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Electromagnetic environments are becoming increasingly complex and congested, creating a grow-
ing challenge for systems that rely on electromagnetic waves for communication, sensing, or imaging,
particularly in reverberating environments. The use of programmable metasurfaces provides a po-
tential means of directing waves to optimize wireless channels on-demand, ensuring reliable operation
and protecting sensitive electronic components. Here we introduce a technique that combines a deep
learning network with a binary programmable metasurface to shape waves in complex reverberant
electromagnetic environments, in particular ones where there is no direct line of sight. We applied
this technique for wavefront reconstruction and control, and accurately determined metasurface
configurations based on measured system scattering responses in a chaotic microwave cavity. The
state of the metasurface that realizes desired electromagnetic wave field distribution properties was
successfully determined even in cases previously unseen by the deep learning algorithm. Our tech-
nique is enabled by the reverberant nature of the cavity, and is effective with a metasurface that
covers only ∼1.5% of the total cavity surface area.

I. INTRODUCTION

Highly scattering environments scramble electromag-
netic waves, producing interference among the multi-
ple paths between source and receiver. The resulting
spatio-temporal fluctuations can seriously degrade imag-
ing, sensing, and communication systems at microwave
and optical wavelengths, disrupting operation or even
damaging sensitive components. Additional emissions
in these environments, whether from unintentional cou-
pling between components or from an intentional electro-
magnetic attack, can have serious consequences. Future
smart radio environments are envisioned to handle such
dynamic conditions, adapting on-the-fly to optimize a
given wireless channel through a spatial light modulator
(SLM) [1–3]. Intelligently controlling wave fields in the
presence of multi-path reflections is therefore a critical
factor for enabling smart radio environments. In addi-
tion, an intelligent and self-adaptive approach will bene-
fit applications such as micromanipulation of objects in
complex scattering environments [4], and time reversal
mirrors that can selectively focus a wavefront or enhance
communication system performance [5, 6]. A necessary
step along this path is to identify approaches for wave-
front reconstruction, i.e., determining the configuration
of the SLM that accurately produces a given scattering
response, that work in complicated scattering environ-
ments.
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In optics, SLMs have been used to control waves under
strong scattering conditions for some time. Applications
range from focusing through general disordered media
[7, 8] to sophisticated biomedical imaging instruments
that fall under the umbrella of adaptive optics [9, 10]. In
the last several years, spatial microwave modulators in
the form of programmable metasurfaces have also become
widely available. Programmable electromagnetic meta-
surfaces are metamaterial sheets that can modify their
local surface impedance over unit cells (meta-atoms) that
have a sub-wavelength characteristic size. They have
emerged as powerful tools for shaping waves inside com-
plex microwave cavities [11–19].

Metasurfaces are not limited to shaping only elec-
tromagnetic waves. In seismology, control over surface
acoustic waves has been demonstrated using metasur-
faces made of elastic metamaterials for Love waves (hor-
izontally polarized) [20] and Rayleigh waves (containing
both longitudinal and transverse motion) [21]. In the case
of quantum waves, a metasurface created from an array
of trapped neutral atoms was used to manipulate light
at the quantum level [22]. While the underlying physics
of these metasurfaces is vastly different, the overall op-
eration and process of wave interaction is essentially the
same, implying that strategies for wavefront shaping in
one domain can be readily adapted to another.

Wavefront shaping techniques with metasurfaces have
been well studied; however, control in complex reverber-
ating environments still relies on simple, online brute
force optimization methods. While these approaches
work, they require a large number of iterations to reach
convergence, are rarely guaranteed to achieve a global
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minimum, and can produce undesirable scattering config-
urations through the intermediate steps of the optimiza-
tion process. Wavefront reconstruction, or estimating the
wavefront in the basis of metasurface commands, is there-
fore a critical capability for enabling practical wavefront
control applications.

In this Article, we use a binary programmable meta-
surface to shape radio frequency electromagnetic waves
inside a chaotic microwave cavity, and present a deep
learning network that solves the wavefront reconstruc-
tion problem, enabling real-time operation once trained.
We show that the deep learning network achieves an ac-
curacy exceeding 99%. This high success rate is achieved
with a limited amount of training data, requiring the
collection of far fewer sets than the number of possible
combinations of metasurface commands. A conceptual
view of our technique is given in Fig. 1. The metasur-
face is placed in a reverberant scattering environment,
with a signal injected at Port 1 and the resulting field
measured at a specific point of interest (Port 2). The
environment is defined by irregular walls and inclusions
and is probed by waves with wavelengths much smaller
than the characteristic dimension of the enclosure.

We emphasize that our method is enabled by the use
of a reverberant environment, which allows the metasur-
face to interact with multiple ray trajectories, often more
than once. A reverberant environment provides two ma-
jor capabilities that are not present in non-reverberant
environments: 1) the ability to control the distribution
of wave fields at arbitrarily chosen locations inside the
cavity is enhanced. This allows the use of relatively small
metasurfaces, e.g., in our configuration, the metasurface
covers only ∼1.5% of the total surface area of the cav-
ity; and 2) the requirement on establishing a line-of-sight
path between the metasurface and the ports is removed,
which allows the location of the metasurface to be ar-
bitrarily chosen, increasing the flexibility and versatility
of the approach. We anticipate that realization of this
concept will help usher in the new era of smart radio en-
vironments, as well as allow on-demand creation of mi-
crowave cold spots to protect sensitive electronic compo-
nents and coherent perfect absorption states for wireless
power transfer.

II. WAVEFRONT CONTROL IN
REVERBERANT ENVIRONMENTS

Microwave experiments have shown that pro-
grammable metasurfaces can provide fine control over
the scattering parameters of a cavity, with the most
recent work demonstrating perfect absorption [16] and
coherent perfect absorption [18, 19] states inside the
cavity. The relationship between metasurface commands
and cavity scattering parameter responses is extremely
complicated (there are 1018 possible configurations of
the metasurface in our case). Therefore, optimization
of the metasurface is typically handled through brute

force trial and error or stochastic search algorithms
[18, 23, 24]. As discussed in Appendix A1, rapid
and accurate wavefront reconstruction techniques that
solve the inverse problem between measurements and
metasurface commands are necessary to realize practical
intelligent wavefront shaping systems. Conventional
methods fall apart in complex scattering environments
with binary metasurfaces; however, the inherent com-
plexity makes it an ideal place to utilize deep learning.
Ma et al. explored the use of deep learning networks
with wave chaotic systems, demonstrating the ability to
successfully distinguish between different types of wave
chaotic cavities through the measured S-parameters [25].
We now tackle a more difficult problem, identifying a set
of metasurface commands required to achieve a specific
wave scattering condition, even for cases where that set
of commands has not been previously encountered.

Deep learning has been successfully used to design
metasurfaces for wavefront shaping applications in both
the photonic and microwave domains [26–37]. However,
most of the publications so far have focused on designing
and arranging the individual unit cells of the metasurface
for static use cases. Active deep learning approaches with
programmable metasurfaces have been demonstrated for
microwave imaging applications [38–43]. Li et al. used
a two-bit coding metasurface to generate radiation pat-
terns for a machine learning algorithm that detects and
classifies human movement [38, 39]. del Hougne et al.
started with a pair of metasurfaces as a transmitter and
receiver to feed a dense neural network that detects and
classifies objects in a learned integrated sensing paradigm
[40, 41]. Further research by this group used a dense neu-
ral network to classify the position of a scattering object
inside a complex cavity with a metasurface acting as a
coded aperture [42]; this work was recently extended to
predict a continuous position with sub-wavelength preci-
sion [43].

These examples demonstrate how a programmable
metasurface can enhance the processing power of a deep
learning network for microwave imaging, but they do not
leverage the deep learning network for wavefront recon-
struction. This is a key component of intelligent wave-
front shaping, which has so far been an underexplored
area of research. Qian et al. used a simple dense net-
work to enable cloaking of an object [44], while Shan
et al. used a 2D convolutional network to optimize the
steering of multiple beams [45]. Both cases utilize an ide-
alized testing environment inside an anechoic chamber,
where multi-path reflections from the environment are
intentionally excluded. In addition, both cases are built
around a propagation path with a direct reflection off the
metasurface, which means that the metasurface interacts
with virtually all ray trajectories from the source to the
receiver.

As discussed in Appendix A2, a single propagation
path eliminates redundancies from persistent short or-
bits [46, 47], reducing the measured correlation between
metasurface configurations. These cases can be treated
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Figure 1. Conceptual view of a deep learning enabled programmable metasurface in a complex electromagnetic
environment. Constructive and destructive interference between multiple propagation paths in a reverberating environment
induces randomness in the scattering parameters and scrambles electromagnetic waves that are injected at Port 1. A reconfig-
urable metasurface is used to tune the interference to create cold spots for protection of sensitive electronic components, realize
coherent perfect absorption states for long range wireless power transfer, or unscramble the output fields to enable smart radio
environments. The metasurface, along with a sensing antenna at Port 2, is coupled with a deep learning network that provides
control. Measurements are used as training data, enabling the network to determine the control settings of the metasurface,
and allowing the system to adapt to changing environmental conditions on-the-fly. The metasurface is shown here as large
relative to the cavity. In our configuration however, the metasurface is much smaller, covering only ∼1.5% of the total surface
area of the cavity.

with more traditional system identification techniques or
simple neural network models. When the metasurface
is placed inside a complex reverberant scattering volume
[42, 43], determining the relationship between metasur-
face commands and scattering responses becomes sub-
stantially more difficult due to the presence of multiple
scattering paths. A reverberant scattering system is qual-
itatively different from an open system, and is character-
ized by extreme sensitivity to initial conditions [48, 49].
This means accurate wavefront reconstruction must ac-
count for chaotic behavior and be sensitive to small envi-
ronmental changes, as well as handle non-negligible large
amplitude signal spikes that include phenomena such as
rogue waves [50]. This difficulty is further compounded
as we wish to optimize the metasurface response over a
wide bandwidth or even over multiple separated band-
widths simultaneously.

The reverberating nature of the cavity enables oper-
ation with a smaller metasurface than would be possi-
ble in a non-reverberating environment. Longer rever-
beration times (lower cavity losses) mean that the rays
will survive longer in the cavity, resulting in more reflec-
tions from scattering objects and more ray trajectories
that interact with the metasurface, often multiple times.

Longer reverberation times then provide the metasurface
more flexibility in controlling constructive and destruc-
tive interference at the ports, allowing for larger relative
changes when toggling metasurface states. We demon-
strate this to be the case and show that the performance
of the deep learning network degrades as the losses in
the cavity increase because the metasurface has a smaller
relative impact on the S-parameters. This is another dis-
tinction between a reverberant environment and an open
one, where environmental losses only impact the signal
magnitude through absorption.

We further show that our trained network can success-
fully determine the metasurface configuration from the
measured scattering response in the cavity several days
after the training data was collected. Measured S21 re-
sponses with the same initial conditions inside a chaotic
cavity will change over time, a phenomenon known as
scattering fidelity decay [51–53]. Scattering fidelity de-
cay is a property of wave chaotic system, and its sen-
sitivity to boundary conditions and scattering environ-
ment. This is in contrast to ray chaos and the sensitivity
of bouncing ray trajectories to initial conditions in bil-
liards. This decay means that any deep learning system
that learns scattering responses inside a chaotic cavity
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will require periodic retraining. As discussed in Section
VI, the fact that we are still able to determine the meta-
surface configuration accurately after several days means
our technique is operationally useful, as it can function
at a high level of accuracy for a long period of time be-
fore requiring retraining. Our approach is robust and
highly accurate in determining metasurface commands
from measured cavity S21 spectra, providing an enabling
capability for intelligent wavefront shaping applications.
In addition, our method is general enough to operate in
arbitrary complex scattering systems and does not re-
quires a specifically engineered environment.

Our technique is achieved through the development
and combination of four major aspects: 1) adaptive con-
figuration of the metasurface unit cells by binning ele-
ments together to dynamically alter the relative size of
the elements; 2) representation of the complex system
S-parameters in a pseudo-2D “image” to promote ex-
traction of features that are correlated over both local
and global frequencies; 3) complex-valued deep learning
layers to exploit both phase and amplitude information,
accelerating training and improving the accuracy when
applied to complex scattering environments; and 4) in-
troduction of the Terrapin Module to parallelize the deep
learning network, promoting sparse feature representa-
tion and improving training robustness.

III. EXPERIMENTAL CONFIGURATION

The complex, ray chaotic cavity used for experimen-
tation is in the same configuration used in our previous
work [18]. It has a volume of ∼0.76 m3 and includes 3
ports, with ports 1 and 3 used to inject signals and port
2 used for scoring. The cavity configuration and exper-
imental schematic are shown in Fig. 2. Each port is
connected to an ultra wideband antenna (UWB) and the
nominal measurement window is 3-4 GHz. An Arduino
controlled mechanical mode stirrer is included to allow
collection of an ensemble of cavity realizations. The ex-
perimental setup is controlled by a laptop, with an Ag-
ilent N5242A network analyzer used to measure cavity
S-parameters. To reduce the cavity symmetry, irregular
scattering objects were installed on the walls. Additional
details on the cavity are provided in Appendix A3.

Experiments were carried out over several months with
the cavity placed in a heated and air-conditioned base-
ment. While there were many commercial devices in
the vicinity that emitted signals within the measurement
window, we found the cavity to be well isolated. When
not actively in use, such as in between experimental runs,
the metasurface was powered off.

The metasurface installed on an interior wall was fabri-
cated by the Johns Hopkins University Applied Physics
Laboratory. It is designed to operate in the frequency
range of 3-4 GHz, and contains 240 binary meta-atoms
(LC resonators) arranged in a rectangular grid of 10×24
elements. Each element has a characteristic length of

Figure 2. Cavity configuration. (a) Experimental
schematic of the cavity, showing the metasurface installed on
the cavity walls, the locations of the 3 ports, the line-of-sight
(LOS) block to prevent direct transmission between Port 2
and Ports 1 and 3, and the mode stirrer that is controlled by
a stepper motor through an Arduino. Also shown are the net-
work analyzer, phase shifter, control laptop and router. (b)
Photograph of the interior of the cavity showing the compo-
nents from the schematic as well as the irregular scatters that
were installed on the cavity walls.

∼ λ/6 and is switched by a GaAs transistor amplifier to
1 of 2 states (0 or 1), changing the phase of the reflec-
tion coefficient by ∼ 180◦ [54]. The metasurface covers
a small region of the interior surface area of the cavity,
1.5%, and intercepts only a limited number of rays.

The goal of our deep learning network is to enable
wavefront reconstruction inside a complex cavity. The
network will accept a given S21 spectra from 3-4 GHz and
accurately determine the metasurface commands neces-
sary to closely realize that specific scattering response.
The relatively small size of the metasurface and its unit
cells leads to high correlation between system scattering
responses with minor changes in metasurface commands,
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which means the inverse problem is ill-posed. Deng et al.
recently introduced a neural-adjoint approach for solving
the ill-posed inverse problem of designing unit cell geome-
tries to match specified absorption spectra [55]. In this
case, a fully connected deep learning network was used to
model the forward problem, acting as a Green’s function
to predict the spectrum from a given design. The inverse
problem was then solved iteratively, driving the design
along an estimated gradient towards the optimal solu-
tion. As discussed in Appendix A1, gradient methods
work best for a continuous or near continuous solution
space rather than a binary one such as ours; however,
the adjoint method from [55] can be adapted into a re-
inforcement learning approach [56]. In addition, inside a
chaotic reverberating environment, the spectra will have
more structure, resulting in higher frequency oscillations
or local features that must also be learned. Therefore,
we require a different deep learning approach.

IV. DEEP LEARNING NETWORK DESIGN

The metasurface has 2240 possible combinations of
commands. To reduce the dimensionality, we introduced
the concept of binning neighboring unit cells as discussed
in Appendix A4. Groupings consisting of 2 × 2, 3 × 3,
and 5×4 elements were chosen. Binning is an important
capability that allows us to adapt the size of an effective
element to the underlying scattering system. This is one
of the major contributions of our work.

The primary limitation of our approach is that we are
not guaranteed to be able to generate any arbitrary S21

response, as a configuration of the metasurface that pro-
duces that response does not necessarily exist. The small
size of the metasurface relative to the cavity limits its
ability to interact with all possible ray trajectories, em-
phasizing the importance of a binning capability to adapt
the effective pixel size to the environment. This limita-
tion is therefore a function of the system configuration,
and not the deep learning network. The small relative
size of the metasurface does represent a realistic config-
uration for practical smart radio environments, however.

An important step for deep learning is preparation of
the measured data. The goal here is to represent the
data in a basis set that can be ingested by the neural
network architecture. The raw data consists of M sets
of complex two-port S-parameter values, each containing
32,001 points measured over a 3-4 GHz window. We are
interested in the relationship between metasurface com-
mands and transmission between the ports, so we select
S21 as the primary variable of interest. The measured
data contains local and global correlations, both of which
must be captured by the deep learning network. We can
exploit the local correlations with 1D convolutional neu-
ral network (CNN) layers, but would like the individual
windows to cover a smaller bandwidth. Our previous
work showed diminishing returns for optimization over
bandwidths greater than 10 MHz [18], so 10 MHz pro-

vides a reasonable limit for the local window size. We
therefore extract the complex S21 in 10 MHz frequency
windows at 100 distributed center frequencies to provide
100 feature vectors containing 321 points each. A rep-
resentative data set is shown in Fig. 3 (a), with only
50 feature vectors used for illustration. The data are
organized into a 3D structure of M sets of data × F
local frequencies × N features, or 10, 000 × 321 × 100
for the 2× 2 binning configuration. Each data set takes
on a pseudo-2D format with a 321 × 100 pixel “image”
as shown in Fig. 3 (b). Local features in the 10 MHz
frequency windows (over the F dimension) will be ex-
tracted by 1D CNN layers and global features (over the
N dimension) will be extracted by the overall deep learn-
ing network architecture. The overall architecture then
acts as a dense or fully connected layer from the perspec-
tive of the global features. The pseudo-2D format and its
ability to capture both long-range and short-range corre-
lations in frequency provides the second major aspect of
our approach. Additional details on data collection are
provided in Appendix A5.

The output values of the deep learning network (equal
in number to the number of binned metasurface ele-
ments) are floating point numbers rather than binary
numbers and can be interpreted as the probability that
a given element in the metasurface is active (set to 1).
The determined commands are then found by rounding
the outputs to either a 1 or a 0. Inspection of the raw
(unrounded) outputs allows us to assess how correct the
deep learning network was, or how confident the network
was in the result. A discussion of the different types of
neural network layers used is provided in Appendices A6
and A7.

As described in Appendix A8, the training data sets
are randomly shuffled and then split into 75% training
data and 25% validation data. At each step (epoch), val-
idation of the trained model is performed by testing the
model with a new set of data not present in the training
set.

Complex-valued multiplicative layers have been used
to invert propagation through multi-mode fibers [57, 58],
but , have not previously been used for wavefront recon-
struction. Unfortunately, as discussed in Appendix A9,
there are no officially supported complex-valued modules
in any of the major deep learning frameworks. Mul-
tiplicative layers are straightforward to implement, but
more complicated modules, such as convolutional layers,
are not. For the research described here, we leveraged the
open source complexPyTorch library [59] as the basis for
our complex-valued network layers.

The added complexity resulting from placing the meta-
surface inside a chaotic cavity requires a correspond-
ingly complicated deep learning network to extract the
relevant features. Rather than only designing progres-
sively more intricate network topologies, we can also in-
troduce complex-valued layers [60], which serve as the
third major aspect of our approach. The wave scattering
phenomenon is fundamentally complex-valued, so using



6

Figure 3. Data preparation example. The deep learning networks use complex amplitudes, however, only the magnitude
is shown here for illustrative purposes. (a) Raw |S21| data vs. frequency showing 50 local windows highlighted in gray. The
actual data preparation uses 100 local windows, only 50 are shown here for clarity. The data was collected over a 1 GHz
measurement window with 32,001 points and each local window (highlighted in gray) has a bandwidth of 10 MHz or 321 points.
(b) Extracted |S21| data (in log scale) in a pseudo-2D format as a 321 × 50 pixel “image”. The data is represented as center
frequency (over the full 1 GHz measurement window or N dimension) vs. local frequency (over the 10 MHz local window or
F dimension). The deep learning network will use 1D convolutions to extract features in the 10 MHz local frequency windows
(y-axis) and use the relationships between convolutional filters to capture global correlations over the full 1 GHz measurement
window (x-axis).

complex-valued layers allows the network to exploit both
phase and amplitude information and better match the
underlying physical system.

To demonstrate the impact of utilizing complex-valued
network layers, we performed an experiment that com-
pared 3 different architectures: 1) a complex-valued net-
work that processes the complex-valued S-parameters
and converts the result to a magnitude at the end of
the network (Fig 4b); 2) a hybrid network that processes
the real and imaginary components of the S-parameters
independently and then combines them through a root-
sum-square operation at the end of the network (Fig 4c);
and 3) a real-valued network that operates on the mag-
nitude of the S-parameters (Fig 4d).

Ten separate training runs were performed with each
architecture on the same set of input data. Panels e)
through g) of Figure 4 show the evolution of the accu-
racy of network over the validation data set and demon-
strate that the complex-valued network layers are ulti-
mately able to achieve a higher accuracy than the hy-
brid or real-valued network layers and exhibit more sta-
ble training behavior. Training instability manifests as
wide variations in the accuracy response, resulting in cer-
tain runs not effectively learning until much later (several
cases for the real-valued network are still learning after
500 epochs). It indicates that the hybrid and real-valued
networks are much more sensitive to initial weights or or-
dering of the data sets after shuffling than the complex-
valued networks.

As described in Appendices A10 and A11, the 5 × 4

binning case performed extremely well using a straight-
forward sequential CNN architecture. After training, we
were able to accurately realize 100% of the target re-
sponses over both the training and validation sets. Un-
fortunately, the purely sequential architecture of the net-
work did not work as well for the 3×3 binning configura-
tion (see Appendix A13). The increased complexity im-
plies that we need a more complex network, so we turned
to approaches successfully used in modern image classi-
fication, specifically inception modules [61, 62]. As dis-
cussed in Appendix A12, we modified the general archi-
tecture to perform 1D convolutions over the 10 MHz local
frequency windows. The 1D convolutional filters then ex-
tract local features over the 10 MHz windows, while the
relationship between the filters acts as a dense or fully
connected layer, extracting global features over the full
1 GHz measurement window. The final version, which
we refer to as a “Terrapin Module”, is shown schemati-
cally in Fig. A7 and provides the fourth and final major
technical contribution of our approach.

With a deep learning network containing 4 Terrapin
Modules in series, we were able to get excellent perfor-
mance for the 3×3 binning configuration with only 4,000
sets of training data, as discussed in Appendix A13. The
2×2 configuration required 10,000 sets of data for a simi-
lar level of performance (see Appendix A14). The smaller
effective elements in this configuration produce responses
with a larger degree of correlation. Thus, more data is re-
quired for the network to learn and distinguish the more
subtle relationships between metasurface command con-
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Figure 4. Training performance for different architectures. (a) Generic network architecture. The real and imaginary
components of the complex S-parameters are ingested by the network, with a real-valued bitstream provided at the output
for metasurface commands. (b) Schematic architecture for the complex-valued network showing that the magnitude operation
only occurs at the end of the network. (c) Schematic architecture for the hybrid network showing that the real and imaginary
components are processed independently and combined at the end. (d) Schematic architecture for the real-valued network
showing that the magnitude operation occurs at the beginning of the network. (e) through (g) Evolution of the accuracy over
the validation data set for the various architectures with a mean accuracy of 99.2% for the complex valued network (e), 97.4%
for the hybrid network (f), and 91.4% for the real-valued network (g) cases that successfully trained. The dashed line shows
95% accuracy, and the insets show closeups of the accuracy evolution from epochs 300-500 in the range of 90% to 100%. This
figure demonstrates that the complex-valued network achieves better overall accuracy with more stable training performance
than the other architectures.

figurations and scattering matrix responses, S21(f).

Training is performed in a parallelized fashion over all
the training data at once, e.g., for our computational re-
sources, taking ∼ 4 hours to collect a sufficient set of
data and train the deep learning network. Testing, how-
ever, is performed on single shot measurements and takes
less than 1 second to measure the S21 response and make
a determination of the metasurface commands, enabling
real-time operation. In contrast, the iterative approach
in our earlier work [18] required ∼300 measurements to
converge to a desired configuration, taking ∼10 minutes
to reach the answer for each configuration. Online it-
erative optimization does not require training, but may
produce undesirable configurations due to the randomly
applied perturbations. When time is available for offline
training, the deep learning approach is preferred.

V. RESULTS

The primary objective of this work is to demonstrate
that deep wavefront shaping is a viable technique for
wavefront reconstruction inside complex scattering en-
vironments, enabling intelligent wavefront shaping in
a chaotic cavity. In this section, we shown how our
deep learning approach accurately determines metasur-
face commands from measured cavity scattering param-
eters.

Training results for the 5× 4 and 3× 3 binning config-
urations are provided in Appendices A11 and A13, while
training results for the 2 × 2 binning configuration are
provided in Appendix A14 and shown in Fig. 5. The
training data consists of 10,000 random realizations of
metasurface commands, representing an extremely small
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fraction of the 1.2 ×1018 possible configurations. The
data was split into 7500 sets for training and 2500 sets
for validation to ensure the validation process is unbiased.
The evolution of the loss function is shown in Fig. 5 (a)
and the evolution of the accuracy is shown in Fig. 5 (b).
The loss function was chosen as the mean absolute error,
or the L1 norm, between determined and actual meta-
surface commands. Accuracy is the fraction of sets that
was determined without error and provides a more con-
servative estimate of performance. The variation around
Epoch 45 is due to choosing an aggressive initial learning
rate and the impact of reducing the learning rate on a
plateau can be seen at Epoch 55. These panels demon-
strate that we were able to obtain high accuracy and a
small loss function for both the training and validation
data sets.

The trained model did not have perfect accuracy but
was able to determine 2,443 out of 2,500 sets in the vali-
dation data without error for an accuracy of 97.7%. One
set had 2 errors and 56 sets had a single error, as shown
in Fig. 5 (c). A comparison of the determined and true
commands is shown in Fig. 5 (d), (e), (g), and (h). These
panels show that for the worst case set with two errors,
the network was not highly confident in the results as
the erroneous determined command probabilities were
0.41 and 0.73. Finally, example scattering responses are
shown in Fig. 5 (f) and (i), which demonstrate both
the complexity of the S21 responses and the fact that the
difference between the measured and predicted responses
are generally at least 20 dB lower than the signal magni-
tudes themselves.

To further validate the trained deep learning network,
we adopted the on-line, closed loop configuration as
shown in Fig. 6 (a). Commands were applied to the
metasurface and the S21 response was measured and then
passed through the trained deep learning model to verify
accuracy. This provides a 3rd set of data that was not
seen during training (or the initial validation). When the
deep learning determined commands had errors, the de-
termined commands were applied to the metasurface so
that the difference in S21 responses could be computed.
We define the difference, ∆S21, between two measured
S21 responses, Sa

21 and Sb
21 through the L2 (Euclidean)

norm, ||S21(f)||2 =
√∑

f |S21(f)|2. The summation is

taken over the full measured frequency range (3-4 GHz)
and ∆S21 is defined as

∆S21 = 2
||Sa

21(f)− Sb
21(f)||2

||S0
21(f)||2 + ||S1

21(f)||2
(1)

The normalization factor here is determined by the av-
erage of the L2 norms of the active commands (all 1s),
S1
21, and the inactive commands (all 0s), S0

21. To un-
derstand how ∆S21 depends on the difference between
commands, we first identified the minimum Hamming
distance for each of the 10,000 sets in the training data.
The Hamming distance is simply the number of elements

that are different between 2 sets of commands. It is a
useful metric for comparing command sets, but does not
include scaling or correlation based on position; in some
cases, the impact of toggling an element in the center may
be significantly different than the impact of toggling an
element on the edge of the metasurface.

The smallest Hamming distance between the training
data sets ranged from a single element to 19 elements
(out of 60). A series of whisker box plots showing ∆S21

for the various Hamming distances is shown in Fig. 6
(b). The general trend shows an increase in ∆S21 with an
increase in the Hamming distance. While the relationship
is nonlinear, the dynamic range in ∆S21 for Hamming
distances up to 1/3 of the total number of elements is
large, approximately an order of magnitude.

Validation of the deep learning network in the configu-
ration shown in Fig. 6 (a) was performed periodically af-
ter collecting the training data and the results are shown
in Fig. 6 (c) at 2 hours, (d) at 36 hours (1.5 days), and
(e) at 72 hours (3 days), with the metasurface powered
off between each validation test. Over time the scattering
environment is expected to “age” and systematic changes
to the scattering environment will occur. The blue dia-
monds show cases where there was a single error, and the
black dots show cases where there were 2 errors. Each
on-line validation experiment showed ∼ 95% accuracy
and the resulting ∆S21 for errors was small compared to
the observed statistical extent of ∆S21 for single element
Hamming distances. This suggests that even when the
deep learning network is unable to determine the com-
mands completely accurately, the resulting difference in
S21 is very small. As shown in Appendix A15, the accu-
racy was still >85% after 120 hours (5 days), but dropped
to ∼65% after 9 days.

The number of errors and number of cases with more
than one error increases with time, showing the “aging”
effect of the cavity, which can be quantified through the
concept of scattering fidelity. Scattering fidelity is the
normalized correlation as a function of time between two
cavity responses with the same initial conditions [63]. Be-
cause a chaotic cavity is sensitive to small changes in the
boundary conditions, such as volume perturbations, the
scattering fidelity will decay over time [51–53]. Loss of
scattering fidelity means that the accuracy of any trained
deep learning network has a finite lifetime, so we must
periodically retrain the network on new training data to
maintain accuracy. In our case, we have demonstrated
that the deep learning network can determine metasur-
face commands with high accuracy (> 95%) for at least
72 hours (3 days) after the initial training data collection,
and with reasonable accuracy (> 85%) up to 120 hours
(5 days) after the initial training data collection. Large
variations in environmental conditions, such as tempera-
ture or humidity, will introduce larger perturbations and
more rapidly degrade the scattering fidelity.

An additional set of experiments showing the perfor-
mance of the deep learning network with different cavity
reverberation times is provided in Appendix A16 and Fig.
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Figure 5. Deep learning performance with complex-valued layers for 2x2 binning. (a) Evolution of the loss
function for the training and validation sets over 100 epochs. The learning rate is reduced at Epoch 55, inducing an additional
reduction in the loss function. The initial learning rate was aggressive, resulting in a large variation in the validation loss
function between Epochs 45-50. (b) Evolution of the accuracy for the training and validation sets over 100 epochs, the dashed
black line identifies 95% accuracy. (c) Number of errors over the validation set for the trained model, showing a total of 58
errors and 97.7% accuracy. The maximum number of errors in a single set was 2 (out of 60 elements), which occurred once.
(d) Determined commands for validation set #2311 showing the output from the deep learning network. (e) True commands
for validation set #2311 showing what was actually applied to the metasurface. (f) Example scattering responses for online
validation showing the measured and predicted S21responses. (g) Determined command probability for validation set #2311,
showing the raw outputs from the deep learning network prior to rounding. This panel shows that the 2 elements determined
incorrectly have command probabilities of 0.41 and 0.73, meaning the network was not highly confident in the result. (h)
Errors, or incorrectly determined commands for validation set #2311, showing the 2 elements that were determined incorrectly.
(i) Prediction errors or difference between the measured and predicted S21 responses.

A11.

VI. SUMMARY AND DISCUSSION

In this paper, we demonstrated the use of a deep learn-
ing network for wavefront reconstruction, enabling intel-
ligent wavefront shaping in complex reverberant environ-
ments. Major aspects include complex-valued deep learn-
ing layers that exploit both phase and amplitude infor-
mation, binning of the metasurface elements, a pseudo-
2D data format that allows features to be extracted over
both narrow and wide bandwidths, and a Terrapin Mod-
ule that enhances the receptive field, providing width and
depth to the network. While our configuration leverages
a binary (1-bit) tunable metasurface, it can be adapted
for a continuous device, such as a varactor, by replacing
the output sigmoid activation function with a rectified
linear unit activation function and then discretizing the
signal to the desired resolution.

One of the primary limitations of traditional deep
learning is the amount of data required to train the net-
works. This is especially concerning in light of the fact
that loss of scattering fidelity requires periodically col-
lecting new training data. We have demonstrated the
ability to train highly accurate networks with a limited
amount of training data, requiring far fewer sets than the
number of possible combinations of commands. We have
also demonstrated that the accuracy can be maintained
for a period of at least several days, and is successful
with varying amounts of loss in the cavity. This indicates
that successful training on a reduced amount of data is
possible, provided it is sufficiently diverse. Diversity in
both the metasurface commands and the measured re-
sponses is then a key aspect in setting up any potential
autonomous system.

Several concerns must be addressed to enable practical
fielded hardware systems. First, the sensing component
must be reduced in cost and size. The availability of
software defined radio (SDR) architectures presents an
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Figure 6. On-line performance verification. (a) Closed loop validation configuration. Commands were applied to the
metasurface inside the cavity, the corresponding S21 response was measured on the PNA, and the results were passed through
the trained deep learning network. Errors for the trained model were then measured to determine the difference in S21, ∆S21,
between the two command sets. (b) ∆S21 statistics for the minimum Hamming distance across the 10,000 sets from the
training data. Whisker plots are given for the smallest Hamming distance for each case, and show the mean value, 25th and
75th percentiles, and maximum and minimum values. (c) through (e) ∆S21 for online validation sets taken a specified time
after the training data was collected. The shaded regions show the extent of the single element Hamming distance whisker
box plot from panel (b). The grey region shows the full range from maximum to minimum, and the red region shows the 25th

and 75th percentiles. The blue diamonds indicate cases with a single error, while the black circles indicate cases with 2 errors.
These panels show that the ∆S21 for errors is very small, and in the lower region of the statistics covered by observed cases with
single element Hamming distances. (c) Validation 2 hours after collecting training data, 2000 sets of commands were tested
with 86 errors for an accuracy of 95.7%. (d) Validation 36 hours after collecting training data, 2000 sets of commands were
tested with 80 errors for an accuracy of 96%. (e) Validation 72 hours after collecting training data, 2000 sets of commands
were tested with 107 errors for an accuracy of 94.7%.

ideal path here, with many inexpensive platforms read-
ily available. Compact devices such as the bladeRF [64]
can replace the bulky network analyzer. SDRs have lim-
ited instantaneous bandwidth, typically 10-20 MHz, so
modifications would be required to the pseudo-2D data
representation. Second, processing large deep learning
models on power hungry GPUs may exceed the allowable
footprint in terms of both cost and power consumption.
Deep learning models can be compressed by pruning and
quantization [65], and the explosion of edge intelligence
for connected devices in the Internet of Things is lead-
ing to more efficient embedded deep learning systems.
An example is the Jetson series of embedded GPUs from
NVIDIA; the currently available TX2 series can provide
up to 1.26 trillion floating point operations per second on
a 256-core GPU while consuming only 10-20 W of power
[66].

In closing, we have shown that deep learning enabled

wavefront reconstruction provides an important step to-
wards realizing intelligent reconfigurable metasurfaces for
smart radio environments. Potential applications in the
domain of electromagnetics include wireless power trans-
fer, protection of sensitive electronic components, opti-
mization of wireless networks, micromanipulation of ob-
jects, and nonlinear time reversal. Our technique is
applicable to general wave chaotic scattering systems
and is not strictly limited to electromagnetic waves.
Adopting this technique to control the system scatter-
ing response with metasurfaces that interact with seismic
waves [20, 21] or quantum waves [22] will unlock many
innovative applications for wave chaotic systems.
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Qiu, and T. J. Cui, Machine-learning reprogrammable
metasurface imager, Nature Communications 10, 1082
(2019).

[40] P. del Hougne, M. F. Imani, A. V. Diebold,
R. Horstmeyer, and D. R. Smith, Learned Inte-
grated Sensing Pipeline: Reconfigurable Metasurface
Transceivers as Trainable Physical Layer in an Artificial
Neural Network, Advanced Science 7, 1901913 (2020).

[41] H.-Y. Li, H.-T. Zhao, M.-L. Wei, H.-X. Ruan,
Y. Shuang, T. J. Cui, P. Del Hougne, and L. Li, Intelli-
gent electromagnetic sensing with learnable data acqui-
sition and processing, Patterns 1, 100006 (2020).

[42] P. del Hougne, Robust position sensing with wave finger-
prints in dynamic complex propagation environments,
Phys. Rev. Research 2, 043224 (2020).

[43] M. del Hougne, S. Gigan, and P. del Hougne, Deeply
subwavelength localization with reverberation-coded
aperture, Phys. Rev. Lett. 127, 043903 (2021).

[44] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen,
and H. Chen, Deep-learning-enabled self-adaptive mi-
crowave cloak without human intervention, Nature Pho-
tonics 14, 383 (2020).

[45] T. Shan, X. Pan, M. Li, S. Xu, and F. Yang, Coding
Programmable Metasurfaces Based on Deep Learning
Techniques, IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 10, 114 (2020).

[46] J. A. Hart, T. M. Antonsen, and E. Ott, Effect of
short ray trajectories on the scattering statistics of wave
chaotic systems, Physical Review E 80, 041109 (2009).

[47] J.-H. Yeh, J. A. Hart, E. Bradshaw, T. M. Anton-
sen, E. Ott, and S. M. Anlage, Experimental exami-
nation of the effect of short ray trajectories in two-port
wave-chaotic scattering systems, Physical Review E 82,
041114 (2010).

[48] E. Ott, Chaos in dynamical systems, 2nd ed. (Cam-
bridge University Press, Cambridge, U.K. ; New York,
2002).

[49] F. Haake, Quantum Signatures of Chaos (Springer,
Berlin, Heidelberg, 2010).
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Appendix A1: Wavefront Reconstruction and
Control

Wavefront control has a rich history and has been well
studied from the perspective of adaptive optics. Con-
ceived by Horace Babcock in 1953 [67], and realized in
the 1970’s [68], adaptive optics provides a method of
correcting wavefront aberrations induced by propagation
through random media. It has been successfully used
in a diverse array of applications including astronomical
imaging [69], biomedical imaging [70], high energy laser
propagation [71], free space optical communications [72],
quantum networking with satellites [73], and laser pro-
cessing of materials [74].

Adaptive optics systems typically employ reflective de-
formable mirrors that provide mechanical phase compen-
sation [75, 76]. Conventional deformable mirrors are built
with ferroelectric actuators [77] with as small as 5 mm
spacing, though monolithic deformable mirrors manufac-
tured from a block of lead magnesium niobate (PMN)
material can have 1 mm spacing between actuators [78].
Micro-electrical-mechanical-system (MEMS) mirrors us-
ing electrostatic actuation have made great strides over
the past decade [79, 80] and are very competitive with
conventional deformable mirrors, particularly where a
large actuator density is desired. Refractive liquid crystal
devices have also been proposed and developed [81, 82],
but tend to be slow and are uncommon outside of mi-
croscopy [10], or laser processing [74].

The availability of inexpensive reconfigurable metasur-
faces has driven research into a field known as wavefront
shaping [7, 8, 12, 83–85]. While there is not a strict
convention or definition, adaptive optics is generally as-
sociated with controlling distorted wavefronts for a single
propagation path while wavefront shaping is generally as-
sociated with controlling (or shaping) a combination of
multiple scattered wavefronts. We will adopt this con-
vention here and refer to adaptive optics and wavefront
shaping in general as wavefront control. While many ap-
plications are built around scattering systems possessing
time reversal symmetry (TRS), the presence of TRS is
not a requirement for all wavefront control systems.

Conventional adaptive optics systems measure the
wavefront directly and use an operator, called the re-
constructor, to solve the inverse problem between mea-
surements and control signals. Wavefront reconstruction
is at the heart of any wavefront control system. The pro-
cess is generally indirect, as the reconstructor evaluates
the wavefront in the basis of command signals, rather
than explicitly in phase. Wavefront reconstruction is a
specialized area of system identification [86], and relies
heavily on methods for solving inverse problems.

For a linear system, or one that can be linearized,
the standard reconstructor, R, is a regularized optimal
Wiener filter given as [87]

R =
[
BTC−1

n B + W + BTC−1
ϕ B

]−1
BTC−1

n (A1)

Here, Cn is the measurement noise covariance matrix,
Cn =

〈
nTn

〉
, Cϕ is the covariance matrix of the environ-

mental disturbance, Cϕ =
〈
ϕTϕ

〉
, W is a weighting/reg-

ularization matrix, and B is a system configuration (ge-
ometry) matrix that relates control signals to wavefront
measurements. Both Cn and Cϕ are defined in sensor
space, while W is defined in command space.

The inverse problem is often ill-posed due to singu-
larities or the presence of highly correlated responses
with different commands [88], which effectively means
we do not have enough information to solve the prob-
lem. We can add the necessary information through a
process known as regularization. The weighting matrix,
W, in Eq. A1 implicitly provides Tikhonov regulariza-
tion, which acts as a spectral filter on the singular values
[89, 90]. W can be the identity matrix to raise all the sin-
gular values, or a projection matrix to suppress specific
modes as they may either induce singularities or expend
control energy in ways we wish to avoid. Using the in-
verse of the environmental covariance matrix, C−1

ϕ , pre-
conditions the solution towards expected spatial modes
with the appropriate spatial statistics.

For nonlinear systems, we can apply iterative methods
to handle the reconstruction process. These are typically
Krylov subspace methods such as the conjugate gradi-
ent method [89, 91, 92]. Regularization can be applied
through Landweber iteration, where the gradient is al-
lowed to decay with a relaxation parameter [89, 91]. In
this case, the iterations are performed “offline”, mean-
ing that each iteration is evaluated numerically on the
measurements. The convergence rate is therefore only
limited by the computational power we can throw at the
problem.

Wavefront reconstruction is viable for some metasur-
face applications, but depends on being able to solve the
inverse problem. Complex environments include uncer-
tainties in determining the system configuration (B ma-
trix), and multiple reflection paths create intricate inter-
ference patterns at the antennas, producing chaotic fluc-
tuations [93, 94]. In addition, short orbits that manifest
as persistent features in the ensemble [46] are not re-
moved. This leads to a complicated relationship between
metasurface commands and cavity scattering parameters.
For a metasurface that is small relative to the cavity, the
effective strength of the metasurface commands on the
cavity scattering parameters is reduced. This results in
high correlation between measurements taken with differ-
ent sets of commands and creates problems for unique-
ness, as many potential solutions are extremely similar.
In addition, the scattering process is linear, but the rela-
tionship between metasurface commands and measured
scattering parameters is not necessarily so, particularly
for measurements in the temporal domain. In these ex-
treme scattering environments, we are limited to partial
information and may not be able to define the system,
let alone determine the inverse. This leads to model-free
control approaches that do not require knowledge of the
system configuration, and bypass an explicit wavefront
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reconstruction step altogether.
Early metasurface control approaches used brute force

trial and error, toggling every element or combination of
elements [23, 24]. This guarantees that a global minimum
is reached, but becomes infeasible with large numbers of
elements. The simplest practical approach is an exten-
sion of iterative multidither techniques in adaptive optics
[95], where, at the kth iteration, the algorithm updates a
trial command vector, a∗, with a small perturbation, δa,
so that

a∗k+1 = ak + δak (A2)

The impact on performance is evaluated through a
metric or cost function, J , that is positive and real-
valued, and dependent on both the command vector and
the environment, E . If the cost function, J

(
a∗k+1, E

)
,

is improved, the trial command vector becomes the new
command vector, ak+1 = a∗k+1. Otherwise, the trial com-
mand vector is rejected and a new trial command vector
is generated. The iterative process continues until either
a specified number of iterations, T , are performed with-
out improving the metric, or the cost function reaches
a pre-determined value, at which point we claim conver-
gence. While simple to implement and not reliant on
knowledge of the system configuration, the dithering ap-
proach is by no means optimal.

Gradient based approaches have proven extremely suc-
cessful for general stochastic optimization problems [96].
In a stochastic gradient descent (SGD) optimization, the
descent is performed by taking steps along the gradient
of the cost function with respect to the element command
vector. The step size, γ, which may or may not depend
on the iteration, determines how quickly the algorithm
descends, and is sometimes referred to as a “learning
rate”. Tuning the step size is an important aspect of
SGD methods. If γ is too small, the algorithm will take
a long time to converge and may not be able to escape
a local minimum. On the other hand, if γ is too large,
the algorithm may become unstable. The basic SGD is
implemented as

ak+1 = ak − γk∇ak
J (ak, E) (A3)

In most cases, it is not possible to evaluate the gra-
dient, ∇aJ , directly, so it must be approximated. The
general approach is to apply a small perturbation to the
current command vector and estimate the gradient from
a one-sided or two-sided finite difference. The pertur-
bation is applied to all elements of the command vector
simultaneously (in parallel) to increase the convergence
rate.

A specialty of wavefront control, known as wave-
front sensorless, or target-in-the-loop adaptive optics
[97], leverages stochastic optimization in a sensor agnos-
tic manner, indirectly evaluating the wavefront through a
scalar cost function, J . In target-in-the-loop approaches,

the iterations are performed “online”, meaning that each
iteration requires applying commands and measuring the
result. The convergence rate is therefore limited by the
sampling rate of the system.

Target-in-the-loop methods are not as easily analyzed
through modern multivariable control theory as conven-
tional methods, but they are highly applicable to the
problem of controlling metasurfaces in complex scatter-
ing environments. In particular, stochastic parallel gra-
dient descent (SPGD) [98, 99] has enjoyed great success
in target-in-the-loop adaptive optics systems. For SPGD,
the gradient is estimated from a one-sided finite differ-
ence,

∇aJ (a, E) ≈ [J(a + δa, E)− J(a, E)] δa−1 (A4)

The cost function is arbitrarily defined, allowing SGD
methods to be applied based on the specific need. It can
be an image quality metric such as Strehl ratio [98] for
imaging systems, signal strength for free space optical
communications [100], transmission coefficient for cold
spot generation, or scattering matrix eigenvalue magni-
tudes for CPA state realization. Specific to the problem
of controlling metasurfaces in microwave wavebands, en-
ergy efficiency in terms of bits-per joule is an attractive
metric for wireless networks [101]. Energy efficiency op-
timization using a reconfigurable metasurface has been
proposed and simulated using both SGD and sequential
programming in an open scattering environment [102].

SGD methods work well in principle for controlling a
metasurface. However, they begin to fail with coarse
quantization, which limits the ability to tune both the
size of the applied perturbation and the size of the step
taken along the gradient. In the extreme case of a bi-
nary (1-bit) metasurface, applying a perturbation boils
down to simply toggling or not toggling each element,
so that for the nth element, δan = {0, 1}. This leads
to singularities in estimating the gradient (Eq. A4 ), as
well as approximation errors with driving the solution
along the gradient (Eq. A3), since the resulting com-
mand must also be quantized to either 0 or 1. While
metasurfaces can be manufactured with more bits of res-
olution for phase control, this increases complexity, cost,
and power consumption considerably, making them less
attractive for wide scale use. The capability of binary
metasurfaces has been demonstrated many times; these
devices can be expected to be utilized whenever power
and cost are drivers for implementation.

Since gradient based approaches are problematic with
coarse quantization, dithering methods have dominated
for wavefront control applications with binary tunable
metasurfaces. We can modify the dithering technique in
Eq. A2 to use shaped or intelligent perturbations. When
the algorithm is initialized, we do not know where the
optimal commands are located with respect to the so-
lution space. We would like to apply “larger” effective
changes that induce highly diverse responses with large
scale global changes. As the algorithm proceeds, effec-
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tively moving along the gradient, we want the changes to
become “smaller”, and more localized. In this manner,
we are able to continue the optimization process with-
out wasting trials on global changes that are less likely
to improve the specific metric of interest. Finally, once
the algorithm has converged, we would like to be able to
make sure we are not stuck in a local minimum.

This shaped perturbation approach was demonstrated
to successfully enable generating cold spots and realizing
CPA states for a binary metasurface with 240 elements
[18]. In this case, the perturbations were “shaped” by
changing the number of elements that were toggled (per-
turbed) each time the algorithm converged. The algo-
rithm cycled through perturbations that toggled 120, 48,
24, 12, and then 6 elements, with a convergence crite-
ria of T = 30 trials. This can also be thought of as
a simple policy-iteration method of reinforcement learn-
ing [56]. To ensure the solution was not stuck in a lo-
cal minimum, the algorithm then entered a “single el-
ement” phase where three trial command vectors were
generated at each iteration that toggled the individual
element, the nearest neighbors of that element, and the
diagonal neighbors of that element. Cold spots were gen-
erated with this technique and provided 4-40 dB of sup-
pression over a 1 GHz frequency range and CPA states
were realized and verified with power absorption ratios
∼ 106 [18].

While dithering allows us to provide wavefront control
in some capacity, a true wavefront reconstruction method
is desired. Deep learning may provide a viable approach,
as it has already been successfully demonstrated for gen-
eral ill-posed inverse problems [55].

Appendix A2: Complex Scattering Environments

Large enclosed spaces, such as offices or compartments
on ships or aircraft can act as “chaotic” reverberat-
ing chambers for short-wavelength electromagnetic waves
[103]. These complex scattering environments contain
universal fluctuations with statistics governed by random
matrix theory (RMT) [49], as well as deterministic behav-
ior from the system specific configuration of the ports and
short orbits (i.e., prompt, direct paths) between the ports
[46, 104, 105]. We often characterize complex scattering
environments by their scattering matrix, or S-matrix,
which is a frequency dependent transfer function ma-
trix containing the complex-valued reflection and trans-
mission coefficients between the ports. While useful for
describing the overall behavior, separating the universal
and deterministic features is often difficult when working
with the S-matrix.

An analytical approach known as the random coupling
model (RCM), has been shown to accurately predict fluc-
tuation statistics and allows separation of the univer-
sal and deterministic contributions in a simple additive
manner [106, 107]. Like RMT, the RCM leverages the
random plane wave hypothesis, which asserts that the

chaotic wave field is statistically equivalent to a random
superposition of plane waves [108]. The RCM is char-
acterized by a single parameter, α, that describes the
losses in the system, and is supported by wealth of ex-
perimental validation data with chaotic microwave cav-
ities [47, 93, 94, 109, 110]. The behavior in large, thee-
dimensional enclosures has also been studied to under-
stand these statistics and the potential impact of high
power microwave (HPM) attacks [103, 111].

The RCM works in the impedance domain to sep-
arate the universal contributions; conversion between
impedance and scattering is handled through standard
bilinear transformations [112]. In the RCM, the fluctu-
ating impedance, Z̄, is defined as

Z̄ = jIm{Zr}+ Re{Zr}1/2ξRe{Zr}1/2 (A1)

Here, Zr is the radiation or free-space impedance of
the ports and ξ is the fluctuating or universal component,
which is described by RMT [106]. For lossless systems, ξ
is a Lorentzian distributed random variable. With loss,
the distribution becomes much more complicated, but it
is well suited to Monte Carlo simulations [113].

The RCM has been shown to apply to fading statis-
tics in open systems, such as wireless communication
paths, as well as closed systems, such as microwave cav-
ities. [114, 115]. A chaotic system is characterized by
extreme sensitivity to initial conditions and is qualita-
tively different than an open one. In open systems, fad-
ing statistics are often modeled with empirically fit dis-
tributions [116]: the Rayleigh distribution when no line-
of-sight path is present, the Rician distribution when a
strong line-of-sight path is present, or the K distribution
for propagation over the ocean [117]. The limiting cases
of Rayleigh and Rician distributions are captured by the
RCM with the σ parameter related to the loss parame-

ter, as α =
(
8πσ2

)−1
, and the ν parameter equal to the

magnitude of the short orbits [114, 115].
Operating in a rich scattering environment presents

an additional set of challenges in comparison to an open
environment. In addition to the fundamental difference
in the character of the fluctuations, in the semi-classical
case or short wavelength limit, we can look at the behav-
ior of ray trajectories. Specifically, we are interested in
the change in ray trajectories in response to a change in
the metasurface configuration. In an open system, there
is a single ray (or ray bundle) that is observed by the
sensor, with at most a single reflection off the metasur-
face. In a chaotic system, that single ray will reflect off
multiple walls and obstacles in the cavity and possibly off
the metasurface itself multiple times before reaching the
sensor. This creates a cascading effect, so that the wave-
front at the sensor is a combination of constructive and
destructive interference of the multiple rays. The effect
of these multiple interference paths is highly dependent
on the configuration of the cavity. For an open system,
a wavefront reconstruction approach is only dependent
on the geometry between the sensor and the correcting
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device and is invariant to environmental changes (pro-
vided the disturbances remain within the dynamic range
of the sensor and corrector). Wavefront reconstruction is
therefore very robust for an open system. For a chaotic
system however, small environmental changes can cause
a wavefront reconstruction technique that was previously
successful to no longer be viable, so that being “close” is
not good enough.

To build environmental models for simulations, we of-
ten need to make assumptions or approximations for sim-
plicity or computational tractability. We also need to
ensure that these assumptions are valid for the environ-
ments that are being modeled. Otherwise, the models
may neglect potentially significant effects. We will out-
line some of the most problematic simplifying assump-
tions here.

The first simplifying assumption often made is that
the channels are assumed to be perfectly known by the
transmitter (base station), so the only uncertainty in
the environment is random thermal noise at the re-
ceiver(s). In complex scattering environments, there is
always uncertainty, which can be significant. In ad-
dition, inside chaotic cavities, measured scattering re-
sponses with the same initial conditions will diverge over
time, a phenomenon known as scattering fidelity decay
[51–53], which means that perfect knowledge of a com-
plex scattering environment has a finite lifetime. This
lifetime can be several days in controlled conditions, but
is sensitive to temperature and humidity and will be re-
duced in scenarios such as dense urban environments.
Having only partial knowledge of the system limits de-
terministic control approaches and encourages learning
algorithms. Scattering fidelity has an impact here as well;
as the scattering responses start to diverge, any machine
learning algorithm will require periodic retraining.

The second simplifying assumption often made is that
the equivalent channel matrix, is assumed to be invert-
ible, so the inverse problem is well-posed. Complex scat-
tering environments generally contain short orbits, or
prompt direct paths, that are persistent across measure-
ments [46, 47]. These short orbits induce correlations
that are difficult for simple machine learning approaches
to unwrap and typically lead to ill-posed inverse prob-
lems. Excluding multi-path reflections and short orbits
can overestimate the performance of a given algorithm.

The third simplifying assumption often made is that
all the propagation paths are assumed to have a single
reflection off the metasurface, so direct line-of-sight and
multi-path trajectories are not included. Channel fad-
ing is then modeled with Rayleigh amplitude statistics.
As stated previously, in real-world systems, strong direct
line-of-sight paths induce Rician statistics and the pres-
ence of multi-path reflections drives statistics that are
governed by random matrix theory (RMT) [114, 115].
Neglecting these statistics can lead to algorithms that
are not properly tuned. The longer tails in the distribu-
tions lead to large amplitude signal spikes that can de-
grade imaging performance or disrupt signal processing

algorithms.
Testing and verification is often done in anechoic cham-

bers to remove the environment and capture only the im-
pact of the reconfigurable metasurface. Anechoic cham-
bers are very good at covering up emissions problems,
which become immediately apparent in reverberation
chambers [118]. A complex scattering system is rever-
berant in nature, so mismatches that seem negligible in
anechoic chambers may be significant in real world envi-
ronments.

Finally, the metasurface is often assumed to have infi-
nite phase resolution, so quantization effects are not in-
cluded. Most commercially available metasurfaces have
a single bit of control, though custom devices with 2 bits
of control are becoming available [119–122], which means
quantization effects are important and likely significant.
In addition, as discussed in Appendix A1, coarse quan-
tization can cause gradient based controllers to fail, so
neglecting quantization effects may lead to poorly per-
forming real world controllers. The metasurfaces are also
idealized, with identical responses across all elements. In
real devices, manufacturing defects produce nonunifor-
mities between the phase at each element, and the meta-
surface may also include uncontrollable losses or gain.

Caution should be taken when applying any of these
simplifying assumptions. Otherwise, they can overesti-
mate the performance or install a false sense of confidence
in a particular approach.

A final characteristic of complex scattering environ-
ments to describe is coherent perfect absorption (CPA).
CPA is a special state of the scattering matrix where an
eigenvalue is driven to 0 and the electromagnetic energy
for the corresponding eigenvector is completely absorbed
inside the scattering system [123, 124]. While practi-
cal applications are still being developed, research has
demonstrated that a high fraction of the power was ab-
sorbed by the target in a CPA demonstration using a
tuned absorber embedded in a lossy environment [124].
This work also showed that the target absorbed virtually
nothing in the “anti-CPA” state, demonstrating a high
degree of control over absorption by a specific target in a
CPA scenario. An interesting future application is to uti-
lize a generalized Wigner-Smith operator [125] to apply
a high absorption fraction to a target with a modulated
impedance or loss.

Full coherent multi-channel CPA is more complicated
than single channel perfect absorption. However, one ad-
vantage is the increase in delivered power by a factor of
N , where N is the number of channels. This is a sig-
nificant gain and worth the difficulty of additional phase
and amplitude control.

Appendix A3: Cavity and Experimental
Configuration

For the cavity discussed in the main paper, a line-of-
sight block is used to obstruct the direct transmission



20

path from port 2 to both ports 1 and 3. Also, ports 1
and 3 can be driven either independently or collectively
with a relative phase shift provided by a NARDA phase
shifter.

In the frequency range of interest, 3-4 GHz, the
Weyl formula [126] predicts approximately 8524 resonant
modes of the complex enclosure and the measured quality
factor of the cavity is roughly 5.5×103 [18]. A resonance
mode width is then ∼ 5 times greater than the mean
mode spacing, which means there is some local overlap
between modes.

Appendix A4: Metasurface Binning

The complexity of the cavity scattering responses com-
bined with the enormous number of possible metasurface
command configurations (2240) means the direct devel-
opment of a deep learning network for the full space of
240 elements is overly ambitious. To simplify the prob-
lem, we reduced the number of degrees of freedom of the
metasurface by binning together neighboring pixel ele-
ments, or grouping them together so that each element
in a group is always commanded with the same value.
Binning the metasurface elements reduces the total num-
ber of elements that must be determined and strengthens
the relative change in cavity scattering parameters when
driving a single effective element. Binning also promotes
generality, as a metasurface with smaller elements can
always approximate one with larger elements. This pro-
vides the first major novel aspect of our approach and
allows us to explore the use of deep learning models in
simpler configurations before working our way up to the
more difficult cases. We used 4 different metasurface bin-
ning configurations, as shown in Fig. A1 and discussed in
Section S4 of the supplemental material, to progressively
decrease the number of elements.

Appendix A5: Data Preparation and Collection

A major concern with deep learning is the amount of
data required for training, which grows with the complex-
ity of the problem being solved. To work within the con-
straint of reasonable training time, we wish to limit the
number of data sets that must be collected. Therefore,
acquiring good training data is of critical importance to
ensure we cover the full range of possible responses. As
found in earlier work [18], a diverse set of measurements
requires variations in the number of active elements, spa-
tial frequencies of active elements, and local groupings of
active elements. Therefore, we utilized a random biased
coin toss approach with the bias itself a uniformly dis-
tributed random number to assign values to the elements
for training data generation. To speed up operation as
much as possible, the microwave network analyzer was
configured to only provide S21 measurements vs. fre-
quency. With averaging disabled, collecting 4,000 sets of

No Binning
240 Elements

2× 2 Binning
60 Elements

3× 3 Binning
24 Elements

5× 4 Binning
12 Elements

Figure A1. Metasurface binning configurations. Bin-
ning configurations showing the relationship between the var-
ious options. The shaded green region identifies a single ef-
fective element for the specified configuration and the thin
gray lines show the layout of the unbinned elements. With no
binning, there are 240 elements, binning into groups of 2× 2
yields 60 elements, binning into groups of 3 × 3 yields 24 el-
ements, and binning into groups of 5 × 4 yields 12 elements.
For the 3×3 binning case, the bottom row of elements consists
of a 4× 3 group so that all the elements are utilized.

data took a little under an hour and a half, while col-
lecting 10,000 sets of data took roughly 3.5 hours. Train-
ing was performed on a computer running Ubuntu 20.04
equipped with an NVIDIA RTX 3080 GPU, and took
roughly 30 minutes for 10,000 training sets.

For the initial experiment, we collected 4000 sets of
data in each of the specified binning configurations; the
5× 4 configuration allows 4096 unique metasurface com-
binations, so we collected 4096 sets (covering all possible
combinations) in that case. With the exception of the
5× 4 binning configuration, the number of sets collected
was far smaller than the number of possible configura-
tions of the metasurface. As discussed in Section A14,
we found we needed 10,000 sets of data for the 2 × 2
binning case.

Appendix A6: Deep Learning and Neural Network
Layers

The concept of depth in deep learning comes from com-
plexity theory as defined for circuits, with depth being
the longest path from an input to an output [127]. The
number of potential paths or ways to reuse features grows
exponentially with depth, which leads to progressively
more abstract features [128, 129]. Depth is therefore an
important characteristic of a network to leverage as it
enhances the expressive power of the network and al-
lows it to learn a rich, hierarchical feature representation
[130, 131]. In physics, deep learning has repeatedly been
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shown to be unreasonably effective for extremely compli-
cated problems [132].

A deep network is divided into layers, with the interior
layers often referred to as hidden, as they are unobserv-
able from the input or the output. Networks come in
many different shapes and sizes; no single type is op-
timal for all problems, a consequence of the “No Free
Lunch” theorem [133]. The networks described in this
paper utilize 4 different types of layers: 1) Dense, linear,
or fully connected layers characterized by the number of
neurons. The output is a linear combination of the in-
puts; 2) Convolutional layers characterized by the num-
ber of filters and the length of the kernel (see Section
Appendix A7). The output is the result of convolving
the inputs with the kernels; 3) Pooling layers character-
ized by the pool size. The output is either the maximum
or average value over a sliding window of width given by
the pool size. These layers serve to reduce the size of
the feature map and help ensure the learning process is
position invariant; and 4) Dropout layers characterized
by the drop out rate. Dropout layers randomly set the
specified percentage of inputs to 0 at each iteration in
the training process, providing coarse regularization and
simplifying the model.

Identifying the optimal deep learning network topol-
ogy for a given binning configuration took a significant
amount of time to iterate over many potential designs,
e.g., for our computing resources, often several weeks,
and was performed off-line. Once the deep learning net-
work architecture was determined, we switched to an on-
line, closed loop configuration where the data collection
and training processes were separated by a few hours
rather than days or weeks. The determined metasurface
commands were directly applied to the metasurface and
the resulting S21 responses were measured by the network
analyzer, closing the loop. The on-line configuration also
serves as a “field-test” for the deep learning network, fur-
ther validating it against data not seen during training,
as well as testing performance against potential small
variations in measurement noise and the scattering con-
figuration of the cavity itself.

Appendix A7: 1D Convolution

An aspect that is not well understood outside of the
signal processing community is how convolutional layers
are implemented for inputs containing multiple features.
In signal processing, the feature dimensionality is referred
to as the number of channels and is sometimes defined as
the width or the depth of the data. This arises from color
image processing with 3 color channels for red, green,
and blue. To perform the convolution over the desired
dimension and ensure all the features are captured, the
convolution kernel is multidimensional as shown in Fig.
A2. For a specified kernel length, k, the size of the kernel
for a 1D convolutional layer with an input containing N
features is k×N . The kernel will only be shifted along a
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Figure A2. 1D Convolution with Multiple Features.
Top: Graphical representation showing the N feature vec-
tors and F local frequencies processed by 3 different filters
with kernel length k. The kernel only moves along a single
dimension (vertically) even though the data is represented in
a 2D format. Each position of the kernel results in a single
point in the output vector which has length F − k + 1 if zero
padding is not used and length F if padded as described in
the text. The weights for each of the kNl elements of the ker-
nel are computed collectively, but can be different. Bottom:
Numerical example with 3 features containing 5 points each
convolved with a kernel of length 3. The input data is zero
padded with a row of zeros at the top and bottom and the
outputs for the 5 central rows are kept.

single dimension, the local frequency window in our case,
but will contain optimized weights for each element. This
means that the number of trainable parameters for a 1D
convolutional layer scales as kN , not just k. For an input
data set X, the output, y, of the convolutional layer with
kernel K is given by

y[n] =

k−1∑

i=0

N−1∑

j=0

K[i, j]X[n− i, j] (A1)

For our purposes, we will zero pad the input data by
appending (k−1)/2 rows of zeros to either end and keep-
ing the central part of the result, so the number of points
along the convolution dimension is constant in the out-
put. By designing a convolutional layer consisting of Nl
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filters, there will be Nl such outputs or new features for
the next layer.

Appendix A8: Network Training Setup

For training the networks, the data was split into 75%
training data and 25% validation data. The validation
data is used to score the performance after each training
run and is not used during the training process itself,
so that validation is unbiased. The data was randomly
shuffled prior to splitting and each network was trained
several times to ensure results were in family and that
the training process was unbiased as well.

To score the performance, we need to define metrics for
loss and accuracy. The loss function was selected as mean
absolute error to emphasize outliers in the data and we
define accuracy as the fraction of sets of commands that
were predicted without error. To clarify the difference,
the loss function is defined as the average of the sum of
the absolute value of the true commands, Tj , subtracted
from the predicted commands, Pj , for set j, computed
over N sets of M elements.

L =
1

NM

∑

j

|Pj − Tj | (A1)

The loss function is then computed on a per element
basis and tells us how close the prediction was on aver-
age for each element. The output of the network is float-
ing point rather than binary, so the loss function does
not necessarily provide an indication of the total number
of incorrect predictions. The accuracy metric is defined
as the percentage of sets that were predicted without a
single error. It is evaluated on a per set basis and ex-
plicitly uses the rounded output (0 or 1) from the net-
work. Because accuracy is computed on a per set basis,
it is dependent on the number of elements in a command
set and provides a more conservative estimate of perfor-
mance for the various binning configurations. Accuracy
is also more volatile, especially when the loss function is
large. The loss function is continuous and more appro-
priate for training where we need to compute a gradient,
while accuracy is a better metric for scoring the overall
performance.

The networks were trained for 100-200 epochs using
stochastic gradient descent (SGD) with momentum. The
basic SGD algorithm has potential problems with patho-
logical curvature, or narrow ravines, which are common
around local optima, and the response tends to oscillate
back and forth across the ravine. To address this, we
can use momentum [134], effectively forgetting a portion
of the previous gradient. Momentum can be thought of
as a very coarse approximation of the curvature or 2nd
derivative. To accelerate the training, we explicitly use
Nesterov momentum [135].

The networks were trained in batches, meaning multi-
ple data sets were evaluated at each iteration prior to up-

dating the weights. This allows several samples of data to
be processed simultaneously so that the effect of changes
in the weights are observed over multiple sets of data,
improving robustness and desensitizing the response to
noise [136]. A batch size of 100 was used by default.

To prevent the networks from simply training on noise,
we introduce an additional regularization step on the loss
function. By enforcing an L2 regularization scheme, the
regularized loss function L∗ is computed from the loss
function L, and the vector of weights for the current it-
eration, wi, as L∗ = L+λ||wi||2. The value λ is referred
to as a weight decay. The learning rate, γ, is the step
size along the gradient, so the weights are incremented
at each iteration as

wi+1 = wi − γ∇wi
L− 2γλwi (A2)

Finally, the learning rate is stepped down when the loss
function plateaus, which allows the network to continue
learning when it stalls due to the rate being too high.

Appendix A9: Complex Network Layers and
Existing Deep Learning Frameworks

With complex values, the mechanics of a network layer
are the same as for the real-valued counterpart but they
incur four times the computational cost due to having
both real and imaginary components as well as the cross-
terms. Our initial deep learning implementation lever-
aged Keras [137] and TensorFlow [138]. These provide an
excellent, high level framework that is very easy to use.
Unfortunately this ease of use complicates things when
attempting to develop custom complex-valued modules.
Complex dense layers are straightforward to implement,
but batch normalization, convolution, and recurrent lay-
ers are not. While there are repositories with complex
deep networks containing some of these modules in Keras
[139] and Caffe [140], they are not actively maintained
and are not formally supported by the frameworks. In
the case of Keras, changes to the way the backend is
handled in the most recent version (v2.4) mean that the
complex library [139] is no longer functional and would
require significant modification to bring up to date.

This leads us to utilize PyTorch [141], another deep
learning framework. The interface to PyTorch is lower
level than Keras, which means it requires more knowledge
of Python to use effectively, but that it is also easier to
implement custom modules. In addition, there is an open
source complex library written by Sebastien Popoff [59]
that includes complex versions of dense, convolutional,
and batch normalization layers. We were able to utilize
this library with only minor modifications to the batch
normalization implementation to handle our multiple fea-
ture data sets.

Figure A3 shows the impact of using complex network
layers. In each of the panels, the blue plots indicate re-
sults for a real-valued network while the red plots indi-
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cate results for a complex-valued network. In addition,
the solid lines show results for the validation set while
the dashed lines show the results for the training set.
The complex-valued networks all converged faster than
the real-valued networks and the complex-valued net-
work achieved better accuracy on the training set than
the real-valued network did for the 2 × 2 binning case.
The only differences in training were for the real-valued
network in the 2 × 2 binning case. The two differences
here were that 1) the ”patience” parameter, or number
of epochs to wait before reducing the learning rate had to
be increased significantly because the training converged
slowly even with an aggressive learning rate; and 2) the
number of epochs had to be increased from 100 to 300 in
order to capture the converged model. The increased pa-
tience parameter leads to a longer period of oscillations
in the validation set loss function.

The acceleration in training comes with a caveat in
that the overall computational time for the purely real-
valued deep learning network is still less than that of the
complex-valued deep learning network. Complex-valued
layers increase the computation requirements for mul-
tiplication and convolution by a factor of 4 to handle
the real and imaginary terms as well as the cross-terms.
In addition, highly optimized and efficient implementa-
tions of purely real-valued layers are readily available
through the NVIDA CUDA deep neural network library
(cuDNN), but are not available for their complex-valued
counterparts.

Appendix A10: Network Architecture for Sequential
Layers

Figure A4 presents the generalized architecture used
for sequential layers. The input consists ofNi feature vec-
tors containing the local 10 MHz windows with F points
in each vector. 1D convolutional neural network (CNN)
layers with Nl filters and a kernel length of kl at the lth

layer perform the feature extraction. As shown in the
lower inset, each CNN layer includes a 1D convolution
followed by a batch normalization and a rectified linear
unit (ReLU) activation function. The batch normaliza-
tion is used to ensure the distribution of the data (mean
and variance) remains relatively constant throughout the
network; changing distributions between layers induces
internal covariate shift and leads to convergence issues
during training [142]. The ReLU activation function is
used in virtually all deep learning networks as it does
not experience a vanishing gradient due to saturation,
and leads to expedited convergence and generally better
solutions than sigmoid like functions [143].

The CNN layers are grouped together to form stages
and are interspersed with 1D max pooling layers defined
by the pool size, p. Also included are dropout layers
for regularization, which are not explicitly shown in Fig.
A4. The output stage contains a global average pooling
layer that averages along the F dimension, reducing the

feature maps to a single dimension. It also converts the
complex-valued signals to magnitude and is followed by
a dense layer that provides the correct number of out-
puts, No. As shown in the upper inset, the output of
the dense layer is a linear combination of the outputs
from the global pooling layer, with a sigmoid activation
function used to clip the output between 0 and 1.

Appendix A11: Offline Training Results for 5 x 4
Binning

When using 5×4 binning, the metasurface is effectively
partitioned into 12 elements, for 4096 possible sets of
commands. We measured all 4096 combinations, and the
75%/25% split yielded 3072 sets for training and 1024
sets for validation. The batch size was set to 64 as a
result. A purely sequential deep network was utilized,
following the layout given in Fig. A4. Four CNN layers,
a max pooling layer, and a dropout layer were combined
into a stage. Four stages were then used, with the output
provided by a global average pooling layer and a dense
layer with a sigmoid activation function.

Initial experiments used purely real-valued deep learn-
ing layers, in which case the global average pooling layer
only provided dimensionality reduction. We were able
to establish excellent prediction performance, regularly
achieving < 10 total prediction errors over the valida-
tion set or > 99% accuracy after training for 500 epochs.
When switching to complex-valued layers with the same
architecture, we were able to regularly achieve perfect
prediction (100%) over both the training and validation
sets after training for fewer than 100 epochs. This im-
provement demonstrates that the complex-valued deep
learning network is able to exploit phase as well as am-
plitude to better fit the relationship between metasurface
commands and transmitted power.

The training results for the 5 × 4 binning case with
complex-valued layers are shown in Fig. A5. Figure
A5 (a) shows the loss function evolution for the training
and validation sets while Fig. A5 (b) shows the accu-
racy evolution. The performance is excellent, achieving
perfect prediction over both the training and validation
data sets. Note that the loss function continues to im-
prove even after the accuracy saturates at 100%. This
is because the loss function is continuous and computed
using the floating point predicted values rather than the
rounded binary values; it shows that the network is still
learning and continuing to increase its confidence in the
prediction.

Appendix A12: Receptive Field and Inception
Module

The receptive field of a CNN defines the number of
points in input space that contribute to the result at a
single point in a given layer. Our CNNs use zero padding
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Figure A3. Impact of using complex network layers. a) through c) Evolution of the loss function (mean absolute error)
for the 5× 4, 3× 3, and 2× 2 binning cases. e) through f) Evolution of the accuracy for the 5× 4, 3× 3, and 2× 2 binning
cases. The blue lines indicate real-valued network layers, the red lines indicate complex-valued network layers, the dashed lines
indicate the training set, and the solid lines indicate the validation set. The dashed black line on the accuracy plots indicates
95% accuracy. Training was performed for 100 epochs in all cases except for the 3 × 3 binning case with real-valued network
layers, which was trained for 300 epochs. In each case, training with the complex-valued layers converged faster than training
with the real-valued layers. For the 2× 2 binning case, the complex-valued network achieved higher accuracy for the training
set (99.2%) than the real-valued network did (93.6%).

to keep the output size fixed, and the stride and dilation
are always set to 1. This means the receptive field at
any layer, rl, is given by a simple recursive equation de-
pendent on the receptive field at the previous layer, rl−1,
and the kernel length of the current layer, kl [144].

rl = rl−1 + kl − 1 (A1)

As shown in Fig. A6, the receptive field for a sequen-
tial architecture grows monotonically with depth, with
each layer only seeing the receptive field from the preced-
ing layer. An architecture that utilizes parallel branches
along with concatenation conserves the intermediate re-
ceptive fields, making them available for all subsequent
layers and introduces width as well as depth to the net-
work and providing the motivation for the inception mod-
ule.

An inception module is designed to promote sparse fea-
ture representation using available dense components [61]

and works by optimizing the receptive field coverage of a
convolutional network. The receptive field is the number
of points in input space that contribute to a point at a
given layer of the deep learning network and is described
in detail in Section S11 of the supplemental material.
Through the use of parallelization and concatenation, the
receptive field sizes at a layer are conserved for subse-
quent layers to utilize, extracting features through the
width of the deep learning network as well as its depth.

The original inception module was developed for image
processing and operates in a true 2D space, with full 2D
convolutions. It uses 4 parallel paths with CNN layers
containing unit length kernels for buffering and condi-
tioning, along with 3 and 5 sample length kernels for fea-
ture extraction, and a max pool layer to improve perfor-
mance [61]. There have been several variations of the in-
ception module; however, none operate in the pseudo-2D
space we desire. For our “images”, the frequency spacing
along columns is the resolution of the network analyzer
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Figure A4. Sequential network layer architecture. The input layer consists of Ni feature vectors containing S21

measurements in a local 10 MHz window of F points, for a total size of F ×Ni. This is followed by a series of 1D convolutional
layers defined by the number of filters and the kernel length. Each convolutional layer includes a 1D convolution, a batch
normalization to keep the distribution statistics constant throughout the network, and a rectified linear unit activation function.
Interspersed with the convolutions are 1D max pooling layers defined by the pool size, p, that serve to reduce the dimensionality
of the local frequency window. The output stage consists of a global average pooling layer to further reduce dimensionality and
convert the complex-valued signals to magnitude, followed by a dense or fully-connected layer to ensure the correct number of
outputs. The dense layer produces outputs that are linear combinations of the outputs from the global average pooling layer,
and is followed by a sigmoid activation function to approximate binary values at the output.

(31.25 kHz), while the frequency spacing along rows is
the separation between local windows (10 MHz). The
difference in sampling means we need to treat the rows
and columns accordingly and avoid traditional 2D con-
volutions that assume uniform sampling. Therefore, we
modified the general architecture of the inception mod-
ule to perform 1D convolutions over the 10 MHz local
frequency windows. The 1D convolutional filters then
extract local features over the 10 MHz windows, while
the relationship between the filters acts as a dense or
fully connected layer, extracting global features over the
full 1 GHz measurement window.

From previous work with the cavity, we found that the
mean mode spacing is ∼125 kHz and we demonstrated
the ability to generate strong nulls over a 500 kHz band-
width [18]. This suggests we should use a pooling window
of 125 kHz and allow the receptive field to increase by 125
kHz and 500 kHz at each stage, or layer in the deep learn-
ing network. After experimenting, we found that adding
a 5th stage which increased the receptive field by 1 MHz
helped to further improve performance. We refer to the

final version of our module as a ”Terrapin Module”, a
block diagram of which is shown in A7.

Appendix A13: Offline Training Results for 3 x 3
Binning

For the 3×3 binning configuration, the purely sequen-
tial network did not perform very well and was unable to
learn the relationships for either the training or validation
sets. This inspired the modified inception module that
we defined as the Terrapin Module in the main paper.
The performance difference between the sequential CNN
model and the Terrapin Module is shown in Fig. A8,
which presents training results for the 5 × 4, 3 × 3, and
2 × 2 binning cases. The sequential CNN is not able to
train very well for the more complicated systems (3× and
2×2 binning cases), while the Terrapin Module is able to
exploit the more complicated relationships and provide
similar performance to the sequential CNN model on the
5× 4 binning case.
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Figure A5. Deep learning performance with complex-valued layers for 5x4 Binning. (a) Evolution of the loss
function for the training and validation sets over 200 epochs. The loss function measures the average prediction error per
element and provides an estimate of the confidence in the prediction. (b) Evolution of the accuracy for the training and
validation sets over 200 epochs. Accuracy provides the relative number of sets of commands that were predicted without error,
and shows that perfect prediction was achieved on both the training and validation sets in less than 100 epochs. The loss
function continues decreasing after the accuracy saturates at 100% because it is continuous and evaluated on the floating point
predicted values and the decrease indicates the network is still learning and improving its estimate.

The results for the 3 × 3 binning case with complex-
valued layers are shown in Fig. A9. The impact of reduc-
ing the learning rate on a plateau can be seen at Epoch
54, where a drop in the learning rate by a factor of 10
induces a drop in the loss function of approximately a
factor of 2.

Appendix A14: Offline Training Results for 2 x 2
Binning

For the 2× 2 configuration with 4000 sets of data, we
were able to achieve >98% accuracy on the training set,
but were limited to ∼50% accuracy on the validation set.
The discrepancy between training and validation results
is a hallmark of overtraining. In this particular case,
the validation results were improving but stalled as the
training results approached 100% accuracy. The error
landscape became extremely small with a negligible gra-
dient, so there was no direction to take and continue
learning. The network therefore learned specific features
of the training set rather than general features of the
full range of possible responses. This suggests the over-
training is due to having a limited amount of data (only
4000 sets). We captured a larger amount of data (10,000
sets) and were able to achieve >95% accuracy on both
the training and validation sets. Perfect accuracy for the
validation set may be possible with the collection of an
even larger amount of data.

Appendix A15: Scattering Fidelity Loss

Figure A10 shows the decay in scattering fidelity for
online validation at the 4, 5, and 9 day marks. The ac-
curacy is still >85% after 5 days, but the number of sets
with more than 1 prediction error has increased. After 9
days, the accuracy drops to 65.5% and many cases with
2, 3, and even 4 prediction errors are found.

Appendix A16: Performance vs. Reverberation
Time

An additional set of experiments was performed to de-
termine the impact of cavity reverberation time on the
performance of the deep learning network. To increase
the losses in the cavity (and decrease the reverberation
time), RF absorbent materials were placed inside the cav-
ity. For each loss configuration, an ensemble of measure-
ments was collected using the mechanical mode stirrer
and the reverberation time was estimated from the power
delay profile (PDP) [145]. The mode stirrer was then set
to a fixed position and another ensemble was collected
for training data with 10,000 random metasurface config-
urations (following a biased random coin toss approach).
The correlation coefficient was computed over all pos-
sible measurement pairs, for 5 × 107 combinations, to
assess how highly correlated the training sets were. The
deep learning network was then trained using the same
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Figure A6. Receptive Field. (a) The receptive field of a
convolutional neural network (CNN) layer indicates the num-
ber of points in input space that contribute to a single point
at a given layer. (b) For a purely sequential architecture, the
receptive field increases monotonically. (c) A parallel archi-
tecture with concatenation produces multiple receptive fields
with each available for subsequent layers, promoting sparsity
in the representations.

network and parameters as previously discussed and the
results are shown in Fig. A11. The cavity reverbera-
tion time ranged from 23 ns to 179 ns. The statistics of
the correlation coefficients are shown relative to the left-
hand axis, and show the median value, quartiles, and
full extent. The achieved accuracy of the deep learn-
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Figure A7. Terrapin Module Architecture. Five paral-
lel branches with 8 1D convolutional neural network (CNN)
layers and a max pool layer are used in the module. The
module operates on the pseudo-2D data format discussed in
the text, and the input layer can ingest either the raw mea-
sured S21 parameters or the outputs from a previous Terrapin
Module. The output layer is then connected either to a sub-
sequent Terrapin Module for additional processing or to the
final output layer for conversion to metasurface commands.
Each CNN includes a 1D convolution, a batch normalization,
and a rectified linear unit activation function. The 2nd level
CNNs have kernel lengths of 5, 17, and 33 to increase the re-
ceptive field by 125 kHz, 500 kHz, and 1 MHz, respectively. A
1D max pooling layer with pool size of 4 is included to provide
a pooling window of 125 kHz as well. The quantity Nxx in-
dicates a tunable parameter for the number of convolutional
filters at each branch and stage, acting as a dense or fully
connected layer for the global correlations. The convolutions
with unit length kernels serve to buffer and condition the in-
puts to each stage, and the single layer 1st branch maintains
the receptive field sizes from previous modules. The outputs
of each branch are concatenated together to form the mod-
ule output, preserving the receptive field sizes for subsequent
layers.

ing network on the training set is shown as the dashed
red line relative to the right-hand axis and indicates that
the accuracy and correlation coefficients are inversely re-
lated. The deep learning network is capable of operating
in extremely complicated scattering environments, but
the performance degrades as the cavity losses increase.
This is because ray trajectories do not persist as long
for high loss systems; the number of bounces for a given
trajectory is reduced, which means there are fewer rays
intercepted by the metasurface.

Appendix A17: Future Directions

Future directions will refine our technique to intention-
ally scramble (or unscramble) waves propagating through
a complex scattering environment. Three aspirational
goals include: 1) tuning the scattering responses through
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Figure A8. Sequential neural network performance with complex scattering systems. The solid lines indicate
results for the validation data while the dashed lines indicate results for the training data. a) and c) Evolution of the loss
function and accuracy for the 5 × 4, 3 × 3, and 2 × 2 binning cases using the sequential CNN model. Only the 5 × 4 binning
case is able to significantly reduce the loss function and provide reasonable accuracy. There is no separation between the
validation results and the training results, indicating that there is not an issue with too little data. b) and d) Evolution of the
loss function and accuracy for the 3× 3 binning case using the sequential CNN and Terrapin Modules. The Terrapin Module
provides similar loss and accuracy to the 5× 4 binning case with the sequential CNN.

a controller that optimizes the system for a given ap-
plication at arbitrary frequencies and bandwidths. Spe-
cific metrics include minimizing transmitted power for
coldspot generation, minimizing scattering matrix eigen-
value magnitudes for coherent perfect absorption, or min-
imizing the bit-error rate for wireless communication; 2)
introducing feedback from the environment to dynami-
cally update the controller and react to changing environ-
mental conditions; and 3) realizing a fully autonomous
systems that enables persistent and robust smart radio
environments that do not require human intervention.

For on-the-fly learning and adaptation to changing en-
vironmental conditions, we propose the future use of rein-
forcement learning [56, 146], which is at the intersection
of artificial intelligence and optimal control. Reinforce-
ment learning uses an agent that interacts with an en-
vironment to learn about it and then manipulate that
environment in order to maximize (minimize) a reward

(cost function), leading to the development of optimal
control policies. In particular, the subset of reinforce-
ment learning known as deep or double deep “Q” learning
is gaining traction as a method for controlling quantum
states [147–149]. Deep “Q” learning uses a deep learn-
ing network to estimate a quality matrix that scores the
result of taking a particular action, while double deep
“Q” learning uses two estimates to limit the implemen-
tation of poor control policies from overestimation [150].
The deep learning network architecture developed in this
paper is well suited for estimation of this quality matrix.

Specification of an arbitrary scattering condition in the
current implementation is cumbersome, as the complete
S21 response over the full 3-4 GHz measurement win-
dow must be defined. For practical engineering applica-
tions, we prefer a simpler method of defining a desired
wave scattering condition. Deep reinforcement learning
also helps in this case, as it scores the performance of an
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Figure A9. Deep learning performance with complex-valued layers for 3x3 Binning. (a) Evolution of the loss
function for the training and validation sets over 100 epochs. The loss function hits a plateau at approximately Epoch 33 but
shows an additional drop at Epoch 54 when the learning rate is reduced. (b) Evolution of the accuracy for the training and
validation sets over 100 epochs. Accuracy provides the relative number of sets of commands that were predicted without error,
and shows that perfect prediction was achieved on both the training and validation sets in less than 100 epochs. The loss
function continues decreasing after the accuracy saturates at 100% because it is continuous and evaluated on the floating point
predicted values and the decrease indicates the network is still learning and improving its estimate.

Figure A10. Scattering fidelity loss over time. ∆S21 for online validation sets taken a specified time after the training
data was collected. The shaded regions show the extent of the single element Hamming distance results from the training data.
The grey region shows the full range from maximum to minimum, and the red region shows the 25th and 75th percentiles.
The blue diamonds indicate cases with a single prediction error, the black circles indicate cases with 2 prediction errors, the
red squares indicate cases with 3 prediction errors, and the green circles indicate cases with 4 prediction errors. These panels
show that the ∆S21 for prediction errors is very small, and in the lower region of the statistics covered by observed cases with
single element Hamming distances. (a) Validation 4 days after collecting training data, 2000 sets of commands were tested
with 303 mispredictions for an accuracy of 84.9%. (b) Validation 5 days after collecting training data, 2000 sets of commands
were tested with 236 mispredictions for an accuracy of 88.2%. (c) Validation 9 days after collecting training data, 2000 sets of
commands were tested with 690 mispredictions for an accuracy of 65.5%.

agent through a scalar, positive, and real-valued metric.
The agent uses the deep learning network to learn the
relationship between metasurface commands and S21 re-
sponses, but the complicated details are hidden from the
user. There are therefore 2 learning components to deep
reinforcement learning: an inner deep learning network

that learns how to map S21 responses onto metasurface
commands, and an outer agent based loop that learns
how to use the inner deep learning network to optimize
the desired metric. This metric can be the total power in
a specified bandwidth for cold spot generation, the mag-
nitude of the eigenvalues of the full S-matrix at a given
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Figure A11. Deep learning performance vs. cavity reverberation time. Performance of the deep learning network for
different cavity loss configurations as specified by the cavity reverberation time (x-axis). The reverberation time is shown on
a log scale to highlight the behavior for high loss configurations (short reverberation times). The statistics of the correlation
coefficient over the ∼50 million combinations of measurement sets are shown relative to the left-hand y-axis. The blue line
shows the extent between the quartiles, the blue circle indicates the median value, and the dashed black line shows the full
extent. The achieved accuracy of the deep learning network is shown as the dashed red line relative to the right-hand y-axis,
with individual points represented by a cross. The trend shows an inverse relationship between the correlation coefficient and
the achieved accuracy of the deep learning network, indicating that the deep learning network struggles to identify features in
the data when it is highly correlated.
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frequency for coherent perfect absorption, or the bit error
rate for communications systems.

Learning from scratch can be slow and may not be
fast enough to adapt to changing environmental condi-
tions. In this case, transfer learning, or using information
about a similar problem to accelerate training for another
one, can be incorporated into the reinforcement learning
strategy [151].
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