
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nondispersive One-Way Signal Amplification in Sonic
Metamaterials

Noah Kruss and Jayson Paulose
Phys. Rev. Applied 17, 024020 — Published  7 February 2022

DOI: 10.1103/PhysRevApplied.17.024020

https://dx.doi.org/10.1103/PhysRevApplied.17.024020


Non-dispersive one-way signal amplification in sonic metamaterials

Noah Kruss1 and Jayson Paulose1, 2

1Department of Physics, University of Oregon, Eugene, OR 97403
2Institute for Fundamental Science and Materials Science Institute, University of Oregon, Eugene, OR 97403

Parametric amplification—injecting energy into waves via periodic modulation of system
parameters—is typically restricted to specific multiples of the modulation frequency. However,
broadband parametric amplification can be achieved in active metamaterials which allow local pa-
rameters to be modulated both in space and in time. Inspired by the concept of luminal meta-
materials in optics, we describe a mechanism for one-way amplification of sound waves across an
entire frequency band using spacetime-periodic modulation of local stiffnesses in the form of a trav-
eling wave. When the speed of the modulation wave approaches that of the speed of sound in the
metamaterial—a regime called the sonic limit—nearly all modes in the forward-propagating acoustic
band are amplified, whereas no amplification occurs in the reverse-propagating band. To eliminate
divergences that are inherent to the sonic limit in continuum materials, we use an exact Floquet-
Bloch approach to compute the dynamic excitation bands of discrete periodic systems. We find wide
ranges of parameters for which the amplification is nearly uniform across the lowest-frequency band,
enabling amplification of wavepackets while preserving their speed, shape, and spectral content. Our
mechanism provides a route to designing acoustic metamaterials which can propagate wave pulses
without losses or distortion across a wide range of frequencies.

I. INTRODUCTION

Parametric amplification—feeding energy into oscilla-
tory modes through a periodic modulation of the un-
derlying stiffness or coupling parameters—provides a
technologically-relevant route to boosting signals and
overcoming losses in electromagnetic [1, 2], optical [3]
and mechanical [4] systems. Typically, parametric am-
plification occurs only for a discrete set of modes which
satisfy specific frequency relationships with the modu-
lation frequency [5], which obstructs its use to amplify
propagating signals with multiple frequency components
such as localized wavepackets. However, when the pa-
rameter modulation is itself a traveling wave through the
medium, interference effects enable amplification over a
wide range of signal frequencies with a single modula-
tion frequency [6, 7], opening up possibilities for amplifi-
cation and loss-compensation of multispectral signals as
long as the desired spacetime parameter modulation can
be achieved.

Active metamaterials—artificial structures whose
properties can be modulated using external fields [8–
10]—provide a promising platform for broadband para-
metric amplification using traveling waves [11]. In the
realm of acoustics, traveling-wave modulation of elastic
stiffnesses has primarily been used to achieve nonrecip-
rocal transport [12–18], although parametric amplifica-
tion has also been observed albeit in narrow frequency
ranges [13]. Despite rapid developments in active acous-
tic metamaterial platforms which enable on-demand spa-
tiotemporal modulation of acoustic parameters across
a wide range of length and frequency scales [9, 19],
traveling-wave parametric amplification remains unex-
ploited as a mechanism to boost multispectral signals in
active acoustic metamaterials.

Here, we show that a traveling-wave stiffness modu-
lation can generate broadband parametric amplification

in acoustic systems as a consequence of instabilities that
arise when the speed of the traveling-wave modulation is
close to the speed of sound in the medium [20–22]—a sit-
uation termed the sonic limit [6]. In the sonic limit, ap-
proximate techniques such as coupled-mode theory and
plane-wave expansions, commonly used to compute the
response of time-modulated metamaterials [23–26], are
known to break down [6, 22]. Instead, we develop a
Floquet-Bloch technique to calculate the exact disper-
sion relation of a discrete system of masses connected by
springs with spacetime-modulated stiffnesses. We find
that the acoustic gain (the imaginary part of the com-
plex frequency) can be made nearly constant over a broad
range of frequencies and quasimomenta, allowing coher-
ent amplification and loss-mitigation of acoustic signals
with a broad spectral content. The gain is controlled by
the modulation strength, which allows our technique to
be dynamically tuned to produce the desired amplifica-
tion, or to finely balance losses for unattenuated sound
transmission. It is also strongly directional, allowing
highly non-reciprocal response with amplified transport
of signals in one direction and strong attenuation in the
opposite direction. As a technologically-relevant illus-
tration of our approach, we demonstrate dispersion-free
amplification and loss-compensation of propagating wave
pulses in modulated spring-mass chains.

The physical mechanism underlying the sonic limit is
illustrated in Fig. 1 for a continuum one-dimensional
(1D) system which admits a linear dispersion relation
ω(q) = ±vq between the inverse wavelength, or quasi-
momentum, q of traveling waves and their oscillation
frequency ω when the underlying stiffness constants are
uniform [6, 11]. If the stiffness is perturbed by a pe-
riodic traveling-wave modulation with quasimomentum
g and frequency Ω, Floquet-Bloch theory dictates that
the original normal modes become strongly coupled with
harmonics that are displaced by integer multiples of
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FIG. 1. Sonic metamaterials. (a) A 1D continuum system
displays a linear dispersion relation for sound waves (solid
lines). When the local stiffness k(x, t) is modulated accord-
ing to a traveling wave, k(x, t) = k0[1 + δ cos(gx − Ωt)], the
resulting normal modes arise from the coupling of the un-
modulated modes with their harmonic replicas (dashed lines)
displaced by integer multiples of the vector (g,Ω) (arrow) in
the frequency-quasimomentum plane. Here, Ω/g = 0.4v. (b)
Same as (a) with Ω/g = 0.9v. The first six harmonics are
shown. As Ω/g → v, all harmonics overlap along ω = vq. (c)
A periodic spring-mass chain with lattice spacing a has a non-
linear dispersion relation across the Brillouin zone. Shaded re-
gion shows the reduced Brillouin zone when spring constants
are modulated as shown in (d). (d) (top) Section of an infinite
spring chain with lattice spacing a; horizontal displacements
(arrow) from equilibrium (dashed vertical lines) are coupled
by a repeating set of three unique spring constants (colors) as
defined by Eq. (2) with n = 3. (bottom) The same equation
of motion is obeyed by vertical displacements of masses re-
stricted to slide along immobile rigid bars spaced by a (solid
vertical lines) and coupled by tensed strings whose tensions
(colors) are modulated according to Eq. (2).

the vector (g,Ω) on the quasimomentum-frequency plane
(Fig. 1(a)). When Ω/g approaches the speed of sound v,
all harmonics of the original set of modes begin to over-
lap along the branch ω = vq (Fig. 1(b)), signifying a
pile-up of harmonic contributions at the sonic limit of
the modulated medium. Because of these overlapping
contributions from a technically infinite set of harmon-
ics, calculations of the dispersion relation of the infinite
continuum system do not converge [6]. However, the re-
sponse of a finite system over finite time intervals can still
be computed, and has been shown to exhibit broadband
amplification and high-frequency harmonic generation in
optical metamaterials where the analogous situation has
been termed the luminal limit [11].

II. FLOQUET-BLOCH BAND STRUCTURES OF
TIME-MODULATED SPRING NETWORKS

As an alternative to considering a system with finite
extent, we avoid the divergences that plague the sonic
limit by considering a discrete periodic system of masses
m connected by springs, whose vector of displacements x
from equilibrium is governed by the equation of motion

mẍ + K(t)x = 0, (1)

where K is the stiffness matrix (see Appendix A for the
form of the matrix). Such spring-mass lattices comprise a
minimal model for vibrational waves in crystals [27], and
can also be used to describe effective coupled degrees of
freedom in metamaterials with continuum elastic compo-
nents [28, 29]. The normal modes of an infinitely long pe-
riodic chain with lattice spacing a are described as contin-
uous bands over a restricted set of unique quasimomenta
−π/a ≤ q < π/a which defines the Brillouin zone (BZ).
When all masses and springs are constant and equal, the
eigenmodes of the Fourier-transformed system are orga-
nized into two bands with a nonlinear dispersion relation
ωs(q) = ±2ω0 sin(qa/2) (Fig. 1(c)). However, for a free-
standing chain the lowest-frequency, or acoustic, band
generically has a linear dispersion at low quasimomenta
because translations of the structure do not stretch or
compress any springs. This translational symmetry can
also be replicated in anchored degrees of freedom coupled
by tensile springs, which do not stretch when all points
are displaced by the same amount (Fig. 1(d)).

We now consider the effect of sinusoidal stiffness mod-
ulations which are themselves periodic in space over a
unit cell comprising n degrees of freedom,

ki(t) = k0

[
1 + δ cos

(
2π

n
i− Ωt

)]
, (2)

where ki is the stiffness of the ith coupling element along
the chain, k0 and δ are the base stiffness and the frac-
tional amplitude of the stiffness modulation respectively,
and Ω is the modulation frequency. The choice of unit
cell defines a range of allowed quasimomenta or reduced
Brillouin zone (rBZ) of − π

na < k < π
na , shown in grey

in Fig. 1(c). When n is large, the acoustic band is ef-
fectively linear across the entire rBZ, and the sonic limit
corresponds to

Ω =
2πv

na
=

2π

n
ω0 ≡ Ωs, (3)

where the speed of sound is dictated by the microscopic
parameters via v =

√
k0/ma = ω0a with ω0 the natural

frequency of the unmodulated springs. In the vicinity of
this limit, we expect that modes over a wide range of
frequencies in the lowest frequency band will experience
parametric amplification due to interference with a large
number of higher harmonics similar to Fig. 1(b).

Since only a finite number of degrees of freedom are
involved within each unit cell, the dispersion relations of
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FIG. 2. Floquet-Bloch complex band structures near the sonic limit. Real (top) and imaginary (bottom) components
of Floquet quasifrequencies as a function of crystal quasimomentum for a system with n = 8 and a traveling-wave modulation of
δ = 0.18, at three different modulation frequencies (columns (a)–(c)). Floquet-Bloch analysis provides 2n = 16 complex-valued
bands across the rBZ. Thin grey curves show modes with purely real frequencies, while thick curves show modes with nonzero
gain or loss. Every mode with nonzero gain is paired with a mode with nonzero loss of the same magnitude, and the same real
frequency (Appendix A). The pairs of modes are apparent in the bottom row (curves with nonzero α occur in pairs with equal
and opposite values), but only one curve out of each pair is visible in the top row (the ω value of each mode coincides exactly
with its counterpart). The middle column shows a system at the sonic limit.

the 2n bands (arising from the n degrees of freedom per
unit cell for a second-order system of differential equa-
tions) of the time-modulated system can be computed
exactly using Floquet-Bloch theory without resorting to
coupled-mode expansions or perturbative treatments, as
described in Appendix A. The theory generates complex-
valued quasifrequencies ν(q) = ω(q)+ iα(q) as a function
of quasimomenta q in the rBZ −π/(na) < q < π/(na).
The real part (which can be positive or negative) sets the
oscillation frequency ω of the mode, whereas the imagi-
nary part α signifies exponential growth (α > 0) or decay
(α < 0) of the underlying mode in time. In the absence
of damping, the Hermiticity of the stiffness matrix at
every instant in time leads to constraints on the Flo-
quet quasifrequencies [30], which we summarize in Ap-
pendix A. Specifically, every real-valued mode ν(q) = ω
is accompanied by a mode at the opposite quasimomen-
tum with ν(−q) = −ω. For every mode with complex
quasifrequency ν(q) = ν0, a mode at the same quasi-
momentum with quasifrequency ν(q) = ν∗0 (i.e., same
oscillation frequency and gain factor with same magni-
tude but opposite sign) is also a solution. The opposite
quasimomentum −q also has two modes associated with
ν0: one mode for which ν(−q) = −ν0 and another mode
with ν(−q) = −ν∗0 . Furthermore, the real-valued oscil-
lation frequencies are defined modulo Ω; a minimal set
of Floquet-Bloch bands is therefore defined in the range

−1/2 < ω/Ω < 1/2.

Figure 2 shows the Floquet-Bloch bands with lowest
oscillation frequency arising from the acoustic bands of a
chain with n = 8 points in the unit cell, with traveling-
wave modulation frequency below, at, and above the
sonic limit defined by Eq. (3). As required by the Flo-
quet structure, modes with complex-valued quasifrequen-
cies occur in pairs with the same oscillation frequency
and opposite gain factors. Away from the sonic limit
(Fig. 2(a,c)) complex bands occur in disconnected seg-
ments separated by quasimomenta with purely real fre-
quencies. Exactly at the sonic limit Ω = Ωs, the complex
bands with constant positive slope acquire an imaginary
component across the entire rBZ (Fig. 2(b)), with a near-
constant value of the gain factor at large quasimomenta.
The effect is directional: whereas the band with a pos-
itive group velocity is amplified throughout, the accom-
panying band with a negative slope barely experiences
amplification, except in narrow quasimomentum ranges.
These calculations show that unidirectional, broadband
amplification of vibrations can be achieved by modulat-
ing spring stiffnesses at the sonic limit.
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FIG. 3. Parameter dependence of gain at the sonic limit. (a) Gain factors (imaginary components of Floquet-Bloch
bands) at Ω = Ωs for n = 8 and varying stiffness modulation strength δ. (b) Largest gain factor at the band edge (q = π/(na),
solid lines) and halfway between the origin and the band edge (q = π/(2na), symbols) as a function of modulation strength
for different unit cell sizes n. Both quantities are scaled by the parameter (Ωs/ω0)2 = (2π/n)2 which sets the strength of
parametric amplification in the system. Vertical dashed lines indicate the four values of the modulation strength for the n = 8
bands in (a). In the shaded region, the gain factors at quasimomenta π/(na) and π/(2na) coincide, consistent with broadband
amplification of near-constant strength across much of the rBZ.

III. STRENGTH AND PARAMETER
DEPENDENCE OF EFFECT

While a near-constant gain factor can be attained
across much of the Brillouin zone in the sonic limit,
this is not guaranteed at all modulation strengths. The
nonlinear dispersion relation of the unmodulated sys-
tem, and the presence of additional bands that acci-
dentally satisfy resonance conditions with the traveling-
wave modulation, together generate a rich structure of
complex Floquet-Bloch bands at the sonic limit. Fig-
ure 3(a) shows how the gain factors vary with modu-
lation strength δ at the sonic limit for a unit cell with
n = 8. At low modulation strengths, a region of nonzero
gain opens up in the lowest-frequency band with positive
slope around the band edges q = ±π/(8a). The region
expands towards the origin, creating a nearly flat gain-
quasimomentum dependence across much of the rBZ at
δ = 0.18. At higher modulation strengths, several bands
acquire an appreciable gain factor in various quasimo-
mentum ranges due to additional resonances, and the
gain factors become strongly q-dependent.

Despite this rich structure, at the sonic limit we
can reliably find modulation strengths which realize
near-constant broadband amplification. When time is
scaled by the inverse of the modulation frequency Ω,
the Fourier-transformed dynamical matrices depend on
the rescaled base stiffness (ω0/Ω)2 and the rescaled
modulation strength δ(ω0/Ω)2. At the sonic limit
ω0/Ω = n/(2π), we expect resonances across the lowest
band, whose gain factor is set by the rescaled strength
δ(n/(2π))2. Calculations of the largest gain factor at the

BZ edge, q = π/(na), and halfway to the BZ center,
q = π/(2na), show that the gain factor takes on simi-
lar values at both quasimomenta for rescaled modulation
strengths in the range 0.25 to 0.32 before dropping back
to zero. Full Floquet-Bloch band structures for higher
values of n confirm near-constant gain factors across the
BZ, see supplementary Fig. A1. At higher modulation
strengths, additional regions of nonzero gain arise, but
the gain factors differ across the band (lower right panel
of Fig. 3(a)). These regions are reminiscent of higher-
order “instability tongues” in the Mathieu equation, and
arise due to additional resonances among the vibrational
modes and the modulation [31]. The absence of perfect
collapse of the curves at different unit cell sizes is due to
the finite deviation of the lowest band from the idealized
linear dispersion, which becomes smaller as n increases
due to the shrinking reduced Brillouin zone (Fig. 1(c)).

Figure 3(b) shows that the fractional stiffness mod-
ulation required for the strongest broadband amplifica-
tion falls with increasing unit cell size, δ ≈ 0.27(2π/n)2.
In principle, broadband amplification can be realized
even if the experimentally-achievable stiffness modula-
tion strength is small, by increasing the wavelength of
the stiffness-modulating traveling wave. However, the
corresponding gain factor, which is set by the modula-
tion strength and governs the exponential growth ∼ eαt

in the signal with time, falls as α/Ω ∼ δ ∼ 1/n2 (or
α/ω0 ∼ 1/n3). At higher stiffness modulations, the sonic
limit extends over a broader range of modulation phase
velocities [6], and stronger broadband amplification can
be achieved with slightly slower traveling-wave modula-
tions Ω . Ωs (see Appendix B).
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IV. INTERPLAY OF PARAMETRIC
AMPLIFICATION AND DAMPING

The existence of modes with positive gain factors
points to the presence of instabilities—even the slightest
perturbation to the system, if it overlapped with one of
the amplified modes, would lead to displacements which
grow exponentially in time and ultimately overcome the
system. However, if the amplification can be controlled—
for instance, by turning the stiffness modulation on for fi-
nite periods of time—the positive gain factors can be used
to amplify modes in the system. Furthermore, in sys-
tems with damping, positive gain factors can be used to
compensate for losses and propagate signals over longer
distances.

We first review the effect of damping on the phonon
band structure of a static spring lattice with uniform
spring constants. Upon adding a drag force of the form
−γẋ to the equation of motion (Eq. (1)), the frequency
bands become complex-valued:

ω(q) = ±
√
ω2

s (q)−
( γ

2m

)2

. (4)

Modes whose undamped frequency was large compared
to the damping frequency scale γ/m experience a small
shift in their oscillatory frequency, and acquire a nega-
tive gain factor α = −γ/(2m). At low frequencies, how-
ever, the frequencies become purely imaginary, and the
two overdamped modes decay exponentially with rate
α = −γ/(2m) ±

√
(γ/(2m))2 − ω2

s . At q = 0, a zero-
frequency mode is guaranteed to exist, which corresponds
to a displacement of all masses by the same amount at
zero speed, which does not deform any springs and in-
duces no drag forces. This mode is accompanied by an-
other mode with α = −γ/m, corresponding to all masses
initially moving at the same speed.

The effect of damping on modulated structures is read-
ily incorporated in the Floquet-Bloch eigenvalue compu-
tation, and leads to similar results to the static case.
Figure 4 shows the effect of damping on the sonic meta-
material with n = 8 reported in Fig. 2(b). The damp-
ing strength is quantified by the dimensionless damp-
ing factor ζ ≡ γ/(2mω0). In the presence of drag
forces, the symmetries between complex quasifrequences
ν(q) and ν(−q) are no longer obeyed. Instead, we find
that modes with large oscillation frequencies compared
to γ/m have their gain factors shifted down by roughly
γ/(2m), whereas modes near q = 0 in the lowest band
become purely imaginary. However, the near-constant
value of the gain factor away from q = 0 is maintained,
showing that the broadband aspect of parametric am-
plification near the sonic limit is preserved in damped
systems. At ζ = 0.01, the largest gain factor is close to
zero across the entire acoustic band, signifying a balance
point between the broadband parametric amplification
and the drag. We will further investigate this balance,
and its consequences for signal propagation, in the next
section.

V. DISPERSION-FREE AMPLIFICATION AND
LOSS MITIGATION OF SOUND PULSES

To illustrate the utility of the broadband amplification
mechanism for boosting signals and overcoming losses, we
study the propagation of localized sound pulses (Gaus-
sian wavepackets) along a chain of springs. Specifically,
the system is initialized with a linear superposition of
eigenmodes φq from the acoustic band with a linear
frequency-momentum relationship. The mode weights
are Gaussian-distributed with spread ∆q about the mean
quasimomentum q0:

u(n) =
∑

q

e−[(q−q0)/∆q]2φqe
i(qn−ωqt), (5)

where u(n) is the vector of initial displacements of the
nth unit cell, φq is the Floquet-Bloch eigenvector of the
amplified band at quasimomentum q, and ωq is the real
component of the eigenfrequency. In the unmodulated
and undamped static system, the resulting sound pulse
propagates at a constant speed given by the slope of the
linear dispersion relation, ∂ω/∂k = v (Appendix D). In
the presence of damping, however, all modes decay expo-
nentially in time as ∼ e−γt/(2m), leading to an overall ex-
ponential decay in the pulse amplitude. When the broad-
band amplification is turned on, the near-constant gain
compensates for the damping across most of the band,
shifting the negative gain factors towards or above zero
as the modulation strength is increased. Upon turning
on the broadband modulation at increasing strengths, the
pulse attenuation can be slowed down or even reversed
to amplify the pulse as it propagates along the chain, as
shown in Fig. 5. At a particular modulation strength, the
net gain factors are zero across most of the acoustic band
(Fig. 4(b)), and we expect the sound pulse to travel at
constant amplitude with little dispersion, demonstrating
near-ideal loss compensation through stiffness modula-
tion.

We test this mechanism in classical dynamics simula-
tions of a finite one-dimensional spring-mass system (see
Appendix C for details) at the sonic limit, with different
damping levels (Fig. 5). The spring constants were mod-
ulated according to the parameters used in Fig. 2(b), and
M = 201 unit cells were used. A Gaussian pulse was ini-
tialized using Eq. (5) with q0 = 0.25/a and ∆q = 0.1q0;
the sum was evaluated over a discrete set of quasimo-
menta determined by the system size and the boundary
conditions, q = 2πj/(Mna) with j taking on integer val-
ues in the range −M/2 < j < M/2. The subsequent
dynamics of the chain were simulated over thousands of
stiffness modulation cycles. We find that the wavepacket
travels at a constant speed, and its amplitude shows
different dynamics depending on the damping strength
but with minimal distortion of the pulse width or shape
(Fig. 5(a–c)). In particular, at a specific value of the
damping relative to the modulation, the pulse maintained
a near-constant amplitude over long times as shown in
Fig. 5(b).
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FIG. 4. Effect of damping on broadband parametric amplification. Real (top) and imaginary (bottom) components
of Floquet quasifrequencies as a function of crystal quasimomentum for a system with n = 8, δ = 0.18, and Ω = Ωs, at three
different values of the damping ratio ζ = γ/(2mω0). In this case, modes that are not parametrically amplified have a negative
gain factor α/Ω = −ζω0/Ωs = −ζn/(2π), signifying exponentially-damped modes, and are shown in grey. Thick colored curves
show modes whose gain factors deviate from this value.

To assess the fidelity of the loss-compensation and am-
plification, we track the pulse position, amplitude, and
width as a function of time by fitting a Gaussian profile
to the displacement field (see Methods for details). Con-
sistent with our theoretical expectations from the band
structure calculations, we find that the wavepacket speed
is not affected by the amplification level (Fig. 5(d)). The
relative amplitude (the ratio of the pulse amplitude to
its initial value) shows exponential growth, decay, or sta-
sis as the system damping is changed. Specifically, a
threshold value ζ = 0.0096 separates damping factors
at which the pulse amplitude decreases over time from
those for which the amplitude increases (Fig. 5(e)). At
this value, the time constant associated with the expo-
nential decay due to damping, γ/(2m) = ζω0, matches
the near-constant gain factor of the undamped system,
α ≈ 0.0096ω0 for the parameter values simulated in
Fig. 5. As a result, damping and parametric amplifi-
cation are in balance, signifying ideal loss-compensation
in the system. The pulse width changes by only a few
percent over thousands of cycles of the stiffness mod-
ulation (Fig. 5(f)). This lack of dispersion is owed to
the nearly constant values of the gain factors across the
band in sonic metamaterials; non-constant gain factors
would lead to rapid changes in the pulse shape and spec-
tral content during pulse propagation, as we show in Ap-
pendix D.

In Fig. 5, we have varied the damping factor for a
constant value of the stiffness modulation. Conversely,

the tunable amplification can be adjusted to compensate
for a background damping whose value is fixed by ex-
ternal loss mechanisms in the system. Upon estimating
the damping factor ζ in the passive system, dissipation-
free transport can be achieved by modulating the system
with parameters δ and n chosen so that the near-constant
gain factor in the modulated system compensates for the
damping, α = ζω0. While there is no closed-form ex-
pression describing the complex relationship between the
gain factors and the system parameters, the modulation
strength required to achieve a desired value of α can
be estimated from numerically-determined curves such
as Fig. 3(b).

VI. DISCUSSION

We have shown that a traveling-wave stiffness mod-
ulation generates broadband parametric amplification
of sound waves when the modulation wave speed ap-
proaches the speed of sound in the medium, confirm-
ing a recent hypothesis grounded in a similar effect for
light [11]. We quantify the effect using a discrete Floquet-
Bloch approach to compute complex-valued quasifre-
quencies without encountering divergences or requiring
truncated expansions. For a broad range of parameter
values, we find that the amplification factor is nearly
constant over almost all quasimomenta of a particular
band, which enables Gaussian wavepackets to propagate
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FIG. 5. Pulse propagation in classical dynamics simulations of a 1D spring-mass chain at the sonic limit (n = 8,
δ = 0.18, Ω = Ωs). (a)–(c) Evolution of the same initial pulse in simulations with damping strength above, at, and below
the balance point with the broadband parametric amplification. Curves are ordered in increasing time from top to bottom,
and time advances by 10000 timesteps between successive curves. Periodic boundary conditions allow the propagating pulse
to wrap around the system several times. (d)–(f) Pulse propagation properties obtained by fitting a Gaussian lineshape to
the displacement amplitudes, for different damping ratios near the balance point. (d) Displacement of the pulse peak (lattice
units) as a function of time. (e) Evolution of the pulse amplitude with time, as a fraction of the intial amplitude. Solid line
corresponds to an undamped system with unmodulated spring stiffnesses (δ = 0). (f) Evolution of the pulse width over time,
as a fraction of its initial value.

without dispersion or energy loss even in the presence of
damping. The amplification is highly directional, signi-
fying a strong nonreciprocal response in the metamate-
rial [19]. The mechanism could be realized in any active
acoustic metamaterial with a linear dispersion relation at
low quasimomenta for which the effective stiffness can be
modulated in space and time, such as beams with piezo-
electric [13] or electromagnetic [12, 32, 33] actuation, or
backgated micromechanical resonator arrays [34].

Beyond signal amplification, our work suggests several
avenues for future research. The presence of paramet-
ric gain in our system makes the underlying eigenvalue
problem non-Hermitian. Our strategy therefore com-
plements approaches based on active feedback to real-
ize non-Hermitian mechanical phenomena [35–37]. The
exact Floquet-Bloch framework used here is equally ap-
plicable to slow and fast time modulations, bridging the
gap between theoretical approaches that rely on adia-
batic (for slow modulation) or Magnus (for fast modula-
tion) expansions and thereby enabling the exploration of
non-Hermitian topological phenomena in regimes where
the modulation and excitation frequencies are of similar
order [38].

As an example of non-Hermitian physics enabled by
our system, the Floquet-Bloch band structures harbor
exceptional points—parameter values at which the non-
Hermitian Floquet eigenvectors become degenerate—at
the quasimomentum values separating real-valued from
complex-valued quasifrequencies in the rBZ. The nonlin-
ear dispersion in the vicinity of an exceptional point has
been exploited for applications such as ultrasensitive pho-
todetection in optical systems [39, 40]; acoustic analogs
of these phenomena could be explored in time-modulated
mechanical systems. Higher-dimensional generalizations
of our mechanism for broadband amplification and the
associated non-Hermitian structures (e.g. exceptional
rings in 2D [41]) are also conceivable, since the nearly-
linear dispersion relation at zero quasimomenta is guar-
anteed by translational symmetry.
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Appendix A: Floquet-Bloch band structures of
spacetime-modulated spring lattices

Prior studies of spring networks with modulated stiff-
nesses have relied on various approximations to analyze
the eigenmode structure. In the time domain, the Mag-
nus expansion has been used [42] which relies on a sep-
aration of slow and fast frequency scales in the system.
This assumption breaks down at the sonic limit, where
the modulation frequency is comparable to the normal
mode frequencies of the unperturbed system. Alterna-
tively, many studies use plane-wave expansions of the
spatial eigenmodes [12, 13, 23–25, 32, 43–50] which must
be truncated at some high quasimomentum to carry out
actual computations. However, these approaches have
been shown to be liable to inaccuracies at the sonic limit
where an ever-larger number of plane waves must be in-
cluded in the expansion to avoid divergences in the per-
turbative calculations [6, 7, 22].

To accurately predict the vibrational modes of
spacetime-modulated spring lattices, we use an exact
Floquet-Bloch approach which avoids perturbative ex-
pansions, albeit at the cost of requiring a numerical inte-
gration of the underlying dynamical equations over one
time period. Our approach is similar to those used for
driven electronic systems [51, 52], but adapted to the
second-order equations of mechanics [30]. We are inter-
ested in the normal modes of a spring-mass chain of N
masses, whose displacements are arranged into an N -
vector x. When the springs are harmonic, the equation
of motion is

mẍ + ΓN ẋ + K(t)x = 0, (A1)

where ΓN = γ × 1N is an N × N diagonal matrix of
drag coefficients (assumed uniform), and K is an N ×N
matrix of spring stiffnesses which encodes the coupling
of adjacent degrees of freedom. For the 1D chain, the
stiffness matrix takes the tridiagonal form

K =



... ... ... ... ... ... ... ...
... 0 −kj kj + kj+1 −kj+1 0 ... ...
... 0 0 −kj+1 kj+1 + kj+2 −kj+2 0 ...
... ... ... ... ... ... ... ...




(A2)
When the spring constants kj are modulated in time and
space according to the traveling-wave modulation

kj(t) = k0

[
1 + δ cos

(
2π

n
j − Ωt

)]
, (A3)

the eigenmodes of the dynamical system can be written
in terms of an n-vector uq(t) and a quasimomentum q,
where the displacements of the pth unit cell at position

x = pna are given by uq(t)e
iqx. The uq(t) solve the

equation

müq + Γnu̇q + K̃(q, t)uq = 0, (A4)

where the Fourier-transformed stiffness matrix K̃(q, t)
has dimensions n× n, and includes phase factors e±iqna

for springs that extend to neighboring unit cells. For an
infinite periodic lattice, the periodicity defines a unique
set of quasimomenta −π < qna ≤ π, which define the
reduced Brillouin zone.

We now exploit the time-periodicity of the stiffness ma-
trix, K̃(q, t + T ) = K̃(q, t) where T = 2π/Ω. To apply
the Floquet theory of first-order differential equations,
we rewrite Eq. (A4) as a first-order equation involving
the doubled vector yq = (uq, u̇q)

>,

ẏq = Gq(t)yq, (A5)

where

Gq(t) =

(
0 1n

−K̃(q, t) −Γn

)

inherits the time-periodicity of the stiffness matrix. Any
solution to the differential equation can be written in
terms of the matrix of solutions, X(t), which satisfies

Ẋ = Gq(t)X, (A6)

starting from the initial condition X(0) = 12n. Any so-
lution of Eq. (A5) then can be written in terms of the
initial condition as

x(t) = X(t)x(0).

When G is T -periodic, the matrix of solutions has the
property

X(t+ T ) = X(t)X(T ). (A7)

The solution matrix evaluated over one period, X(T ), is
called the monodromy matrix. The eigenvalues ρj (with
j = 1, ..., 2n) and corresponding eigenvectors aj of the
monodromy matrix have the following useful property: a
solution xj(t) of Eq. (A5) with initial value xj(0) = aj
satisfies

xj(t+ T ) = ρjxi(t). (A8)

The eigenvalues ρj are called the Floquet multipliers of
the system. Equation (A8) implies the form

xj(t) = e−iνjtfj(t), (A9)

where νj ≡ i(ln ρj)/T is the ith Floquet quasifrequency,
and

fj(t) = X(t)e−
t
T lnX(T )aj

is T -periodic by the periodicity of the matrix of solutions:

fj(t+ T ) = fj(t).
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The 2n vectors xj(t) are linearly independent and form
a fundamental set of solutions of the system.

At each quasimomentum q, the Floquet calculation
gives us 2n quasifrequencies νj(q) = ωj(q)+ iαj(q); these
are the Floquet-Bloch bands of the system. The calcu-
lation involves a numerical integration of Eq. (A6) over
one time period. Provided the numerical integration can
be carried out to the desired precision, the calculation of
the bands is exact as it does not rely on any truncated
expansion of the solutions in terms of plane waves. The
corresponding normal mode displacements and velocities
of the pth unit cell at position x = pna are written in
terms of the Floquet-Bloch eigenvectors fj(q, t) as

yj(q, t) = fj(q, t)e
i[qx−νj(q)t]. (A10)

This form is similar to that of the normal modes of a
static spring chain, with the differences that: i. the vec-
tor multiplying the plane-wave itself has an additional
time dependence (albeit one that is T -periodic in time);
ii. the Floquet exponents which take the place of the
frequencies are in general complex-valued; iii. the oscil-
lation frequencies ωj = Re(νj) are defined modulo the
modulation frequency Ω.

The correspondence of the Floquet-Bloch eigenmodes
with normal modes of static systems is even stronger if we
consider strobed measurements, i.e. when displacements
are recorded only at integer multiples of the time period
T . At these time intervals, we have

yj(q, t) = fj(q, 0)ei[qx−νj(t)];

i.e. the strobed spacetime-dependence is obtained by
multiplying a constant eigenvector with a plane wave.
When measurements are strobed, therefore, the Floquet
eigenvectors and exponents are completely analogous to
the normal modes and eigenfrequencies of a static spring
network. The group and phase velocities of waves in the
jth band are determined by the dispersion relation ωj(q).
When the gain factor is nonzero, a positive gain factor
corresponds to an exponentially growing wave amplitude
∝ eαjt whereas a negative gain factor corresponds to an
exponentially decaying wave.

In the absence of damping, the block form of the ma-
trix Gq(t) and the Hermiticity of the Fourier-transformed
stiffness matrix Kq(t) at every point in time lead to addi-
tional constraints on the Floquet-Bloch band structures.
First, the set of Floquet multipliers {ρj} must coincide
with the set {(ρ∗j )−1} at each quasimomentum q [30].
Therefore, any mode with a complex Floquet quasifre-
quency ν = ω + iα, α 6= 0, is accompanied by a mode
with the same oscillation frequency and opposite gain
factor ν = ω − iα at the same quasimomentum. Second,
the Fourier-transformed stiffness matrix at q and −q are
conjugate transposes of each other: K−q = K†q. Cor-
respondingly, the Floquet multipliers are also complex
conjugates of each other. Combined with the previous
property, this implies that the bands at −q are obtained
by reversing the signs of the oscillation frequencies of

the bands at q and keeping the gain factors αj(q) un-
changed: ωj(−q) = −ωj(q) and αj(−q) = αj(q). These
symmetries are visible in the undamped Floquet-Bloch
band structures in the main text.

As with passive phonons, the band structures and as-
sociated Floquet-Bloch eigenmodes can be used to com-
pute the response of finite systems consisting of an inte-
ger number of repetitions of the time-modulated unit cell.
While the dispersion relation is unchanged, the finite sys-
tem admits a discrete set of quasimomenta which satisfies
the applied boundary conditions and ensures that the to-
tal number of independent eigenmodes matches the num-
ber of degrees of freedom available to the system [27]. For
instance, in the main text we describe how a wave packet
for a finite periodic system with M unit cells is con-
structed from M relevant quasimomentum values that
describe the allowed wavelike modes of the system.

Appendix B: Sonic limit at larger modulation
strengths

The accumulation of resonances which defines the sonic
limit extends over a finite range of modulation frequen-
cies on either side of the value Ωs = 2πv/(na), defined
by [6, 22]

1√
1 + δ

<
Ω

Ωs
<

1√
1− δ

. (B1)

In the main text, we focused on modulation frequen-
cies at the center of this range, which is appropriate
when δ � 1. However, if larger modulation strengths
are accessible, the modulation frequency that generates
near-uniform gain factors across the reduced Brillouin
zone can deviate from the strict sonic limit defined in
Eq. (3) of the main text. In this case, modulation pa-
rameters which allow stronger broadband amplification
can be found by numerically exploring Floquet-Bloch
band structures within the range of values dictated by
Eq. (B1). As an example, Fig. A2 shows near-constant
gain factors across the rBZ for Ω = 0.89Ωs when δ = 0.4
and Ω = 0.74Ωs when δ = 0.6, for the same unit cell size
(n = 8) discussed in Fig. 3(a). In both cases, the larger
modulation also enables higher gain factors to be realized
compared to the case of Ω = Ωs.

Appendix C: Simulation methods

Wave pulse propagation in 1D spring-mass chains was
studied using classical dynamic simulations implemented
in the HOOMD-Blue software package [53]. The sys-
tem examined was a 1D spring-mass chain of N particle-
masses of mass m possessing a unit cell of n different
dynamic springs with equilibrium length l0 in a damped
environment with damping constant γ. To implement
dynamic springs following Eq. (2), the spring constant of
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FIG. A2. Broadband amplification at large modulation
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in the main text, for systems with n = 8 and two larger values
of δ. The sonic limit extends over a range of values around
Ω = Ωs for large modulation strengths, and nearly constant
gain factors are obtained at lower values of Ω compared to
the limit of small δ.

each spring was updated after each time step. Simula-
tions were initialized with a Gaussian wavepacket assem-
bled using the Floquet-Bloch eigenvectors of the chain
as described in the text (Eq. (5)). The Floquet-Bloch
calculation generates both positions and velocities (Ap-
pendix A) for the initial condition.

For all simulations, we set m = 1, l0 = 1, and k0 = 1 in
simulation units. The spring-mass chain was created us-
ing 201 repetitions of a unit cell of n = 8, giving rise to a
system size of N = 1608, with periodic boundary condi-
tions along the x direction. Periodic boundary conditions
are implemented by default in HOOMD-Blue, and effec-
tively introduce repetitions of the system to the right and
left of the simulation box; springs are added which cou-
ple the 1608th particle in the system to the 1st particle
of its periodic repetition to the right of the simulation
box, and the 1st particle is coupled to the 1608th par-
ticle of the repetition to the left. Simulations were run
for 1 × 108 time-steps with a step size ∆t = 0.0001. We
checked that reducing the step size by a factor of 4 did
not significantly change the pulse evolution with time.

The overall shape of the wavepacket was tracked dur-
ing the simulation by fitting the particle displacement
amplitudes to a Gaussian profile for each time snap-
shot. The center position, amplitude, and standard de-
viation of the Gaussian profile were treated as free pa-
rameters whose best-fit values were obtained using the
optimize.curve fit function from the scipy package
in Python. These quantities are reported in Fig. 5 of the
main text.

Appendix D: Dispersion of wavepackets under
non-constant gain factors

Here, we compute the distortion of Gaussian wavepack-
ets whose constituent modes have non-uniform gain fac-
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tors. For simplicity, we work with continuum plane waves
of the form ei[kx−ν(k)t] with momentum k and a disper-
sion relation ν(k) = ω(k)+iα(k) relating the complex fre-
quencies to the quasimomenta. We expect the behavior
of the amplitude envelope to be similar for a wavepacket
built from Floquet-Bloch eigenmodes of the amplified
band in the discrete system with time-modulated springs.

First, we review the effect of a nonlinear disper-
sion relation ω(k) on the time dynamics of a Gaussian
wavepacket in the absence of gain, α(k) = 0. The
wavepacket is a superposition of plane waves with weights

f̃(k) = A0
σ√
2π
e−

σ2

2 (k−k0)2 , (D1)

which leads to a real-space pulse at time t = 0 of

f(x, 0) = A0e
ik0xe−

x2

2σ2 , (D2)

where A0 is the initial amplitude, and σ is the width of
the Gaussian envelope centered at x = 0 of a sinusoidally
varying wave with dominant quasimomentum k0. The
subsequent time-evolution is given by

f(x, t) =

∫ ∞

−∞
dkei[kx−ω(k)t]f̃(k).

If the pulse is sufficiently broad, the Fourier amplitudes
fall off fast away from k0, and we can approximate the
dispersion relation near k0 as a Taylor series:

ω(k) ≈ vpk0 + vg(k − k0) +
η

2
(k − k0)2,

where vp = ω(k0)/k0 and vg = ∂ω(k0)/∂k are respec-
tively the phase and group velocity of the wave at k0.
The solution in real space at finite times is then obtained
by taking the inverse Fourier transform, with the result

f(x, t) = A0e
i(vg−vp)k0teik0(x−vgt)e

− (x−vgt)2

2(σ2−iηt) . (D3)

When the dispersion relation is strictly linear, η =
0, the finite-time solution has the form f(x, t) =
ei(vg−vp)k0f(x − vgt, 0), which corresponds to a transla-
tion of the Gaussian amplitude profile by vgt along the
x-axis, and an additional phase factor which does not
affect the amplitude (and which is zero for a linear dis-
persion relation ω = vgk = vpk). The wavepacket is
said to be non-dispersive, as it maintains its shape while
propagating at a constant speed.

By contrast, when η 6= 0, the last exponential in
Eq. (D3) can be written as

e
iηt

2(σ4+η2t2) e
− (x−vgt)2

2σ2(1+η2t2/σ4) .

Besides introducing an additional phase, the nonzero
quadratic dispersion also modifies the Gaussian ampli-
tude profile which, while still moving with the group ve-
locity, is rapidly broadening with time as σ

√
1 + η2t2/σ4.

Such a wavepacket whose amplitude and phase profile are
varying with time is termed dispersive. Deviations from
a linear dispersion involving higher powers of k− k0 also
lead to dispersive pulse propagation. A slight dispersion
is apparent in the simulated time-evolution of pulse width
in a static system (Fig. 5(f)), which grows quadratically
in time because of the deviation of the dispersion relation
ωs(q) from linearity.

We now consider wavepacket dispersion due to non-
zero gain. We consider a linear dispersion relation of the
oscillatory frequency, but assume the gain factor has a
linear quasimomentum dependence near k0,

ω(k) ≈ vk + i [α0 + β(k − k0)] . (D4)

Upon initializing the wavepacket using Eq. (D1) and
computing the inverse Fourier transform, we find the sub-
sequent time evolution

f(x, t) = A0e
i(k0+ βt

σ2
)(x−vt)e−

(x−vt)2

2σ2 eα0t+
β2t2

2σ2 . (D5)

When β = 0, a constant gain factor induces an expo-
nential growth of the wavepacket amplitude with time,
but the relative strengths and phases of various com-
ponents of the wavepacket are unchanged. This situ-
ation corresponds to a non-dispersive amplification of
the overall wavepacket as it propagates. By contrast,
a nonzero slope to the gain-quasimomentum relation
changes the dominant (or carrier) quasimomentum of the
signal, which increases linearly with time as k0 + βt/σ2.
The pulse envelope is still centered at x − vt and grows
with time, but with a additional time-dependence which
grows as exp(t2), much faster than exponentially with
time. This superamplification arises from the modes with
k � k0 when β > 0 (or k � k0 for β < 0) which fall out-
side the regime of validity of the candidate dispersion
relation, Eq. (D4). In practice, the shape and speed of
the wavepacket will depend on the full dispersion relation
ω(k) as the dominant quasimomenta in the wavepacket
are no longer confined to a small range near k0, leading
to ever-increasing distortion of the wavepacket.

In summary, Gaussian wavepackets can be amplified
without affecting their spectral composition provided the
gain factor is constant over the entire range of quasimo-
menta contributing to the wavepacket.
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