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Measurements that occur within the internal layers of a quantum circuit — midcircuit measurements — are an
important quantum computing primitive, most notably for quantum error correction. Midcircuit measurements
have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements
that terminate quantum circuits. Here we show how to characterize midcircuit measurements, modeled by
quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST).
We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit
within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we
explore the impact of residual cavity photon population on measurement error. QILGST can resolve different
error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000 ns
we measured a total error rate (i.e., half diamond distance) of ε� = 8.1 ± 1.4%, a readout fidelity of 97.0 ± 0.3%,
and output quantum state fidelities of 96.7 ± 0.6% and 93.7 ± 0.7% when measuring 0 and 1, respectively.

I. INTRODUCTION

Gate-model quantum computers perform computations by
executing sequences of quantum operations, called quantum
circuits. Quantum computations can be performed with circuits
containing only qubit initialization, reversible logic gates, and
terminating measurements [1] — measurements that occur
at the circuit’s end, converting quantum information stored
in the qubits into classical bits. However, circuits can also
contain midcircuit measurements that extract information from
the qubits and alter their state, but don’t destroy the qubits nor
necessarily collapse their state entirely.

As parity check or stabilizer measurements (Fig. 1a) must
extract information about a multiqubit observable, while not
disturbing quantum information stored in the logical subspace,
high-fidelity midcircuit measurements are essential for quan-
tum error correction (QEC) [2–7]. Midcircuit measurements
also have applications to error mitigation and near-term algo-
rithms [8–12].

Midcircuit measurements, however, admit failure modes that
don’t exist for terminating measurements. Techniques for ac-
curate characterization of midcircuit measurements are there-
fore urgently needed. In this paper, we introduce a protocol
(Fig. 1b) for comprehensive, self-consistent characterization
of a full set of logic operations that includes midcircuit mea-
surements — which we call quantum instrument linear gate
set tomography (QILGST). We use QILGST to study single-
qubit dispersive measurements on a superconducting transmon
processor (Fig. 1d).

Techniques for assessing performance of quantum logic op-
erations can be divided into benchmarking and characterization.
Benchmarks quantify overall performance of operations in situ
on representative tasks, and midcircuit measurements can be
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benchmarked using QEC (and components thereof) [17–27]
or algorithm [9] circuits. However, identifying specific error
modes, predicting their impact, and mitigating or eliminating
them requires detailed characterization. This is commonly
done by tomography, which means estimating a model for the

Figure 1. Characterizing midcircuit measurements. Many quan-
tum computing primitives require midcircuit measurements, exempli-
fied by (a) a repeated parity-check circuit. (b) QILGST protocol for
characterizing a midcircuit measurement, as part of a complete gate
set (G = {ρ,Gi,Q,M}). The midcircuit measurement is modeled by
a quantum instrument Q = {Qi}, which consists of a process matrix
for each measurement outcome. QILGST consists of (1) running
process tomography circuits on Q, alongside standard GST circuit
[13–15]; and (2) matrix inversion or maximum likelihood estima-
tion (using pyGSTi [16]) to self-consistently reconstruct the gate set
(Ĝ = {̂ρ, Ĝi, Q̂, M̂}). Additions to standard GST are circled in pink.
We applied QILGST to characterize a dispersive σz basis measure-
ment on a transmon qubit. The (c) target and (d) estimated QI from
our experiment, with a readout fidelity of 97.0% ± 0.3% and a total
error rate of ε� = 8.1 ± 1.4%. Each orange (blue) square represents a
positive (negative) real number with magnitude proportional to area.
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operation. Terminating measurements are modeled by positive
operator-valued measures (POVMs) and can be estimated by
quantum detector tomography [28–33], but only using precal-
ibrated input states and gates. Gate set tomography (GST)
[13–15, 34] removes this requirement, enabling estimation of
POVMs self-consistently with initialization and gates. We
show how to extend GST to gate sets that include midcircuit
measurements, represented as quantum instruments [35]. Prior
works [36–39] showed how to perform self-testing or tomogra-
phy of quantum instruments, but, to the best of our knowledge,
this is the first protocol for complete and self-consistent to-
mography of midcircuit measurements.

II. CHARACTERIZING MIDCIRCUIT MEASUREMENTS

A. Quantum instruments

Quantum instruments (QIs) [35] model midcircuit measure-
ments. In tomography, a quantum processor’s state is repre-
sented by a d × d density matrix, where d is the (intended)
dimension of its Hilbert space. Gates are represented by super-
operators acting linearly on density matrices and terminating
measurements by POVMs that map states to probability dis-
tributions. All these objects are completely positive (CP) and
trace-preserving (TP) quantum processes, with different input
and output spaces. States (density matrices) describe initial-
ization, mapping a trivial space into the d2-dimensional space
of mixed states. Gate superoperators map that space to itself.
POVMs map quantum states to distributions over outcomes.
QIs are processes with a quantum input, and quantum and
classical outputs. This describes a midcircuit measurement,
combining the features (and outputs) of a POVM and a gate.
The simplest representation of an m-outcome QI Q is as a set
of m CP maps Q = {Q0, . . . ,Qm−1} whose sum

∑
i Qi is TP.

The QI maps ρ to a joint quantum-classical state {(pi, ρi)}m−1
i=0 ,

where

pi = Tr(Qi[ρ]) (1)

is the probability of observing outcome i and

ρi = Qi[ρ]/pi (2)

is the output state conditional on observing i. Like gates, each
Qi can be represented using a d2 × d2 matrix (see Fig. 1c
for an example, with matrix elements defined by [Q j]kl =

Tr(σkQ j[σl]) for k, l = I, x, y, z).
Quantum instruments model errors in midcircuit measure-

ments that POVMs cannot. POVMs have strictly classical
outputs, but any POVM can be “promoted” to a limited kind of
QI called a “measure-and-prepare” process [40], by following
it with a conditional re-initialization (i.e., upon observing i, ρi
is prepared). Measure-and-prepare processes can be charac-
terized with existing methods (e.g., GST), but cannot describe
all midcircuit measurements. Measure-and-prepare processes
destroy all entanglement with other quantum systems [40],
but, e.g., QEC parity-checks should preserve inter-qubit entan-
glement. Conversely, midcircuit measurements designed as
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Figure 2. QILGST accurately characterizes midcircuit measure-
ments. We simulated single-qubit QILGST under a variety of error
models and computed the accuracy of the estimated QI Q̂; see Ap-
pendix C. This plot shows the estimation accuracy, measured by half
the diamond distance (ε�) [41] between Q̂ and the QI used to generate
the data, versus the number of circuit repetitions (N). Each point
(violin plot) is the mean (distribution) of the estimation inaccuracy
from simulating QILGST under 100 error models. Accuracy scales as
O(1/

√
N), the expected shot noise scaling.

measure-and-prepare processes can fail in ways that cannot be
modeled without a general QI. QIs can model and describe all
Markovian errors in midcircuit measurement. Our goal is to
reconstruct (from data) the QI that describes an experimental
midcircuit measurement.

B. GST with quantum instruments

GST [13–15] self-consistently reconstructs all elements of
a gate set G — an initialization ρ, two or more logic gates
{Gi}, and a terminating measurement M. It specifies (1) an
experiment design (circuits to be performed) and (2) analysis
procedures for transforming data into a gate set estimate. Sev-
eral variants exist [15]; we adapt linear-inversion GST (LGST)
to gate sets containing midcircuit measurements. LGST resem-
bles process tomography [42–44], with three key innovations:
(1) to tomograph each gate Gi, the experiment includes all cir-
cuits of the form F p

j GiFm
k where fiducial circuits {F p

j }
np

j=1 and
{Fm

k }
nm
k=1 produce informationally complete ensembles of states

and terminating measurements, respectively, using only gates
in G; (2) the experiment includes circuits for process tomogra-
phy on the null operation (F p

j Fm
k circuits); and (3) systematic

errors are removed using the inverse of the tomographed null
operation [13, 15]. To extend LGST to a gate set containing a
midcircuit measurement, represented by a QI Q [45], we add
all circuits of the form F p

j QFm
k to the LGST experiment (Fig.

1b); these circuits output a result from both the midcircuit and
terminating measurement.

Analyzing QILGST data presents one complication.
Whereas each gate Gi is represented by a single CPTP map, a
QI defines a set of CP maps {Q0, · · · ,Qm−1}. Which Qi appears
in each run of the circuit is not controllable; it’s determined by
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the midcircuit measurement’s outcome. To reconcile this with
LGST analysis, we represent the QI by an md2 × d2 process
matrix

Q =
(

Q0, . . . ,Qm−1
)ᵀ
, (3)

which is CPTP. The m blocks correspond to copies of the
quantum state space, indexed by the measurement’s classical
outcome. So whereas the LGST linear inversion algorithm for
a gate G begins with a d2 × d2 matrix of directly measured
probabilities G̃k j [15] — where k labels a final measurement
setting and the column j labels a preparation setting — the
corresponding algorithm for a QI Q starts with an md2 × d2

matrix of probabilities Q̃k j where k labels a final measurement
setting and which outcome of Q was observed. With this
modification, the LGST algorithm can be directly applied,
with the matrix elements of Q estimated to the same absolute
precision as those of a gate G.

We call this protocol quantum instrument linear GST (QIL-
GST). It requires only 128 circuits to characterize a single-qubit
gate set including 3 gates and a QI Q [46]. For all analyses
presented here, we used numerical maximum likelihood esti-
mation (implemented in pyGSTi [16, 47]), instead of linear
inversion. This yields higher accuracy by accounting for het-
eroskedasticity in data [48]. Data analysis for single-qubit
QILGST takes a few seconds on a modern laptop. To verify
the correctness of QILGST, we simulated it for a variety of
error models (Appendix C); QILGST correctly reconstructs
the QIs (Fig. 2).

C. Quantifying errors in a midcircuit measurement

Running QILGST yields estimates of all gates and an es-
timated QI. Like all GST estimates, it has a gauge freedom
[15], which we fix by numerically optimizing the gauge to
minimize discrepancy between estimated gates and their tar-
gets [15]. We denote the gauge-optimized estimate of Q by
Q̂. The estimated Q̂ can be compared to the ideal “target” QI
(Qtarget), to quantify errors in the midcircuit measurements.
Like gates, midcircuit measurements can display a variety of
errors, e.g., measuring the wrong observable, scrambling clas-
sical information in the measurement result, or creating wrong
post-measurement quantum states. The quality of a logic op-
eration is commonly summarized by metrics such as fidelity
or diamond norm. Fidelity between QIs [49] is difficult to
interpret because of the joint quantum/classical output, but dia-
mond distance error ε� = 1

2‖Q̂ − Qtarget‖� [41] is well-defined
and a tight upper bound on the change in any experimental
probability induced by errors in Q.

III. EXPERIMENTAL RESULTS

We used QILGST to study midcircuit measurements on
a transmon qubit within a five-qubit device. We performed
dispersive measurements through a microwave cavity coupled
to the qubit using standard circuit QED [50] methods. We
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Figure 3. Characterizing non-Markovian errors in a midcircuit
measurement on a superconducting qubit. Evidence for unmod-
eled error as a function of the delay time (td) between the measurement
pulse and subsequent operations, for four different models estimated
from the data using QILGST. Evidence for unmodeled error is quanti-
fied by (a) the number of standard deviations (Nσ) of model violation,
and (b) the largest total variation distance (TVD) between the model’s
prediction and the data, for the 36 circuits containing a midcircuit
measurement. The gate set estimated by QILGST (circles) does not
accurately describe the data for small td, indicating non-Markovian
errors. This additional error can be modeled by combining QILGST’s
model estimated from the 2020 ns data — which, alone, is not con-
sistent with the small td data (down-triangles) — with a decaying
Stark shift error on the gates that follow the measurement (squares
and up-triangles).

achieved a high readout fidelity of ∼ 96 % using a JTWPA
amplifier [51], with a 1 µs measurement pulse resonant with the
qubit ground-state shifted cavity frequency, that is subsequently
digitized and integrated using a matched-filter kernel [52]. The
measurement pulse amplitude, measured through the qubit
Stark shift [53], created an average cavity population of n̄ =

122 for the qubit ground state (and substantially less for the
excited state), well below the critical photon number nc =

α∆/[4χ(α+∆)] = 248. Further device and experimental details
can be found in Appendices A and B.

The gate set G consisted of π/2 rotations around the σx and
σy axes, an idle operation, midcircuit and terminating measure-
ments in the σz basis, and state preparation in |0〉 (implemented
by a 500 µs idle reset). The midcircuit measurement’s target
QI (Fig. 1c) is Qtarget = {Qtarget,0,Qtarget,1}, where

Qtarget,k[ρ] = Tr
[
1
2

(
σI + (−1)kσz

)
ρ

] (
σI + (−1)kσz

)
. (4)

For this gate set, there are 128 QILGST circuits [54], 36 of
which contain a midcircuit measurement. We ran the QILGST
experiment (with N = 1024 circuit repetitions) multiple times;
each run used a different time delay td between the midcircuit
measurement pulse and subsequent operations, with 500 ns ≤
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td ≤ 2020 ns [55]. This produced a QILGST dataset D(td)
for each td. We applied the QILGST analysis to each D(td)
independently, producing an estimated gate set Ĝ(td) for each
td.

A. Testing for non-Markovian errors

The gate set estimated by QILGST will accurately describe
the data if errors on all operations are Markovian. Non-
Markovian errors are common however [14, 56–60], so we
check whether Ĝ(td) is consistent with D(td) using the log-
likelihood ratio test statistic λLLR [14, 58, 61]. This λLLR is
Nσ ∼ 400 standard deviations above its expected value (if the
QILGST model is valid) when td = 500 ns, but Nσ . 5 if
td ≥ 1020 ns (Fig. 3a, circles). Therefore, short delay times are
causing non-Markovian errors. We quantify the size of the un-
modeled effect by the total variation distance (TVD) between
the probabilities predicted by Ĝ(td) and the observed frequen-
cies D(td) [58]. The maximum TVD for the 36 QI-containing
circuits is large at the shortest delay times (37% at td = 500 ns),
but is small (< 6%) for td ≥ 1020 ns (Fig. 3c, circles). We
attribute this large non-Markovian error at short delay times
to residual photon population in the measurement cavity (we
measure the relaxation rate of the cavity to be κ−1 = 242 ns),
as we didn’t perform active reset of the cavity state [53, 62].

B. Midcircuit measurements with long delay times

Before investigating the non-Markovian effects observed
for td ≤ 900 ns, we present the results of QILGST at long
delay times (td ≥ 1020 ns), where the estimated gate sets do
accurately describe the data. When td ≥ 1020 ns ≈ 4.2/κ the
cavity photon population is negligible, so we expect that the
only variation across those td values will be a small increase in
relaxation errors, in the midcircuit measurement’s preparation
of |1〉〈1|, for longer delay times. As Ĝ(2020 ns) accurately
models the data for all td ≥ 1120 ns (Fig. 3, down-triangles),
we focus on Ĝ ≡ Ĝ(2020 ns) and Q̂ ≡ Q̂(2020 ns), our estimate
of the midcircuit measurement’s QI. Figs. 1d and 1c show
process matrices for Q̂ and the target Qtarget, respectively. We
find a total error in Q̂ is ε� = 8.1 ± 1.4% (error bars are 2σ).
This metric quantifies all errors in the measurement, including
readout errors and errors in the post-measurement state.

To verify the estimate’s consistency with standard metrics,
we calculate the readout fidelity F = 1

2 [P0|0 + P1|1] of the mid-
circuit measurement, where P0|0 (resp., P1|1) is the (marginal)
probability of reading out 0 (resp., 1) in the midcircuit mea-
surement of the prepare-measure-measure (resp., prepare-π-
pulse-measure-measure) circuit. Both circuits are part of the
QILGST experiment, so we can predict F from Ĝ and compare
this to observed frequencies in D(2020 ns). The predicted and
observed values are F = 97.0 ± 0.3% and F = 97.3 ± 0.4%,
respectively, which are consistent with each other and with
independent readout fidelity measurements (see Appendix A).

The readout fidelity does not quantify all error in the mid-
circuit measurement (F = 97% whereas ε� = 8%). From Q̂’s
two process matrices {Q̂0, Q̂1} (Fig. 1d) we can ascertain and
quantify the types of errors that are occurring. As it ideally
should, the measurement destroys all coherence between |0〉〈0|
and |1〉〈1|. This is because, to within statistical uncertainty,
Q̂i[σx] = Q̂i[σy] = 0 for both i = 0 and i = 1 (i.e., only the
corner elements of the matrices in Fig. 1d are inconsistent with
zero). Q̂ is therefore entirely described by the probabilities
pi| j = Tr(Q̂i[| j〉〈 j|]) and output states ρi| j = Q̂i[| j〉〈 j|]/pi| j. We
find that p0|0 = 99.7 ± 0.6% and p1|1 = 99.0 ± 0.6% (these
probabilities imply a readout fidelity of F̃ = 99.3 ± 0.4%,
which differs from F above — but it’s not inconsistent, as F
includes contributions from errors in the state input into the
midcircuit measurement, whereas F̃ does not [63]). We find
that ρi|i = σI + ziσz where z0 = 0.93 and z1 = −0.86, imply-
ing state fidelities between ρi|i and the ideal (post-midcircuit-
measurement) preparations |i〉〈i| of 96.8±0.6% and 93.7±0.8%,
for i = 0 and i = 1, respectively. Error in the output quantum
state therefore dominates error in the midcircuit measurement.
This error is not quantified by readout fidelity, and cannot be
measured by detector tomography. The probability for the
excited state to decay during the full 3.02 µs measurement and
delay time is ∼ 4.2%, so there is an additional source of 2-3%
error in the measurement operation, which we conjecture is
due to effects beyond the dispersive model [64–69].

C. Modelling non-Markovian errors in midcircuit
measurements with short delay times

We now return to consider the source of the non-Markovian
errors observed for short post-measurement delay times. A
likely source of observed non-Markovian error when td <
1020 ns is residual cavity photons, which induce an AC Stark
shift the qubit frequency. This causes a δσz Hamiltonian error
in all post-measurement gates where δ (1) decays over time,
and (2) depends on the midcircuit measurement outcome. In
the context of tomography, this is a non-Markovian effect —
it cannot be modeled by a single CPTP map per gate. To test
whether the Stark shift explains the data, we constructed a
model Ĝstark that is identical to Ĝ(2020 ns) except for added
errors that model the Stark shift. We replaced Ĝk with

Ĝk(α, r, i,m) = exp
[
log

(
Ĝk

)
+ αi(td) exp(−mri)Z

]
, (5)

for k = x, y, whereZ[ρ] = −iσzρ + iρσz generate σz rotations,
m = 0, 1, . . . indexes the number of gates since the midcircuit
measurement, i is the midcircuit measurement’s outcome, ri is
the Stark shift’s decay rate, and αi(td) is the initial phase error
for delay time td. Both ri and αi(td) can be fully described
by dispersive theory and independent device characterizations.
This model explains most of the discrepancy between the QIL-
GST fits and the data for td < 1100 ns (Fig. 3, squares). With
zero fit parameters, at td = 500 ns Nσ is decreased by almost
an order of magnitude, and the maximum TVD from 80% to
15%. This is strong evidence that the main source of the non-
Markovianity is this decaying Stark shift. As this shift adds a
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coherent Z component to post-measurement gates, this kind of
error could be mitigated “for free” via virtual Z rotations [70].

This model does not, however, entirely explain observations
at the shortest delay times. This could be due to inaccuracies
in the device parameter characterization, or effects beyond dis-
persive theory [64–69]. To test the first hypothesis, we fit the
four parameters α0(td), α1(td), r0, and r1 to the data at each td
[71]. This final model is almost consistent with the data (Fig. 3,
up-triangles), and its optimized parameter values predict be-
havior close to that predicted by the independently measured
device parameters at long delay times. (See Appendix E for
more details on how we incorporate the decaying Stark shift
into the QILGST estimate.) This demonstrates how QILGST
can be combined with device physics to develop and validate
microscopic models of device dynamics, while also suggesting
that additional physics is needed to fully describe dispersive
measurements on superconducting qubits.

IV. DISCUSSION

Quantum computing experiments that rely on well-
calibrated midcircuit measurements are becoming increasingly
prominent [17–26]. Techniques like QILGST will be essen-
tial for characterizing them. The most striking features of
our experimental results are the non-Markovianity of the mid-
circuit measurement at short delay times, and the large er-
ror in the post-measurement state even with the longest post-
measurement delay. These effects could not have been dis-
covered and quantified using quantum detector tomography,
randomized benchmarking, or readout fidelity measurements,
and they suggest that active cavity and qubit reset [53] will be
critical for low-error midcircuit measurements on supercon-
ducting qubits. As with standard tomographic methods, the
number of circuits required for QILGST scales exponentially
with the number of qubits. However, QILGST could potentially
be combined with recent advances in many-qubit GST [72, 73]
to obtain polynomial resource scaling. By enabling complete
characterizations of, e.g., many-qubit syndrome extraction cy-
cles, this would provide invaluable insight into experimental
QEC.

DATA AND CODE AVAILABILITY

All data presented herein and all analysis code are available
online [74].
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Appendix A: Device Parameters

The superconducting transmon device was fabricated by
BBN in collaboration with Raytheon RF Components. The de-
vice ground plane, resonators and qubit capacitors are 200 nm
niobium sputtered on high-resistivity intrinsic silicon, cleaned
with an HF-last RCA clean [75] before sputtering. The nio-
bium metallization was optically patterned and etched with
an SF6+O2 RIE-ICP plasma etch. Post-etch residues were re-
moved using an oxygen ash and a HF etch. The qubits’ single
Josephson junction was patterned using a Dolan bridge [76]
technique using a PMMA-MMA bilayer resist and electron
beam lithography. The junction was fabricated using aluminum
electron beam evaporation after an Ar+ ion mill etch to remove
surface oxides. The sample was mounted in and wirebonded to
a custom copper sample holder, with additional aluminum wire-
bonds across on-chip resonators to short parasitic resonances.
This package was in turn mounted to the cold stage of a di-
lution refrigerator inside a light-tight, magnetically shielded
sample can.

The qubit chip consists of five fixed-frequency transmon
qubits, designed to be similar to those described in [77], con-
nected by bus resonators in two pairs of three. A micrograph of
the device is shown in Figure 4. For the experiments described
in this paper, only one qubit (Q3) is measured, while the other
transmons are detuned by at least 140 MHz (with coupling only
through bus resonators) and so have no impact on its operation
and can thus be safely ignored. Q3 is dispersively coupled
to a readout resonator through which control drives resonant
with the qubit are also applied. A detailed description of the
control wiring, electronics and software stack can be found in
the Control Electronics section. Relevant device parameters
are listed in Table I. In particular, the photon number popula-
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Parameter Symbol Value Measurement
Qubit frequency ω01/2π 4.764 18 GHz Low-power qubit spectroscopy

Qubit anharmonicity α −310 MHz Two-tone qubit spectroscopy
Resonator dressed frequency ωr/2π 6.734 64 GHz Low power resonator spectroscopy

Resonator-qubit coupling g/2π 62.5 MHz Calculated [80]
Qubit dispersive shift χ/2π −0.270 MHz Resonator spectroscopy with qubit in |0〉 and |1〉

Resonator photon decay rate 1/κ 242 ns Cavity photon number decay [53]

Table I. Device parameters for transmon Q3.

Figure 4. Micrograph showing the device studied in this paper. Q3 is
the central qubit.

tion evolution in the qubit cavity and its relaxation time 1/κ
were measured using the Stark shift [53]. Qubit coherences

were measured using standard inversion recovery, Ramsey and
Hahn echo sequences, and are listed in Table II. The X π

2
and

Y π
2

qubit rotation gates were implemented as Gaussian pulses
with a 60 ns length. Single-qubit error per Clifford gate was
measured using randomized benchmarking [78] and found to
be r = 1.1 × 10−3 (Fig. 5a), consistent with the results of
GST (Fig. 6). Qubit measurement fidelity, here defined as
F = (P0|0 + P1|1)/2, where P1|1 is the probability of correctly
identifying the qubit state as |1〉 when prepared in |1〉, was de-
termined from calibration data taken simultaneously with the
QILGST sequences. To calibrate the measurement fidelity, we
used 1.3 × 105 preparations each of the qubit in its ground and
excited states. The reflected cavity signal was downconverted
and integrated using a matched kernel filter [52], and binned
resulting in the well-separated readout histograms shown in
Figure 5b. Integrating and taking the difference of these his-
tograms yields a fidelity F = 96.35 %, while an approach using
logistic regression [79] yields a fidelity F = 96.43 % ± 0.7 %.

Appendix B: Control electronics

QILGST control sequences are generated in the pyGSTi soft-
ware package then compiled and time-ordered using BBN’s
Quantum Gate Language (QGL) [81]. QGL ouputs a hardware
efficient representation of the experiments which are sent to
the control hardware over an ethernet interface. The physical
control and readout pulses are sequenced using BBN’s cus-
tom Arbitrary Pulse Sequencer II (APS-II). The sequencing
capabilities of the APS-II allow for continuous playback of
the QILGST experiments in a interleaved fashion collecting
1024 shots for each td without interruption for waveform or
data loading.

Our superconducting device is measured in a Bluefors LD-
400 dilution refrigerator. Fig. 9 outlines the complete measure-
ment system. The amplifier pump and qubit control and read-
out microwave tones are generated using Holzworth9000A mi-
crowave synthesizers. To correct for any residual phase instabil-
ity in the measurement tone, we use an ‘autodyne’measurement
technique [52]. Control and readout pulses are mixed with the

T1 (µs) T ∗2 (µs) T2 (µs)
70.2 43.8 82.5

Table II. Transmon average coherence times, measured continuously
over 8 h.

microwave tones using Marki IQ-4509 mixers. Control pulses
are generated by BBN custom Arbitrary Pulse Sequencer-II
(APS-II) [82] units. The readout and control channels are com-
bined at room temperature, and the qubit cavity is measured
in reflection through a Krytar directional coupler at the cold
stage. A K&L micro machined 6L250 low-pass filter provides
the qubit with protection from high frequency noise above 12
GHz, and a Quinstar QCI cryogenic isolator provides further
isolation from the rest of the readout chain. The cavity signal
and a pump tone are then combined using a second directional
coupler and sent through a Josephson Traveling-Wave Para-
metric Amplifier (JTWPA). The JTWPA provides roughly 25
dB of gain at the cavity frequency. Additional isolation is
provided by a second Krytar QCI isolator and QCY circulator.
The readout signal is then amplified at the 4 K stage using an
LNF LNC4_8C HEMT amplifier.

Outside the cryostat, microwaves are amplified further using
a L3Harris Narda-MITEQ AMF-4F-04001200-15-10P before
downconversion to the 13 MHz intermediate frequency with
a Marki doubly balanced mixer. A Stanford Research Sys-
tems SR445A preamplifier with a voltage gain of 25 is the last
stage of amplification before the signal is captured using a X6-
1000M Innovative Integration digitizer card running custom
firmware [83] which further decimates, digitally downconverts
and integrates the data using a matched filter [52]. Data collec-
tion and pipelining is orchestrated by a the Auspex software
package [84]. All sources, digitizers and sequencers share a
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Figure 5. (a) Randomized benchmarking of single-qubit Clifford gates
on Q3. Cliffords are generated from {I, X(±π/2),Y(±π/2), X(π),Y(π)}
gates with an average of 1.71 gates per Clifford. Points are averages
of 32 independent randomized sequences of Clifford gates for each
length, while the solid curve is an exponential fit to the data used
to extract the error per Clifford r = 1.1 × 10−3. (b) Histogram of
measurement results after matched filter integration for 1.3 × 105

ground and excited state preparations, corresponding to F = 96.4 %.

global 10 MHz clock provided by an SRS SF725 Rubidium
frequency standard.

Appendix C: QILGST Simulations

In the main text, we demonstrated that QILGST worked
correctly using simulated data. Here we provide the de-
tails of these simulations. We simulated single-qubit QIL-
GST on a gate set consisting of π/2 rotations around the σx
and σy axes, midcircuit and terminating measurements in
the σz basis, and state preparation in |0〉. The target QI is
Qtarget = {Qtarget,0,Qtarget,1} where

Qtarget,k[ρ] = Tr
[
1
2

(
σI + (−1)kσz

)
ρ

] (
σI + (−1)kσz

)
. (C1)

We generated 100 different error models. Errors on the midcir-
cuit measurement were randomly sampled, and errors on all
other operations were held constant. The X and Y operations
each had over-rotations of 10−3 radians along both X and Y

axes and were subject to 10−2 depolarization, while SPAM was
subject to 10−3 depolarization. The midcircuit measurement
was subject to randomly chosen errors, both on the classical
and quantum portions of the channel. With a probability cho-
sen uniformly from 0 to 10−2 the |0〉 was misidentified as |1〉
(and vice-versa, with another independently chosen probabil-
ity). Additionally, X and Y coherences were chosen to persist
post-midcircuit measurement, both strengths equal but chosen
uniformly at random between 0 and 10−2.

For each error model, we simulated drawing N samples from
each of the QILGST circuits, with N varying logarithmically
from 16 to 1024. For the data with each value of N, we applied
the QILGST analysis to obtain an estimate of the gate set.
We then computed half the diamond distance between the
estimated QI Q̂ and the true QI Qtrue used in the simulation (not
Qtarget), as a measure of the estimation inaccuracy. Fig. 2 in
the main text shows estimation inaccuracy versus N. It scales
as 1/

√
N (standard quantum-limited scaling), indicating that

QILGST is correctly reconstructing the QI up to the expected
statistical fluctuations.

Appendix D: QILGST Experimental Results

Here we include some additional analysis of the QILGST
experimental results. Fig 6 shows the the half diamond distance
error (ε�) for each gate for td ≥ 1020 ns (when the datasets
are Markovian). We examine the estimates obtained from
both QILGST and LGST. (The latter does not incorporate
circuits containing any midcircuit measurements, and therefore
does not reconstruct an estimate for the quantum instrument.).
There is good agreement between the LGST and QILGST
reconstructions of the non-QI operations, and the error rates
are reasonably stable across the examined delay times.

We do note that qubit relaxation does increase with post-
measurement delay time, as expected. However, this effect is
only on the order of a couple of percent and is not currently a
dominant error source for large post-measurement delay times.
The strength of this particular error mechanism is illustrated
in Fig. 7, where we consider the fidelity of the post-midcircuit
measurement state with respect to the |1〉〈1| state, post-selected
on having prepared a |1〉 state and having received a classical
“1” from the midcircuit measurement.

Finally, we also provide the QILGST reconstruction of
Ĝ(2020 ns) in Table III.

Appendix E: Stark Shift Model for Non-Markovian Error

The QILGST fits in the main text show evidence for a con-
siderable amount of non-Markovian error. A possible model to
explain this error is the AC-Stark shift of the qubit frequency
due to residual photons in the measurement cavity leftover
from the midcircuit measurement. The AC-Stark shift will
be time-dependent as the photons leak out of the cavity, and
thus induce a non-Markovian error on subsequent gates fol-
lowing the midcircuit measurement. A qubit-only Hamiltonian
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Figure 6. Errors as measured by half diamond distance for QILGST
(solid lines) and LGST (dashed lines) reconstructions for td > 1020ns.
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Figure 7. Fidelity of ρ1|1 with respect to the ideal state |1〉〈1| as a
function of post-midcircuit measurement delay time. ρ1|1 is the state
output by the midcircuit measurement, conditioned on the input state
|1〉 being fed into it and the classical bit “1” being read out from the
midcircuit measurement.

describing this error model is given by

H(t) = Hk + δ(t)σz, (E1)

where Hk for k ∈ {x, y} is the Hamiltonian describing the in-
tended gate, and δ is a parameter describing the Stark-shift.
Based on the lowest order dispersive theory, we would expect
that δ(t) = χn(t), where n(t) =

〈
â†â

〉
(t) = nie−κt is the time-

dependent expectation value of the cavity photon population,
with ni the initial photon population that depends on the out-
come of the midcircuit measurement, labeled by i ∈ {0, 1}, as
we drive on one of the shifted cavity lines for measurement. All
parameters in this model have been measured by independent
calibration experiments, see Table I.

The gate generated by this Hamiltonian is given by

Gk(t) = T← exp
(
−i

∫ t0+tgate

t0
H(t)dt

)
≈ (E2)

exp
(
−i

∫ t0+tgate

t0
H(t)dt

)
= exp

(
−i

[
Hktgate + ϕi,mσz

])
,

where the approximation sign is an indication that we have
approximated the full time-ordered integral with the first order
term of the Magnus expansion. We have verified that the
second order term of the Magnus expansion results in a phase
error that is at least an order of magnitude smaller than the first
order phase error ϕi,m. From the experimental calibration and
dispersive theory, the first order phase error is given by

ϕi,m(td) =
χni

κ

(
1 − e−κtgate

)
e−κ(mtgate+td), (E3)

where m ∈ {0, 1, 2} labels the gates following the midcircuit
measurement.

For the modelling results presented in the main text, we
approximate the implemented gate more accurately by replac-
ing Hk with log

(
Ĝk

)
, the generator [85] of the superoperator

representation of the gate Ĝk characterized by QILGST at
2020ns delay. We model each gate following the midcircuit
measurement as

Ĝk(α, r, i,m) = exp
[
log

(
Ĝk

)
+ αi(td) exp(−mri)Z

]
, (E4)

where

αi(td) =
χni

κ

(
1 − e−κtgate

)
e−κtd , (E5)

and ri = κtgate under the dispersive model.

In addition to the model given above with ϕi,m of Eq. (E3)
determined entirely by independently characterized parameters,
we also fit a model of the form of Eq. (E4) with all αi(td) and ri
as free parameters. For this model fitting, these free parameters
are independently fit at each delay time, and for each midcircuit
measurement result. The model fit results in a phase error

φi,m(td) = αi(td)e−mri . (E6)

Fig. 8 shows the calculated value of ϕi,m, and the fit estimate
of φi,m as a function of delay time for each gate following the
midcircuit measurement. The two models agree reasonably
well above td ≈ 900ns. We note that a) the effect is much more
pronounced (as expected) when 0 is read out than 1, and b) the
fit model does not quite follow an exponential decay at low td.
This latter point indicates that while the Stark shift inspired
model of Eq. (E4) with free fit parameters is a good effective
model for the data, it does not agree with simple microscopic
dispersive theory. This indicates that the discrepancy is likely
not due to mis-characterization of the system parameters, but
of qualitatively distinct physics arising from effects outside of
dispersive theory.
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Operation label Gtarget Ĝ(2020 ns) 2σ error bars

|ρ〉〉 1
√

2


1
0
0
1




1
−0.016
−0.008
0.953




0
0.008
0.009
0.006


〈〈M| 1

√
2

(
1 0 0 1

)
1
√

2

(
1.002 −0.002 −0.01 0.997

) (
0.002 0.006 0.008 0.003

)
Gi


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1.0 0.0 0.0 0.0
−0.004 0.993 −0.001 0.021

0.01 0.008 0.989 −0.008
0.005 −0.022 0.003 0.99




0.0 0.0 0.0 0.0
0.008 0.009 0.024 0.027
0.008 0.024 0.009 0.03
0.009 0.027 0.03 0.01


Gx


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




1.0 0.0 0.0 0.0
−0.001 0.999 0.003 −0.004

0.0 −0.004 0.011 −0.999
0.0 −0.003 0.999 0.011




0.0 0.0 0.0 0.0
0.004 0.004 0.012 0.012
0.002 0.012 0.007 0.003
0.002 0.012 0.003 0.006


Gy


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0




1.0 0.0 0.0 0.0
−0.001 0.005 0.004 0.999
−0.001 −0.005 0.999 −0.004
0.001 −0.999 −0.005 0.006




0.0 0.0 0.0 0.0
0.003 0.006 0.013 0.003
0.004 0.013 0.003 0.013
0.003 0.003 0.013 0.006


Q0


0.5 0 0 0.5
0 0 0 0
0 0 0 0

0.5 0 0 0.5




0.504 0.003 −0.006 0.493
−0.01 0.002 0.005 −0.014
−0.007 −0.005 0.002 −0.0
0.454 0.0 0.005 0.478




0.003 0.011 0.011 0.005
0.013 0.023 0.023 0.016
0.013 0.023 0.022 0.016
0.006 0.014 0.014 0.009


Q1


0.5 0 0 −0.5
0 0 0 0
0 0 0 0
−0.5 0 0 0.5




0.496 −0.003 0.006 −0.493
0.004 0.001 0.001 −0.009
0.009 −0.003 −0.005 −0.009
−0.418 0.004 0.0 0.448




0.003 0.011 0.011 0.005
0.013 0.023 0.023 0.015
0.013 0.023 0.023 0.015
0.007 0.015 0.016 0.01


Table III. QILGST-reconstructed estimates for all operations at td = 2020 ns .
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listed for each temperature stage of the dilution refrigerator. The measurement signal from the cavity is converted to an intermediate frequency
using an autodyne technique [52] and digitized using an commercially available digitzer running custom firmware [83].
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