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Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quan-
tum processors. However, most couplers achieve this by fine-tuning circuit parameters and often
target specific couplings, such as the spurious ZZ interaction. We introduce a superconducting
coupler that alleviates these limitations by suppressing all two-qubit interactions with an expo-
nentially large on-off ratio and without the need for fine-tuning. Our approach is based on a bus
mode supplemented by an ancillary nonlinear resonator mode. Driving the ancillary mode leads
to a coupler-state-dependent field displacement in the resonator which, in turn, results in an expo-
nential suppression of real and virtual two-qubit interactions with respect to the drive power. A
superconducting circuit implementation supporting the proposed mechanism is presented.

I. INTRODUCTION

Two-qubit couplers are useful components for quan-
tum information processing as they enable fast and
high-fidelity operations between qubits while reducing
crosstalk during idle times. Several superconducting cou-
pler designs have been theoretically proposed and ex-
perimentally implemented [1–18]. These devices can, in
principle, offer precise control of two-qubit interactions
while helping to mitigate frequency crowding effects in
multiqubit processors such as to improve gate speed and
fidelity. There are, however, limitations to the perfor-
mance of current couplers. For instance, while couplers
are designed to activate interactions between qubits on-
demand, spurious interactions can remain active when
the coupler is tuned to its ‘off’ state. A common ex-
ample is the ubiquitous always-on cross-Kerr, or ZZ,
coupling [3, 4, 19–22]. A second difficulty is that the
coupler’s on-off ratio is often sensitive to first order in
a control parameter, such as an external magnetic flux,
thus requiring fine-tuning and frequent calibration. Cou-
plers which do not rely on frequency tuning do not suffer
from this, but the lack of tunability comes with its own
set of challenges such as large crosstalk errors during idle
times. Finally, the impact of these effects could be ex-
acerbated in multiqubit devices where frequency shifts
from spectator qubits can counteract fine-tuning.

Here, we alleviate these issues by introducing a tunable
coupler with an exponentially large on-off ratio and that
does not require fine-tuning of the coupler or qubit pa-
rameters, see Fig. 1. This is realized by adapting some of
the ideas of protected qubits to coupler designs. Broadly
speaking, the large on-off ratio is achieved by connecting
a bus mode responsible for qubit-qubit interactions to an
ancillary driven nonlinear resonator, in such a way that
the bus transition matrix elements that control two-qubit
interactions vanish exponentially with respect to the am-
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plitude of the drive on the ancillary system. This key fea-
ture renders the coupler, which includes the bus and the
driven nonlinear resonator modes, exponentially insensi-
tive to noise and relaxes the need for fine-tuning. This
proposal is particularly well suited to processors based on
protected qubits such as Kerr-cat [23, 24] and fluxonium
[25, 26] qubits where exponential suppression of multi-
qubit crosstalk would enhance the intrinsic robustness of
the processor against noise.

This paper is organized as follows. In Sect. II we
describe the physical mechanism enabling the expo-
nential suppression of two-qubit interactions and intro-
duce a model Hamiltonian realizing this mechanism.
In Sect. III, we report numerical results demonstrating
the exponential suppression of qubit-qubit interactions
mediated by the coupler and discuss implications in the
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FIG. 1. Two-qubit coupling strength vs control parameter.
For standard coupler designs, the on-off ratio depends linearly
with respect to a control parameter λ (orange line). This re-
sults in linear sensitivity to noise in the control parameter.
Our coupler design implements a two-qubit coupling that can
be exponentially suppressed with respect to the control pa-
rameter (green line). Therefore, sensitivity to noise in the
‘off’ state of the coupler is exponentially small, and the need
for fine-tuning is relaxed.
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context of large-scale processors as well as some of the
limitations of the proposed design. Finally, we introduce
a superconducting circuit implementation of these ideas
in Sect. V.

II. WORKING PRINCIPLE AND
HAMILTONIAN MODEL

Figure 2 a-b) schematically illustrates the proposed
device consisting of two qubits, labeled Q1 and Q2,
which are coupled via a bus mode B also connected
to a driven nonlinear resonator mode R. In the ab-
sence of a drive on the nonlinear resonator, the sys-
tem reduces to a standard circuit QED setup where the
bus mediates energy-exchange interactions between the
qubits [3, 4, 20–22, 27, 28]. We assume that the qubit-
bus interactions (full lines) can be modeled by a Jaynes-
Cummings-type Hamiltonian. On the other hand, the
bus-resonator interaction (dashed line) is engineered such
that, upon driving R, the resonator field undergoes a bus-
state-dependent displacement characteristic of a longi-
tudinal interaction [29–32]. As a result, a distinct res-
onator coherent state |αn〉r is associated to each bus
eigenstate |n〉b, such that the states |ψn〉 = |n〉b |αn〉r are
stabilized. Then, transitions between the mth and nth
low-energy eigenstates of the bus are suppressed in the
coherent-state amplitude

|n〉 〈m|b ⊗ 1r −→ e−|αn−αm|
2/2 |ψn〉 〈ψm| . (1)

Because all two-qubit interactions are mediated by real
or virtual transitions amongst the bus eigenstates, sup-
pressing these transitions robustly switches off all inter-
actions mediated by the coupler. As discussed below,
if the bus mode is constrained to its ground state, only
the virtual transitions of the form 0 → n need to be
suppressed for all n. This mechanism is reminiscent of
the strategy used to protect cat qubits from spurious bit
flips [23, 24, 33, 34].

An effective Hamiltonian realizing this decoupling
mechanism can be put in the form

Ĥ =

2∑
j=1

Ĥj + Ĥb + Ĥr +

2∑
j=1

Ĥjb + Ĥbr + Ĥbr−nl, (2)

where

Ĥj/~ = ωj q̂
†
j q̂j +

Kj

2
q̂†2j q̂

2
j , (3)

Ĥb/~ = ωbb̂
†b̂+

Kb

2
b̂†2b̂2, (4)

are the qubits (j = 1, 2) and bus Hamiltonians modeled
as Kerr-nonlinear oscillators, and

Ĥr/~ = ωr r̂
†r̂ − ε(t)e−iωdtr̂† − ε∗(t)eiωdtr̂, (5)

is the quadratic part of the driven nonlinear resonator
Hamiltonian subject to a drive of amplitude ε(t) and fre-

quency ωd. In these expressions, q̂1, q̂2, b̂, r̂ are the an-
nihilation operators of Q1, Q2, B, and R with mode fre-
quencies ω1, ω2, ωb, ωr, and anharmonicities K1, K2, Kb,
respectively. Although our Hamiltonian model is formu-
lated for the case of transmon qubits [35], which can
be described as Kerr nonlinear oscillators, our coupling
scheme is in principle applicable to other qubit modali-
ties. The qubits interact with the bus mode through a
Jaynes-Cummings-type Hamiltonian of the form

Ĥjb/~ = gj

(
q̂†j b̂+ b̂†q̂j

)
, (6)

where gj is the coupling strength, while the bus mode
interacts with the resonator via the cross-Kerr coupling
Hamiltonian

Ĥbr/~ = χb̂†b̂r̂†r̂ (7)

which makes the resonator frequency conditional on the
bus state via the dispersive shift χ. As will be made
clear below, unlike in common circuit QED set-ups, a
large cross-Kerr interaction |χ/gj | will be necessary for
our protocol. For the last term of Eq. (2), we assume the
form

Ĥbr−nl/~ =
∑
n

Kr

2
|n〉 〈n|b ⊗ r̂†2n (t)r̂2

n(t), (8)

where n runs over all bus states, and r̂n(t) = r̂ −
αn(t)e−iωdt. This interaction corresponds to a displaced
self-Kerr nonlinearity of the resonator and will be shown
to constrain the system dynamics to a low-energy mani-
fold. This synthetic 6-wave mixing can be experimentally
challenging, but we present a circuit implementation in
Sect. V that approximates such a term. Moreover, we
show in Sect. IV how to trade this nonlinear interaction
for two additional drives on the resonator.

Momentarily ignoring the effect of Kr, the drive on
the resonator grows a coherent state of amplitude αn
satisfying

iα̇n(t) = (δ + nχ− iκ/2)αn(t)− ε(t), (9)

which, because of the interaction Ĥbr, is conditional on
the bus state |n〉. Here, δ = ωr − ωd is the frequency
detuning between the resonator and the drive, and κ is
the single-photon loss rate of the resonator. Omitting the
qubits, the Hamiltonian of Eq. (2) together with single-
photon loss stabilizes joint bus-resonator states of the
form |ψn,k(t)〉 = |n〉b

∣∣αn(t)e−iωdt; k
〉
r
, where |α; k〉r =

eαr̂
†−α∗r̂ |k〉r is the kth Fock state displaced by an am-

plitude α. This can be more clearly seen by plotting
the metapotential associated to the Hamiltonian Ĥ with
the qubit modes traced out and for Kr = 0, obtained
by replacing the operator r̂ (r̂†) with the complex vari-
able I + iQ (I − iQ). As illustrated in Fig. 2c), this
metapotential has a single well corresponding to a stable



3

(c)

Q1 Q2B

(b)

R

Qubit 1

Q1

Qubit 2

Bus

Q2B

(a)

R
Resonator

|0 b|1 b

FIG. 2. Illustration of the proposed superconducting coupler. a) In the ‘on’ state of the coupler the driven nonlinear resonator
(R) does not participate in the two-qubit interactions mediated by the bus mode. Local drives on the qubits or bus activate
two-qubit gates. b) In the ‘off’ state, R is subject to a microwave drive which strongly suppresses two-qubit interactions that are
mediated by the bus. c) Metapotential of R for the bus states |0〉b (orange) and |1〉b (purple). Here δ/2π = −5.0 MHz, χ/2π =

−20.0 MHz and Kr = 0. To help visualization, the metapotential E(I,Q) is renormalized as E ·
[
(δ + nχ) |α0/4|2

]−1
for the nth

bus state and white corresponds to unity. The global minima of the metapotentials for n ≥ 2 are close to the global minimum
of the n = 1 metapotential but not shown for simplicity.

point of the system and whose position in the I-Q plane
is distinct for each bus state |n〉b. Moreover, because the
latter states are associated with coherent states |αn〉r
that are disjoint in phase space, bus transitions are ef-
fectively suppressed. If the system is energetically con-
strained to the first state |ψn,0(t)〉 of the metapotential
wells, we recover Eq. (1) where the matrix elements of
the bus mode are exponentially suppressed with respect
to the drive amplitude. The nonlinear interaction Ĥnlbr

of amplitude Kr plays the role of a self-Kerr nonlinearity
within each well of the resonator metapotential. As a
result, similarly as in the Kerr-cat qubit [23], this Kerr
nonlinearity helps constrain the system’s dynamics to the
low-energy states of each of the metapotential wells.

Rapid switching between the ‘on’ and ‘off’ states
of the coupler is realized by taking advantage of the
transitionless-quantum-driving (TQD) method to rapidly
displace the coherent state in the resonator starting from
vacuum [36]. In the numerical simulations that are dis-
cussed below, we use the pulse shape

ε(t) =

(
ε0(t)− iε̇0(t)

δ − iκ/2

)
Θ(τ − t) + ε0(τ)Θ(t− τ),

(10)

where ε0(t) is a smooth drive amplitude, ε0(0) = 0,
and Θ(x) is the Heaviside step function. With this choice
of drive envelope, the steady-state reached at time τ takes
the form

ᾱn '
ε0(τ)

δ + nχ− iκ/2 (11)

for each bus state |n〉b.
To avoid overlapping metapotential wells and strongly

suppress the bus transitions 0 ↔ n, the system parame-
ters are chosen such that ᾱ0 is large with respect to any
other ᾱn. This last requirement ensures that the bus
ground state is well separated in energy from the res-
onator excitations, maximizing the exponential suppres-
sion of the two-qubit interaction. More precisely, this is

achieved for |δ/χ| � 1 and |κ/χ| � 1. We note that
choosing the drive such as to make ᾱn 6=0 large is also
a valid strategy. However, we numerically find that in-
creasing ᾱ0 performs better for small to moderate values
of Kr. Importantly, the TQD protocol is reversible and
can be used to bring the coupler back to the ‘on’ state by
emptying the resonator in a time much faster than 1/κ.
The details of this analysis are provided in appendix A.

III. NUMERICAL EXPERIMENTS

A. Suppression of bus transitions

We now turn to numerical simulations of the concepts
presented in the previous section. To illustrate the work-
ing principle—the suppression of bus-state transitions in
the presence of a drive on the resonator—we first simplify
the setup by omitting the qubits. In lieu of the qubits,
we add a drive term of the form

ĤRabi/~ = Ω
(
e−iω̃btb̂† + eiω̃btb̂

)
, (12)

where Ω is the drive amplitude and the drive frequency ω̃b
is set to the ac-Stark shifted 0 − 1 transition frequency
of the bus

ω̃b = ωb +
δ(δ + χ)− (κ/2)2

χ
|ᾱ|2 , (13)

with

ᾱ = ᾱ1 − ᾱ0 = − χ

δ + χ− iκ/2 ᾱ0 (14)

being the distance between the metapotential wells as-
sociated with the ground and first excited states of the
bus. In the ‘on’ state of the coupler, the resonant drive
on the bus will result in Rabi oscillations between |0〉b
and |1〉b. In the ‘off’ state, bus transitions, and therefore
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FIG. 3. Renormalized bus a) Rabi frequency Ω̃/2π and b)

dephasing time T̃ϕ under a resonant Ω/2π = 1 MHz mi-
crowave bus drive as a function of the photon number in
the resonator, |ᾱ0|2. The results are obtained using a 5-
ns-long TQD scheme with κ/2π = 100 KHz, δ/2π = −5
MHz, Kb/2π = −300 MHz. The cross-Kerr χ/2π is varied
in the range -5.0 to -30.0 MHz. Fits are done by comparing
the time evolution to that of an effective two-level system, in-
cluding both T1 and T2. Dashed lines correspond to Eqs. (15)
and (16). c) Example of the time-evolution traces that are
fitted for |ᾱ0|2 = 11.

Rabi oscillations, are exponentially suppressed with the
coherent state amplitude ᾱ0.

Indeed, according to Eq. (1), we expect the Rabi fre-
quency in the presence of a drive on the resonator to take
the form

Ω̃ ≈ Ω exp
(
− |ᾱ|2 /2

)
. (15)

Following Eq. (14), |ᾱ| is bounded by |ᾱ0|. Indeed, 0 ≤
|ᾱ| < |ᾱ0| where the lower bound corresponds to χ = 0
or ᾱ0 = 0, and the upper bound is reached for |χ| → ∞.
As a result, increasing |χ| results in a stronger suppres-

sion of Ω̃.
Figure 3 (a) shows the Rabi frequency Ω̃ obtained

from numerical integration of the coupler master equa-
tion based on Eq. (2). The result includes damping in the
resonator but excludes decoherence in the bus, and it is
computed for different equilibrium values of |ᾱ0|2 and
cross-Kerr interactions χ. The data points are extracted

from fits to the bus population 〈b̂†b̂〉(t) with the bus and
resonator initialized to the vacuum state, see panel (c).
The numerical result (symbols) is in excellent agreement
with Eq. (15) (dashed lines) and display the expected ex-
ponential suppression of the bus Rabi oscillations. This
suppression becomes more significant for increasing cross-
Kerr coupling |χ| /2π which is shown here ranging from
5 to 20 MHz. We note that these results are obtained
for Kr = 0. In the absence of the qubits (gj = 0), choos-
ing small |Ω/δ| guarantees that the dynamics is mainly
generated by states |ψn,0〉 for which the exponential sup-
pression of the Rabi frequency is maximized. Indeed, the
states |ψ0,k〉 are separated in energy by δ and thus, to
prevent transitions to k 6= 0 states during a 1 → 0 bus
transition, we ideally require the matrix elements of Rabi
drive Hamiltonian in the state basis |ψn,k〉 to be small rel-

ative to δ, i.e.
∣∣∣Ω〈ψ0,k|b̂|ψ1,0

〉
/kδ
∣∣∣ =

∣∣∣Ω̃ᾱk/kδ√k!
∣∣∣� 1

for k 6= 0.
In the presence of single-photon loss in the resonator,

the distinct coherent states associated to the different bus
states lead to bus dephasing. This originates from the
‘which-bus-state’ information that is carried by the lost
photons, something that is akin to measurement induced-
dephasing in the dispersive readout of circuit QED [37].
With Tϕ denoting the bare bus dephasing time, the co-
herence time in the presence of the resonator drive takes
the form

T̃ϕ ≈
(

1

Tϕ
+
κ

2
|ᾱ|2

)−1

. (16)

Fig. 3 (b) shows this dephasing time extracted from the
numerical simulations including κ 6= 0 [symbols]. Sim-
ilarly to the previous case, we find excellent agreement
with the analytical expression (dashed lines). To iso-
late the effects of resonator dissipation on the system,
we have omitted intrinsic relaxation and dephasing of
the bus mode. A key observation is that, while transi-
tions between the bus states are suppressed exponentially
with ᾱ, dephasing only increases polynomially with this
quantity. Moreover, we demonstrate below that the de-
phasing induced on the bus mode does not percolate to
the qubits.

B. Suppression of two-qubit interactions

Having numerically confirmed that suppressing the bus
transitions by driving the resonator is possible, we now
reintroduce the qubits to the model and explore the two-
qubit decoupling. In particular, we characterize the hy-
bridization between the qubit and bus modes as a func-
tion of the resonator drive parameters and demonstrate
how spurious two-qubit couplings, such as the ZZ inter-
action, are exponentially suppressed.

We now take Kr 6= 0 in Eq. (2). In the presence of this
term, Eqs. (5), (7) and (8) still stabilize displaced Fock
states in the resonator, with displacement αn(t)e−iωdt.
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The driven states in the nonlinear resonator are there-
fore unchanged under the action of Eq. (8). As is dis-
cussed below, the role of the nonlinearity Kr is instead
to constrain the resonator to low-energy states.

1. Polaron transformation

Analyzing the underlying physics of the model Hamil-
tonian is made easier after a rotating-frame transforma-
tion and a polaron-like transformation which displaces
the resonator mode conditionally on the state of the bus.
Acting with Eq. (A1) on Eq. (2), the transformed Hamil-
tonian takes the form (see appendix A)

ĤP =

2∑
j=1

ĤP
j + ĤP

br + ĤP
κ + ĤP

g , (17)

with

ĤP
j /~ = ∆̃j q̂

†
j q̂j +

Kj

2
q̂†2j q̂

2
j , (18)

ĤP
br/~ =

(
δ + χb̂†b̂

)
r̂†r̂ +

K̃b

2
b̂†2b̂2 +

Kr

2
r̂†2r̂2, (19)

ĤP
κ /~ =

iκ

2

∑
n

(
αnr̂

† − α∗nr̂
)
|n〉 〈n|b , (20)

ĤP
g /~ =

∑
j,n

gj q̂
†
je
iφnD̂n,r

√
n+ 1 |n〉 〈n+ 1|b + h.c.,

(21)

where the resonator decay rate κ appears in the displace-
ment transformation according to Eq. (9). In ĤP

g we have
defined the bus-state-dependent phases

φn =
α∗n+1αn − α∗nαn+1

2i
, (22)

the resonator displacement operators

D̂n,r = e(αn+1−αn)r̂†−(α∗n+1−α
∗
n)r̂, (23)

and the ac-Stark shifted qubit-bus detunings and bus an-
harmonicity

∆̃j = ωj − ωb − δ |α0|2 + (δ + χ) |α1|2 , (24)

K̃b = Kb − δ |α0|2 + 2(δ + χ) |α1|2 − (δ + 2χ) |α2|2 ,
(25)

respectively. In what follows, we neglect the transients to
focus on times where the polaronic states are fully grown
with αn = ᾱn as defined in Eq. (11).

In the polaron frame Hamiltonian ĤP , all modes are
described by a Kerr nonlinear oscillator Hamiltonian.
Moreover, the interaction between the qubits and the
bus, ĤP

g , reflects the fact that transitions in the bus
are accompanied by displacements of the resonator field.
Damping is described by the usual Lindblad master equa-
tion, now expressed in the polaron frame as discussed

in appendix A 2. In particular, the resonator photon-loss
Lindblad operator L̂r =

√
κr̂ in the laboratory frame

transforms to L̂Pr =
√
κ (r̂ +

∑
n ᾱn |n〉 〈n|b) in the po-

laron frame. The action of both ĤP
κ and L̂Pr ensures

the stabilization of the vacuum state in the resonator
for all |n〉b. Under the rotating-wave approximation, the
Lindblad dynamics of the system can be further reduced
to the effective Hamiltonian ĤP − ĤP

κ together with the
two Lindblad operators

√
κr̂ and

√
κ
∑
n ᾱn |n〉 〈n|b. By

assuming the dynamics to be restrained to the ground
and first-excited states of the bus, the latter operator
takes the simpler form (c.f. appendix A)

L̂Pb =

√
κ |ᾱ|2

4
(|1〉 〈1|b − |0〉 〈0|b) . (26)

This result is in agreement with the expression for the
bus dephasing time of Eq. (16).
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FIG. 4. Suppression of 1−η1000 with respect to the resonator
photon number |ᾱ0|2. The data points are obtained from nu-
merical diagonalization with a fixed drive amplitude in the
resonator. Analogous plots for 1 − η0100 can be found in ap-
pendix B 2. Dashed lines correspond to the same system but
with the resonator undriven and the bus frequency tuned to
the ac-Stark shifted frequency found in the driven system.
The gray regions are bounded by the analytical estimates
in Eq. (28) for Kr →∞ and Kr = 0. Here (ω1−ωb)/2π = 7.0
MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0
MHz, χ/2π = −20.0 MHz, and g/2π = 2.0 MHz.
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2. Inverse participation ratio

A useful quantity to further characterize the exponen-
tial suppression of the two-qubit interactions is the mode
hybridization between the qubits and the bus in the ‘off’
state. To quantify this effect we make use of the inverse
participation ratio (IPR) [38, 39], which here takes the
form

ηµ :=

∑
ν |〈ψh,µ|ψb,ν〉|

4

|〈ψh,µ|ψh,µ〉|2
, (27)

where |ψb,ν〉 and |ψh,ν〉 are the bare (gj = 0) and hy-
bridized (gj 6= 0) eigenstates of the full system. The
IPR is a measure of how localized the wavefunctions of
the circuit modes are with respect to the bare modes,
and it ranges from 1/4 (maximally delocalized states)
to 1 (maximally localized states) for our system with four
modes.

In the dispersive regime where the qubits are largely
detuned from the bus mode, analytical expressions for
ηµ can be obtained by eliminating ĤP

g in ĤP us-
ing a Schrieffer-Wolff transformation. For the bare
states |ψb,ν〉 with ν ∈ {1000, 0100, 1100} and where the
state indexing corresponds to (Q1, Q2, B,R), we obtain
in appendix B 2

η1000 ≈ 1− 2e−|ᾱ|
2

(
g1

∆̃1

)2

4F4

(
p1; 1 + p1; |ᾱ|2

)
, (28)

η0100 ≈ 1− 2e−|ᾱ|
2

(
g2

∆̃2

)2

4F4

(
p2; 1 + p2; |ᾱ|2

)
, (29)

and η1100 ≈ η1000 + η0100 − 1, where ᾱ =
ᾱ1 − ᾱ0, pFq is the generalized hypergeometric func-
tion, pj =

(
pj− pj− pj+ pj+

)
with pj± = β[1 ±√

1 + 2∆̃jβ
−2/Kr], and β = (δ + χ)/Kr − 1/2. The

expressions for ηµ show that the degree of mode hy-
bridization decreases with increasing detuning. More
importantly, we also see that hybridization is exponen-
tially suppressed with increasing photon population of
the resonator mode. At large photon number, virtual
transitions to higher-energy states within the resonator’s
metapotential wells can impact the level of exponential
suppression, something that is represented by the contri-
bution from the hypergeometric function. These higher
energy transitions can, however, be prevented by increas-
ing |δ + χ| and |Kr|.

To verify these observations, we investigate the quan-
tity 1 − η1000 as a function of the photon number |ᾱ0|2
in the resonator by exact diagonalization of the Hamil-
tonian of Eq. (17) for κ = 0 (see Fig. 4). Different colors
correspond to different values of the nonlinearity Kr. Fo-
cusing first on panel (a), obtained for δ/2π = −1.5 MHz,
the anticipated suppression of the hybridization with in-
creasing |ᾱ0|2 is clearly observed, together with the slow-
down of that trend for larger |ᾱ0| ∝ |ᾱ|.

The shaded region is plotted using the analytical ex-
pression in Eq. (28) for Kr in the range |Kr| → ∞

to Kr = 0. In the former limit, the dynamics is con-
strained to the low-lying polaronic states, i.e. the res-
onator is constrained to the displaced Fock states |0〉
and |1〉 in the laboratory frame, and the exponential sup-
pression persists for large |ᾱ0|. As a comparison, the
dashed line is obtained from the usual dispersive fac-
tor (gi/∆̃i)

2 taking into account the change in qubits-bus
detuning due to the ac-Stark shift and which corresponds
to usual qubit-bus-qubit couplers without the driven res-
onator. The very strong suppression of 1−η1000 observed
in Fig. 4 (a) for our coupler design has an important con-
sequence: because of the very small hybridization of the
qubit eigenstates, all real and virtual qubit-qubit inter-
actions mediated by the coupler are exponentially sup-
pressed in amplitude; see appendix B 4 for details. Anal-
ogous plots for 1− η0100 can be found in appendix B 2.

Figure 4(b) also shows 1 − η1000 as a function of the
number of photons |ᾱ0|2 in the resonator but now for a
positive detuning of δ/2π = 1 MHz. In this situation,
we observe a divergence in 1 − η1000 associated with a
resonance in the ac-Stark shifted detunings ∆̃1. As dis-
cussed in appendix B 6, this resonance can be understood
from the poles of the generalized hypergeometric func-
tion appearing in Eqs. (28) and (29), which correspond
to frequency collisions with higher energy levels of the
resonator. For negative detunings δ, these collisions are
avoided and the suppression is monotonic with photon
number. On the other hand, choosing δ > 0 results in
a nonmonotonic 1 − η1000 something which can lead to
a stronger suppression of unwanted interactions. See ap-
pendix B 6 for a detailed discussion of these frequency
collisions and how to take advantage of them.

As previously alluded to, the exponential suppression
of qubit-qubit interactions is greatly enhanced at large
photon numbers in the resonator if |∆̃j/χ| or |∆̃j/Kr|
are small. These ratios determine the probability of a
resonance with higher-energy levels of the resonator. Be-
cause the latter tend to cover a larger area in the phase-
space of the resonator than the low-energy states, their
occupation would attenuate the exponential suppression
of qubit-qubit interactions. We highlight that taking
|∆̃j/χ| or |∆̃j/Kr| small is a natural parameter regime
with protected qubits, which often have small frequencies
by design [23, 26]. This feature underlines the compati-
bility of our coupler with protected qubits.

We conclude this section with a remark regarding
the optimal ramping rate ν of the photon number, i.e.
|ᾱ0(t)|2 = νt, to minimize the impact of accidental reso-
nances. Frequency collisions in Figs. 4 and 9 correspond
to pairs of qubit-coupler states that are brought into res-
onance as the coherent state amplitude goes from 0 to ᾱ0.
As detailed in appendix B 3, as the levels go through the
crossing, the state of the qubit leaks to the coupler follow-
ing the Landau-Zener formula [40] and, as a result, the
probability of leakage is exponentially reduced in |ν/g′j |,
where g′j is the effective coupling strength between Qj
and B that is exponentially suppressed in |ᾱ0|. However,
non-adiabatic errors in the TQD protocol, determined by
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ratios of the pulse’s time derivatives to the cross-Kerr in-
teraction strength χ [c.f. appendix A], impose an upper
bound on ν. Near that upper-bound, the leakage prob-
ability is nonetheless exponentially suppressed in both
|ᾱ0|2 and |χ/g′j | as inferred in appendix B 3. We high-
light that |gj/χ| � 1 was already a key requirement for
the proposed device.
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FIG. 5. Suppression of the ZZ interaction χ12 between the
qubits as a function of the resonator photon number |ᾱ0|2.
Data points correspond to numerical diagonalization of the
system Hamiltonian with a fixed drive amplitude in the res-
onator. Dashed lines correspond to Eq. (31), i.e. the same
system but with the resonator undriven and the bus frequency
tuned to the ac-Stark shifted frequency found in the driven
system. Here (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0
MHz, K1/2π = K2/2π = −300.0 MHz, χ/2π = −20.0 MHz,
and g/2π = 2.0 MHz.

3. Suppression of spurious interactions

We now analyze how the proposed coupler help to
suppress the spurious cross-Kerr coupling between the
qubits, which is given by

χ12 = ω1100 − ω1000 − ω0100 + ω0000, (30)

where ωµ = 〈ψh,µ? |ĤP − ĤP
κ |ψh,µ?〉 is the energy

associated with the two-qubit eigenstate |ψh,µ?〉 with

maximal overlap with the bare state |ψb,µ〉, i.e. µ? =

argmaxν |〈ψh,ν |ψb,µ〉|2.
Fig. 5 shows |χ12| obtained from numerical diagonal-

ization of ĤP − ĤP
κ as a function of |ᾱ0|2, for different

values of Kr (symbols). As a comparison, the dashed line
shows |χ12| resulting only from the change in detuning
between the qubits and the bus due to the ac-Stark shift,
and computed using the perturbative expression

χac
12 =

1

6

g2
1

∆̃1

g2
2

∆̃2

(
1

∆̃1

+
1

∆̃2

)
, (31)

valid for |∆̃j/Kj | � 1 and |∆̃j/K̃b| � 1. The latter
is obtained from a Magnus expansion to fourth order in
the coupling strengths [c.f. appendix B 4]. The two res-
onances observed in the dashed line and the numerical
data in panel (b) correspond to ∆̃j = 0.

As first noticed for 1− η1000 in Fig. 4, the suppression
of χ12 is monotonic with photon number for negative de-
tunings δ [panel (a)], while some nonmonotonic features
appear at positive detuning where the suppression is also
stronger [panel (b)]. See appendix B 6 for a discussion of
the origin of these features.

We also note the presence of more features in Fig. 5b)
for χ12 than in Fig. 4b) for 1 − η1000. The first two
dominant peaks in Fig. 5b) result from accidental reso-

nances between each qubit and the bus, i.e. ∆̃j = 0, in
agreement with the peaks observed for 1−η1000 in Fig. 4
and 1− η0100 in Fig. 9. Additional features in Fig. 5 not
present in Figs. 4 and 9 result from frequency collisions
with higher energy levels in the system, activated by the
ac-Stark shifts in the bus.

Importantly, the suppression of 1− ηµ and the result-
ing reduction of the spurious cross-Kerr coupling does
not require fine-tuning of the circuit or drive parameters.
Indeed, as illustrated in Figs. 4 and 5, strong suppres-
sion is observed for different choices of circuit parame-
ters including δ and Kr. It is also worth emphasizing
that all real and virtual interactions are suppressed by
this scheme. This fact is in stark contrast to other ap-
proaches where cancellation of two-qubit interactions is
realized only for a precise value of a control parameter
and where residual virtual interactions such as χ12 re-
main present [5, 21, 22].

Finally, we note that it is possible to combine our cou-
pler with other approaches for suppressing spurious inter-
actions, for instance by using qubits with opposite sign
anharmonicities[21, 22].

C. Bus-induced qubit dephasing

At the origin of the suppression of unwanted interac-
tion are the disjoint bus-state dependent coherent states
of the driven resonator. A photon lost from the resonator
carries the ‘which-bus-state’ information and leads to de-
phasing of the bus state. Because there exists hybridiza-
tion between the bus and qubit modes, this mechanism



8

can introduce additional qubit dephasing. However, as
shown in more details in appendix A, we find that this
is not an important contribution to qubit dephasing. In-
deed, by expressing Eq. (26) in the hybridized eigenbasis,
the dephasing rate of the first qubit is given by

γϕ,1 =
κ |ᾱ|2

2

( ∞∑
k=0

|〈ψh,1000|ψb,001k〉|2
)2

≈ κ |ᾱ|2
2

1− η1000

2
,

(32)

where the second line follows from a Schrieffer-Wolff
transformation [c.f. appendix B 5]. The expression above
was obtained with a rotating-wave approximation, which
is valid for |γϕ,1/∆̃1| � 1. An expression for the second
qubit is obtained by simply replacing the subscript 1000
by 0100.

Similarly to measurement-induced dephasing [37], the
prefactor of Eq. (32) scales with the photon number |ᾱ|2
in the resonator. However, because 1 − ηµ is exponen-
tially suppressed with increasing |ᾱ|2, the qubit dephas-
ing rate can be made negligible in the ‘off’ state of the
coupler. Appendix B 5 also compares Eq. (32) versus pho-
ton number against the result obtained from numerical
diagonalization of ĤP − ĤP

κ . As with the suppression of
unwanted ZZ interactions, the reason for this negligibly
small dephasing rate is the very low hybridization of the
qubits’ eigenstates with the bus and resonator modes.

IV. EFFECTIVE PARAMETRIC MODULATION

In the previous sections, we have seen that large non-
linear interaction amplitudes Kr help in the suppression
of the unwanted interactions in the ‘off’ state of the cou-
pler. Here, we explore an alternative strategy that relies
on a two-tone drive on the resonator. Moreover, because
the nonlinearity is not needed in this case, the resonator
can be taken to be a linear resonator (LR). This might
also simplify the experimental realization of these ideas.

Our starting point is again the Hamiltonian of Eq. (2)
where we now take Kr = 0 and introduce the following
additional drive on the LR

ĤDD = − iλωm
2ᾱ∗

[
e−i(ωr−ωm)t − e−i(ωr+ωm)t

]
r̂† + h.c.,

(33)

where λ is a real-valued amplitude and the frequency ωm
is assumed here to be much larger in magnitude than the
cross-Kerr interaction χ. With this additional two-tone
drive on the LR, the steady-state bus-dependent coherent
state Eq. (11) becomes

ᾱn → ᾱn − iλ cos(ωmt)/ᾱ
∗, (34)

where λ plays the role of the amplitude of a modulation
around the steady-state value ᾱn. Crucially, this modu-
lation changes the phase φn that specifies the bus-state-
dependent displacements Hamiltonian ĤP

g in Eq. (21),
which can now be written as

φn(t) = φ̄n − λRe

[
ᾱn+1 − ᾱn

ᾱ

]
cos(ωmt), (35)

φ̄n =
ᾱ∗n+1ᾱn − ᾱ∗nᾱn+1

2i
. (36)

Moreover, the qubit-bus detunings transform to ∆̃j =

∆̃0
j + ∆̃t

j where

∆̃0
j = ωj − ωb − δ |ᾱ0|2 + (δ + χ) |ᾱ1|2 +

χλ2

2 |ᾱ|2
, (37)

∆̃t
j = −2χλIm

[ ᾱ1

ᾱ

]
cos(ωmt) +

χλ2

2 |ᾱ|2
cos(2ωmt). (38)

An additional rotating frame transformation such as to
remove the time-dependence of the qubit-bus detunings,
leads to the following approximation for ĤP

g

ĤP ′
g =

∑
j,n

gj q̂
†
je
iφ′n(t)D̂n,r

√
n+ 1 |n〉 〈n+ 1|b + h.c.,

(39)

where we have introduced φ′n(t) = φn(t) +
∫ t

0
dt∆̃t

j . Ex-
cept for the now time-dependent phase φ′n(t), Eq. (39) as
the same form as Eq. (21).

The role of the time-dependent phase φ′n(t) can be un-
derstood by using the Jacobi-Anger expansion

eiφ
′
n = eiφ̄n

+∞∑
s=−∞

(−i)sJs
(
λRe

[
ᾱn+1 − ᾱn

ᾱ

])
eisωmt,

(40)

where Js(z) is the sth Bessel function of the first kind,
and where we considered negligible χ/ωm for simplicity.
Because the bus mode is ideally only virtually excited at
all times, our goal is to dominantly suppress the 0 ↔ 1
transition in the bus. To achieve this, we adjust the
amplitude λ to reach a zero of J0 in Eq. (40), noticing
that ᾱ = ᾱ1− ᾱ0. Higher harmonics of Eq. (40) oscillate

rapidly for ωm � |χ|, |∆̃0
j |, and result in a lower bound

on the suppression of the two-qubit interactions (c.f. ap-
pendix C).

To understand how the two proposed implementation
mechanisms compare to each other, we compute in ap-
pendix B 2 the quantity 1 − ηµ using a time-dependent
Schrieffer-Wolff transformation to find

1− η1000 ≈ 2g2
1e
−|ᾱ|2

+∞∑
s1,s2=−∞

is2−s1ei(s2−s1)ωmt

×Js1(λ)Js2(λ)
4F4

(
p1s1s2 ; 1 + p1s1s2 ; |ᾱ|2

)
(

∆̃0
1 + s1ωm

)(
∆̃0

1 + s2ωm

) , (41)
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FIG. 6. Time-averaged inverse participation ratio against
photon number using a two-tone drive on the LR (Kr = 0)
with frequencies ωr ± ωm and amplitudes ωmλ/ᾱ

∗. The
shaded regions are bounded by λ = λ0 where J0(λ0) = 0 and
a 10% error on λ0. The other parameters are δ/2π = −1.0
MHz, χ/2π = −20.0 MHz, (ω1 − ωb)/2π = 7.0 MHz, (ω2 −
ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz,
and g/2π = 2.0 MHz. 〈1− η0100〉t can be found in appendix C.

where pjs1s2 =
(
pjs1− pjs2− pjs1+ pjs2+

)
with pjs± =

β[1±
√

1 + 2(∆̃0
j + sωm)β−2/Kr] and β = (δ+χ)/Kr −

1/2.We observe that Eq. (41) is reminiscent of Eq. (28),
and a similar expression for η0100 can be derived. In
the large ωm � |∆̃0

1| limit, the dominant contribution
to Eq. (41) arises from the term with s1 = s2 = 0, which
is canceled by adjusting λ to reach a zero of J0. Impor-
tantly, because of the already suppressed interactions,
there is no need for a very fine adjustment of λ. The
time-averaged 1 − η1000 according to Eq. (41) is illus-
trated in Fig. 6, where we take ωm = ω0 |ᾱ| such that
the drive amplitude in Eq. (33) is independent of |ᾱ|.
The dashed line corresponds to the absence of dynamical
decoupling. The shaded regions correspond to ± 10% er-
ror bounds on the drive amplitude. We observe a strong
suppression of 1−η1000 and of the drive amplitude sensi-
tivity. As discussed further in appendix C, we note that
the asymptotic behavior of the suppression is polyno-
mial in ᾱ. With the very large suppression of 1−ηµ that
is observed in Fig. 6, this is a small price to pay when
trading the nonlinearity Kr for an additional drive. We
finally note that the suppression can be further enhanced
with the help of a longitudinal drive in the LR (c.f. ap-
pendix C).

V. SUPERCONDUCTING CIRCUIT
IMPLEMENTATION

In this section, we introduce a superconducting quan-
tum circuit realizing our coupler. To approach the model
Hamiltonian of Eq. (2), we draw inspiration from the
Kerr-cat qubit which exploits the bifurcation physics of
driven Josephson-based devices [23, 24]. A simplification,

based on the idea of dynamical decoupling in Sect. IV, is
also discussed.

A. Kerr-cat-based circuit model

Figure 7(a) shows a possible circuit realization of our
coupler with two transmon qubits interacting through a
transmon-like device playing the role of bus mode. The
latter is connected to a driven nonlinear circuit represent-
ing the resonator and consisting here of a loop formed
by two symmetrical Josephson junctions and a SNAIL-
like element which incorporates an array of N ∼ 3 junc-
tions [3]. As mentioned earlier, although for simplicity
we focus here on transmon qubits, this scheme is applica-
ble to other types of superconducting and, in particular,
is well adapted to protected qubits.

Omitting the qubits for the moment, the Hamiltonian
of the circuit reads

Ĥ = Ĥb + Ĥr + Ĥbr, (42)

where

Ĥb = 4ECb n̂
2
b − EJb cos (ϕ̂b)

≈ ωbb̂†b̂+
Kb

2
b̂†2b̂2,

(43)

is the bus Hamiltonian, which we treat as a weakly non-
linear oscillator of frequency ωb =

√
8ECbEJb −ECb and

negative anharmonicityKb = −ECb . We define the phase
operators of the two modes across the SNAIL-like ele-
ment as 2ϕ̂± = −ϕ̂b ± (ϕ̂r − ϕ`) where ϕ̂b (ϕ̂r) is the
phase operator of the bus (resonator) and ϕ` is a real-
valued scalar determined from the minimization of the
potential energy of the circuit. We consider two external
flux biases: ϕs2 in the three-node loop and ϕsN − ϕs2 in
the SNAIL-like circuits. Here, ϕs2 (ϕsN ) shifts the co-
sine potential of the two junctions (N junctions) in the
SNAIL-like circuit. Moreover, ϕ̂1 (ϕ̂2) is the phase oper-
ator of Q1 (Q2). The resonator and bus-resonator Hamil-
tonians take the form

Ĥr = 4ECr n̂
2
r −NEJN cos

(
ϕ̂r − ϕ′sN

N

)
+ 2ε(t)n̂r

− 2EJ` cos

(
ϕ̂r − ϕ`

2

)
− 2EJ2 cos

(
ϕ̂r − ϕ′s2

2

)
,

(44)

Ĥbr = −2EJ`

[
cos

(
3ϕ̂b
2

)
− 1

]
cos

(
ϕ̂r − ϕ`

2

)
, (45)

where ϕ′s2 = ϕs2 + ϕ` and ϕ′sN = ϕsN + ϕ`. In these
expressions, ECr is the resonator charging energy, EJ`
the Josephson energy of the symmetrical junctions in
the resonator’s circuit, EJ2 the Josephson energy of each
of the two smaller resonator’s junctions, and EJN the
Josephson energy of each of the N large junctions in the
array. Moreover, ε(t) is the amplitude of the drive of
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FIG. 7. Superconducting circuit implementation. a) Circuit design. The qubits and bus modes are implemented using transmon
qubits; ϕ̂1, ϕ̂2 and ϕ̂b are the phase operators of Q1, Q2 and the bus modes respectively. Here 2ϕ̂± = −ϕ̂b± (ϕ̂r − ϕ`) where ϕ`
is a real-valued scalar to be defined. A SNAIL-like element, representing the resonator mode with phase operator ϕ̂r, is
linearly driven by a voltage source Vg. Φ0ϕs2/2π and Φ0 (ϕsN − ϕs2) /2π are two external fluxes that control the bus-resonator
interaction. b) Metapotential of the resonator for each of the bus states |0〉b (orange), |1〉b (purple) and |2〉b (blue). Here δ/2π =
−5.0 MHz, χ/2π = −5.0 MHz and Kr/2π = −10.0 MHz. c) 1 − η1000 (and 1 − η0100 can be found in appendix D) estimated
by numerical diagonalization of the full system using the effective Hamiltonian in Eq. (53) with δ/2π = 1 KHz, χ/2π = −5.0
MHz, (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

frequency 2(ωr − δ) on the resonator, where ωr is the
frequency of the undriven resonator.

Here we aim at stabilizing cat states in the resonator
with amplitudes that depend on the bus photon num-
ber. Just as in the simplified model discussed in the
previous section, transitions between bus states are asso-
ciated to displacements in the resonator. An advantage
of this proposed realization is that the large anharmonic-
ity in the resonator is now determined by the size of the
cat state. To this end, we follow Frattini et al. [3] by
choosing the external fluxes and Josehpson energy such

as to obtain a cubic nonlinearity of the form b̂†b̂
(
r̂† + r̂

)3
in Ĥbr. In the presence of a linear drive on the resonator,
the cubic nonlinearity leads to a nearly resonant, bus-
photon-number-dependent two-photon drive in the res-
onator. The Kerr nonlinearity in the resonator can then
stabilize bus-photon-number-dependent cat-states.

More precisely, we take EJ2 = EJ` , ϕ` = π − 2ζ
and ϕ′s2 = −π − 2ζ where ζ is a parameter to be de-
fined. With these choices, we have

Ĥr = 4ECr n̂
2
r −NEJN cos

(
ϕ̂r − ϕ′sN

N

)
+ 2ε(t)n̂r,

(46)

and

Ĥbr ≈
9πzbEJ`

4

(
2b̂†b̂+ 1

)
×
[
cos ζ sin

(
ϕ̂r
2

)
+ sin ζ cos

(
ϕ̂r
2

)]
, (47)

where zb(r) = Zb(r)/RQ is the reduced impedance of

the bus (resonator) mode with RQ ' 6.5 kΩ the re-

sistance quantum. In Ĥbr, the sine and cosine terms
which depend on ϕ̂r are key for implementing the bus-

photon-number-dependent cubic nonlinearity b̂†b̂(r̂†+ r̂)3

and the cross-Kerr interaction b̂†b̂r̂†r̂. Our next step
is to apply a displacement transformation D̂[ξ(t)] on
the resonator mode to eliminate the drive term which
we take to have constant amplitude ε0 for simplicity,
ε(t) = ε0 sin[2(ωr − δ)t]. To achieve this, we take −iξ̇ +
ωrξ + iε(t)/

√
πzr = 0 or, equivalently,

√
πzrξ(t) ≈

−Ω cos[2(ωr − δ)t] + (iΩ/2) sin[2(ωr − δ)t] with the dis-
placement amplitude Ω = 2ε0/3ωr. By doing so, we ob-

tain the displaced Hamiltonian ĤD = Ĥb + ĤD
r + ĤD

br
with

ĤD
r ≈ ωr r̂†r̂ +

Kr

2
r̂†2r̂2 +

λr
2
r̂†2e−i2(ωr−δ)t + h.c. (48)

ĤD
br ≈ χ

(
b̂†b̂+

1

2

)
r̂†r̂

+
λ`
2

(
2b̂†b̂+ 1

)
r̂†2e−i2(ωr−δ)t + h.c. (49)

for small ϕ′sN/N . The above expressions are valid for

small reduced mode impedance πzr ≈
√

2NECr/EJN
and assume the rotating-wave approximation. We
have introduced the resonator frequency ωr =√

8ECrEJN /N −ECr , the self-Kerr anharmonicity Kr =
−ECr/N2, the two-photon drive amplitude

λr = − (πzr)
3/2ΩEJNϕ

′
sN

2N3
, (50)
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the cross-Kerr interaction amplitude

χ = −9πzbπzrEJ` sin(ζ)

8
, (51)

and the bus-number dependent two-photon drive ampli-
tude

λ` =
9πzb(πzr)

3/2ΩEJ` cos(ζ)

64
. (52)

We, moreover, set λr = −2λ` by a proper choice of the
flux biases.

Finally, in a doubly rotating frame at ωr − δ for r̂ and

at ωb for b̂, the displaced Hamiltonian ĤD then approx-
imately becomes

Ĥ ′D ≈ Kb

2
b̂†2b̂2 − Krα

4

2

(
2b̂†b̂− 1

)2

+
(
δ + χ/2 + χb̂†b̂

)
r̂†r̂

+
Kr

2

[
r̂†2 + α2

(
2b̂†b̂− 1

)] [
r̂2 + α2

(
2b̂†b̂− 1

)]
,

(53)

where α2 = λ`/Kr. Equation (53) is reminiscent of the
Kerr-cat Hamiltonian [3, 23] with the difference that the
amplitude and the orientation of the cat now depend on
the bus Fock-state-number.

The metapotential associated to this Hamiltonian is
illustrated in Fig. 7(b). As in Fig. 2 for the simplified
system, the different Fock states of the bus mode lead to
displaced wells in the I-Q plane. However, because of the
combination of the Kerr nonlinearity and the engineered
two-photon drive, each Fock state is associated with two
metapotential wells [23]. The central idea of blocking
the bus-state transition by entangling those states to co-
herent states in the resonator is, however, unchanged.
This is confirmed in Fig. 7(c) which shows 1− η1000 as a
function of photon number. Apart from additional res-
onances which can be avoided, the overall behavior is
the one expected: we see an exponential reduction of the
bus-state hybridization with resonator photon number,
as originally predicted by the model of Eq. (2).

Furthermore, it is useful to note that the ac-Stark
shift on the bus frequency vanishes in this model, i.e.
the ground- and first-excited states of the bus are both
shifted in energy by Krα

4/2. The bus-resonator entan-
glement is therefore entirely responsible for the exponen-
tial suppression observed in Fig. 7c).

B. Harmonic model with parametric modulation

In Sect. IV we have seen how it is possible to trade
the large nonlinear interaction between the bus and the
resonator by additional drives. Here, we show how this
idea can be realized without modifications to the cir-
cuit of Fig. 7. For this second approach, we take ϕ` =
0, ϕ′s2 = 2π, EJ2 = λEJ` with λ = 1 − (3/2)2πzb/2,

and ϕ′sN mod 2πN = 0. With these parameter choices,
the circuit Hamiltonian can now be written as

Ĥb = 4ECb n̂
2
b − EJb cos (ϕ̂b)− 2EJ` cos

(
3ϕ̂b
2

)
, (54)

Ĥr = 4ECr n̂
2
r −NEJN cos

(
ϕ̂r
N

)
+ 2ε(t)n̂r. (55)

Ĥbr = −2EJ`

[
cos

(
3ϕ̂b
2

)
− λ
] [

cos

(
ϕ̂r
2

)
− 1

]
, (56)

We note that the reduced mode impedance of the res-
onator, πzr ≈

√
2NECr/EJN , needs to be made small to

prevent the drive on the resonator from resulting in ap-
preciable nonlinear terms due to the cosine potentials and
the nearly resonant two-photon and cubic terms. More
precisely, we take 1/

√
πzr to be much larger than any

displacement in the resonator field associated with the
bus Fock states n 6= 0, and small compared to N/

√
πzr

for n = 0.
As above, we treat the bus and resonator modes as

weakly nonlinear oscillators. Importantly, for n = 0, we
find that Ĥbr ≈ 0 and Ĥr is approximately harmonic de-
spite a large displacement in the resonator field. More-
over, for n 6= 0, Ĥbr effectively implements a large cross-
Kerr interaction that strongly reduces displacements of
the resonator field by rendering the linear drive of the
resonator off-resonant. Particularly, we find that

Ĥ ≈
∑
ν=b,r

(
ων ν̂

†ν̂ +
Kν

2
ν̂†2ν̂2

)
+ χb̂†b̂r̂†r̂

+ iΩ(t)
(
r̂† − r̂

)
.

(57)

In this expression, we have defined the frequencies ων ≈√
8ECνELν −ECν , the reduced mode impedances πzν ≈√
2ECν/ELν , the inductive energies ELb = EJb +

2(3/2)2EJ` and ELr = EJN /N , the anharmonici-
ties Kb = −[EJb + 2(3/2)4EJ` ]ECb/ELb and Kr =
ECr/N

2, and the linear drive amplitude Ω(t) =
ε(t)/2

√
πzr.

We also largely reduce the resonator’s anharmonic-
ity Kr by choosing a small ECr and large N . It is possible
with this model to observe the exponential suppression of
two-qubit coupling by choosing ε(t) to be nearly resonant
with the resonator.

As discussed in Sect. IV, with a reduced anharmonicity
in the resonator an additional drive, which we choose to
be of the form

Ω(t) = 2δᾱ0 cos [(ωr − δ)t] +
ωmλ

ᾱ

∑
ν=±

ν sin [(ωm + νωr)t]

(58)

can serve as a complementary mechanism to suppress
interactions. In the limit |δ/χ| � 1, |χ/ωm| � 1
and |ωm/ωr| � 1, we find that the bus-state dependent
displacements take the form

αn(t) ≈ δᾱ0

δ + nχ
− iλ

ᾱ
cos(ωmt), (59)
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in agreement with Eq. (34). From this point on, the
result of Sect. IV follows.

Finally, we emphasize that even though a cross-Kerr
type interaction between the bus and the resonator could,
in principle, be implemented using a dispersive cou-
pling [28], the dispersive Hamiltonian is invalid at large
photon numbers and yields virtual qubit-qubit interac-
tions through the driven resonator. We also note that a
discussion of the leading effects of stray couplings can be
found in appendix D.

VI. CONCLUSION

We introduced a two-qubit coupler with an exponen-
tial on-off ratio, realized by connecting a pair of qubits
to a bus mode complemented by a driven ancillary res-
onator. The cross-Kerr interaction between the bus and
the driven resonator results in a displacement of the res-
onator’s field that is conditional on the bus state. Be-
cause the displaced resonator states have negligible over-
lap, bus-state transitions are suppressed exponentially in
the amplitude of the drive. In turn, because two-qubit
interactions are mediated by bus transitions, the two-
qubit coupling also results strongly suppressed, leading
to a high on-off ratio. As a clear demonstration of this
mechanism, we have shown how the inverse participa-
tion ratio, which is a measure of qubit-bus hybridization,
and the spurious cross-Kerr between the qubits are ex-
ponentially reduced with the number of photons in the
resonator mode. We also proposed two complementary
superconducting quantum circuit implementations of our
coupler.

The strong reduction in two-qubit couplings demon-

strated here can be advantageous in multiqubit proces-
sors, where spectator qubits and long-range qubit-qubit
interactions can have detrimental effects [38]. For the
same reason, the proposed approach can be particu-
larly useful in all-microwave frequency-fixed qubits ar-
chitectures with interactions mediated by frequency-fixed
buses. Furthermore, our device could be used to improve
the performance of a protected-qubit-based processor,
where crosstalk could now be exponentially suppressed
on demand. The parameter exploration in this work fur-
ther suggests that exponentially protected qubits, which
typically have low transition frequencies and would there-
fore be naturally closely packed in frequency, would yield
a stronger exponential suppression of spurious qubit-
qubit interactions.

Finally, we note that possible improvements to the cou-
pler include squeezing the resonator mode to further re-
duce the overlaps between the resonator states associated
with distinct bus states, and extending the ancillary sys-
tem to multiple modes such that the exponential sup-
pression is now with respect to multiple modes.
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Appendix A: Polaron transformation

To gain intuition about the underlying physics of the model, it is useful to move to a frame defined by the time-
dependent polaron transformation

P̂ (t) = e−i
∫ t
0
dτ [ωb+∆ac(τ)](b̂†b̂+

∑
j q̂
†
j q̂j)e−iωdtr̂

†r̂
∞∑
n=0

D̂r[αn(t)]⊗ |n〉〈n|b,, (A1)

where |n〉〈n|b is the projection operator associated with the eigenstate |n〉 of the bus mode, and ∆ac is an ac-Stark
shift that will be defined below. The displacements {αn(t)} are determined from the damped classical equation of
the resonator [c.f. Eq. (9)] that result from the bilinear Hamiltonian terms only.

1. Transformed Hamiltonian

Under Eq. (A1) the Hamiltonian Eq. (2) transforms to ĤP = P̂ †ĤP̂ − iP̂ † ˙̂
P , where

ĤP =

2∑
j=1

ĤP
j + ĤP

br + ĤP
κ + ĤP

g , (A2)

ĤP
j = (ωj − ωb −∆ac)q̂†j q̂j +

Kj

2
q̂†2j q̂

2
j , (A3)

ĤP
br =

(
δ + χb̂†b̂

)
r̂†r̂ +

Kb

2
b̂†2b̂2 +

Kr

2
r̂†2r̂2 +

∑
n

∆ac,n |n〉 〈n|b , (A4)

ĤP
κ =

iκ

2

∑
n

(
αnr̂

† − α∗nr̂
)
|n〉 〈n|b , (A5)

ĤP
g =

∑
j,n

gj

(
q̂†je

iφnD̂n,r

√
n+ 1 |n〉 〈n+ 1|b + h.c.

)
, (A6)

with i2φn = α∗n+1αn − α∗nαn+1, D̂n,r = D̂r (αn+1 − αn), D̂r(α) = eαr̂
†−α∗r̂ is the displacement operator in the

resonator, and

∆ac,n = δ |α0|2 − (δ + nχ) |αn|2 − n∆ac, (A7)

∆ac = δ |α0|2 − (δ + χ) |α1|2 . (A8)

As we only consider Jaynes-Cummings-type interactions, the transformed Hamiltonian can be reduced to the form
in Eq. (17). In addition, driving the resonator mode introduces an ac-Stark shift ∆C

ac(t) = ∆C
1 (t)−∆C

0 (t) of the bus
frequency given by

∆C
ac(t) = δ |α0(t)|2 − (δ + χ) |α1(t)|2 . (A9)

2. Transformed Master equation

The full system dynamics can be described by the Lindblad Master equation formalism,

˙̂ρ = −i
[
Ĥ, ρ̂

]
+
∑
j

L̂j ρ̂L̂
†
j −

1

2

{
L̂†jL̂j , ρ̂

}
(A10)
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where ρ̂ is the density matrix of the system, Ĥ is the Hamiltonian and L̂j are the collapse operators. Under the

transformation Eq. (A1) the density matrix transforms as ρ̂ = P̂ ρ̂P P̂ † . It follows that

˙̂ρP = −i
[
ĤP , ρ̂P

]
+
∑
j

L̂Pj ρ̂
P L̂P†j −

1

2

{
L̂P†j L̂Pj , ρ̂

P
}
, (A11)

where we defined the transformed collapse operators L̂Pj = P̂ †L̂jP̂ . As examples, the collapse operators can take the

form L̂r =
√
κr̂, L̂ν,γ =

√
γν |0〉 〈1|ν and L̂ν,ϕ =

√
γϕ,ν/2 (|1〉 〈1|ν − |0〉 〈0|ν) for ν = {b, 1, 2}. We find that qubit

collapse operators as well as L̂b,ϕ are unchanged under the polaron transformation. However, we have

L̂Pb,γ =
√
γbe
−iφ0e−i

∫ t
0
dτ [ωb+∆ac(τ)]D̂†0,r |0〉 〈1|b , (A12)

L̂Pr =
√
κ

(
r̂ +

∑
n

αn |n〉 〈n|b

)
. (A13)

from where it follows that L̂Pb,γ is exponentially suppressed because of the displacement operator in the resonator.

Irrespective of this observation, it is worth nothing that L̂Pb,γ does not prevent the formation of the polaronic states

in the coupler and therefore does not hinder the proposed protocol. In addition, L̂Pr corresponds to measurement-
induced dephasing in the coupler. It is possible to further simplify the master equation within the rotating-wave
approximation to

˙̂ρP = −i
[
ĤP − ĤP

κ , ρ̂
P
]

+
∑
j

ˆ̃LPj ρ̂
P ˆ̃LP†j −

1

2

{
ˆ̃LP†j

ˆ̃LPj , ρ̂
P
}
, (A14)

where ˆ̃LPj = L̂Pj , except ˆ̃LPr =
√
κr̂ and we define a new collapse operator

˜̂
Lb,γα =

√
κ
∑
n αn |n〉 〈n|b which captures

measurement-induced dephasing in the bus.

3. Transitionless driving

Large conditional displacements in the resonator (‘off’ state) can be prepared by controlling the phase of the
envelope in Eq. (10) in time. The same mechanism makes it possible to empty the resonator quickly (‘on’ state).
Imperfections in the envelope lead to deviations in the intended displacements, which we characterize in this section.
Using Eq. (9) we find the displacements

αn(t) = i

∫ t

0

dz ε(z)ei(δ−iκ/2+nχ)(z−t) + αn(0)e−i(δ−iκ/2+nχ)t. (A15)

Extending the envelope in Eq. (10) to include both switching-off and switching-on events

ε(t) =

(
ε0(t)− iε̇0(t)

δ − iκ/2

)
Θ(τ − t) + ε0(τ)Θ(t− τ)Θ(T + τ − t)

+

(
ε0(τ)− ε0(t− T − τ) +

iε̇0(t− T − τ)

δ − iκ/2

)
Θ(t− T − τ)Θ(T + 2τ − t), (A16)
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where τ is the ramping time to switch off/on the device and T is the time during which the drive is on, we find that

αn(t) =
1

δ − iκ/2 + nχ



0, t = 0

ε0(t), 0 ≤ t ≤ τ
ε0(τ), τ ≤ t ≤ τ + T

ε0(τ)− ε0(t− τ − T ), τ + T ≤ t ≤ 2τ + T

0, t ≤ 2τ + T

− inχ

δ − iκ/2

(∫ t

0

dzΘ(τ − t)−
∫ t

T+τ

dzΘ(T + 2τ − t)
)
dε0(z)

dz

ei(δ−iκ/2+nχ)(z−t)

(−i)(δ − iκ/2 + nχ)

=
1

δ − iκ/2 + nχ



0, t = 0

ε0(t), 0 ≤ t ≤ τ
ε0(τ), τ ≤ t ≤ τ + T

ε0(τ)− ε0(t− τ − T ), τ + T ≤ t ≤ 2τ + T

0, t ≤ 2τ + T

− nχ

δ − iκ/2
∞∑
k=1

dkε0(z)

dzk
ei(δ−iκ/2+nχ)(z−x)

(−i)k(δ − iκ/2 + nχ)k+1

∣∣∣∣z=x
z=0

(δ(t− x)Θ(τ − t)− δ(t− τ − T − x)Θ(2τ + T − t)) ,

(A17)

where we assumed αn(0) = 0. It follows that, for∣∣∣∣dkε0(z)

dzk

∣∣∣
z=0

∣∣∣∣ , ∣∣∣∣dkε0(z)

dzk

∣∣∣
z=τ

∣∣∣∣� |δ − iκ/2| |χ|k , (A18)

Eq. (A17) simplifies to Eq. (11) for τ ≤ t ≤ τ + T , and vanishes for t ≥ 2τ + T . Ultimately, the derivatives of the
pulse at the endpoints of the ramp would contribute the most to deviations in the conditional displacements αn. If
one has perfect control over the pulse envelope the ramping time can be made arbitrarily small but limitations could
arise from pulse imperfections. To see this, we define the perturbed envelope

ε(t)→ ε(t) + εerr(t), (A19)

where εerr(t) is a small time-dependent perturbation. Using integration by parts, we find that

αn(t)→ αn(t) + i

∞∑
k=0

dkεeff(z)

dzk
ei(δ−iκ/2+nχ)(z−t)

(−i)k (δ − iκ/2 + nχ)
k

∣∣∣∣∣
t

0

. (A20)

The effects of non-adiabatic errors are quantified by the ratio between the time derivatives of the drive envelope at
the endpoints and powers of |δ − iκ/2 + nχ|. These errors result in time-dependent fluctuations of αn(t), which can
change the conditional displacements αn and the ac-Stark shift of the bus. When switching on, TQD errors could
result in residual photons in the resonator and ac-Stark shifts in the bus that can affect two-qubit interactions in the
‘on’ state. It is therefore desirable to have a reset scheme for the resonator.

Appendix B: Numerical experiments and analytical estimates

In this section, we provide details regarding the numerical simulations, the derivations for the analytical estimates
associated with the inverse participation ratio and the spurious two-qubit interactions. We also report additional
numerical results for the inverse participation ratio and measurement-induced dephasing.

1. Rabi drive experiment

The envelope in Eq. (10) used in Fig. 3 is shown in Fig. 8. The ramping time τ was set to 5 ns independently of ᾱ0.
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FIG. 8. Envelope ε(t) in Eq. (10) used for Fig. 3 to turn off the coupler. The drive can be turned off after some arbitrary time
in order to turn the coupler back on with the time-reversed pulse shape shown here [c.f. appendix A 3].

2. Inverse participation ratio

In analogy to Fig. 4, the inverse participation ratio for the second qubit, η0100, is computed numerically and
reported in Fig. 9. The observations made in Fig. 4 can be extended to Fig. 9. The only difference here is the
emergence of a second divergence at small photon numbers for Kr = 0. This peak results from the frequency
collisions with higher energy levels in the resonator and the specific choice of parameters. This effect is, however,
absent in the presence of anharmonicity in the resonator.

We now provide an analytical estimate for the inverse participation ratio based on a Schrieffer-Wolff (SW) trans-
formation on Eq. (17), where the Hamiltonian takes the form

ĤI = ei
∫
dt(ĤP−ĤPκ ) ĤP

g e−i
∫
dt(ĤP−ĤPκ ). (B1)

To this end we define the generator

ŜI = i

∫
dt ĤI , (B2)

under which the Hamiltonian transforms to ĤS = eŜI ĤIe
−ŜI + i

˙̂
SI = O(g2

j ). In what follows we describe different

cases where ĤP
g and ĤP − ĤP

κ have a particular time dependence used for parametric modulations in appendix C.
Furthermore, we compute the generator back in the polaron frame as

Ŝ = e−i
∫
dt(ĤP−ĤPκ ) ŜI e

i
∫
dt(ĤP−ĤPκ ). (B3)

This transformation holds for ||Ŝ|| � 1, i.e. if the transition amplitudes are much smaller in magnitude than the

energy gaps. Then, the hybridized states are approximately given by |ψh,ν〉 = eŜ |ψb,ν〉 ≈ [1 + Ŝ + O(g2
j )] |ψb,ν〉,

with |ψb,ν〉 the bare eigenstates of the full system for gj = 0. An estimation of Eq. (27) using the SW transformation
follows as

ηµ ≈ 1− 2
〈
ψb,µ|Ŝ†Ŝ|ψb,µ

〉
. (B4)

However, as Ŝ can be time-dependent, it is useful to also define the time-averaged quantity

〈ηµ〉t ≈ 1− 2
〈
ψb,µ|Ŝ†Ŝ|ψb,µ

〉
t

= 1− 2 lim
t→∞

1

t

∫
dt
〈
ψb,µ|Ŝ†Ŝ|ψb,µ

〉
. (B5)

We will now identify the generator of the SW transformation for the different cases considered in this manuscript.
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a. Static ĤP
g and ĤP − ĤP

κ

The generator of the SW transformation in this case is

Ŝ =
∑

j,n,m,k,`

√
(n+ 1)(m+ 1)

〈
k|D̂n,r|`

〉
gje

iφn/∆̃j

1 + (mKj − nK̃b)/∆̃j + qj,n,k − qj,n+1,`

|m+ 1〉 〈m|j |n〉 〈n+ 1|b |k〉 〈`|r − h.c., (B6)

qj,n,k =
δ + nχ

∆̃j

k +
Kr

∆̃j

k(k − 1)

2
. (B7)

Given that |〈k|D̂n,r|`〉| is more strongly suppressed for small Fock state numbers {k, `}, it is clear that the parame-

ters (δ+nχ)/∆̃j and Kr/∆̃j , which control the probability of virtually populating larger Fock states of the resonator,
play an important role in the efficiency of the suppression of two-qubit interactions. More precisely, we find that

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
= e−|ᾱ|

2

(
gj

∆̃j

)2 ∞∑
`=0

|ᾱ|2` /`!
(1− qj,1,`)2 = e−|ᾱ|

2

(
g1

∆̃1

)2

4F4

(
p1; 1 + p1; |ᾱ|2

)
. (B8)

Throughout this work, we consider the two limiting cases including Kr = 0 and Kr →∞. In these limits, it is possible
to derive asymptotic expressions for the inverse participation ratio, as

η
|Kr|→0
1000 = 1− 2

g2
1

∆̃2
1

e−|α̃|
2

2F2

(
q1; 1 + q1; |α̃|2

)
, (B9)

η
|Kr|→∞
1000 = 1− 2

g2
1

∆̃2
1

e−|α̃|
2

(
1 +

|α̃|2

(1 + ζj)
2

)
, (B10)

where qj =
(
1/ζj 1/ζj

)
and ζj = − (δ + χ) /∆̃j . This can be easily generalized to the states 0100 and 1100.

b. Time-dependent ĤP
g and static ĤP − ĤP

κ

We now consider a time-dependent phase

eiφn =

+∞∑
s=−∞

ζn,se
isωmt, (B11)

where ζs and ωm are free time-independent parameters. In this case, the generator takes the form

Ŝ =
∑

j,n,m,k,`,s

√
(n+ 1)(m+ 1)

〈
k|D̂n,r|`

〉
gjζn,se

isωmt/∆̃j

1 + sωm/∆̃j + (mKj − nK̃b)/∆̃j + qj,n,k − qj,n+1,`

|m+ 1〉 〈m|j |n〉 〈n+ 1|b |k〉 〈`|r − h.c.. (B12)

It then follows that

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
= e−|ᾱ|

2

(
gj

∆̃j

)2 ∑
`,s1,s2

ζ0,s1ζ
∗
0,s2e

i(s1−s2)ωmt |ᾱ|2` /`!(
1 + s1ωm/∆̃j − qj,1,`

)(
1 + s2ωm/∆̃j − qj,1,`

) , (B13)

with time average

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
t

= e−|ᾱ|
2

(
gj

∆̃j

)2∑
`,s

|ζ0,s|2 |ᾱ|2` /`!(
1 + sωm/∆̃j − qj,1,`

)2 . (B14)



19

10-9

10-7

10-5

10-3

10-1

1
¡
´ 0

10
0

±=2¼ = -1.5 MHz

Kr=2¼ (MHz)
-200.00
-100.00
-50.00
-25.00

-12.50
-6.25
-3.12
-0.00

0 5 10 15 20
Photon number j ¹®0j2

10-9

10-7

10-5

10-3

10-1

1
¡
´ 0

10
0

±=2¼ = 1.0 MHz

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
in

te
ns

ity

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
in

te
ns

ity

(a)

(b)

FIG. 9. Suppression of 1 − η0100 with respect to the resonator photon number |ᾱ0|2 in the stabilized ground state. Each
data point is computed from numerical diagonalization with a fixed drive amplitude in the resonator. Black lines correspond
to the same system but with no drive on the resonator and the bus frequency tuned to the ac-Stark shifted frequency found
in the driven system. The gray regions are bounded by the analytical estimates in Eq. (29) for Kr → ∞ and Kr = 0.
We also note the presence of a resonance in b) for Kr = 0 only for a small photon number for this specific choice of system
parameters. This results from frequency collisions with higher Fock states in the resonator which can be otherwise prevented by
the addition of a resonator anharmonicity. Here (ω1−ωb)/2π = 7.0 MHz, (ω2−ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0
MHz, χ/2π = −20.0 MHz, and g/2π = 2.0 MHz.

c. Static ĤP
g and time-dependent ĤP − ĤP

κ

Here we consider a time-dependent δ → δ − zωm sin(ωmt). The generator takes the form

Ŝ =
∑

j,n,m,k,`,s

√
(n+ 1)(m+ 1)

〈
k|D̂n,r|`

〉
gje

iφnζk,`,se
isωmt−i(k−`)z cos(ωmt)/∆̃j

1 + sωm/∆̃j + (mKj − nK̃b)/∆̃j + qj,n,k − qj,n+1,`

· |m+ 1〉 〈m|j |n〉 〈n+ 1|b |k〉 〈`|r − h.c., (B15)

where the parameters ζk,`,s are defined with

ei(k−`)z cos(ωmt) =

+∞∑
s=−∞

isJs [(k − `)z] eisωmt =

+∞∑
s=−∞

ζk,`,se
isωmt, (B16)

where we have used a Jacobi-Anger expansion. We thus arrive at

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
= e−|ᾱ|

2

(
gj

∆̃j

)2 ∑
`,s1,s2

(−1)s1+s2Js1(`z)Js2(`z)is1−s2ei(s1−s2)ωmt |ᾱ|2` /`!(
1 + s1ωm/∆̃j − qj,1,`

)(
1 + s2ωm/∆̃j − qj,1,`

) , (B17)
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and the time-averaged version

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
t

= e−|ᾱ|
2

(
gj

∆̃j

)2∑
`,s

J2
s (`z) |ᾱ|2` /`!(

1 + sωm/∆̃j − qj,1,`
)2 . (B18)

d. Time-dependent ĤP
g and ĤP − ĤP

κ

Finally, we combine the two previous cases, namely we consider a time-dependent phase

eiφn =

+∞∑
s=−∞

ζφn,se
isωφmt, (B19)

and a time-dependent δ → δ − zωδm sin(ωδmt) with

ei(k−`)z cos(ωδmt) =

+∞∑
s=−∞

isJs [(k − `)z] eisωδmt =

+∞∑
s=−∞

ζδk,`,se
isωδmt. (B20)

The generator takes the form

Ŝ =
∑

j,n,m,k,`,s,r

√
(n+ 1)(m+ 1)

〈
k|D̂n,r|`

〉
gjζ

φ
n,sζ

δ
k,`,re

i(sωφm+rωδm)t−i(k−`)z cos(ωδmt)/∆̃j

1 +
(
sωφm + rωδm

)
/∆̃j + (mKj − nK̃b)/∆̃j + qj,n,k − qj,n+1,`

· |m+ 1〉 〈m|j |n〉 〈n+ 1|b |k〉 〈`|r − h.c.. (B21)

With this we find that

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
=e−|ᾱ|

2

(
gj

∆̃j

)2 ∑
`,s1,s2,r1,r2

is1−s2+r1−r2ei(s1−s2)ωφmt+i(r1−r2)ωδmt

· (−1)r1+r2ζ0,s1ζ
∗
0,s2Jr1(`z)Jr2(`z) |ᾱ|2` /`!(

1 +
(
s1ω

φ
m + r1ωδm

)
/∆̃j − qj,1,`

)(
1 +

(
s2ω

φ
m + r2ωδm

)
/∆̃j − qj,1,`

) , (B22)

which under time-averaging reduces to

〈
ψ1000|Ŝ†Ŝ|ψ1000

〉
t

= e−|ᾱ|
2

(
gj

∆̃j

)2 ∑
`,s,r

|ζ0,s|2 J2
r (`z) |ᾱ|2` /`!(

1 +
(
sωφm + rωδm

)
/∆̃j − qj,1,`

)2 . (B23)

Here we assumed sωφm + rωδm = 0 only for s = 0 and r = 0.

3. Sweeping through frequency collisions

To understand the impact of frequency collisions between the qubits and the bus as the photon number in the

resonator is increased, it is useful to consider the toy-model Hamiltonian Ĥϑ(t) = ϑei
∫ t
0
dt′∆ϑ(t′)q̂†1b̂+ h.c. between Q1

and the bus in the interaction picture, where we ignore Q2 for simplicity. Here, ∆ϑ(t) as defined in Eq. (24) is the
instantaneous detuning between these systems including ac-Stark shifts, and ϑ is an effective coupling strength. To
simplify the discussion, we focus on the case where ∆ϑ = ∆1 − δνt with ∆1 the initial detuning between Q1 and the
bus, δ = ωr − ωd as before, and the rate ν = |ᾱ0(tf )|2/tf is set to a constant, where tf is the final time.

Assuming δν/∆1 > 0 such that there is a crossing at some time τ = ∆1/δν, an excitation in Q1 leaks to B with

probability 1−e−2π|ϑ|2/|δ|ν , i.e. the Landau-Zener formula [40, 41]. A fast sweep ν � 2π |ϑ|2 / |δ| naturally minimizes
leakage to the bus.

Given that ᾱ0(t) = ε0(t)/δ in our TQD protocol [c.f. appendix A], the envelope is therefore ε0(t) = δ
√
νt. It follows

that dkε0(t)/dtk = (1/2)(k)νkε0(t)/ᾱ2k
0 (t) must be much smaller in magnitude than χk+1 to prevent non-adiabatic
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errors in the TQD protocol for k ≥ 1 [c.f. appendix A]. In other words, |2χ2ᾱ0(t)/δ| � ν � π|ϑ|2/|δ|. Here we
emphasize that ϑ is an effective coupling strength between Q1 and B near the resonance, which we expect to be

exponentially suppressed with ϑ ∼ g1e
−|ᾱ0(t)|2/2.

Finally, setting ν = η2χ2|ᾱ0/δ| where 0 < η < 1 (with η = 1 corresponding to the upper bound defined above), we
estimate the leakage probability to be of the order of

P ∼ 1− exp
(
−η−1π|ᾱ0(τ)|−1e−|ᾱ0(τ)|2 |g1/χ|2

)
, (B24)

where ᾱ0(τ) is the coherent state amplitude at the crossing at time t = τ . For η ∼ 1.0, |g1/χ| ∼ 0.2 we find that
P ∼ 0.001 for |ᾱ0(τ)| ∼ 2.0 and P ∼ 5 × 10−6 for |ᾱ0(τ)| ∼ 3.0. P is further suppressed for even larger |ᾱ0(τ)| and
smaller |g1/χ|. Note that for smaller sweeping rates, it is possible to further reduce to the leakage probability by
dynamically decoupling the bus using, for example, a flux modulation of the bus frequency [42] which is compatible
with our scheme. In the presence of this modulation, only processes that do not conserve the bus excitation number
are exponentially suppressed.

4. Two-qubit interactions

In this section we demonstrate how the matrix elements of the displacement operator in ĤP
g [c.f. Eq. (17)] yields

exponentially suppressed two-qubit interactions by deriving an upper bound based on the inverse participation ratio.
Consider the time-evolution operator in the interaction picture

ÛI(t) = T e−i
∫ t
0
dτĤI(τ) =

∞∑
n=0

(−i)n
n!

∫ t

0

dτ1 · · ·
∫ t

0

dτnT ĤI(τ1) · · · ĤI(τn), (B25)

where T is the time-ordering operator and we defined the interaction picture Hamiltonian in Eq. (B1). It is convenient
to approximate Eq. (B25) using a Magnus expansion,

ÛI = e−i
∫ t
0
dτĤMI (τ), (B26)

where ĤM
I is an effective Hamiltonian. Up to fourth order in gj we have that

ĤM
I (t) ≈ĤI(t)−

1

2

[
ĤI(t), ŜI(t)

]
+
i

6

∫ t

0

dτ1

([
ĤI(t),

[
ĤI(τ1), ŜI(τ1)

]]
+
[
ŜI(τ1),

[
ĤI(τ1), ĤI(t)

]])
+

1

12

∫ t

0

∫ τ1

0

dτ1dτ2

([[[
ĤI(t), ĤI(τ1)

]
, ĤI(τ2)

]
, ŜI(τ2)

]
+
[
ĤI(t),

[[
ĤI(τ1), ĤI(τ2)

]
, ŜI(τ2)

]])
+

1

12

∫ t

0

∫ τ1

0

dτ1dτ2

([
ĤI(t),

[
ĤI(τ1),

[
ĤI(τ2), ŜI(τ2)

]]]
+
[
ĤI(τ1),

[
ĤI(τ2),

[
ŜI(τ2), ĤI(t)

]]])
, (B27)

where based on Eq. (B2) we introduced ŜI(t) = i
∫ t

0
dτĤI(τ).

To compute effective two-qubit interactions, we project ĤM
I in the ground state of the coupler, valid in the dispersive

coupling limit. Due to the form of ĤI [c.f. Eq. (B1)], only terms of even order in gj remain in ĤM
I . Defining the

projection operator P̂ = |0b, 0r〉 〈0b, 0r|, we compute the effective two-qubit Hamiltonian

Ĥq−q
I (t) = Trc

(
ĤM
I (t)P̂

)
, (B28)

corresponding to ĤM
I , where the coupler mode is traced out assuming that it is stabilized in its ground state. For

compactness, we define ĤM
I =

∑4
n=1 Ĥ

M
I,n where ĤM

I,n incorporates the couplings gj at nth order. In what follows
we shall approximate the qubits and coupler as two-level systems. This approximation is valid in the limit where the
qubit-coupler detunings are small compared to the anharmonicities of the qubits and the coupler. Our results can,
however, be extended to include the effects of finite anharmonicity. We therefore write

ĤI(t) ≈
∑
j,k,`

gje
i∆̃j(1+qj,0,k−qj,1,`)tÂk,`σ̂+,j + h.c., (B29)

Âk,` = eiφ0

〈
k|D̂0,r|`

〉
|k〉 〈`|r σ̂−,b, (B30)

qj,n,k =
δ + nχ

∆̃j

k +
Kr

∆̃j

k(k − 1)

2
=
rn,k

∆̃j

, (B31)
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where σ̂−,j (σ̂−,b) are the spin ladder operators, the two-level approximation of q̂j (b̂). The interaction picture

generator ŜI and the polaron frame generator Ŝ then take the form

ŜI(t) ≈
∑
j,k,`

gj

∆̃j

ei∆̃j(1+qj,0,k−qj,1,`)t Âk,`σ̂+,j

1 + qj,0,k − qj,1,`
− h.c., (B32)

Ŝ ≈
∑
j,k,`

gj

∆̃j

Âk,`σ̂+,j

1 + qj,0,k − qj,1,`
− h.c., (B33)

in analogy to Eq. (B2) and Eq. (B3). Our goal is to find an upper bound on the amplitude of two-qubit interactions
in Eq. (B28) corresponding to a partial trace over Eq. (B27). This upper bound can be obtained from the Cauchy-
Schwartz inequality,

∣∣∣Tr (ÂB̂)∣∣∣ ≤√Tr (Â†Â)√Tr (B̂†B̂) =
∣∣∣∣∣∣Â∣∣∣∣∣∣

F

∣∣∣∣∣∣B̂∣∣∣∣∣∣
F
, (B34)

where ||•||F stands for the Frobenius norm. We will separate the two-qubit interactions by the order in the coupling
strengths gj and stop at fourth order. However, the following analysis can be extended to higher orders in the coupling
strengths.

a. Second-order interactions

We now focus on the two-qubit interactions of second order in the coupling strengths in Eq. (B28). To this end, it
is convenient to expand

Tr
(
ĤM
I,2(t)P̂

)
= −1

2
Trc

(
ĤI(t)ŜI(t)P̂

)
+ h.c., (B35)

where

Trc

(
ĤI(t)ŜI(t)P̂

)
=

2∑
s1,s2=1

ei(∆̃qs1
−∆̃qs2

)tgs1Tr

( ∞∑
`=0

Â0,`
gs2

∆̃qs2

Â†0,`
1− qs2,1,`

P̂

)
σ̂+,s1 σ̂−,s2 . (B36)

Interestingly, applying Eq. (B34) yields∣∣∣∣∣Tr
( ∞∑
`=0

Â0,`
gs2

∆̃qs2

Â†0,`
1− qs2,1,`

P̂

)∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣
∞∑
`=0

Â0,`

∣∣∣∣∣
∣∣∣∣∣
F

∣∣∣∣∣
∣∣∣∣∣
∞∑
`=0

gs2
∆̃qs2

Â†0,`
1− qs2,1,`

P̂
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. (B37)

where ∣∣∣∣∣
∣∣∣∣∣
∞∑
`=0

Â0,`

∣∣∣∣∣
∣∣∣∣∣
F

=
∣∣∣∣∣∣|0〉 〈0|r eiφ0D̂0,r

∣∣∣∣∣∣
F
· ||σ̂−,b||F = 1. (B38)

Furthermore,

∣∣∣∣∣
∣∣∣∣∣
∞∑
`=0

gs2
∆̃qs2

Â†0,`
1− qs2,1,`

P̂
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F

=

√√√√√( gs2
∆̃qs2

)2 ∞∑
`=0

∣∣∣〈`|D̂0,r|0
〉∣∣∣2

(1− qs2,1,`)2 ≈
√

1− ηΩ(s2)

2
, (B39)

with Ω(s2) = 1000 for s2 = 1 and 0100 for s2 = 2, and where we used the dispersive limit expression for 1 −
ηµ [c.f. Eq. (B8)]. Since each term in Eq. (B35) is bounded in magnitude by maxν∈{1000,0100}

√
1− ην it follows

that Eq. (B35) is equally bounded in magnitude by maxν∈{1000,0100}
√

1− ην . Intuitively, this means that the virtual

interaction is always smaller in magnitude than
∣∣∣gigj/∆̃j

∣∣∣.
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b. Fourth-order interactions

We will now demonstrate that the maxν∈{1000,0100}
√

1− ην bound holds true for higher-order two-qubit interactions.
First, we expand the commutators such that

Trc

(
ĤM
I,4P̂

)
=

1

12

∫ t

0

∫ τ1

0

dτ1dτ2

[
2Trc

(
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)
− Trc

([
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]
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)
− Trc

([
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]
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)
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([
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([
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)
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([
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]
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)
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([
ĤI(τ1), ĤI(τ2)

]
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)]
+ h.c.. (B40)

Second, we find that

Trc
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and similarly,
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As it was done in the previous section we apply Eq. (B34) to find an upper bound on Eq. (B41)∣∣∣∣∣∣Tr
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where it can also be verified that
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Similarly, Eq. (B34) can be applied on Eq. (B42)∣∣∣∣∣∣Tr
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Â`,mÂ
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where
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Considering this norm to be bounded from above by the limiting case δ = 0 and Kr = 0, we find that∣∣∣∣∣∣
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†
0,m

1 + qs3,0,` − qs3,1,m
P̂

∣∣∣∣∣∣
∣∣∣∣∣∣
F

/

√√√√√ ∞∑
`,m=0

(
gs3

∆̃qs3

)2
∣∣∣〈m|D̂0,r|0

〉∣∣∣2
(1− qs3,1,m)

2 ≈
√

1− ηΩ(s3)

2
. (B47)

As previously found for second-order interactions, all contributions are bounded in magnitude
by maxν∈{1000,0100}

√
1− ην . These observations can be straightforwardly extended to higher orders in a simi-

lar fashion.
This implies that exponentially suppressing 1−ηµ will equally exponentially suppress virtual two-qubit interactions.

However, we stress that this only provides an estimate for the order of magnitude.

5. Measurement-induced dephasing

In order to quantify the dephasing induced by the coupler drive we express Eq. (26) in the hybridized eigenbasis

L̂Pb =

√
κ |ᾱ|2

4

∑
ν,ν′

cν;ν′ |ψh,ν〉 〈ψh,ν′ | , (B48)

with

cν;ν′ = 〈ψh,ν |(|1〉 〈1|b − |0〉 〈0|b)|ψh,ν′〉 . (B49)

To study the effects of bus dephasing on Q1 alone, we first trace out Q2, B and R in the hybridized basis where all
three have zero excitation

L̂P1 ≈
∑
i,j

〈
ψh,i000|L̂Pb |ψh,j000

〉
|ψh,i000〉 〈ψh,j000| . (B50)

We then apply a rotating-wave approximation to obtain

L̂P1 ≈

√
κ |ᾱ|2

4

∑
i

ci000;i000 |ψh,i000〉 〈ψh,i000| . (B51)

Because the total excitation number in Q1, Q2 and B is conserved under Eq. (17) and the interaction in Eq. (17)
dominantly yields hybridization between 1 and B, we neglect 〈ψh,1000|ψb,010k〉 ≈ 0. We also use the fact

that
∑
k |〈ψh,0000|ψb,000k〉|2 = 1 due to total excitation number conservation, and finally,

∑
k |〈ψh,1000|ψb,100k〉|2 ≈

1−∑k |〈ψh,1000|ψb,001k〉|2. It follows that c1000;1000 ≈ 2
∑
k |〈ψh,1000|ψb,001k〉|2 − 1 and c0000;0000 ≈ −1, leading to

L̂P1 ≈

√
κ |ᾱ|2

4

∞∑
k=0

|〈ψh,1000|ψb,001k〉|2 (|ψh,1000〉 〈ψh,1000| − |ψh,0000〉 〈ψh,0000|) . (B52)

The dephasing rate of Q1 can be estimated by computing the dephasing rate associated with Eq. (B52), which takes
the form

γϕ,1 =
κ |ᾱ|2

2

( ∞∑
k=0

|〈ψh,1000|ψb,001k〉|2
)2

≈ κ |ᾱ|2
2

1− η1000

2
, (B53)

where the second line follows from the Schrieffer-Wolff transformation [c.f. Eq. (B4)]. The expression above was

obtained under a rotating-wave approximation, which is valid for |γϕ,1/∆̃1| � 1. An expression for the second qubit
is obtained by simply replacing the subscript 1000 by 0100. Measurement-induced dephasing rates in the qubits are
estimated numerically from diagonalization and are reported in Fig. 10.
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FIG. 10. Measurement-induced dephasing rates in the qubits 1 and 2. Dephasing rate for a)-b) qubit 1, and c)-d) qubit 2.
The gray regions correspond to the analytical estimates in Eq. (32) with Eqs. (B9) and (B10). Left column (a), c) and e)
with δ/2π = −1.5 MHz) and right column (b), d) and f) for δ/2π = 1.0 MHz) correspond to two different parameter regimes
set by the sign of δ. Here (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, χ/2π = −20.0
MHz, g/2π = 2.0 MHz, and κ/2π = 100.0 kHz.

6. Parameter regimes

We have seen in Figs. 4 and 5 that the choice of frequency detuning between the resonator and the drive δ, which
controls the sign of the ac-Stark shift between the qubits and the bus, has both a quantitative and qualitative impact
on the system. To better understand this behavior, we consider again Eqs. (28) and (29) where we now express the
generalized hypergeometric functions as

4F4(pj , 1 + pj ; |ᾱ|2) =

∞∑
n=0

|ᾱ|2n
n!

∏
k=±

(
1 +

n

pjk

)−2

. (B54)

We recall that in this expression pj± = β[1 ±
√

1 + 2∆̃jβ
−2/Kr] with β = (δ + χ)/Kr − 1/2 and where ∆̃j is the

ac-Stark shifted detuning given in Eq. (24). Physically, Eq. (B54) corresponds to a weighted sum over all virtual
transitions to higher energy levels in the resonator for a displacement ᾱ during a 0 → 1 transition in the bus. The
poles 1 + n/pjk in Eq. (B54) correspond to frequency collisions with these higher energy levels.

Given that we wish to maximize the exponential suppression of 1 − ηµ [i.e. the exponential factor in Eqs. (28)

and (29)], we want 4F4(pj , 1+pj ; |ᾱ|2) to be as close as possible to unity. To have a monotonic suppression with respect
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to |ᾱ|2, this parameter should be chosen such as to avoid frequency collisions corresponding to the poles of Eq. (B54).
With these constraints, we define two key parameter regimes below. In what follows we take (κ/2)2 � |δ(δ + χ)|, but
we note that κ also plays a role in controlling the ac-Stark shift of the bus and can be seen as an additional knob.
To simplify the analysis below, it is useful to note that for Kr = 0 we find pj+ →∞ and pj− → −∆̃j/(δ + χ), while

for |Kr| � {|∆̃j |, |δ + χ|} we find pj+ → −1 + 2(δ + χ− ∆̃j)/Kr and pj− → 2∆̃j/Kr.

a. Monotonic suppression

We first focus on the situation illustrated in panels (a) of Figs. 4 and 5 where there are no frequency collisions
between the different modes of the system and the suppression factor is a smooth function of the photon number.
There are two possible sources of frequency collisions: i) the ac-Stark shifted qubit-bus detuning ∆̃j of Eq. (24) and
ii) higher energy levels in the resonator as captured by Eq. (B54).

First, to avoid a collision where ∆̃j = 0, the ac-Stark-shifted qubit-bus detuning should ideally grow in magnitude
with respect to ᾱ. This, in turn implies that ωqj −ωb and δ(δ+χ)/χ ≈ δ should have opposite signs. Considering the
second source of frequency collisions, pj± > 0 in Eq. (B54) suppresses frequency collisions with higher energy levels

in the resonator. For Kr = 0 this condition is achieved with pj− = −∆̃j/(δ+χ) > 0, meaning that ∆̃j and δ+χ have
opposite signs. Combining this with the above finding, it follows that δ and χ have the same sign, and opposite sign
to ωqj − ωb. We stress that this choice of parameters is equally compatible with the large |Kr| limit because |1/pj−|
is then large.

Combining the above with the fact that |δ/χ| � 1 for large conditional displacements, allows us to define the
parameter regime for monotonic suppression of 1− ηµ as

|δ/χ| � 1, (ωj − ωb) δ < 0, (ωj − ωb)χ < 0. (B55)

Because the nonlinearity of Josephson junctions is negative, in panels (a) of Figs. 4 and 5 we chose χ < 0 and ωj−ωb >
0.

b. Nonmonotonic and strong suppression

As illustrated in panels (b) of Figs. 4 and 5, working in a parameter regime where the behavior of 1 − ηµ with
photon number is nonmonotonic can lead to stronger suppression. A first observation to understanding this effect is
that, taking pj− ∝ ∆̃j and pj− → 0, forces Eq. (B54) to be unity. Moreover, we can exploit the fact that symmetric
two-qubit interactions, such as the ZZ interaction, are suppressed when the bus frequency lies between the qubit
frequencies. As a result, the choice ∆̃1 + ∆̃2 = 0 minimizes the ZZ interaction in Eq. (31) in the limit of large

anharmonicities with respect to the detunings, i.e. |∆̃j/Kj | � 1 and |∆̃j/K̃b| � 1.
Based on these arguments, we define a second parameter regime according to

|δ/χ| � 1, (ωj − ωb) δ > 0, (ωj − ωb)χ < 0. (B56)

The essential difference with respect to Eq. (B55) is that δ has now changed sign. In this regime, the ac-Stark shift of
the bus mode changes the sign of the qubit-bus detunings for some ᾱ, something that can help suppressing spurious
interactions.

It is worth highlighting that the protocol presented here works best for small qubit-bus detunings |∆̃j | relative
to |χ|. This is because the drive on the resonator, close to its resonance frequency, renders the energy gaps between
the stabilized states in the resonator smaller in magnitude than in the bare energy spectrum of the resonator. Without
anharmonicity in the resonator, these energy gaps are predominantly set by |χ|.

Finally, although we have focused on ᾱ0 with the TQD protocol, one could have chosen to grow ᾱ1 for example,
such as to still suppress the dominant 0 ↔ 1 transition in the bus. The main reason for the focus on ᾱ0 is that, in
this case, δ is made small but δ + χ is large, thus preventing transitions to higher energy states of the resonator.

Appendix C: Effective parametric modulation

In this section we provide supporting analytical derivations and numerical results for the parametric modulation
(PAM) scheme presented in Sect. IV and discuss another decoupling scheme based on a longitudinal drive (LD) in the
resonator to mimic the effects of an anharmonicity. We also show that the two schemes can be potentially combined
to offer stronger suppression of qubit-qubit interactions.
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1. PAM: additional tones in the resonator drive

We comment on the effects of the fast-oscillating contributions in Eq. (40). As previously stated, these terms
impose a lower bound on the time-averaged 1 − ηµ. For large ωm as compared to δ and χ, this lower bound is

approximately 2 (g/ωm)
2
. In the particular case of ωm = ω0 |ᾱ|, such that the voltage drive amplitude in the resonator

is displacement-independent, we observe that the asymptotic behavior in the suppression is polynomial in |ᾱ|. We
also stress that an appreciable anharmonicity Kr in the resonator could in principle result in additional frequency
collisions due to negative sωm/∆̃1 where s is an integer. Finally and in addition to Fig. 6 we report the inverse
participation of the second qubit in Fig. 11. For both Figs. 6 and 11 we plot the time-averaged inverse participation
ratio obtained in appendix B 2 b.
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FIG. 11. Dynamical decoupling in the bus: time-averaged inverse participation ratio against photon number in the ground
state. Here we assume two additional tones ωr ± ωm with amplitude ωmλ/ᾱ, and we choose ωm such that the voltage-drive
amplitude is fixed for all ᾱs. The regions are bounded by λ = λ0 where J0(λ0) = 0 and ±10% error on λ0. Note that we
exclude anharmonicity in the resonator (Kr = 0). Parameters: δ/2π = −1.0 MHz, χ/2π = −20.0 MHz, (ω1 − ωb)/2π = 7.0
MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

2. LD: longitudinal drive in the resonator

We now discuss how a longitudinal drive in the resonator can help recover a strong suppression in absence of large
anharmonicity and without the need for fine-tuning. Our starting point is Eq. (B18). In the z → ∞ limit, the
asymptotic behaviour of the Bessel functions is

Jν(z) ∼
√

2

πz
cos

(
z − 2ν + 1

4
π

)
, (C1)

and we also have Jν(−z) = (−1)νJν(z). It follows that the matrix elements of Eq. (B15) are renormalized

by |(k − `)z|−1/2
for k 6= `. This result is appealing given that the suppression of two-qubit interactions is strongest

if the resonator is constrained to Fock states of small photon number and it is desirable to suppress 0→ k transitions
in the resonator, as shown in Fig. 12.

A key advantage of this scheme is that it might be possible to relax parameter constraints for ∆̃q and χ due to
the simulated anharmonicity. Regarding the physical implementation, it can range from a modulated detuning in the
voltage drive to flux-modulating a superconducting loop with junctions. The results shown in Fig. 12 correspond to
the time-averaged participation ratio obtained in appendix B 2 c.

3. PAM and LD in parallel

A key challenge in combining PAM and LD is to prevent frequency collisions. Having simultaneously large modula-
tion frequencies for both schemes is therefore not a good option. Given that the lower bound on 1− ηµ is dominantly
set by the modulation frequency in PAM, we choose this frequency to be the largest. Since the modulation frequency
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FIG. 12. Dynamical decoupling in the resonator: time-averaged inverse participation ratio against photon number in the ground
state. We assume an additional longitudinal drive δ → δ − zωm sin (ωmt) in the resonator with ωm = 1.0 GHz. Note that no
anharmonicity is considered for the resonator (Kr = 0). Parameters: δ/2π = −1.0 MHz, χ/2π = −20.0 MHz, (ω1−ωb)/2π = 7.0
MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

in LD is small, we can choose z to be large. We indeed observe in Fig. 13 that it is possible to grow stronger suppression
factors by increasing z. Fig. 13 illustrates the time-averaged inverse participation obtained in appendix B 2 d.
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FIG. 13. Dynamical decoupling in the bus and in the resonator: time-averaged inverse participation ratio against photon
number in the ground state. Here we assume two additional tones ωr ± ωφm in the voltage drive with amplitude ωφmλ/ᾱ, and
we choose ωφm = 0.5ᾱ such that the voltage-drive amplitude is fixed for all ᾱs with λ = λ0 where J0(λ0) = 0. We assume
an additional longitudinal drive δ → δ − zωδm sin

(
ωδmt

)
in the resonator with ωδm = 10.0 MHz. Parameters: δ/2π = −1.0

MHz, χ/2π = −20.0 MHz, (ω1−ωb)/2π = 7.0 MHz, (ω2−ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0
MHz.

Appendix D: Superconducting implementation

The inverse participation ratio for the second qubit is illustrated in Fig. 14 and should be contrasted to that of
panel c) in Fig. 7.

We conclude with a remark on stray couplings, not captured by Eq. (2), but most likely present in a superconducting
circuit implementation. For instance, direct coupling g1−2 between the qubits cannot be suppressed by manipulating
the coupler and, in that case, ηµ includes an additional term −2g2

1−2/(ω1 − ω2)2 which bounds 1− ηµ. However, this
bound can be conveniently lowered by detuning the qubits and improving circuit design such that g1−2 is minimized.
It is also worth noticing that this interaction is typically very small compared to desired couplings. Another possibility
for the presence of stray couplings is to have spurious qubit-resonator interactions. In this case, virtual two-qubit
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FIG. 14. 1 − η0100 estimated with the numerical diagonalization of the full system with the effective Hamiltonian in Eq. (53)
with δ/2π = 19.9 MHz, χ/2π = −20.0 MHz (parameter regime of c) where |α0| → 0). Here (ω1 − ωb)/2π = 7.0 MHz, (ω2 −
ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

transitions mediated by the resonator are not exponentially suppressed. However, if the resonator is far detuned in
frequency with respect to the qubits, these interactions can be greatly reduced. Finally, stray dispersive coupling
between the bus and the resonator can also exist. However, this type of nonidealities are not particularly detrimental,
as the resulting weak hybridization between the bus and the resonator does not prevent the suppression of two-qubit
interactions.
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