinsic feature of
the stochastic physical process of filamentary formation
in Mott systems.

III. CONCLUSION

In this work we have shown that the percolation of
metallic filaments, which triggers the electric-driven re-
sistive collapse and the emission of a spike in Mott neu-
rons [9], is a stochastic event. From the systematic study
of the model we described in detail the highly non-linear
electro-thermal process that drives the filamentary for-
mation. More specifically, we have shown that while the
filamentary formation is rather deterministic at high ap-
plied voltages, it becomes strongly stochastic as one ap-
proaches the voltage threshold. The stochastic behavior
follows from the non-linearity of an electro-thermal pro-
cess, in which the local insulator-metal transition pro-
duces a current focusing effect that leads to a negative
differential resistance.

Two most common substrates for growing V O2 thin
films are Al2O3 and TiO2. Thermal conductivity of
Al2O3 is ≈ 25 W/(mK), which is much larger compared
to the thermal conductivity of TiO2 (≈ 5 W/(mK)).
Therefore, according to our model, the switching of V O2

grown on Al2O3 should display much more prominent
stochastic behavior compared to the V O2 prepared on
TiO2. We note that with the recent progress of synthe-
sis and transfer of nano-membranes [39] , high quality
V O2 films could be integrated with virtually any sub-
strate. Using such nano-membrane approach, it is pos-
sible to test our model at extremes, for example, syn-
thesizing V O2 on a sulfur crystal (thermal conductivity
≈ 0.2 W/(mK) resulting in deterministic switching) or on
diamond (thermal conductivity ≈ 2000 W/(mK) result-

ing in stochastic switching). From the practical point
of view, the switching in V O2 integrated with a pure
silicon substrate, thermal conductivity ≈ 100 W/(mK),
should be rather stochastic, while the switching in V O2

on SiO2, thermal conductivity ≈ 1 W/(mK), should be
nearly deterministic.

Our Mott Resistor Network model simulations are vali-
dated by comparison to data from experiments on devices
based on the Mott compounds V O2 and V2O3. The anal-
ysis of the behaviour of the incubation times allowed us
to characterize the resistive collapse in V O2 and V2O3 as
weak and strong electro-thermal, respectively, clarifying
a longstanding debate.

Another significant result of the present work was to
go beyond the qualitative description of the filamentary
formation, to demonstrate that its stochastic behavior
is characterized as a Poisson process. This is a remark-
able finding, since spike emission in biological neurons
can also be described as Poisson process. In fact, the
probability distribution of the filament formation that we
obtained and observed follows the same stochastic form
as the spike emission in models of neurons with an ex-
ponential escape rate. Our results report an unexpected
and exciting neuromorphic functionality of Mott materi-
als, which adds to the potential of adopting these com-
pounds as building blocks for future hardware in artificial
intelligence systems.
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V. APPENDIX

A. The Mott Resistor Network model

The simulations used in this work are based on the
Mott resistor network model, introduced in [17]. In this
model the Mott material is represented by a mesh of re-
sistors, as shown in Fig.1. The resistors are grouped into
cells, each representing a small nanoscale region of the
material. The cells in the top and bottom rows have zero
resistivity (i.e. the resistance of the resistors within the
cell is zero) and act as electrodes. When a voltage is ap-
plied across the mesh, currents flow through the resistors;
knowing the initial value of the cells resistivity, and of the
applied voltage, the currents can be computed by appli-
cation of Kirchhoff law. When the currents flow through
the resistors, these generate heat, due to the Joule effect,
which can be computed as P = I2R. The cells can dis-
sipate heat to their nearest neighbours and to a thermal
bath at temperature T0. Therefore, the temperature in-
crease of a cell will be given by the positive Joule heating
contribution and the negative dissipation effect:

dTij
dt

=
Pij
C
− K

C

(
5Tij −

NN∑
kl

Tkl − T0

)
(13)

where K is the thermal conductivity and C the ther-
mal capacity; to avoid the proliferation of parameters,
we make the non-essential assumption that the thermal
conductivity is the same no matter whether the heat is
dissipated to the thermal substrate or to any of the four
nearest neighbours. In the case in which the temperature
gradients can be neglected, we may consider the whole
material instead of a single cell, and the equation is sim-
ply:

dT

dt
=
I2R

C
− K

C
(T − T0) (14)

where I is the current that enters the mesh, R the
resistance of the sample and T its temperature.

The cells can be in two states, insulating or metallic, to
which correspond two resistivity values. These values are
temperature independent, as evidenced by the compari-
son of the hysteresis produced by the simulations and the
experimental hysteresis of a V O2 sample, shown in the
insets of the left panel of Fig.2. We use a Landau-type
functional to describe the free energy [24] of the first or-
der transition that occurs when a cell goes from one state
to the other:

f(η) = hη + pη2 + cη4 (15)

h = h1
T − TIMT

TIMT
+ h2 (16)

p = p1
T − TIMT

TIMT
(17)

Parameter Value

h1 71.25 · 103

h2 7.5 · 103

p1 15.0 · 103

c 3.0 · 102

TIMT 380.0

T0 300.0

ρins 3.5 · 104

ρmet 10

RL 5 · 103

C 10

W 100

We 42

L 100

K [0.001, 0.1] · C

TABLE I. Values of the parameters used in the simulations.

where η is the order parameter and h1, h2, p1, c and
TIMT are constants, TIMT being the temperature of the
insulator to metal transition. The values for the parame-
ters used in the simulations are presented in Table I. The
order parameter may be associated to observables, such
as the lattice constants, which exhibit discontinuities at
the transition [8]. The two local minima of the free en-
ergy correspond to the insulating and metallic states, and
as the temperature of the cell increases, the energy bar-
rier that separates them becomes smaller. The inset of
Fig.1 shows the free energy landscape for three different
temperature values.

The probability of transitioning from one state to the
other is given by the law of Arrhenius:

p(Tij) = exp

(
−∆E(Tij)

Tij

)
(18)

where ∆E(Tij) is the energy barrier. Depending on
the state the cell is in, its resistors will be assigned either
a low resistance value, if metallic, or a high resistance,
if insulating. The resistive collapse occurs when cells in
the metallic state connect the two electrodes.

B. Probability of firing in a finite time interval and
renewal statistics

Renewal theory describes the probability P (t|t̃) that an
event, characterized by a stochastic intensity ρ(t|t̃) (also
known as hazard function), will occur at time t given that
the last occurrence was at time t̃. The firing of a neuron
can be described as a renewal process if we assume that
the probability of firing does not depend on the spike
train but only on the time since the last spike. We notice
that we cannot simply compute the probability that the



12

neuron should fire in a time interval T by integrating
ρ(t|t̃) in said interval:

P (T ) =

∫ T

0

ρ(t|0)dt (19)

since P (T ) is not bounded by one. The proper ap-
proach to obtain this probability is to recur to the sur-
vivor function [29]. We define the survivor function S(T )
as the probability that the neuron will survive for a time
T without firing:

S(T ) = 1− P (T ) (20)

We know for sure that, at time zero, the survivor func-
tion is equal to 1, and as time goes to infinity, since the
probability of firing inevitably goes to 1, the survivor
function goes to 0. Consequently, the survivor function
decays proportionally to the rate at which the neuron
attempts to fire, which defines the stochastic intensity:

ρ(t|0) = −dS(t)/dt

S(t)
(21)

Integration of this equation yields:

S(T ) = exp

[
−
∫ T

0

ρ(t|0)dt

]
(22)

The survivor function can be put back into equation
(20) to obtain the probability that the stochastic event
will occur in a finite time interval. In our case the event
is the firing of a noisy neuron, therefore the stochastic

intensity takes the form of the instantaneous firing prob-
ability f(u(t)− θ):

P (T ) = 1− exp

[
−
∫ T

0

f(u(t)− θ)dt

]
= (23)

= 1− 1

exp
[∫ T

0
f(u(t)− θ)dt

]
If we assume that u(t) stays constant in the interval

T , which is the case if u(t) represents the voltage applied
to the Mott device before the resistive transition occurs,
then the integral may be approximated as the product of
the integrand times the interval, i.e., T f(u− θ)

P (u, T ) = 1− 1

exp [Tf(u− θ)]
(24)

To simplify this expression, we may expand the ex-
ponential to the first order since the argument is large
outside the region of interest, i.e. T � 0 or u� θ, where
the probability approaches unity anyway. Thus, we get:

P (u, T ) ≈ 1− 1

1 + Tf(u− θ)
(25)

and, finally, substituting the instantaneous firing prob-
ability f(V − Vθ) = 1

τs
exp[(u − θ)/δu] in the equation

yields the functional form that we used to fit the proba-
bility distribution of filament percolation:

P (V, T ) ≈ 1− 1

1 + T
τs

exp[(u− θ)/δu]
(26)


