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In order to assess whether quantum resources can provide an advantage over classical computation,
it is necessary to characterize and benchmark the non-classical properties of quantum algorithms
in a practical manner. In this paper, we show that using measurements in no more than 3 out
of the possible 3N bases, one can not only reconstruct the single-qubit reduced density matrices
and measure the ability to create coherent superpositions, but also possibly verify entanglement
across all N qubits participating in the algorithm. We introduce a family of generalized Bell-
type observables for which we establish an upper bound to the expectation values in fully separable
states by proving a generalization of the Cauchy-Schwarz inequality, which may serve of independent
interest. We demonstrate that a subset of such observables can serve as entanglement witnesses for
QAOA-MaxCut states, and further argue that they are especially well tailored for this purpose by
defining and computing an entanglement potency metric on witnesses. A subset of these observables
also certify, in a weaker sense, the entanglement in GHZ states, which share the Z2 symmetry of
QAOA-MaxCut. The construction of such witnesses follows directly from the cost Hamiltonian to
be optimized, and not through the standard technique of using the projector of the state being
certified. It may thus provide insights to construct similar witnesses for other variational algorithms
prevalent in the NISQ era. We demonstrate our ideas with proof-of-concept experiments on the
Rigetti Aspen-9 chip for ansätze containing up to 24 qubits.

I. INTRODUCTION

At present, there is great interest in designing and val-
idating the implementation of solvers of computational
problems that can achieve a quantum advantage, i.e. su-
perior performance with respect to other known classi-
cal methods. There is considerable research activity in
the study of speedup metrics [1] and in the certification
and quantification of quantum properties (which we later
also refer to as quantumness) in the context of variational
quantum algorithms [2–4]. It is however of utmost im-
portance in the NISQ era to understand the role of coher-
ence and entanglement, as well as to guarantee that the
software-hardware systems that we use for the empirical
exploration exploit these resources to outperform clas-
sical competitors. This task is distinct from evaluating
the fidelity of the experimental results with respect to a
simulation, and instead focuses on verifying the key non-
classical properties of a solver that may achieve quantum
advantage on noisy hardware whose exact mechanics may
not be easily described through analytical expressions or
even numerical simulations.

Bearing in mind the lively debate over approaches to
verify the presence of quantum properties in experimen-
tal runs on quantum annealers [5], as well as the recent
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literature on quantum volume [6, 7] and on entanglement
characterization and detection in NISQ devices [8, 9], in
this paper we take a pragmatic approach trying to answer
the question of whether any quantum resources survive
following the execution of a specific quantum algorithm,
applied to a specific problem, run on a specific quantum
processing device. Our proposed tests do not necessarily
guarantee that the detected quantumness was exploited
computationally prior to detection, however the analy-
sis can be coupled with complementary simulations that
can evaluate the computational value of the measured re-
source. While our algorithm of choice is the quantum ap-
proximate optimization algorithm [10] (QAOA), applied
to the MaxCut problem, the operational character of the
study will illuminate what needs to be done in practice
for other choices of algorithms, problems and devices.

The QAOA for MaxCut problem (QAOA-MaxCut)
can be regarded as the minimization of a 2-local N -qubit
cost Hamiltonian C =

∑
〈i,j〉 ZiZj , defined over some set

of edges 〈i, j〉 in a circuit ansatz given by

|ψQAOA〉 =

 p∏
j=1

e−iβjBe−iγjC

 |+〉⊗N , (1)

where B =
∑N
i=1Xi is the mixer, and the ansatz param-

eters β1, . . . , βp, γ1, . . . , γp are to be optimized to mini-
mize the expectation value of C in the state |ψQAOA〉.
The quantum device used is the Rigetti Apsen-9 system
[11, 12], comprising 31 operational transmon qubits with
median two-qubit gate fidelity of 97%. Figure 1 provides
an overview of our overall approach.
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FIG. 1. Practical Verification of Quantum Properties in
QAOA: (a) QAOA leverages quantum coherent superposi-
tion and entanglement to perform combinatorial optimiza-
tion. The goal of this work is to develop probes of Coherence
(Sect. II) and Entanglement (Sect. III) in states generated by
the QAOA algorithm. (b) The specific ansatz studied here
consists of an initial register state preparation via transversal
Hadamard gates, followed by p applications of phase sepa-
ration and mixing Hamiltonians. To reveal coherence and
entanglement properties, additional single-qubit gates rotate
the measurement basis before reading out the state of the reg-
ister. We analyze experimental results for linear chain prob-
lems up to twenty-four qubits and a single round (p = 1) of
QAOA.

The Z2 symmetry of the MaxCut cost Hamiltonian en-
sures that QAOA-MaxCut states prepared via Eq. (1)
inherit the symmetry so that the amplitude of some
computational basis state is the same as that of its
ones’ complement, i.e. 〈x|ψQAOA〉 = 〈x̄|ψQAOA〉, where
|x̄〉 = X⊗N |x〉. Although non-entangled states can ex-
hibit such a symmetry as well, Eq. (1) with a 2-local
cost Hamiltonian C ensures that the state |ψQAOA〉 can
possess entanglement at every value of p. In the limit
of very large p and assuming a single MaxCut solution,
QAOA would yield a solution of the form 1√

2
(|x〉+ |x̄〉),

where both the bitstrings x and x̄ specify the same ‘cut’
through the set of edges, and just differ in how they la-
bel each partition. This kind of entanglement is strongly
reminiscent of the GHZ state, and in Section III the sim-
ilarity between the witnesses constructed for GHZ states
as well as QAOA-MaxCut states becomes obvious. Inter-
estingly, we observe that there is a correlation between
the value of p for which QAOA-MaxCut saturates the
maximum expectation value of the entanglement witness,
and the value of p for which it saturates the maximum
expectation value of the cost Hamiltonian, suggesting

that the entanglement certified by these observables is
actively participating in the computational optimization.
We note that earlier works [13, 14] have considered the
relationship of the underlying Z2 symmetry of the cost
Hamiltonian and QAOA performance, and hope that our
present work also sheds light on how entanglement is em-
ployed as a resource in QAOA.

By probing single-qubit reduced density matrices
(SQRDMs), we are able to identify which qubits in the
chip participate in the computation with the ability to
create coherent superpositions of the classical bit values
0 and 1. Moreover, using the same measurement data as
required to construct the SQRDMs, we are able to infer
the expectation values of observables that serve as entan-
glement witnesses for some quantum state(s). The ease
with which these witnesses can be measured make them
a practical toolkit for a quantum programmer to quickly
verify if any entanglement has been generated in the exe-
cuted circuit. Although such a procedure could work for
arbitrary circuits in principle, we demonstrate that the
introduced family of witnesses is particularly well suited
to detecting entanglement in QAOA circuits. We do so
by explicitly showing that such observables do indeed
serve as witnesses for QAOA-MaxCut states, and by in-
troducing and computing an entanglement potency met-
ric on witnesses, which quantifies the fractional volume
of states whose entanglement is detected by the given
witness. We compute this metric for QAOA and Haar
random states.

A standard method to construct an entanglement wit-
ness [15] for some state |Ψ〉 is to construct an operator
out of a projector

W = αI− |Ψ〉 〈Ψ| (2)

where α is the maximum fidelity of the state |Ψ〉 with
those in some set of states that we wish to certify
against. However, for a parametric family of states such
as QAOA-MaxCut states, the construction in Eq. (2) not
only depends on the choice of parameters, but may also
require measurements in a large number of different bases
as well as terms to estimate the expectation values of. In
previous work, it has been shown that for certain N -qubit
pure states, there exists a witness that requires 2N − 1
measurements [16, 17]. Here, we construct observables
that require no more than 3 bases measurements for any
value of N , and at most a polynomial number of terms
to be estimated given the measurement data. While the
theorems we prove only establish that bounds by fully
separable states can be violated, we also provide numeri-
cal evidence that a subset of such observables can certify
against bi-separable (and by extension k-separable, for
k ≥ 2) states, and therefore witness genuine N -partite
entanglement.

The remainder of this article is organized as follows. In
Section II, we discuss the measurement of coherences at
the single-qubit level, and their relevance as a measure
of quantumness. We also present experimental results
from the Rigetti Aspen-9 quantum device. Section III
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contains the main focus of our paper, wherein we discuss
the construction of a family of entanglement witnesses,
and establish several of their properties using a mix of
analytical and numerical results. In particular, we ana-
lytically prove an upper bound to the absolute value of
the expectation of a large class of observables in fully
separable states using a generalized Cauchy-Schwarz in-
equality, which we also prove as a lemma, as well as a
lower bound to the maximum eigenvalue for a subset of
such observables, thus proving that they can serve as wit-
nesses for some entangled states. We also identify a par-
ticular class of observables that are especially relevant
for QAOA-MaxCut, and prove that they serve as wit-
nesses for such states prepared via the ring cost Hamilto-
nian. In addition, we also provide numerical evidence for
the view that similar observables constructed for other
cost Hamiltonians also serve as witnesses for the corre-
sponding QAOA-MaxCut states. We also demonstrate
the relevance of the constructed observables to QAOA-
MaxCut through the calculation of an entanglement po-
tency metric, which we introduce. We finish this section
by presenting proof-of-concept experimental results from
the Rigetti Aspen-9 quantum chip. We conclude in Sec-
tion IV, discussing future avenues of exploration that our
work opens up.

II. QUANTUM COHERENCE

The most iconic property of a quantum system is the
ability to be in a coherent superposition of multiple ref-
erence states. This basic distinctive property of quan-
tum information processing and its direct manifestations
(e.g. tunneling) is believed to be essential to achieving
any kind of quantum advantage [18]. Formally, a system
is said to be in coherent superposition with respect to a
basis of states, if its density matrix is non-diagonal when
expressed in that basis [19]. In combinatorial optimiza-
tion, the specification of both the problem variables as
well as the solution, or an algorithm’s approximation to
it, are efficiently representable with a polynomial number
of classical bits. A quantum algorithm for combinatorial
optimization might in general exploit the coherent super-
position of all 2N computational basis states. However,
probing these coherences require a prohibitively exponen-
tial experimental cost.

Without requiring a full tomographic reconstruction
of the many-body density matrix of a quantum state, we
propose to use a method which allows us to extract infor-
mation about off-diagonal elements of all single-qubit re-
duced density matrices (SQRDMs) expressed in the com-
putational basis, which we later use as a threshold figure
of merit to determine the extent of quantumness. If size-
able values of these elements are measured at any time
during the execution of an algorithm, it can be concluded
that the individual qubits at that time still hold the po-
tential to exploit single-particle quantum effects for the
purpose of information processing. A generalization of

the arguments to multi-particle coherent effects (i.e. co-
tunneling) would be straightforward in principle, though
with an exponentially greater experimental cost.

A. Efficient SQRDM Tomography

Suppose that we have a single qubit quantum state,
either pure or mixed, represented by the density matrix

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
, (3)

for which we identify the off-diagonal elements ρ12 = ρ∗21

as the “coherences”. Here, we choose to use the abso-
lute value of coherence, i.e. Cρ = |ρ12|, as our metric
of interest. Since ρ ≥ 0 and Tr(ρ) = 1, the maximum
possible value attainable for Cρ is 1

2 , and is saturated for
example by the |+〉 state. Each single qubit state can be
experimentally reconstructed via state tomography [20–
22] using measurements in the Pauli X,Y and Z bases,
which allow us to determine expectation values of Pauli
matrices from the outcome statistics and represent the
state as

ρ =
1

2
(I + 〈X〉X + 〈Y 〉Y + 〈Z〉Z) (4)

One could argue that only two measurements suffice to
measure Cρ = 1

2 |〈X〉 + i〈Y 〉|. However, since the mea-
surement protocol is inevitably noisy, it is more reason-
able to first tomographically reconstruct the state using
maximum likelihood estimation (MLE) [23], which would
guarantee that the measured state is a legitimate quan-
tum object, i.e. being normalized Tr(ρ) = 1, and positive
semi-definite ρ ≥ 0, and then compute the required ex-
pectation values in this state to measure Cp.

The above protocol easily generalizes[24] - without
additional measurement overhead - to determine the
SQRDMs for an N -qubit state produced by a quantum
algorithm, such as QAOA. In order to achieve this, we
measure all (algorithmically relevant) qubits simultane-
ously in the X,Y and Z bases and determine ρk as in
Eq. (4) where now 〈Qk〉 ≡ 〈I1⊗ . . . Qk ⊗ . . .〉 denotes the
expectation value of Q = X,Y, Z acting on the kth qubit.
In this, way we partially reconstruct the final state after
the measurements and the MLE procedure as

ρsingle−particle =

N⊗
k=1

ρk,

with all ρk being legitimate states. It is important to note
that ρsingle−particle is not a reconstruction of the density
matrix of the state of the quantum processor before the
measurements. Most notably, it is a product state, and
caries no information about other quantum features such
as entanglement [25] or discord [26], which have been
washed out in the course of local measurements. Nev-
ertheless, the detection of a non-zero coherence in a ρk
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would indicate that superposition was still possible for
qubit k before measurement, so that some single-particle
quantumness was exploitable. A figure of merit for this
kind of limited quantumness could be identified in the
“maximum observed single-particle coherence”, i.e. the
largest measured value of Cρk over both the qubits and
the parameters that define the circuit.

B. SQRDMs in QAOA for MaxCut

Now let us demonstrate how the above protocol works
for a QAOA algorithm. Let d denote the degree of the
qubit (node) in the underlying MaxCut problem graph.

The QAOA ansatz is |ψ(γ, β)〉 = e−iβBe−iγC |+〉⊗N

with the mixer B =
∑N
j=1Xi and the cost function

C =
∑
〈ij〉 ZiZj . Then, for a single layer (p = 1) the

SQRDMs can be analytically calculated to be

ρQAOA =
1

2

(
1 cosd (2γ)

cosd (2γ) 1

)
, (5)

Note the independence from β and the total num-
ber of qubits N . Eq. (5) tells us that CρQAOA

=
1
2 |Tr(ρQAOA(X + iY ))| = 1

2 | cosd(2γ)|. Moreover, the
fidelity [27] of this state with an arbitrary single-qubit
state of the form Eq. (4) is found to be

F (ρQAOA, ρ) =
1

2

(
1 + 〈X〉 cosd 2γ

)
+

1

2

(
1− cos2d 2γ

)1/2 · (1− |~P |2
)1/2

, (6)

where ~P = (〈X〉, 〈Y 〉, 〈Z〉). Note that this fidelity explic-

itly depends on γ. Of course, when ~P =
(
cosd2γ, 0, 0

)
,

the above expression equals one for all γ.
We can similarly compute the fidelity between the ideal

QAOA state in Eq. (5) and a classical probabilistic bit

ρcl(θ) =

(
cos2 θ 0

0 sin2 θ

)
, (7)

In particular, we consider the maximum fidelity over all
such probabilistic bits (max over θ), given by

max
θ
F (ρQAOA, ρcl) =

1

2
+

1

2

√
1− cos2d 2γ. (8)

States for which the difference between Eqs. (6) and
(8) is greater than zero represent resources that cannot
be reproduced or employed by any classical device. We
can therefore use this difference as a measure of whether
quantum resources have been employed by a physical
quantum device when running QAOA.

C. Results - Coherences

We use the methods described above to report on the
amount of coherences each single qubit can build during

FIG. 2. Coherences CρQAOA as a function of γ for a fixed
value of β = π

8
for qubits (thin, gray lines) in a linear chain

QAOA-MaxCut circuit of (top to bottom) 2, 8, 16 and 24
qubits. The thick (black) line represents the mean coherence
across all the qubits.

the circuit execution for a fixed β = π
8 angle [28] and

across different γ angles. Fig. 2 shows the coherences
CρQAOA

for each SQRDM in 2, 8, 16 and 24-qubit lin-
ear chain QAOA-MaxCut circuits. In the ideal noiseless
case, these should follow precisely the form 1

2 | cosd 2γ|
where d is the degree of the qubit whose coherence is be-
ing plotted. Experimentally, we observe a qualitatively
similar pattern, except scaled down from its maximum
value of 1

2 .

In Fig. 3, we compute the fidelity of the experimental
SQRDM of a qubit (No. 0 - see Appendix A for the chip’s
layout) after having ran a 24-qubit linear chain QAOA-
MaxCut circuit with the ideal SQRDM for that qubit,
calculated using Eq. (6). As a comparison, we also plot
the maximum fidelity achievable by a classical probabilis-
tic bit. The difference between these two plots provides
a measure of the non-classical coherent superposition ef-
fects that this qubit can experience during the course of
a subsequent quantum computation. If this difference
is zero, then at the time of measurement, the qubit of-
fered no more computational power than that offered by
a probabilistic classical bit. Fig. 12 in Appendix A pro-
vides more information on the coherences in each of the
qubits in the executed circuits, as well as their physical
locations on the Aspen-9 chip.
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FIG. 3. Experimental fidelity with the ideal SQRDM for a
qubit (No. 0 - see Appendix A for chip’s layout) in a 24 linear
chain QAOA-MaxCut circuit, compared with the maximum
achievable fidelity by a classical probabilistic bit, or a fully
decohered qubit.

III. ENTANGLEMENT

Quantum entanglement [25] is a property of a physi-
cal system that relates to the intrinsic non-decomposable
character of its state. It is famously manifested as a type
of correlation that distinguishes classical physics, which is
local and deterministic, from quantum mechanics. While
it is still debated to what extent non-local correlations
are necessary for quantum advantage [29, 30], it is cer-
tainly a signature feature of the QAOA protocol and of
its relationship with adiabatic quantum computation.

Methods to estimate, quantify, and detect entangle-
ment are highly valuable assets for benchmarking quan-
tum hardware. Measures such as bipartite and multipar-
tite concurrence [31–33], entanglement of formation [32],
von Neumann entropy and many more exist [25, 34, 35].
However they are typically difficult to compute and ex-
perimentally costly to estimate.

In this work, we construct a family of observables that
act as entanglement witnesses [36, 37] for some quantum
state(s). These are observables whose expectation value
is bounded for separable states, so that a violation of such
a bound provides a signature of entanglement. Although
we focus our attention on QAOA-MaxCut states, the ob-
servables we introduce below may also serve as witnesses
for other types of states, such as parametric families
of states found in variational quantum algorithms, e.g.
variational quantum eigensolver (VQE) [38, 39], quan-
tum machine learning [40, 41], or variational Hamiltonian
ansatz [3, 42]. From the experimentalist’s perspective, it
is a simple matter to run a circuit and obtain measure-
ments in the X, Y and Z bases, and then to simply check
whether an observable constructed as described below vi-
olates a bound (see Theorem 1). If it does, the exper-
imentalist has verified the presence of entanglement in
the circuit, regardless of whether that circuit runs QAOA

or some completely different algorithm.[43] In this sense,
the methods we describe below can be perceived as al-
gorithm agnostic, and can be considered to be a general
purpose benchmarking tool that can be easily and effi-
ciently deployed for an arbitrary algorithm and system
size. Additionally, this method can also be deployed to
noisy circuits that are prevalent in the NISQ era, and
is not just restricted to detecting entanglement in pure
states.

In this section, we first describe general properties of a
family of observables and show that they can serve as en-
tanglement witnesses [36] for some quantum states. We
then show that a subset of such observables are capable
of certifying entanglement in QAOA-MaxCut states. Ad-
ditionally, we discuss the separability properties of these
witnesses. Lastly, we introduce an entanglement potency
metric on a witness that quantifies the relevance of a wit-
ness to a family of states. We conclude the section with
experimental results from the Aspen-9 quantum chip.

A. Generalized Bell-type Observables

Here, we introduce observables that are sums of k-local
Pauli operators and establish bounds on the expectation
values of these observables achievable by fully separa-
ble and general quantum states. Our aim is to demon-
strate that a large family of such observables can serve
as entanglement witnesses up to a spectral shift [36, 37].
Inspired by both Bell-type inequalities [44–46], we intro-
duce a class of observables W with the property

∀ρsep Λmin ≤ Tr(Wρsep) ≤ Λmax, (9)

i.e. bounded by separable thresholds (Λmin,Λmax).[47]
The key ingredient of our construction is the shared
structure composed of k-local Pauli operators, and which
for an exponentially large subset requires only three types
of measurements (X,Y and Z) in order to infer the ex-
pectation value and determine if a state violates any of
the separable thresholds. In the remainder of this paper,
we will mostly focus on violations of the upper bound in
Eq. (9), though one could also similarly analyze viola-
tions of the lower bound and the resulting signatures of
entanglement.

To motivate the construction of our observables, we
recall the usual Bell violation. In that scenario, given

Q = Z ⊗ I, S = 1√
2

(I ⊗ Z + I ⊗X, ) ,

R = X ⊗ I, T = 1√
2

(−I ⊗ Z + I ⊗X) ,

the observable WB = (R + Q)S + (R − Q)T =√
2 (X ⊗X + Z ⊗ Z) serves as a witness for the Bell state
|ψ〉 = 1√

2
(|00〉+ |11〉). Below, we describe successive

generalizations of this observable.
A particularly simple and immediate one over N qubits

is defined as

W
(2,N,G)
XZ =

∑
〈i,j〉

(Xi ⊗Xj + Zi ⊗ Zj) , (10)
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where the sum over 〈i, j〉 runs over some subset E2 of

all possible
(
N
2

)
edges in some graph G of N nodes. We

can generalize this further to similarly structured k-local
observables of the following form

W
(k,N,G)
PQ =

∑
〈i1,...,ik〉

 ik⊗
j=i1

Pj +

ik⊗
j=i1

Qj

 , (11)

where P,Q ∈ {X,Y, Z} and P 6= Q, the sum over
〈i1, . . . , ik〉 similarly runs over some subset of all possible(
N
k

)
tuples Ek (generalized edges) of some (generalized)

graph G of N nodes.[48]
We can generalize this construction to observables of

the form

W
(k,N,G)
XY Z =

∑
〈i1,...,ik〉

 ik⊗
j=i1

Xj +

ik⊗
j=i1

Yj +

ik⊗
j=i1

Zj

 (12)

where we have used the same notation as in Eq. (11).
Both these types of observables themselves belong to a
much larger family, with variable coefficients as well as
Pauli operators, as described in Appendix B. This entire
family of observables admits an upper and a lower bound
in the expectation value achievable by any fully separable
state, as shown in Theorem 1. In order to prove this
theorem, we first introduce the following lemma.

Lemma 1. Generalized Cauchy-Schwarz inequal-
ity: Given a collection of vectors ~x(1), . . . , ~x(k), where
~x(i) ∈ Rn for i ∈ {1, . . . , k}, we have the following in-
equality ∣∣∣∣∣

n∑
i=1

(
�kj=1~x

(j)
)
i

∣∣∣∣∣ ≤
k∏
j=1

∥∥∥~x(j)
∥∥∥ (13)

where | · | denotes the absolute value, ‖·‖ denotes the Eu-
clidean norm, and � denotes the Hadamard product.

Note that Lemma 1 reduces to the usual Cauchy-
Schwarz inequality [49] for the Euclidean dot product in
the base case of k = 2. Based on this lemma, we show
that the expectation value with respect to any fully sepa-
rable state of any observable of the form Eq. (11) or (12)
or in fact a much larger family of observables described in
Appendix B, satisfies an upper and a lower bound given
by (up to a sign factor) the number of generalized edges.

Theorem 1. The absolute value of the expectation value

of any N -qubit k-local (k ≤ N) observable W
(k,N,G)
M of

the form Eq. (B1) in any fully separable quantum state
is upper bounded as∣∣∣〈W (k,N,G)

M 〉sep
∣∣∣ ≤ |Ek| (14)

where |Ek| denotes the number of k-tuples 〈i1, . . . , ik〉
(or generalized edges of the generalized graph G) being
summed over, and M ∈ {1, 2, 3} denotes the number
of Pauli operators defined on a single k-tuple (see Ap-
pendix B for notational convention).

Theorem 1 applies to all the observables that we have
introduced so far, as well as a much larger set. It allows
us to fulfill one of the criteria, Eq. (9), for detecting en-
tanglement in the system. However, in order to establish
these observables as genuine entanglement witnesses, one
needs to show that the absolute expectation value can ex-

ceed the separable threshold, i.e.
∣∣∣〈W (k,N,G)

M 〉
∣∣∣ > |Ek| for

any M ∈ {2, 3} (see Appendix B for notational conven-
tions). In general, it is difficult to analytically establish
lower bounds for an arbitrary observable in this family.
Indeed, some may not even serve as entanglement wit-
nesses.

A straightforward way to demonstrate that the bound
from Theorem 1 can be violated is to provide an explicit
construction of a state that does it. We consider an ob-
servable W

(N,N,G)
XY Z of the form in Eq. (12) where the sum

runs over a single tuple consisting of all N qubits. Its ex-
pectation value in GHZ states |ψ〉 = 1√

2

(
|0〉⊗N + |1〉⊗N

)
produces the maximum possible value of 3 at N = 4n,
and the minimum possible value of −3 at N = 4n− 2 for
n ∈ Z+. Numerically, we observe that for N = 2n + 1
the largest and smallest eigenvalues are ±

√
3.

We can similarly consider an observable of the form

W
(N,N,G)
XZ which for N = 2 is the standard Bell observable

WB up to a global factor. Its expectation in GHZ states
gives the maximum possible value of 2 for N = 2n, and
whose expectation in (locally equivalent to GHZ) states
of the form 1√

2

(
|01〉⊗N/2 − |10〉⊗N/2

)
gives the minimum

possible value of −2 for N = 2n where n ∈ Z+. Similar
statements could be constructed via local unitary opera-

tions about other observables of the form W
(N,N)
PQ , which

are therefore seen to belong to the class of observables in
Eq. (9), which are equivalent (up to a spectrum shift) to
the entanglement witness 2.0 notion introduced in [37].
See Fig. 4 and Appendix D for more details.

In general for observables of the form W
(k,N,G)
PQ , we can

demonstrate a lower bound for the maximal eigenvalue
that is larger than the number of edges.

Theorem 2. The maximum eigenvalue λmax of any ob-

servable of the form W
(k,N,G)
PQ (see Eq. (11) and Appendix

B) is bounded below by λmax > |Ek|+O
(

1
|Ek|4

)
.

For proofs of Lemma 1 and the previous two theo-
rems, see Appendix C. Theorem 2 establishes that all
observables of the form (11) can serve as entanglement
witnesses, at least in the weak sense that they can distin-
guish fully separable states from (some) quantum states
that have some entanglement, perhaps only over a sub-
set of the entire N qubits over which the observable is
defined. Note however that this theorem does not neces-
sarily apply to the larger family of operators consisting

of two Pauli operators on each edge, W
(k,N,G)
2 (see Ap-

pendix B for notational convention), with possibly dif-
ferent operators acting on each of the qubits in a k-local
term, nor those consisting of three Pauli operators on

each edge, W
(k,N,G)
XY Z . Indeed, we numerically observe that
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FIG. 4. The maximum eigenvalue compared to the thresh-

old for separable states for observables of the form W
(N,N,G)
XY Z

(top) and W
(N,N,G)
PQ (bottom), where P 6= Q. The blue re-

gion is where a violation of the separable threshold is possible,
while the red denotes a region where these observables cannot
certify, or witness, entanglement since the same expectation
value could be produced by a separable state.

the largest eigenvalues of operators of the form W
(2,N,G)
XY Z

equal the number of edges, |Ek|, precisely the upper
bound for separable states established in Theorem 1, and
therefore such observables cannot serve as witnesses.

Nevertheless, the family of observables to which The-
orem 2 applies contains exponentially many elements,
consisting of all non-trivial graph types, with different
choices of Pauli operators, with each of these constituting
a different entanglement witness. For a fixed N , the total

number of such elements is 3
∑N
k=2

(
2(N

k) − 1
)

, where the

exponent
(
N
k

)
is the total possible number of k-tuples, the

base 2 counts whether a given k-tuple/edge belongs to a
(generalized) graph or not, the −1 subtracts the trivial
graph with no edges (and which does not yield a witness),
and 3 counts the possibilities XZ, XY and Y Z.

It is also instructive to look at the upper bound of
the largest eigenvalue of these observables. Such an up-
per bound would tell us the extent of violation of the
separable threshold provided by Theorem 1 that is possi-
ble even in principle. The following lemma establishes a

fairly generic upper bound applicable to all observables
to which Theorem 1 applies.

Lemma 2. The maximum eigenvalue λmax of any N -

qubit k-local (k ≤ N) observable of the form W
(k,N,G)
M

defined in Eq. (B1) (see Appendix B) is bounded above
by λmax ≤M |Ek|.

Proof. Using successive applications of Weyl’s inequality
for the largest eigenvalue of the sum of two Hermitian
matrices A and B

λmax (A+B) ≤ λmax(A) + λmax(B) (15)

and the fact that λmax(P ) = 1 for any Pauli operator P ,
we readily obtain

λmax

(
W

(k,N,G)
M

)
≤

∑
〈i1,...,ik〉

M∑
m=1

λmax

αm k⊗
j=1

σ
(aj,m)
ij


≤

∑
〈i1,...,ik〉

M∑
m=1

λmax

 k⊗
j=1

σ
(aj,m)
ij


=

∑
〈i1,...,ik〉

M∑
m=1

(1) = M |Ek| (16)

The upper bound of M |Ek| is saturated, though not
uniquely and not always, by graphs with edges on disjoint
pairs. This can be seen for M = 2 by choosing the state
|ψ〉 = 1√

2
(|00〉+ |11〉) on each pair to give an expectation

value of 2 to the observable ZZ+XX defined on this pair,
2 being the maximum value of this observable, since both
〈ZZ〉 ≤ 1 and 〈XX〉 ≤ 1. For such graphs, the difference
∆W = λmax −maxρsep Tr(Wρsep) = |E2| =

⌊
N
2

⌋
.

Numerically, we find that this difference is the maxi-
mum value achievable by graphs of any connectivity for

W
(2,N,G)
XZ [50]. In the next sections, we see that observ-

ables of the form W
(2,N,G)
XZ have a special significance for

QAOA-Maxcut states.

B. Entanglement Witnesses for QAOA-MaxCut

In QAOA [10], we seek to find the (approximate)
ground state of diagonal Hamiltonians. For the par-
ticular case of MaxCut over a graph of equal weights,
we seek to maximize the cost Hamiltonian C ′ =
1
2

∑
〈i,j〉 (I − ZiZj), or equivalently, minimize the cost

Hamiltonian C =
∑
〈i,j〉 ZiZj . In the basic formulation

of QAOA, we start with an initial state of H⊗N |0〉⊗N ,
and then apply the unitary e−iβjBe−iγjC a total of p

times, where B =
∑N
i=1Xi and the parameters ~θ =

(β1, . . . , βp, γ1, . . . , γp) are to be optimized to minimize
the expectation value 〈C〉.

For QAOA states built out of the 2-local MaxCut

cost Hamiltonian, the 2-local observable W
(2,N,G)
XZ defined
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over the same set of edges as the cost Hamiltonian is
a natural candidate for an entanglement witness. In-
deed, we can view this observable as being constructed

directly out of the cost Hamiltonian C as W 2,N,G
XZ =

C +H⊗NCH⊗N . Note that if ρ(~θp) represents the para-
metric QAOA state after p rounds, and A is any observ-

able, then maxθ Tr
(
Aρ(~θp+k)

)
≥ maxθ Tr

(
Aρ(~θp)

)
for

all k ∈ Z+. In other words, if W is a witness for QAOAp

states, then it is also a witness for QAOAp+k states. We

now show that observables from the W
(2,N,G)
XZ family can

serve as entanglement witnesses for QAOA states, noting
a lemma before we do so.

Lemma 3. Given C =
∑
〈ij〉∈E2

ZiZj where E2 is some

edge set, and B =
∑
iXi, the expectation values of

the operators XuXv, YuYv and ZuZv over some edge
〈uv〉 ∈ E2 in the p = 1 QAOA-MaxCut state |ψ(γ, β)〉 =
e−iβBe−iγCH⊗N |0〉⊗N are given respectively as

〈XuXv〉 =
1

2
cosdu+dv−2f 2γ

(
1 + cosf 4γ

)
〈YuYv〉 = −1

2
sin 4β sin 2γ

(
cosdu 2γ + cosdv 2γ

)
+

1

2
cos2 2β cosdu+dv−2f 2γ

(
1− cosf 4γ

)
〈ZuZv〉 =

1

2
sin 4β sin 2γ

(
cosdu 2γ + cosdv 2γ

)
+

1

2
sin2 2β cosdu+dv−2f 2γ

(
1− cosf 4γ

)
(17)

where du (dv) is the number of neighbors of u (v) exclud-
ing v (u), and f is the number of triangles in the graph
that include the edge 〈uv〉.

Proof. See Appendix C.

Note that for triangle free graphs f = 0, we have that
〈ZuZv〉(β, γ) = 〈YuYv〉(−β, γ) = 〈YuYv〉(β,−γ), so that

if an observable of the form W
(2,N,G)
XZ is a witness for

some QAOA state, then so is W
(2,N,G)
XY defined over the

same graph. We can now show that the constructed ob-
servables can serve as entanglement witnesses for QAOA
states prepared through MaxCut cost Hamiltonians on
different graph topologies G.

Ring graph

Theorem 3. Given a ring Hamiltonian C =
∑
i ZiZi+1

and the standard mixer B =
∑
iXi, the observable de-

fined on the ring graph Gring

W ≡W (2,N,Gring)
XZ =

∑
i

XiXi+1 + ZiZi+1 (18)

serves as an entanglement witness for QAOA states
Πp
k=1

(
e−iβkBe−iγkC

)
|+〉⊗N .

In particular, the gap ∆W = max〈W 〉QAOA −
max〈W 〉sep between the maximum expectation value for
W achievable by QAOA states and that achievable by sep-
arable states is lower bounded as

∆W ≥ N
√

2− 1

2
(19)

Proof. For ring graphs of N nodes, we have du = dv = 1,
f = 0 for each of N edges. Therefore, the observable has
expectation value 〈W 〉 = N We, where We denotes the
expectation value 〈XX + ZZ〉 over a single edge in the
ring graph. From Lemma 3, we have

We = cos2 2γ +
sin 4γ sin 4β

2
(20)

At all local optima, we have ∂γ〈We〉 = ∂β〈We〉 = 0.
Simultaneously solving these equalities gives us either
γa = nπ

4 or γb = π
8

(
n− 1

2

)
, and correspondingly either

sin 4βa = 0 or sin 4βb = ±1 (+1 for n odd, and −1 for n
even) respectively.

Let D(γ, β) = ∂γγWe · ∂ββWe − (∂βγWe)
2
. Then,

D(γa, βa) < 0, indicating a saddle point. For n =
3, 7, 11, . . . or n = 2, 6, 10, . . . , we have D(γb, βb) > 0 and
∂γγWe > 0, ∂ββWe > 0 indicating a local minimum. For
n = 1, 5, 9, . . . or n = 0, 4, 8, . . . , we have D(γb, βb) > 0
and ∂γγWe < 0, ∂ββWe < 0 indicating a local maximum.

At all these local maxima, We(γb, βb) = 1+
√

2
2 . Since this

is true of all local maxima, this also provides the global
maximum.

For separable states, the maximum achievable value
for We is one. Since all edges contribute the same ex-
pectation value in a ring graph, the gap ∆W at p = 1

is N
√

2−1
2 . For larger p values, this gap can increase in

value and the theorem follows.

Regular triangle-free graphs

More generally, we can consider regular triangle-free
graphs G∆free. This family includes the ring graph as a
special case, but also other types such as bipartite graphs.
For all such graphs, we have du = dv = d and f = 0, so

that we have 〈W (2,N,G∆free)
XZ 〉 = NedgesWe where

We = cos2d 2γ + sin 4β sin 2γ cosd 2γ (21)

This expression can be optimized over γ and β to find its
maximum value. We find numerically that maxγ,βWe >
1 and therefore serves as a witness for arbitrary large
d, as seen in Fig. 5. However, it is greatest at d = 1
and smoothly decays to 1 for large values of d. This
asymptotic decay can be seen by considering Eq. (21) in
the limit d→∞. In this limit,

lim
d→∞

cosd 2γ →

 +1, γ = nπ,
(−1)d, γ =

(
n+ 1

2

)
π,

0, otherwise
(22)
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FIG. 5. The maximum achievable expectation value, di-
vided by the number of edges, of observables of the form

W
(2,N,G∆−free)

XZ for regular, triangle-free graphs in p = 1
QAOA. At asymptotically large values of the degree of any
vertex in the regular graph, this observable fails to serve as
an entanglement witness for p = 1 QAOA-MaxCut states.

while sin 2γ → 0 at γ = nπ and γ =
(
n+ 1

2

)
π, for

n ∈ Z. Therefore, one term will asymptotically converges
to 0 while the other converges to 1, which is the value
saturated by separable states.

Linear chain graph

A related graph is that of a linear chain, Gline which un-
like the ring, has open boundary conditions. This is the
graph we use in our experiments (see sub-section III G).
Here, we can use the fact that du = 0, dv = 1 (or vice
versa) for the two edges at either end, du = dv = 1 for all
other edges, f = 0 for every edge, and the fact that there
are N − 1 total edges, where N is the number of nodes
in the linear chain graph. After some algebraic simplifi-

cation, the expectation value of W
(2,N,Gline)
XZ becomes for

N ≥ 3

〈W (2,N,Gline)
XZ 〉 =

sin (4β)

2
[(N − 2) sin (4γ) + 2 sin (2γ)]

+ (N − 3) cos2 (2γ) + 2 cos (2γ) (23)

while for N = 2, it is 〈W (2,N,Gline)
XZ 〉 = 1 + sin 4β sin 2γ.

It is found numerically that the quantity 〈Wline〉max ≡
maxβ,γ〈W (2,N,Gline)

XZ 〉 grows linearly with the number of
qubits for N ≥ 3, roughly as

〈Wline〉max ≈ 1.207N − 1.019

> N − 1 (24)

while for N = 2, 〈Wline〉max = 2. Therefore, this observ-
able serves as an entanglement witness for p = 1 QAOA.

Fully connected graph

Lastly, we may also consider the fully connected graph
Gfull. In this case, we use the fact that du = dv = f =
N − 2 for every edge, and the fact that there are a total
of |E2| =

(
N
2

)
edges. The expectation value of Wfull ≡

W
(2,N,Gfull)
XZ becomes

〈Wfull〉 =

(
N

2

)(
1 + cosN−2 4γ

2
+ sin 4β sin 2γ cosN−2 2γ

+
sin2 2β(1− cosN−2 4γ)

2

)
(25)

Let We(γ, β,N) ≡ 〈Wfull〉/|E2| denote the term in the
paranthesis above. Requiring that We > 1 and that
therefore Wfull serves as an entanglement witness for the
p = 1 QAOA state is equivalent to requiring that

1− cosN−2 4γ < 2 tan 2β sin 2γ cosN−2 2γ (26)

Numerically, we find that this condition is satisfied by
some (γ, β) (e.g. by γ = π/499, β = 122π/499) for up
to N = 5000. In the large N limit however, the ob-

servable W
(2,N,Gfull)
XZ asymptotically fails to be a witness

as the maximum value it attains is no more than that
achieved by separable states. We can see this by noting
the asymptotic behavior of cosn x in the limit of large
n as in Eq. (22), and the fact that sinx = 0 whenever
cosx = 1 to find

lim
N→∞

max
γ,β

We(γ, β,N)→ 1 (27)

which is precisely the bound for separable states.

In addition to the types of graphs analyzed above, we

numerically checked that the observables W
(2,5,G)
XZ serve

as entanglement witnesses for p = 1, N = 5 QAOA-

MaxCut states defined over any of the 2(5
2)−1 non-trivial

graphs, where the observable is defined over the same set
of edges as the cost Hamiltonian. We conjecture that this
holds true for any finite N .

The asymptotic decay we observe at large N for com-
plete graphs and large d for regular triangle-free graphs
for the (normalized by the number of edges) maximum

expectation values of W
(2,N,G)
XZ in p = 1 QAOA states

may reflect the fact that it becomes increasingly difficult
to solve the corresponding MaxCut problem for larger
values of N and d respectively at p = 1, and that a
larger number of QAOA rounds (p) may be required to
solve it. It is generally difficult to study the perfor-
mance of QAOA at large values of p, but for reasonably
small values of fixed N and d, we numerically find that

maxγ,β〈W (2,N,G)
XZ 〉 saturates around the same p as when

the cost Hamiltonian saturates.
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C. XYZ witnesses

In addition to the W
(2,N,G)
XZ family of observables, we

may also consider observables of the form W
(N,N,G)
XY Z .

In this case, we can calculate the expectation values
of 〈X⊗N 〉, 〈Y ⊗N 〉, 〈Z⊗N 〉 rather easily. We note that
QAOA-MaxCut states are Z2 symmetric (see for exam-
ple [13, 14] for additional reference), and we can express
all such states as

|Ψ〉 =
∑
x∈X0

cx(|x〉+ |x̄〉) (28)

Where X0 is the set of bitstrings that start with 0, and
x̄ represents the ones’ complement of x. We then have

X⊗N |Ψ〉 =
∑
x∈X0

cxX
⊗N (|x〉+ |x̄〉)

=
∑
x∈X0

cxX
⊗N (|x̄〉+ |x〉) = |Ψ〉 (29)

so that 〈X⊗N 〉 = 〈Ψ|Ψ〉 = 1. Moreover,

Z⊗N |Ψ〉 =
∑
x∈X0

cx((−1)|x| |x〉+ (−1)|x̄| |x̄〉) (30)

where |x| denotes the hamming weight of x. Note that
for even N , (−1)|x| = (−1)|x̄| and for odd N , (−1)|x| =
(−1)1+|x̄|. Therefore,

〈Z⊗N 〉 =

{
0 odd N,∑

x∈X0
2(−1)|x||cx|2 even N

(31)

Furthermore,

〈Y ⊗N 〉 = 〈(−i)NZ⊗NX⊗N 〉
= (−i)N 〈Z⊗N 〉 (32)

for even N . Based on the above observations, we see
that necessary conditions for a violation of the separable

threshold of 1 are N = 2n for W
(N,N,G)
XZ and W

(N,N,G)
XY ,

and N = 4n for W
(N,N,G)
Y Z and W

(N,N,G)
XY Z , where n ∈ Z+.

However, these constraints alone do not guarantee that
the separable threshold is violated, which may not always
be possible for certain types of graphs. However, we do
observe numerically for a few small allowed values of N
that such violations are indeed possible at least for some
graphs.

D. Separability

Having established an upper bound for the expecta-
tion value of a large family of observables in fully sepa-
rable states, it is a natural to ask next whether the type
of entanglement detected by certain witnesses is genuine
N -partite entanglement, or could be achieved with en-
tanglement over only a subset of those N qubits. In
other words, one can look at the k-separability proper-
ties of the observables described above. An N -partite

pure quantum state |Ψksep〉 is k-separable iff it can be
expressed in the form

|Ψksep〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψk〉 (33)

and likewise, a mixed state ρksep is k-separable iff it can
be expressed in the form

ρksep =
∑
i

pi|Ψ(i)
ksep
〉〈Ψ(i)

ksep
| (34)

We know from theorem 1 that the maximum expecta-
tion value achievable by a fully seperable state for any

observable of the form W
(k,N,G)
M is |Ek|. On the other

hand, we have shown that this bound is violated by N -

qubit GHZ states for observables of the form W
(N,N,G)
XY Z

whenever N = 4n and for those of the form W
(N,N,G)
XZ

whenever N = 2n for some n ∈ Z+. However, such
violations do not necessarily certify genuine N -partite
entanglement.

To illustrate, consider an M -separable product state

of the form |ΦMn 〉 = ⊗Mm=1|ψ
(m)
n 〉, where |ψn〉 =

1√
2

(|0〉⊗n + |1〉⊗n) is the n-qubit GHZ state. Then,

the maximal expectation value of 3 for the observ-

able W
(N,N,G)
XY Z is achieved by both an N -qubit GHZ

state |ψN 〉, but also any M -separable state |ΦMn 〉 when-

ever N = 4nM . Likewise, 〈ψN |W (N,N,G)
XZ |ψN 〉 =

〈ΦMn |W
(N,N,G)
XZ |ΦMn 〉 = 2, the maximal value, whenever

N = 2nM .
For W

(2,N,G)
XZ , the upper bound in Lemma 2 implies

that if the edge set is given by E2 = ∪3
j=1E

(j)
2 where

E
(1)
2 and E

(2)
2 are respectively the edges contained within

each halves of some partition of the graph G, and E
(3)
2

the edges that cross that partition, then any bi-separable
state could achieve an expectation value of at most

2(|E(1)
2 |+|E

(2)
2 |)+|E(3)

2 |, which can certainly be exceeded

if the upper bound of 2(|E(1)
2 | + |E

(2)
2 | + |E

(3)
2 |) is satu-

rated, in which case the observable would certify gen-
uine N -partite entanglement[51]. However, such a satu-
ration of the upper bound is not guaranteed. In princi-
ple, the generalized Cauchy-Schwarz inequality (Lemma
1) could be employed in conjunction with the inequal-
ities proved earlier, as well as the physicality require-

ment
∑4k

α=1〈Pα〉2 ≤ 2k, where the sum runs over all k-
qubit Pauli operators in any k-qubit state ρ, to obtain
some upper bounds on the expectation value of such ob-
servables in k-separable states. However, in practice we
can find tighter bounds using numerical techniques. For
each k ≤ N , we compute the largest expectation value
achievable by any k-separable pure state, setting an up-
per bound to the largest expectation value achievable by
any k-separable mixed state.

Concretely, we adopt a trigonometric parametrization
of a classical probability vector ~p = (p1, . . . , p2N ) as

pi = sin2 θi−1

N−1∏
j=i

cos2 θj (35)
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with θ0 = π/2, which naturally enforces the normaliza-
tion

∑
i pi = 1. A pure N -qubit quantum state can then

be parametrized in terms of this probability vector and
2N − 1 relative phases

|ψ〉i =
√
pie

iθi (36)

where θ0 = 0.

As an example, numerically optimizing for the ex-

pectation value of W
(2,5,G)
XZ in various k-separable states

(k ≤ 5), we observe in Fig. 6 that the witness W
(2,5,G)
XZ

serves to certify genuine multi-partite entanglement in
the linear chain QAOA-MaxCut state over N = 5 qubits
at p ≥ 2, while at p = 1 the witness can certify that the
produced QAOA state is not 3-(or higher) separable, but
cannot certify that it is not 2-separable. On the other
hand, we also observe in Fig. 6 that the corresponding

witness W
(2,5,G)
XZ serves to certify genuine multi-partite

entanglement in the complete (all-to-all connected) graph
QAOA-MaxCut state over N = 5 qubits at all p values.

In both these examples, there is a strict hierarchy of

the maximum achievable expectation value 〈W (2,N,G)
XZ 〉

according to the separability of the class of states in
which that expectation is computed, i.e. maxρk-sep

〈W 〉 >
maxρk′-sep

〈W 〉 whenever k < k′. This is not always the

case, and the existence of such a strictly ordered hier-

archy depends, at least in the case of the W
(2,N,G)
XZ , as

well as their cousins in the W
(2,N,G)
PQ family, on the struc-

ture of the graph whose edges are being summed over. In

particular, if the graph G in W
(2,N,G)
PQ is only non-trivially

defined on m ≤ N qubits, then the maximum expecta-
tion value is the same for all k-separable states whenever
k ≤ N −m+ 1.

E. Entanglement Potency

Since the entanglement structure of multi-qubit states
is very rich [25, 52], it is relevant to ask how many en-
tangled states can the discussed Bell-type observables
detect? In order to answer this question, we intro-
duce a metric on witnesses, called entanglement potency,
and compute its value on the space of QAOA-MaxCut
states (according to a particular distribution) as well as
Haar random states. We see that these observables have
non-negligible entanglement potency for QAOA-MaxCut
states, but close to zero potency for Haar random states,
making them a suitable choice for detecting entanglement
generated by this particular ansatz.

Definition 1. The entanglement potency of an entan-
glement witness W with respect to some measurable set
of states ξ is given by

Pξ(W ) =
V ξd
V ξT

, (37)

FIG. 6. Separability properties of the entanglement witness

W = W
(2,5,G)
XZ for a linear chain graph (top) and complete

graph (bottom) MaxCut problem. We numerically compute
and report the maximum achievable expectation value of this
observable in k-separable states for various values of k ≤ N =
5, and compare it to the maximum expectaion value that
QAOA states can achieve for various value of p.

where V ξT is the total volume of quantum states in the set

ξ, and V ξd is the volume of such states whose entangle-
ment is detected by W .

The set ξ could be a parametric family of states, such
as QAOA or VQE, or it could also be the set of all N -
qubit states (e.g. with Hurwitz parametrization [53, 54]).
Since the set is measurable, the definition allows us the
freedom to draw from arbitrary distributions over the
chosen set of states. In practice, we would draw states
according to some fixed distribution over some collection,
and measure the fraction of drawn states that violate the
separable threshold for the observable W . This provides
an unbiased estimate of the entanglement potency de-
fined above, and approaches its ideal value asymptoti-
cally as the number of samples becomes large.

One may expect that the potency of any N -qubit ob-
servable in Haar random states decreases with N and
perhaps vanishes at large N , since each observable can
detect only a small subset of entangled states, while the
volume of the entire set of states grows exponentially.
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This is similar to the vanishingly small volume of sep-
arable states at large N [55]. We numerically observe

that for W
(2,N,G)
XZ on fully connected and ring graphs,

the potency is negligible while for W
(N,N,G)
XZ it decreases

with N (see Table I). For QAOA-MaxCut, we observe
a non-negligible amount of entangled states detected by
the investigated observables (see Fig. 7, 8 and Table I).

Applying this metric to QAOA-MaxCut, we consider
states prepared via the ring graph Hamiltonian together

with observables of the type W
(2,N,Gring)
XZ defined on the

same ring graph. The potency is then given by the vol-
ume of (γ, β) for which the normalized expectation value
of this witness given in Eq. (20) is greater than one. This
can be expressed as the following integral

PQAOA1
(W

(2,N,Gring)
XZ )

=
1

(2π)2

∫ 2π

0

dβ

∫ 2π

0

dγ

Θ

(
cos2(2γ) +

1

2
sin(4γ) sin(4β)− 1

)
(38)

where Θ is the Heaviside step function. This integral
evaluates to 1 only for angles that violate the separable
bound, and is normalized by the total volume of (2π)2

(i.e. the area of [0, 2π)× [0, 2π) of β, γ intervals).
Although we could try to evaluate this integral numer-

ically, in practice we use the Monte Carlo (MC) method
to sample QAOA-MaxCut states with uniformly random
values of γ and β from [0, 2π) for p = 1 and p = 5 and
measure the fraction of states that violate the separable

threshold for the witness, i.e. satisfy 〈W (2,N,Gring)
XZ 〉 > N .

These results are depicted in the bottom figure of Fig. 7.
We repeat the MC analysis for fully connected MaxCut
problem with the witness sharing the fully connected
graph structure (see top figure in Fig. 7). One notices
that the potency of the witness decreases for p = 5
QAOA-MaxCut states compared to p = 1 states. This
behavior is unsurprising, since more layers of QAOA in-
creases the algorithm’s expressibility, allowing a larger
fraction of non-detectable states to be explored, so that
the fraction of detectable entangled states should de-
crease.

We also numerically estimate the entanglement po-

tency of W
(N,N,G)
XZ with respect to p = 1 QAOA states

prepared via fully connected graphs with Hamiltonians

H =
∑

〈i,j〉∈Ef

Ji,jZiZj , (39)

with Ji,j ∈ {−1,+1}. In particular, we investigate the
case for N = 4, and employ the MC technique to es-

timate the potency of W
(4,4,G)
XZ with respect to the set

of p = 1 QAOA states prepared according to each of
64 possible Hamiltonians (from which only 6 are non-
isomorphic), with uniformly randomly drawn values of
γ and β (see Fig. 8). Additionally, we check the scal-
ing properties of randomly selected Hamiltonians that

FIG. 7. Entanglement potencies for W
(2,N,G)
XZ with both the

witness observable and problem Hamiltonian corresponding
to (top) fully connected N -qubit graph, for QAOA MaxCut
problem, and (bottom) N -qubit ring graph, with p = 1 (blue)
and p = 5 (orange) sampled numerically with 1000 uniform
random (γ, β) angles. Dashed line (bottom) shows numeri-
cal integration of Eq. (38) at ≈ 0.096. Although we do not
depict this in the figure, we similarly sampled 10,000 Haar
random states (as opposed to only QAOA-MaxCut states),
and found no violation of the separable threshold, so we con-
sider the entanglement potency of both these observables for
Haar random states to be zero for each of the investigated
values of N .

display Z2 symmetry (i.e. randomly sampling Ji,j coeffi-
cients from {−1, 1}) which constitute ξ. We report these
entanglement potencies in Fig. 8 and in Table I.

F. Relationship to other algorithms

The preceding discussion has identified an exponen-
tially large class of observables that each serve as entan-
glement witnesses for some respective state(s). A pri-
ori, these states may be arbitrary. However, we have
shown that these are especially well tailored for QAOA-
MaxCut states. Indeed, a subset of the observables we
construct are in general relevant for combinatorial opti-
mization problems with an overall Z2 symmetry, i.e. for
diagonal cost Hamiltonians C such that [C,X⊗N ] = 0
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N
QAOA p = 1 QAOA p = 5 Random

mean max min mean max min mean

4 0.48 0.96 0 0.48 0.85 0.16 0.12±0.01

5 0 0 0 0 0 0 0.09±0.01

6 0.47 0.52 0.42 0.50 0.53 0.46 0.05±0.01

TABLE I. Entanglement potency for a set of problem Hamiltonians with randomly chosen Jij ∈ {−1, 1} (i.e. with Z2 symmetry),
along with the minimum and maximum potency found in the set of problem Hamiltonians. Each potency was calculated using
1000 random angle samples. The data at N = 4, 5, 6 were calculated using 60, 80, and 100 random problem Hamiltonians,
respectively - note that based on the histogram Fig. 8 it is likely that for N = 6 there can exist Hamiltonians for which
Pξ(W

N,N,G
XZ ) = 0, where ξ represents the set of p = 1 QAOA states prepared according to the corresponding Hamiltonian. The

random state data represents the potency of the observable over 10,000 Haar random states.

FIG. 8. Entanglement potency of witness observables

W
(N,N,G)
XZ for random fully connected problem Hamiltonians

of the form
∑
〈i,j〉 JijZi ⊗ Zj with Jij ∈ {−1, 1}. Here, ξ

represents the set of p = 1 QAOA states prepared according
to the corresponding Hamiltonian. We depict the potency
for all possible non-isomorphic fully connected Hamiltonians
on 4 nodes (specified by Jij terms along the y-axis), sam-
pled with 1000 random angles. Error bars represent sampling
uncertainty σ = 1√

N
≈ 0.03.

holds. For such problems, the solution state is of the
form

|ψ〉 = ⊗N−1
i=0 Xni

i |GHZ〉 (40)

where ni ∈ {0, 1}, or a superposition of such
states for different assignments of ni, and |GHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
. We have already identified entan-

glement witnesses for GHZ states from the family of

observables we constructed above, such as WN,N,G
XY Z =

X⊗N + Y ⊗N + Z⊗N (see Appendix D for more details).
Therefore, an entanglement witness for a state of the
form Eq. (40) is given by

W ′XZ = X⊗N + (−1)
∑
ni
(
Y ⊗N + Z⊗

)
(41)

while those from the WXY Z family can be similarly con-
structed. Thus, we see that the entanglement witnesses
we have constructed can be used to certify entanglement
in a quantum state output by an algorithm for exact op-
timization as well as approximate optimization, such as
QAOA.

Note however that not all quantum algorithms may
solve combinatorial optimization problems by producing
states of the form Eq. (40), and may instead output
classical bitstrings, or separable states. Moreover, the
witnesses we describe only certify the entanglement in fi-
nal output states of the form Eq. (40), or approximately
this form, and do not reveal how entanglement may assist
in the computation between the initial and final states.
Nevertheless, we note that since structured ansatze such
as QAOA are by nature layered, one may probe entangle-
ment generation for intermediate states by limiting the
number of layers to some desired number.

For other VQEs that may involve the optimization of
non-diagonal Hamiltonians, the Hamiltonian itself may
serve as an entanglement witness. This may be the case
for Hamiltonians describing physical systems where the
ground state is highly entangled, and no optimal solution
can be described as a separable state or a classical bit-
string. This is in stark contrast to the case of combinato-
rial optimization problems, where the Hamiltonians are
diagonal in the computational basis, an optimal solution
can be described by a single bitstring, and the cost Hamil-
tonian itself alone cannot certify entanglement in a state.
Therefore, the construction of entanglement witnesses for
combinatorial optimiztion problems is more non-trivial
than others, but here we have shown how to construct
such witnesses for QAOA-MaxCut states in particular,
and for quantum algorithms solving optimization prob-
lems with Z2 symmetry more generally, as argued above.

One may construct an entanglement witness for some

generic parametric state |ψ(~θ)〉 as

W = max
~θ
αI− |ψ(~θ)〉〈ψ(~θ)| (42)

where α is a parameter tuned such that 〈W 〉 lies on ei-
ther side of an inequality for the parametric state and
some other states against which we wish to certify. How-
ever, such a construction may involve exponentially many
observables, estimating which may require exponentially
many measurement settings.

On the other hand, Theorems 1 and 2 establish that
a large class of observables serve as entanglement wit-
nesses for some states, without necessary specifying what
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those state(s) might be. Measuring these observables re-
quires measurements in only three different bases, and
therefore requires trivial resources. After running any
generic quantum algorithm that may produce an entan-
gled state in the final output, one may measure the final
entangled state in the X, Y and Z bases, sample a fixed
number, e.g. poly(N) many, observables from the family

W k,N,G
XY Z . If the bound in Theorem 1 is then violated, one

has detected entanglement in the final state. This pro-
tocol therefore provides an algorithm agnostic method
to detect entanglement, though without any guarantees
that it would work for generic entangled states. However,
we have shown above that a subset of the constructed
observables are especially well suited to detect entan-
glement for QAOA-MaxCut states, and more generically
for quantum states that encode exact or approximate so-
lutions to combinatorial optimization problems with Z2

symmetry.

G. Results - Entanglement

For various numbers of qubits, we report the exper-
imental results of measuring the value of the entangle-

ment witness W
(2,N,Gline)
XZ for linear chain p = 1 QAOA-

MaxCut states defined over the same set of edges as the
respective cost Hamiltonian. We use randomized com-
piling [56, 57] to twirl errors on the physical gates into
stochastic errors. We fit a simple depolarizing model onto
the results [58, 59], and obtain a reasonably good fit, as
shown in Fig. 9. More details are provided in Appendix
A.

In general, noise will reduce the chances of detecting
entanglement. In the case of a global depolarizing noise
channel

ρ→ (1− pnoise)ρ+ pnoise
I

2N
(43)

with noise parameter pnoise, the expectation value in the
noisy mixed state scales down as (1− pnoise)〈W 〉, where
〈W 〉 represents the expectation value in the ideal pure
QAOA state. Experimentally, we find a violation of the

separable threshold at N = 2 for the observables W
(2,2,G)
XZ

and W
(2,2,G)
XY as depicted in Fig. 10 (a similar violation

was recently reported experimentally in [60]), we failed
to find any such violations for N ≥ 3. In Appendix
A, we provide the values of the noise parameters that
were obtained from fitting a global depolarizing channel
to the data. It is found that for N ≥ 3, these are above
the critical threshold of the depolarizing noise parameter
that one obtains from Eq. (24)

pnoise . 1− N − 1

1.207N − 1.019
(44)

If the noise level on the hardware is below the threshold
defined by Eq. (44) for N ≥ 3, then one would be able

FIG. 9. Experimental results for a linear chain W =

W
(2,N,Glinear)
XZ =

∑N−1
i XiXi+1 + ZiZi+1 witness observable

from the Rigetti Aspen-9 QPU. For N = 2, 8, 16, 24 qubits
(top-bottom), we plot the expectation values of the sum of
all ZZ terms (left-most column), XX terms (middle column),
and the witness observable W (right-most column). We over-
lay the experimental data points with a fitted model that is
given by some scale factor (1 − pnoise) times the analytical
expression Eq. (23).

to certify entanglement in the linear chain p = 1 QAOA-
MaxCut state. For N = 2, the noise on the hardware
was sufficiently below the critical threshold pnoise <

1
2 to

enable the witness to detect entanglement in the QAOA
state.

IV. CONCLUSIONS

In this paper, we have introduced a practical method
to verify key non-classical properties of a quantum algo-
rithm’s implementation on a physical device. Using mea-
surements in only the three Pauli bases, we reconstruct
the experimental single-qubit reduced density matrices
(SQRDMs), and interpret their coherence as a basic mea-
sure of non-classicality, or quantumness. We identified a
large family of obsevables, that can serve as entangle-
ment witnesses and that could be measured using the
same measurement data. Although our work focuses on
QAOA-MaxCut, the same procecure could in principle be
used to test the entanglement of any other state prepared
on a (noisy) quantum device – since Theorem 1 provides
both upper and lower bounds for separable states, the
experimentalist simply has to collect bitstrings in the X,
Y and Z bases, compute the expectation value for a suit-
able observable and check if either the upper or lower
bound is violated. Given the measurement data, esti-
mating the expectation value of these observables is at
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FIG. 10. Expectation value of two observables: (green,

wedges) WXY = W
(2,2,Glinear)
XY and (blue dots) WXZ =

W
(2,2,Glinear)
XZ on Rigetti Aspen-9 chip for QAOA p = 1 Max-

Cut problem (see Appendix A for details of the experimental
setup) as a function of γ angle (β = π

8
). Red area indicates re-

gion of violation of the separable bound Λmax = 1 (red dashed
line).

most polynomial in the number of qubits, and therefore
efficient.

Our work has also proposed a generalization of Bell-
type observables, for which we established a non-trivial
inequality. The generalized Cauchy-Schwarz inequality
we used to prove one of our main results may have inde-
pendent interest in other areas of quantum information,
computer science, and related fields. We showed that en-
tanglement witnesses for variational circuits can be con-
structed out of the cost Hamiltonian itself, typically via
additional terms that are equivalent to the cost Hamil-
tonian up to local transformations, without resorting to
decomposing the projector of the entangled state into a
possibly exponentially large set of measurable operators.
This may inspire the construction of yet more witnesses
in future work. In particular, we imagine that the tech-
niques we have outlined in this paper could provide a
foundation to the identification of similar witnesses in
other parameteric families of circuits, such as those found
in Variational Quantum Eigensolvers (VQE) or Quantum
Machine Learning (QML), prevalent in the NISQ era.

For QAOA-MaxCut in particular, we noted that the
cost Hamiltonian and the corresponding 2-local witness
defined on the same graph saturate in maximum expec-
tation value at around the same p. Thus, even though
further rounds of QAOA might generate more entangle-
ment, the witness does not capture this extra entangle-
ment. Instead, the observation that it tends to saturate
around the same p hints that it may provide a measure
of the amount of useful entanglement that the algorithm
employs in the optimization problem. In general, it is de-
sirable to obtain measures of and verification procedures
for the amount of entanglement that is algorithmically
relevant, and our work provides a step in that direction.

As gate fidelities and qubit counts and connectivities
on near-term devices improve, it will become increasingly
important to verify that the hardware resources are em-
ploying genuinely non-classical resources in the execution
of some algorithm, without which a quantum advantage
would be impossible. Additionally, identifying the en-
tanglement properties in quantum circuits can help us in
understanding the role of entanglement as a resource for
quantum computing.
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Appendix A: Experimental details

Experimental results were obtained on the 32 qubit
Rigetti Aspen-9 system using a QAOA p = 1 circuit
ansatz shown in Fig. 11. Our implementation of the
linear chain topology achieved constant circuit-depth by
construction with parallel gates. Moreover, this approach
enabled a systematic investigation, since adding new el-
ements to the chain did not disrupt the prior circuit de-
sign. Median average gate fidelity for the CZ gate across
the 24 qubit linear array under study was FCZ = 94% at
the time of experiments, predominantly limited by deco-
herence. To mitigate residual coherent error, all circuits
were randomly compiled 100 times under Pauli twirling
[56, 57]. Each circuit instance compiled to a random bit-
flip pattern over the qubit register before measurement
(later undone in post-processing) to remove readout bias.
Each unique circuit was executed 300 times.

After fitting a global depolarizing model as described
in Section III G, we find that to 3 decimal places, pnoise ≈
0.370 for N = 2, which is less than the critical threshold
of pnoise <

1
2 , so that we observe a violation of the sep-

arable threshold at N = 2. At N = 8, 16 and 24, to 3
decimal places we obtain pnoise ≈ 0.844, 0.888 and 0.943
respectively. These are all above the critical thresholds of
pcritical ≈ 0.190, 0.180 and 0.177 (to 3 decimal places, for
N = 8, 16 and 24 respectivelty) defined by Eq. (44) so
that for these values of N , we do not observe a violation
of the separable threshold.



16

FIG. 11. Example circuit for QAOA, p = 1 circuit ansatz
(N=5), optimized for parallel execution on a linear chain
topology at arbitrary size. CNOT gates are compiled to
native CZ gates. Single-qubit rotations are compiled to
continuous-angle Zφ and fixed-angle X90 gates. Measure-
ments (MX,Y,Z) are collected for three axes (X,Y, Z) using
tomographic pre-rotations and Z-basis measurements.

In Fig. 12, we plot the coherences for some fixed value
of β = π

8 vs. γ (γ = k π20 for k = 0, 1, . . . , 20). In the same
figure, we additionally report average (middle semicircle),
minimal (inner semicircle), and maximal (outer semicir-
cle) coherences over all active qubits for each γ. One
can notice, that Rigetti Aspen-9 chip can build non-zero
signatures of quantumness over all qubits across vari-
ous problems of different size, subjected to non-negligible
noise.

Appendix B: General observables

Here, we describe generalizations of the observables

W
(k,N,G)
PQ and W

(k,N,G)
XY Z defined in Eqs. (11) and (12)

respectively, to which Theorem 1 applies. We consider
observables of the form

W
(k,N,G)
M =

∑
〈i1,...,ik〉

M∑
m=1

αm

k⊗
j=1

σ
(aj,m)
ij

(B1)

where we restrict to M ≤ 3, and

1. αm ∈ {0, 1} for all 1 ≤ m ≤M = 3,

2. the indices aj,m ∈ {1, 2, 3} specify which single-
qubit (non-identity) Pauli operator acts on the j-th
qubit ij in the m-th term,

3. aj,1 6= aj,2 6= aj,3 for each j,

and the superscript G refers to the generalized graph, i.e.
the set of k-tuples 〈i1, . . . , ik〉 being summed over. All
observables of the form Eqs. (11) and (12) belong to this
family. Note that in those expressions, we use the sub-
script to denote a Pauli string, not a numerical value for
M . We choose this convention to simplify our expres-
sions whenever the indices aj,m are fixed for all values
of j once m is specified. The number of characters in

the subscript string then specify the number of non-zero

coefficients αm. Thus, W
(k,N,G)
XZ is really an observable

of the form W
(k,N,G)
2 where α1 = α2 = 1, α3 = 0 and we

have fixed aj,1 = 1 and aj,2 = 3. Similarly, W
(k,N,G)
XY Z is

an observable of the form W
(k,N,G)
3 where αm = 1 and

we have fixed aj,m = m.
Using the same convention, we can also build other

observables such as

W
(k,N,G)
XY =

∑
〈i1,...,ik〉

 ik⊗
j=i1

Xj +

ik⊗
j=i1

Yj

 , (B2)

which is an observable of the form W
(k,N,G)
2 with α1 =

α2 = 1, α3 = 0 and aj,1 = 1, aj,2 = 2 for all j. Another
such example is

W
(k,N,G)
Y Z =

∑
〈i1,...,ik〉

(
⊗ikj=i1Yj +⊗ikj=i1Zj

)
(B3)

which is again an observable of the form W
(k,N,G)
2 with

α1 = α2 = 1, α3 = 0 and aj,1 = 2, aj,2 = 3 for all j. We

refer to any observable of the form W
(k,N,G)
XZ , W

(k,N,G)
XY

or W
(k,N,G)
Y Z as that of the form W

(k,N,G)
PQ . Note that

W
(k,N,G)
ZYX or W

(k,N,G)
Y ZX etc. are operationally the same as

W
(k,N,G)
XY Z .
However, none of these observables exploit the addi-

tional freedom allowed by Theorem 1 to choose differ-
ent aj,m for different values of j as well as m. We can
also build more complicated observables by allowing the
choice of the indices aj,m to vary with the choice of j as
well as m, as long as condition 3 above is met. For ex-
ample, with M = 2, k = 6 we could construct a1,1 = 1,
a2,1 = 2, a3,1 = 3, a4,1 = 3, a5,1 = 2, a6,1 = 1 and
a1,2 = 3, a2,2 = 1, a3,2 = 2, a4,2 = 1, a5,2 = 3, a6,2 = 2
to give

W =
∑

〈i,j,k,l,m,n〉

(XiYjZkZlYmXn + ZiXjYkXlZmYn)

(B4)
As another example, with M = 3, k = 5 we could con-
struct

W =
∑

〈i,j,k,l,m〉

(XiYjZkXlYm + ZiXjYkYlXm

+YiZjXkZlZm) (B5)

and so on. Theorem 1 applies to this entire family of
observables, which is much larger than those of the form
in Eqs (11) and (12) alone.

Appendix C: Proofs

Proof of Lemma 1
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FIG. 12. Coherences of SQRDMs for MaxCut p = 1 QAOA run on Rigetti Aspen-9 chip (see text in Appendix A for more
details on the experiment) - a) and e): 2-qubit problem; b) and f): 8-qubit; c) and g): 16-qubit, d) and h): 24-qubit . Semicircles
are divided into segments, each represents γ angle (γ = k π

20
for k = 0, 1, 2 . . . , 20) with the coherence values color-coded (below

a)-d) charts) for that QAOA setup (for all figures we used β = π
8

). Figures a)-d) report maximal (outer semicircle), mean
(middle semicircle) and minimal (inner semicircle) values of coherences across all used qubits. e)-h) specify active qubit’s
coherences and their position in Aspen-9 chip.

Proof. We will first prove the following identity involving
the Hadamard product using induction

∥∥∥�kj=1~x
(j)
∥∥∥ ≤ k∏

j=1

∥∥∥~x(j)
∥∥∥ (C1)

where the Hadamard product is defined as

(
�kj=1~x

(j)
)
i

=

k∏
j=1

x
(j)
i . (C2)

First, we prove the base case involving two vectors ~a,
~b ∈ Rn and their Hadamard product ~v = ~a�~b. Then,

‖~v‖ =

√
(a1b1)

2
+ · · ·+ (anbn)

2

≤
√
a2

1

∥∥∥~b∥∥∥2

+ · · ·+ a2
n

∥∥∥~b∥∥∥2

= ‖~a‖
∥∥∥~b∥∥∥ (C3)

where the inequality follows from noting that the ab-
solute value of any component of a vector is bounded
above by the (Euclidean) norm of that vector by def-

inition, |bi| ≤
∥∥∥~b∥∥∥ =

√∑n
j=1 b

2
j for any ~b ∈ Rn and

i ∈ [n]. Next, we assume that Eq. (C1) holds true for
some collection of k−1 vectors ~x(1), . . . , ~x(k−1) ∈ Rn, i.e.

defining ~v = �k−1
j=1~x

(j), we have
∥∥∥�(k−1)

j=1 ~x(j)
∥∥∥ = ‖~v‖ ≤∏k−1

j=1

∥∥~x(j)
∥∥. Then,

∥∥∥�kj=1~x
(j)
∥∥∥ =

∥∥∥~v � ~x(k)
∥∥∥

=

√
v2

1

(
x

(k)
1

)2

+ · · ·+ v2
n

(
x

(k)
n

)2

≤
√
‖~v‖2

(
x

(k)
1

)2

+ · · ·+ ‖~v‖2
(
x

(k)
n

)2

= ‖~v‖
∥∥∥~x(k)

∥∥∥ =

k∏
j=1

∥∥∥~x(j)
∥∥∥ (C4)
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and so Eq. (C1) follows by induction. We can now
prove the main statement of our Lemma. Defining
~w = �m−1

j=1 ~x
(j), we now have∣∣∣∣∣

n∑
i=1

(
�mj=1~x

(j)
)
i

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(
~w � ~x(m)

)
i

∣∣∣∣∣
= |~w · ~x(m)|

≤ ‖~w‖
∥∥∥~x(m)

∥∥∥
≤
m−1∏
j=1

∥∥∥~x(j)
∥∥∥∥∥∥~x(m)

∥∥∥
=

m∏
j=1

∥∥∥~x(j)
∥∥∥ (C5)

which is the statement of the Lemma. In the proof above,
the first inequality follows from the standard Cauchy-
Schwarz inequality, while the second inequality follows
from Eq. (C1).

Proof of Theorem 1

Proof. Given a pure state |ψ〉 = cos θ2 |0〉+e
iφ sin θ

2 |1〉, we
have

〈X〉ψ = sin θ cosφ

〈Y 〉ψ = sin θ sinφ

〈Z〉ψ = cos θ (C6)

A fully separable pure state is given by |Ψ〉 =

⊗Nj=1

(
cos

θj
2 |0〉+ eiφj sin

θj
2 |1〉

)
. For M = 1 alone, it

is easy to prove the the upper bound of the absolute ex-
pectation values in such states, as follows∣∣∣〈W (k,N,G)

1 〉
∣∣∣ =

∣∣∣∣∣∣
∑

〈i1,...,ik〉

k∏
j=1

〈σ(aj,1)
ij

〉

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

〈i1,...,ik〉

k∏
j=1

(1)

∣∣∣∣∣∣ = |Ek| (C7)

For 1 ≤ M ≤ 3, we note that 〈W (k,N,G)
M 〉 can be written

as a Hadamard product of k vectors

〈W (k,N,G)
M 〉 =

∑
〈i1,...,ik〉

M∑
m=1

k∏
j=1

〈σaj,mij
〉

=
∑

〈i1,...,ik〉

M∑
m=1

(
�kj=1~v

(M)
ij

)
m

(C8)

where ~v
(M)
ij

=
(
〈σ(aj,1)
ij

〉, . . . , 〈σ(aj,M )
ij

〉
)
∈ RM (since ex-

pectations of Pauli operators are real) where j labels

some index in a k-tuple. Note that
∥∥∥~v(1)
ij

∥∥∥ ≤ 1 since

the maximum (absolute) expectation value of any Pauli
operator is 1. Next, since ∀j, aj,1 6= aj,2 6= aj,3, we have

that
∥∥∥~v(2)
ij

∥∥∥ is the square root of the sum of squares of

〈X〉 and 〈Y 〉, 〈X〉 and 〈Z〉, or 〈Y 〉 and 〈Z〉. All of these

cases are bounded above by
∥∥∥~v(3)
ij

∥∥∥. Furthermore,∥∥∥~v(3)
ij

∥∥∥ =
√

sin2 θij cos2 φij + sin2 θij sin2 φij + cos2 θij

= 1 (C9)

so that we have
∥∥∥~v(M)
ij

∥∥∥ ≤ 1 for any M ∈ {1, 2, 3}. There-

fore, we obtain∣∣∣〈W (k,N,G)
M 〉

∣∣∣ =

∣∣∣∣∣∣
∑

〈i1,...,ik〉

M∑
m=1

(
�kj=1~v

(M)
ij

)
m

∣∣∣∣∣∣
≤

∑
〈i1,...,ik〉

∣∣∣∣∣
M∑
m=1

(
�kj=1~v

(M)
ij

)
m

∣∣∣∣∣
≤

∑
〈i1,...,ik〉

k∏
j=1

∥∥∥~v(M)
ij

∥∥∥
≤

∑
〈i1,...,ik〉

k∏
j=1

(1) = |Ek| (C10)

where the first inequality follows from repeated use of
the triangle inequality |a+ b| ≤ |a|+ |b| for any a, b ∈ R,
the second inequality follows from Lemma 1 and the last

inequality follows from the bound
∥∥∥~v(M)
ij

∥∥∥ ≤ 1 as noted

above. Next, suppose we are given some fully separable
mixed state

ρ =
∑
j

αjρj1 ⊗ · · · ⊗ ρjN (C11)

where each αj > 0 and
∑
j αj = 1. Each of the density

operators in the tensor product can be expressed as

ρjk =
∑
l

cjk,l|ψjk,l〉〈ψjk,l| (C12)

with cjk,l > 0 and
∑
l cjk,l = 1. Therefore, by absorbing

these constants into the definition of the αj ’s, we have

ρ =
∑
j

αj |ψj1〉〈ψj1 | ⊗ · · · ⊗ |ψjN 〉〈ψjN | (C13)

and defining the separable pure states |Ψj〉〈Ψj | =

⊗jnm=j1
|ψm〉〈ψm|, we have

∣∣∣Tr
(
ρW

(k,N,G)
M

)∣∣∣ =

∣∣∣∣∣∣Tr

∑
j

αj |Ψj〉〈Ψj | ·W (k,N,G)
M

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

αjTr
(
|Ψj〉 〈Ψj | ·W (k,N,G)

M

)∣∣∣∣∣∣
≤
∑
j

αj

∣∣∣Tr
(
|Ψj〉 〈Ψj | ·W (k,N,G)

M

)∣∣∣
≤
∑
j

αj · |Ek| = |Ek| (C14)
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where the first inequality follows from repeated use of the
triangle inequality, and the last inequality follows from
Eq. (C10) for pure states.

Proof of Theorem 2

Proof. We will first prove the theorem for the case of

W
(k,N,G)
XZ . One way to lower bound the largest eigenvalue

of W =
∑
〈i1,...,ik〉

⊗ik
j=i1

Xj+
⊗ik

j=i1
Zj is to simply com-

pute its expectation value in some state. A convenient
choice is |+〉⊗N . In this state, we find 〈W 〉 = |Ek|, there-
fore λmax ≥ |Ek|. However, we would like to increase
this lower bound, since |Ek| is met by separable states.
In [61], a sharper lower bound for the largest eigenvalue
of any m×m symmetric matrix is provided as

λmax ≥
N1

m
+ 2

(
N3

2m
− N1N2

m2
+

N3
1

2m3

)
λ−2

0 +O(t−4)

(C15)
where u = [1 1 . . . 1]T is the m× 1 all-ones vector, Nk =
uTAku, B = 1√

m
max1≤j≤m(Wjj +

∑m
i=1;i 6=j |Wij |), λ0 =

t
√
m and t is any real number satisfying t ≥ B. In our

case, we have m = 2N .
We already noted that N1/m = |Ek|. Now,

W 2 =

 ∑
〈i1,...,ik〉

(

ik⊗
m=i1

Xm +

ik⊗
m=i1

Zm)

2

=
∑

〈i1,...,ik〉

∑
〈j1,...,jk〉

(Xi1 . . . XikXj1 . . . Xjk+

Xi1 . . . XikZj1 . . . Zjk + Zi1 . . . ZikXj1 . . . Xjk

+Zi1 . . . ZikZj1 . . . Zjk) (C16)

Under expectation in the |+〉⊗N state, the first term

becomes
(∑

〈i1,...,ik〉〈Xi1〉 . . . 〈Xik〉
)2

= |Ek|2. Both

terms involving a product of X . . .X and Z . . . Z terms
are zero under expectation, since either the Zi terms
will survive under the product, or multiply with an
Xi to produce a Yi, and since 〈+|Z|+〉 = 〈+|Y |+〉 =
0, the entire term vanishes in expectation. The last
term Zi1 . . . ZikZj1 . . . Zjk can only contribute whenever
〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 specify the same k-tuple, so

that
〈∑

〈i1,...,ik〉
∑
〈j1,...,jk〉 Zi1 . . . ZikZj1 . . . Zjk

〉
= |Ek|.

Altogether, this gives us

N2

m
= 〈W 2〉 = |Ek|2 + |Ek| (C17)

To compute the N3 term, we observe that W 3 consists of
four types of terms:

1. One term of the form
Xi1 . . . XikXj1 . . . XjkXl1 . . . Xlk , which under
expectation give a total contribution of |Ek|2, fol-
lowing the same reasoning as in the computation
of N2/m above,

2. Three terms of the form (Xi1 . . . Xik)
2

(Zi1 . . . Zik),
each of which give a contribution of 0 under expec-
tation, since the Zm’s have no choice but to either
persist or multiply with an Xm to give Ym, and
〈Zm〉 = 〈Ym〉 = 0,

3. Three terms of the form (Xi1 . . . Xik) (Zi1 . . . Zik)
2
,

each of which give a contribution of |Ek|2
since

∑
i1,...,ik

〈Xi1 . . . Xik〉 = |Ek|, and

〈
(∑

〈i1,...,ik Zi1 . . . Zik

)2

〉 = |Ek| for the same

reason we noted earlier in the computation of
N2/m,

4. One term of the form
Zi1 . . . ZikZj1 . . . ZjkZl1 . . . Zlk , which has non-
trivial contributions from triangles within a graph,
and is generally tedious to compute.

Even without explicitly calculating this last term, we
have

N3

m
= 〈W 3〉 ≥ |Ek|3 + 3|Ek|2 (C18)

Combining these results, we have

N3

2m
− N1N2

m2
+

N3
1

2m3

≥ |Ek|
3 + 3|Ek|2

2
− |Ek|3 − |Ek|2 +

|Ek|3

2

=
|Ek|2

2
> 0 (C19)

Letting t =
√
m
2 B = |Ek|, we have t ≥ B for all N ≥ 2,

and λ0 = t
√
m = |Ek|

√
2N . Plugging these values into

Eq. (C15), we find that

2

(
N3

2m
− N1N2

m2
+

N3
1

2m3

)
λ−2

0 ≥ 1

2N
> 0

for any finite N , so that

λmax ≥ |Ek|+
1

2N
+O

(
1

|Ek|4

)
> |Ek|+O

(
1

|Ek|4

)
(C20)

which shows that the theorem holds for W
(k,N,G)
XZ . Not-

ing that the eigenspectrum of any observable A remains
invariant under a unitary transformation U†AU , we

can perform single-qubit rotations U =
⊗N

q=1R
(q)
X (π/2)

(where R
(q)
X (α) = exp(−iαXq)) at every qubit to have

Eq. (C20) apply to observables of the form W
(k,N,G)
XY as

well. Similarly, choosing U =
⊗N

q=1R
(q)
Z (π/2) yields the

same bound for observables of the form W
(k,N,G)
Y Z . This

exhausts all the possibilities for W
(k,N,G)
PQ , and the theo-

rem holds.
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Proof of Lemma 3

Proof. These expressions can be derived using essen-
tially the procedure described in [62]. In that pa-
per, the authors derive the expression for 〈Cuv〉, where
Cuv = 1

2 (I− ZuZv) → 〈ZuZv〉 = 1 − 2〈Cuv〉, and
where the QAOA state is built from the cost Hamilto-
nian C ′ = 1

2

∑
〈u,v〉 (I− ZuZv). The expression they de-

rive for 〈ZuZv〉matches our expression for 〈ZuZv〉 as long
as one adjusts for the difference in convention by replac-
ing γ → 2γ and 〈ZuZv〉 → 2〈ZuZv〉 in going from the
notation of [62] to our expression.

The expression for 〈XuXv〉 is derived similarly
in the Heisenberg picture. We first note that

eiβBXuXve
−iβB = XuXv for B =

∑N
i=1Xi, so that

〈XuXv〉 = Tr
(
eiγCeiβBXuXve

−iβBe−iγCρ0

)
= Tr

(
eiγCXuXve

−iγCρ0

)
(C21)

where ρ0 =
∏N
q=1

1
2 (I +Xq) is the initial state. Further,

since [ZuZv, XuXv] = 0 and [ZiZj , XuXv] = 0 when-
ever i 6= u, j 6= v, the only terms that survive are those
involving u (v) and its neighbors excluding v (u). Denot-
ing the number of such neighbors as du and dv respec-

tively for u and v, and defining Cu =
∑du
j=1 ZuZaj and

Cv =
∑dv
i=1 ZvZbi , we have

Tr
(
eiγCXuXve

−iγCρ0

)
= Tr

(
eiγCveiγCuXuXve

−iγCue−iγCvρ0

)
= Tr

(
ei2γCvei2γCuXuXvρ0

)
(C22)

where in the last line we have used the fact that XmZm =
−ZmXm to move the e−iγCu and e−iγCv terms past
XuXv. Now, Tr(AuBvρ0) = 1 only when A,B ∈ {I, X},
so that the only terms in the product ei2γCvei2γCu that
can contribute non-trivially are those that are propor-
tional to the identity. Therefore, using eiαZaZb = cosαI+
i sinαZaZb, we see that for triangle-free edges,

〈XuXv〉 = cosdu+dv 2γ (C23)

which agrees with the expression in Lemma 3 for the
case f = 0. In the more general case, only terms in the
expansion that are proportional to even powers of Zu and
Zv (and therefore the identity) contribute non-trivially.
We then have

〈XuXv〉

=

f∑
j=0,2,4,...

(
f

j

)
(cos 2γ)

du+dv−2j
(i sin 2γ)2j

= cosdu+dv−2f 2γ

×
f∑

j=0,2,4,...

(
f

j

)
(cos2 2γ)f−j(− sin2 2γ)j (C24)

and using the identity

f∑
j=0,2,4,...

(
f

j

)
af−jbj =

1

2

[
(a+ b)f + (a− b)f

]
(C25)

we finally obtain

〈XuXv〉 =
1

2
cosdu+dv−2f 2γ

(
1 + cosf 4γ

)
(C26)

as stated in the Lemma.
To derive the expression for 〈YuYv〉, we make use of the

relation SWAPuv = 1
2 (XuXv + YuYv + ZuZv + I) and

derive the expectation value for SWAPuv first. Notice
that [YuYv, B] = −[ZuZv, B] and [XuXv, B] = [I, B] =
0, so that [SWAPuv, B] = 0, and therefore the mixing
unitaries do not contribute to the expectation value:

〈SWAPuv〉 = Tr
(
eiγCeiβBXuXve

−iβBe−iγCρ0

)
= Tr

(
eiγCSWAPuve

−iγCρ0

)
(C27)

Inside the trace, only terms involving u or v contribute,
and by making use of SWAPuve

iγZuZu′SWAPuv =
eiγZvZu′ , we have

〈SWAPuv〉

= Tr
(
eiγ

∑
u′∈N(u) ZuZu′ eiγ

∑
v′∈N(v) ZvZv′

SWAPuve
−iγ

∑
u′∈N(u) ZuZu′ e−iγ

∑
v′∈N(v) ZvZv′ρ0

)
= Tr

(
eiγ(Zu−Zv)(

∑
u′∈N′(u) Zu′−

∑
v′∈N′(v) Zv′)SWAPuvρ0

)
= Tr

(
eiγ(Zu−Zv)(

∑
u′∈N′(u) Zu′−

∑
v′∈N′(v) Zv′)ρ0

)
(C28)

where N (u) is the set of neighbors of u, N ′(u) is the set
of nodes that are neighbors of u but not v or neighbors of
v, with N ′(v) defined similarly, and the last step is due to
SWAPuvρ0 = ρ0. In the second equality above, we have
made use of the fact that

∑
u′∈N (u) Zu′−

∑
v′∈N (v) Zv′ =∑

u′∈N ′(u) Zu′ −
∑
v′∈N ′(v) Zv′ . Since the exponential

contributes either identity or Z’s, terms in ρ0 that have
X trace to zero, and we further have

〈SWAPuv〉

=
1

2N
Tr
(
eiγ(Zu−Zv)(

∑
u′∈N′(u) Zu′−

∑
v′∈N′(v) Zv′)

)
=

1

2N
×

Tr

 ∏
u′∈N ′(u)

(cos γ + i sin γZuZu′) (cos γ − i sin γZvZu′)

∏
v′∈N ′(v)

(cos γ − i sin γZuZv′) (cos γ + i sin γZvZv′)


(C29)

There are two types of products that come from the above
expansion. The first kind are those in which terms from
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both the N ′(u) and N ′(v) products are proportional to
the identity, which give the following contribution

d′u∑
i=0,2,4,...

(
d′u
i

)(
cos2 γ

)d′u−i (sin2 γ
)i

×
d′v∑

j=0,2,4,...

(
d′v
v

)(
cos2 γ

)d′v−j (sin2 γ
)j

=
1

4

(
1 + cosd

′
u 2γ

)(
1 + cosd

′
v 2γ

)
(C30)

where d′u = |N ′(u)| = du− f , and d′v is defined similarly,
and we have used Eq. (C25). The second kind of terms
are those in which terms from both the N ′(u) and N ′(v)
products are proportional to ZuZv, so that the overall
product is still proportional to the identity. Terms like
these give the following overall contribution

d′u∑
i=1,3,5,...

(
d′u
i

)(
cos2 γ

)d′u−i (sin2 γ
)i

×
d′v∑

j=1,3,5,...

(
d′v
v

)(
cos2 γ

)d′v−j (sin2 γ
)j

=
1

4

(
1− cosd

′
u 2γ

)(
1− cosd

′
v 2γ

)
(C31)

where we have used the identity

f∑
j=1,3,5,...

(
f

j

)
af−jbj =

1

2

[
(a+ b)f − (a− b)f

]
(C32)

Adding Eqs. (C30) and (C31), we get the total contri-
bution

〈SWAPuv〉 =
1

2

(
1 + cosdu+dv−2f 2γ

)
(C33)

Using the earlier expressions for 〈XuXv〉 and 〈ZuZv〉, it
follows that the expression for 〈YuYv〉 is as given in the
Lemma.

Appendix D: Properties of W
(N,N,G)
XY Z and W

(N,N,G)
PQ

Here we present properties of the W
(N,N,G)
XY Z observable

(which can later be used to infer those of W
(N,N,G)
PQ ). In

particular, we show that some of the GHZ-type states
yield expectation values of ±3 for an even number of
qubits, and that they are eigenstates of the considered
observable. Additionally, it follows from Theorem 1
that separable states yield expectation values that are
bounded by ±1.

First, let’s calculate the expectation value with respect
to the standard incarnation of an N -qubit GHZ state

|ψ〉 =
|00 . . . 0〉+ |11 . . . 1〉√

2
=
|0̄〉+ |1̄〉√

2
, (D1)

where we used |k̄〉 = |kk . . . k〉 for brevity of notation.

The expectation value of W
(N,N,G)
XY Z with respect to |ψ〉 is

〈ψ|W (N,N,G)
XY Z |ψ〉 =

3

2
+

(−1)N

2
+

1

2

(
(−i)N +(i)N

)
, (D2)

where we used

〈0̄|Z⊗N |0̄〉 = 1, 〈1̄|Z⊗N |1̄〉 = (−1)N , 〈0̄|Z⊗N |1̄〉 = 0,

〈1̄|Z⊗N |0̄〉 = 0, 〈0̄|X⊗N |0̄〉 = 0, 〈1̄|X⊗N |1̄〉 = 0,

〈0̄|X⊗N |1̄〉 = 1, 〈1̄|X⊗N |0̄〉 = 1, 〈0̄|Y ⊗N |0̄〉 = 0,

〈1̄|Y ⊗N |1̄〉 = 0, 〈0̄|Y ⊗N |1̄〉 = (−i)N , 〈1̄| Ȳ |0̄〉 = (i)N .

For N = 4k, Eq. (D2) gives 〈ψ|W (N,N,G)
XY Z |ψ〉 = +3. It

is easy to generate other N -qubit GHZ states that also
give an expectation value of +3 by appropriately flipping
an even number of qubits with the X operator. Such a
transformation leaves the expectation value unchanged,
since XYX = −Y and XZX = −Z. A further odd
number of transformations will cancel the negative sign.
There are a total of 2N−2 such GHZ-like states that pro-
duce this expectation value, which can be obtained from
the following counting formula

k−1∑
i=1

(
4k

2i

)
+

1

2

(
4k

2k

)
+ 1 = 2N−2. (D3)

The first term counts the number of allowed flips
2, 4, . . . N/2 − 1 on all possible combinations of qubits,
noting that by the Z2 symmetry of the GHZ state, no
more than half of the qubits need be flipped. The next
term is the number of ways that we can flip exactly half
of the qubits, with the factor 1

2 eliminating Z2 symmet-
ric duplicates, and the final addition of 1 just counts the
original |ψ〉 state.

Similarly, one can construct GHZ-type states for sys-
tems composed of N = 4k + 2 qubits to give the expec-
tation value −3. Starting with the state

|φ〉 =
|00 . . . 01〉 − |11 . . . 10〉√

2
, (D4)

and by applying similar reasoning as for the case above,

one can show that 〈φ|W (N,N,G)
XY Z |φ〉 = −3. The number

of states obtainable from |φ〉 by an even number of flips,
and that therefore produce the same expectation value
−3 is again 2N−2 as above.

Now, we show that the states identified above are also

eigenstates of W
(N,N,G)
XY Z . Knowing that

X |0〉 = |1〉 X |1〉 = |0〉 , (D5)

Y |0〉 = i |1〉 Y |1〉 = (−i) |0〉 , (D6)

Z |0〉 = |0〉 Z |1〉 = − |1〉 , (D7)

we see that

X⊗N (|0̄〉+ |1̄〉) = (|1̄〉+ |0̄〉) , (D8)

Y ⊗N (|0̄〉+ |1̄〉) =
(
(i)N |1̄〉+ (−i)N |0̄〉

)
, (D9)

Z⊗N (|0̄〉+ |1̄〉) =
(
|0̄〉+ (−1)N |1̄〉

)
, (D10)
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so that |ψ〉 is an eigenstate of W
(N,N,G)
XY Z for N = 4k,

and the sum of the above terms gives its corresponding
eigenvalue of +3. Similarly, other GHZ states that are
generated by flipping an even number of qubits in |ψ〉 are
also eigenvectors with the same +3 eigenvalue. One can
incorporate the bit flip (X) operator to all X⊗N , Y ⊗N

or Z⊗N terms and use Pauli algebra, e.g. for flipping the
first two qubits we will have terms like: (XX)⊗ (XX) =
I⊗ I, (Y X)⊗ (Y X) = −Z⊗Z and ZX⊗ZX = −Y ⊗Y .
Thus, for example, the state

|ψ1,2〉 = |1100 . . . 0〉+ |0011 . . . 1〉 = (X1X2)(|0̄〉+ |1̄〉
(D11)

is an eigenstate of W
(N,N,G)
XY Z , since X⊗N |ψ1,2〉 =

Y ⊗N |ψ1,2〉 = |ψ1,2〉, and perhaps less obviously

Y ⊗N |ψ1,2〉 = −Z1Z2Y
⊗(N−2) (|0̄〉+ |1̄〉)

= −(i)N−2 |0011 . . . 1〉 − (−1)N−2 |1100 . . . 0〉
= −(i)N−2X1X2 |1〉 − (−i)N−2X1X2 |0〉 = |ψ1,2〉 ,

(D12)

and similarly for all other states obtained by flipping an
even number of qubits in |ψ〉. For eigenstates with the
−3 eigenvalue, the reasoning follows analogous steps.

Based on Theorem 1, the upper and lower bounds

of W
(N,N,G)
XY Z are +1 and −1 respectively, since we have

only a single generalized edge. Therefore, this observable
serves as a provable entanglement witness [37] for an even
number of qubits. For odd numbers of qubits, we numer-
ically found the expectation value to be ±

√
3. Similarly,

if we restrict to only two terms (e.g. XZ, XY and Y Z),
one can follow essentially the same logic and demonstrate
that an even number of qubits give an expectation value
±2 in GHZ states, while an odd number of qubits are
numerically found to give an expectation value of ±

√
2.

Once again, these expectation values violate the separa-
ble thresholds of ±|E| = ±1 from Theorem 1.
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