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We evaluate the influence of the Coulomb drag of the electrons and holes in the gated n- and
p-regions by the ballistic electrons and holes generated in the depleted i-region due to the interband
tunneling on the current-voltage characteristics and impedance of the p+-p-i-n-n+ graphene tunnel-
ing transistor structures (GTTSs). The drag leads to a current amplification in the gated n- and
p-regions and a positive feedback between the amplified dragged current and the injected tunneling
current. A sufficiently strong drag can result in the negative real part of the GTTS impedance
enabling the plasma instability and the self-excitation of the plasma oscillations in the terahertz
(THz) frequency range. This effect might be used for the generation of the THz radiation.

I. INTRODUCTION

The interband Zener-Klein tunneling in the depleted
i-region in the p-i-n graphene diodes leads to the gener-
ation of the holes and electrons with holes propagating
primarily in the direction of the built-in electric field and
and electrons propagating in the opposite direction [1–
4]. If the i-region sufficiently short, the scattering of the
carriers generated in this region on the impurities and
acoustic phonons is ineffective. As a result, the gener-
ated carriers propagate across such a region ballistically
with the directed velocity close to the characteristic ve-
locity vW ≃ 108 cm/s. This very fast carrier transit can
be used in different ultra-high frequency devices operat-
ing at the room temperature. In particular, the p-i-n
graphene diodes and the p+-p-i-n+ graphene tunneling
transistor structures (GTTSs) can exhibit the negative
dynamic conductivity [5, 6], associated with the transit-
time effect at the frequencies close to the inverse transit
time vW /2li (where 2li is the depleted i-region length),
which is in the range of several terahertz (THz) for sub
micrometer dimensions. Recently [7, 8], we demonstrated
that in graphene-based structures the ballistic carrier in-
jected into the gated n-region (or p-region) can effectively
drag [9–11] the equilibrium carriers. Due to the specifics
of the Coulomb carrier-carrier scattering in G-layers hav-
ing the two-dimensional linear dispersion [9–14], the drag
can be accompanied by a marked current amplification.
This is because the injected ballistic carriers (BCs) col-
liding with the equilibrium carriers (ECs) transfer to the
latter their momenta while keeping their directed veloc-
ity. As demonstrated previously [8], the Coulomb drag ef-
fect in the G-based n+-i-n-n+ field-effect transistors with
the injection of ballistic electrons (GBFETs) from the
source can enable the current-driven plasma instability
and the self-excitation of the source-drain current, lead-

ing to the emission of the THz radiation.
In this paper we consider the reversed biased p+-p-i-

n-n+ GTTSs with the gated p- and n-regions induced
by the negative and positive gate voltages Vp < 0 and
Vn > 0, respectively, i.e., by the so-called, electrostatic
doping.
Figure 1 (a) shows the GTTSs at the applied gate volt-

ages, Vp and Vn (−Vp = Vn = Vg > 0) and the re-
verse bias voltage, V between the side contacts. The
voltage results in the depletion of the i-region and cre-
ation of the sufficiently strong lateral electric field in this
region enabling the effective interband tunneling. Fig-
ures 1(b) and 1(c) show qualitatively the GTTS band
diagrams in the case of negligible Coulomb carrier drag
(as in [5]) and the case when such a drag is substan-
tial. In the first case, the potential distribution across
the p- and n-regions is nearly flat due to relatively high
conductivity of these regions. However, since the drag
of the equilibrium carrier by the injected ballistic car-
riers pushes out fractions of the equilibrium carriers to
the side contacts, to compensate these carriers displaced
from the gated regions (or prevent such a displacement)
lateral build-in electric fields along the p- and n- regions
arise (corresponding to a marked potential inclination
in the gated region). The GTTSs under consideration
differ from the forward-biased GBFETs studied previ-
ously by different mechanism of ballistic carriers genera-
tion (the interband Zener-Klein tunneling in the GTTSs
versus the thermionic space-charge limited injection in
the GBFETs) and, hence, different energy distributions
of the carrier injected into the gated regions. This leads
to different device characteristics, in particular, to the
different criteria of the plasma instability.
Using the developed device model, we calculate the

GTTS dc current-voltage (I-V) characteristics and the
small-signal impedance. In particular, we demonstrate
that the real part of the GTTS impedance can be neg-
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FIG. 1. (a) Cross-section, band diagrams of a lateral p+-i-n+

GTTS with ballistic transport of the tunneling generated elec-
trons and holes in i-region (b) in the absence of drag current,
Φ < V , and (c) at a strong Coulomb carrier drag, Φ > V .
(d) GTTS equivalent circuit including an antenna with radia-
tion resistance 2ra (ri is the i-region resistance, rg, Lg , and Cg

are the gated region resistance, inductance and capacitance,
respectively). The current sources describe the DEC currents
jDEC = JDECH (H is the device width).

ative in a certain range of the THz frequencies and the
device structural parameters and the bias voltages. The
impedance imaginary part can turn into zero at the
plasma frequency. These conditions can correspond to
the plasma instability and the self-excitation of plasma
oscillations converted to the emitted THz radiation.

II. DEVICE MODEL

Considering the GTTSs, we use the GTTS equivalent
circuit shown in Fig. 1(d). Similar G-based structures
with the enhanced carrier mobility were fabricated, ex-
perimentally studied, and well documented in the litera-
ture (see, for example, [15–23]).

In contrast to the monopolar n+-i-n-n+ GBFETs us-
ing the drag effect associated with the ballistic electrons
thermally injected from the n+ contact (the space-charge
limited injection) into the i-region and then into the gated
n-region [7, 8], here we consider the GTTSs with the
interband tunneling electron and hole generation across
the entire i-region (approximately spatially uniform). We
analyze the drag by the ballistic carriers with the en-
ergies distributed in a wide range (from approximately
zero energy for the electrons/holes generated near the n-
region/p-region to the energy ε = eV , where e = |e| is
the electron charge). We account for the asymmetric po-
tential distribution and the contribution of the carriers
of both types to the device characteristics.
We assume that:

(i) The length, 2li, of the depleted i-region is sufficiently
short allowing for the ballistic motion of the injected
electrons: 2li ≪ vW τi, where τi is the characteristic
time of the BC scattering on the disorder (acoustic
phonons and impurities). As demonstrated [24], the
latter condition at 2li ∼ 1 µm can be satisfied at room
and lower temperatures in the G-layers encapsulated in
hBN [25];
(ii) The characteristic time, τcc, of the ballistic carriers
(BCs) scattering on the equilibrium carriers (ECs) is
much shorter than the EC scattering time, τg, in the
gated p- and n-regions: τcc ≪ τg (with the characteristic
times of the BC and EC scattering on the disorder being
approximately equal to each other, i.e., τg ∼ τi). In
this case, a substantial fraction of the BCs momentum
can be transferred to the ECs converting them into the
dragged ECs (DECs);
(iii) The BCs acquiring the energy exceeding the thresh-
old of the optical phonon emission (about its energy
~ω0 ≃ 0.2 eV) are scattered primarily in the gated
regions with a relatively small characteristic time τ0. A
fraction of the optical phonons emitted by the BCs in
the depletion region is small if the potential drop across
this region is smaller than ~ω0;
(iv) Due to a short length of the i-region, the delay
of the carrier transit, the capacitance, and the kinetic
inductance of this region are disregarded.

At the carrier densities Σg ≃ 1 × (1012 − 1013) cm−2

and temperature T . 300 K for the energy, εBC , of the
BCs injected into the p- and n-regions one can assume
τcc . 0.1 ps. The characteristic times of the scattering on
disorder and on optical phonons are estimated as τg ≃
(1 − 2) ps and τ0 ≃ (0.5 − 1.0) ps [26]. The use of
the electrostatic doping of the p- and n-regions allows to
minimize the ratio τcc/τg. The characteristic time of the
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optical phonon spontaneous emission is set to be τ0 ≃
(0.5− 1.0) ps.
As seen from the GTTS equivalent circuit shown in

Fig. 1(d), one needs to equalize the BC current across
the i-region (equal to the terminal current) and the net
currents across the p- and n-regions (the Kirchhoff circuit
law). As a result, we arrive at the following equation:

JBC = JDEC + JEC + JDP . (1)

Here JBC , JEC , JDP , and JDEC are the densities of the
BC current injected into the gated n-region (or the gated
p-region), the equilibrium carrier (EC) current, the dis-
placement current, and the dragged equilibrium carrier
(DEC) current in each gated region, respectively. These
quantities are given by the following equations:

JBC = æiΦ
3/2, (2)

JEC = σg
(V − Φ)

2lg
− Lg

lg

d JEC

dt
, (3)

JDP = cg
d(V − Φ)

dt
. (4)

Here æi =
e5/2

2π2~3/2
√
2livW

(see [1–6]), σg =
e2Σgτg

m
is

the drift (Drude) conductivity, cg =
lgκ

8π d
, and Lg are the

capacitance and the kinetic carrier inductance (per unit
widths of the GTTS in lateral direction perpendicular
to the terminal current)) of the gated-region, d and κ
are gate layer thickness and its dielectric constant, and
mg = µg/v

2
W ≃ ~

√

πΣg/v
2
W and µg ≃ ~ vW

√

πΣg are
the QC fictitious effective mass and the Fermi energy.
The quantities Φ and (V − Φ)/2 are the potential drops
across the i- and each gated-regions.
The nonlinear dependence of the injected BC current

density JBC on the voltage drop Φ across the depleted
region given by Eq. (2) originates from the specifics of
the interband Zener-Klein tunneling [1–6]. Equation (3)
represents the EC current density in the gated region
corresponding to the Drude formula accounting for the
carrier kinetic inductance described by the second term
in the right-hand side of this equation. The combination
of the first and the second terms leads to the standard
frequency dependence of the Drude ac conductivity. The
quantity JDP governed by Eq. (4) is the displacement
current density between the gate and the gated region of
the electron (hole) channel.

III. DEC CURRENT

Calculating the DEC current, we use the approach sim-
ilar to that in [7], considering the features of the BC in-
jection into the gated regions in the GTTSs associated

with the interband Zener-Klein tunneling [1–6]. We ac-
count for that the DEC current is proportional to the
flux of the BCs entering each gated region, i.e., pro-
portional to JBC . Due to the linearity of the electron
and hole energy-momentum dispersion laws, the aver-
age momentum, which a BC transfers to the ECs due
to the carrier-scattering in the gated region, is equal to
eΦ/2vW , i.e., according to Eq. (2), is proportional to

J
2/3
BC . Hence, JDEC ∝ J

5/3
BC . The momentum of the BCs

and DECs with the energy exceeding the optical phonon
energy ~ω0 effectively dissipates due to the emission of
these phonons. The optical phonon emission strongly de-
creases the contribution of too hot BCs to the drag effect.
This results in a steep drop of JDEC when eΦ becomes
sufficiently larger than ~ω0. As a result, we arrive at the
following equation:

JDEC ≃ b
J
5/3
BC

J
2/3
0

e−K . (5)

Here

K =
K0

2

[(eΦ− ~ω0 + µg)
2 − µ2

g)]

~2ω2
0

Θ(eΦ− ~ω0), (6)

Kg = lg/vW τg, K0 = lg/vW τ0, Kcc = lg/vW τcc, Kg =
lg/vW τg with Kg < K0 ≪ Kcc, The factor of two in
the denominator is because the carriers injected into the
gated region have the average energy equal to eΦ/2. The
dependence of K on the Fermi energy µg describes the
effect of the gated region population by electrons and
holes on the energy threshold of the optical phonon emis-
sion, which is reflected by the unity step function Θ with
threshold energy ~ω0+µg. Equation (6) accounts for this
effect and the linear energy dependence of the density of
states. The coefficient b in Eq. (5), which we call as the
Coulomb carrier drag factor, calculated accounting for
the specifics of the carrier-carrier scattering kinematics
in the case of linear energy-momentum dispersion rela-
tions for the carriers in G-layers [7], is given by

b =
~ω0

3T

F1(µg/T )

F2(µg/T )
e−Kg ≃ ~ω0

2µg
e−Kg .

~ω0

2µg
. (7)

with T and Fn(ξ) =
∫

∞

0
duun[1 + exp(u − ξ)]−1 being

the temperature (in energy units) and the Fermi-Dirac
integrals, respectively. For convenience, in Eq. (5), we
have introduced the characteristic current density

J0 = æi

(

~ω0

e

)3/2

. (8)

The quantity JDEC is different from that calculated
previously [7] for the GBFETs with virtually monoener-
getic BCs.
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IV. DC CHARACTERISTICS

At the dc bias voltage V = V applied between the
side contacts, Φ = Φ = const, and the density of the
terminal current JBC = JBC = const. Introducing the
normalized current density J = JBC/J0, from Eq. (1) we
arrive at the following equation relating J and V (i.e., the
GTTS I-V characteristic):

J + ηJ
2/3 − bJ

5/3
e−K(J) = η

V

V0
, (9)

where

η =
σg

2lgæi

√
V0

=
πτgµg

~

√

2livW
l2gω0

(10)

is the ratio of the i- and g-regions resistances and V0 =
~ω0/e. In Eq. (9), we have expressed the dc potential
drop across the depleted region Φ via J : Φ = JV0. Tak-
ing this and Eq. (6) into account, we obtain

K(J) =
K0

2
[(J

2/3 − 1 + F )2 − F 2] ·Θ(J − 1). (11)

Analyzing Eq. (9), one can find that at bΛ ≤ 1+2η/3,
where

Λ =
d[J5/2e−K(J)]

dJ

∣

∣

∣

∣

J=J

, (12)

the GTTS I-Vs are monotonic. In this case, Φ < V [see
Fig. 1(b)]. In the opposite case when bΛ > 1 + 2η/3, the
GTTS I-Vs become of the S-shape analogously to those
demonstrated previously [7] (in the devices with different
type of the BC injection). In the latter case, Φ > V [see
Fig. 1(c)].
When J . 1, as follows from Eq. (11), K(J) ≃ const,

and Λ ≃ 5J
3/2

/2. Considering this, the formation of the
S-shaped I-V characteristics requires

5

2
b > 1 +

2

3
η, (13)

while the sufficient condition of the I-V monotonic shape
(despite the drag effect) is presented as

5

2
b < 1 +

2

3
η. (14)

Figure 2 shows examples of the I-V characteristics
calculated using Eqs. (9) and (11) for different struc-
tura1 parameters. We set τ0 = 0.5 ps, 2li = 0.2 µm,
lg = 0.5 µm, τg = 1 ps for µg = 50 meV (Kg = 0.5) and
τg = 2 ps for µg = 15 meV (Kg = 0.25). This implies

that K0 = 2.0. The I-V characteristics for µg = 50 meV,
which can be attributed to T = 300 K (µg/T & 2), is
monotonically rising. Very similar characteristics (virtu-
ally undistinguishable) are obtained for the Fermi energy
range µg = 40−60meV with b ≃ 1.0−1.5 and η ≃ 10−15.
The latter implies that inequality (14) is well satisfied.
Therefore the I-V characteristics for µg = 40 − 60 meV
are monotonic. For comparison, we calculated also the I-
V characteristics corresponding to lowered temperatures
setting the Fermi energy µg = 15 meV (the Fermi energy
can be decreased by decreasing of the gate voltage Vg).
These data can be conditionally ascribed to T = 77 K
with µg/T & 2. An example of the pertinent I-V char-
acteristics also shown in Fig. 2 exhibits the pronounced
S-shape. This characteristics corresponds to the param-
eters b and η satisfying an inequality (13), which is op-
posite to inequality (14), i.e., relatively large b and small
η; in this case b ≃ 5.19 and η ≃ 7.54.

Figure 3 shows the quantity bΛ as a function of the
normalized bias current calculated using Eqs. (11) and
(12). As seen from Fig. 3, the value of bΛ explicitly
depends on the structural parameters and the bias cur-
rent. It is crucial that bΛ could markedly exceed unity
particularly at J ≃ 1 for the parameters chosen above.
Small fissures in the bΛ versus J plots near J = 1 are
attributed to an inclusion of the optical phonon emission
at this point. The optical phonon emission, which starts
from J ≃ 1 (and Φ ≃ 1), results in a drop of bΛ at larger
values of J . This is because an increase in J leads to
relatively smooth increase of K(J) (and Φ) beyond the
optical phonon emission threshold [see Eq. (11)]. When
J & 1 (Φ & 1), only the BCs generated near the gated
regions have sufficient energy to emit an optical phonon.
The BCs generated in the bulk of the i-region are able
to do that only at higher values of J . This is in con-
trast with the situation in the GBFETs [7, 8], where the
optical phonon emission threshold is rather sharp.

One needs to mention that a difference in the values
of Λ at different Fermi energies under consideration is
rather small, while the quantity bΛ is fairly sensitive to
the Fermi energy. This is because of b ∝ µ−1

g .

V. AC CURRENT AND IMPEDANCE

When V = V + δV exp(−iωt), where δV and ω are the
signal amplitude and frequency, the potential drop across
the depleted region and the normalized terminal current
comprises the ac component δΦ and δJ = δJBC/J0, re-
spectively. Using Eqs. (3) - (5), the ac normalized current
components δJDQC can be presented as

δJEC + δJDP

J0
≃ 2η

3J
1/3

[

− 1

(1− iωτg)
+ iωτrc

]

δJ

+η

[

− 1

(1− iωτg)
+ iωτrc

]

δV

V0
(15)
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FIG. 3. Parameter bΛ versus normalized bias current J for
different structura1 parameters: lg = 0.5 µm, µg = 50 meV,
and τg = 1 ps - solid line and lg = 0.5 µm, µg = 15 meV, and
τg = 2 ps - dashed line.

with τrc = (2lgcg/σg) being the gate recharging time,
where the relation Lg = (lgmg/e

2Σg) = lgτg is used.

Using Eq. (5), the ac normalized drag current can be
presented as

δJDEC ≃ bΛδJ. (16)

Considering this, the linearized version of Eq. (1) with
Eqs. (15) and (16) yield

δJ

{

1− bΛ +
2η

3J
1/3

[

1

(1− iωτg)
− iωτrc

]}

= η

[

1

(1− iωτg)
− iωτrc

]

δV

V0
. (17)

Equation (17) can be presented in the following form:

δJ =
1 + iFω

[

3J
1/3

(1 − bΛ)

2η
(1 + ω2τ2g ) + 1 + iFω

]

δV

V0
.(18)

Here

Fω =
ω

Ω2τg
[(Ω2 − ω2)τ2g − 1], (19)

where

Ω =
1

√
τgτrc

=

√

8π e2Σgd

κmg l2g
=

e

~lg

√

8µgd

κ
(20)

is the plasma frequency of the gated carrier system. One
can see that Ω = 1/

√

cgLg.
Taking into account the load resistances, we arrive at

the following expression for the GTTS impedance Zω nor-
malized by the depleted i-region resistance ri:

Zω

ri
=

3J
1/3

(1− bΛ)(1 + ω2τ2g )

2η(1 + iFω)
+ 1 + ρ, (21)

where

riH =
1

æi

√
V0

= 2π2

(

~ vW
e2

)

√

2li
ω0 vW

, (22)

ρ = 2ra/ri, and 2ra is the antenna radiation resistance)
[see Fig. 1(d)], and H is the GTTS width. In the range
J ≤ 1, Eqs. (13) and (21) result in

Zω

ri
=

3J
1/3

2η

(

1− 5b

2
J
2/3

)

(1 + ω2τ2g )

(1 + iFω)
+ 1 + ρ. (23)

As follows from Eqs. (21) and (23), the real part of the
GTTS impedance can become negative if

5

2
b > 1 +

2

3

η

(1 + ω2τ2g )
. (24)

For high signal frequencies (ω2τ2g ≫ 1), the condition de-
scribed by inequality (24) is much more liberal that the
condition (13) of the S-shaped I-V characteristics. This
implies that the real part of the GTTS impedance can
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FIG. 5. The imaginary part Im Zω/ri of the GTTS impedance
versus signal frequency f = ω/2π (parameters are the same
as for Fig. 4).

be negative at the monotonic dc I-V characteristics. It
is remarkable that at moderate values of b satisfying in-
equality (24), but insufficient to satisfy condition (13),
|δΦ| can exceed δV , while Φ < V . This corresponds to
the potential profile shown in Fig. 1(c) for the signal com-
ponent but to the potential profile shown in Fig. 1(b) for
the dc component. The inclusion of the load resistance
somewhat changes the above criteria, but not too much
(see below).

Condition (24) for (1+ω2τ2g ) ≫ η yields b > 2.5, when
the drag effect is essential but not particularly strong.
Assuming ω/2π = 1 THz and τg = 1 ps, we obtain (1 +
ω2τ2g ) = 1 + 4π2 ≃ 40.5.

For 2li = 0.1 µm, Eq. (8) yields J0 ≃ 1.5 A/cm. Set-
ting the GTTS width equal to H = (5− 10) µm, we find
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FIG. 6. Real part of the normalized GTTS impedance
Re ZΩ/ri at the plasma frequency (ω = Ω) versus normal-
ized bias current J for different plasma frequencies: 1 - Ω/2π
= 1.15 THz), 2 -Ω/2π = 1.3 THz, and 3 - Ω/2π = 1.4 THz.
Other parameters are the same as in Figs. 4 and 5.

ri/H ≃ (133− 266) Ω, with |Re Zω| markedly exceeding
the latter values.
Figures 4 and 5 show the frequency dependences of

the normalized real and imaginary parts of the GTTS
impedance calculated using Eq. (21) with Eq. (12) for
different structural parameters.

VI. PLASMA RESONANCE AND PLASMA

INSTABILITY

At the signal frequency ω =
√

(Ω2 − τ−2
g ) = Ωp corre-

sponding to the plasmonic resonance, F|ω=Ωp
= 0. In

this case, Eq. (21) yields for the resonant impedance
Zω|ω=Ωp

= ZΩ

ZΩ

ri
=

3J
1/3

(1− bΛ)Ω2τ2g
2η

+ 1 + ρ. (25)

Figure 6 shows the real part of the GTTS impedance
at the signal frequency coinciding with the plasma fre-
quency Ω (the imaginary part is equal to zero) as a func-
tion of the normalized bias current J . One can see |ZΩ|
can be fairly large, which is beneficial for the plasma in-
stability leading to an effective THz emission (see below).
Moreover, the range of the bias currents corresponding
to Re ZΩ < 0 markedly extends into the range J > 1.
This is attributed to a smooth roll-off of parameter Λ in
this range as seen in Fig. 3.
As known (see, for example, [27]), the current in the

system with the negative real part of impedance and the
imaginary part of the latter changing sign can be unstable
resulting in the self-excitation of the carrier density and
current high-frequency oscillations (the plasma instabil-
ity [28]). Such current oscillations feeding an antenna
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can lead to the radiation emission. According to Figs. 4
and 5, the frequency of the emitted radiation can be in
the THz range.
The conditions of the plasma instability and the

growth rate of the plasma and current oscillations can
be found from the dispersion equation Zω = 0 with the
complex frequency ω = ω′+iω′′, where ω′′ represents the
growth rate. Using Eq. (23), at Ω2τ2g ≫ 1 and Ω2τ2g > η
(so that Ωp ≃ Ω) from the equations Re Zω′+iω′′ = 0 and
Im Zω′+iω′′ = 0, we arrive at

ω′

Ω
≃ 1− 5b

4η(1 + ρ)
(J − J th)

≃ 1− 5b

4η(1 + ρ)2
(V − V th)

V0
, (26)

ω′′

Ω
≃ 5bΩτg

4η(1 + ρ)
(J − J th)

≃ 5bΩτg
4η(1 + ρ)2

(V − V th)

V0
. (27)

Here Vth/V0 = (1+ρ)riJ0J th/V0 = (1+ρ)Jth, where J th

represents the normalized threshold current obeying the
following equation:

J
1/3

th − 5b

2
J th = −2η(1 + ρ)

3Ω2τ2g
. (28)

Equation (28) yields

J th ≃
(

2

5b

)3/2[

1 +

(

5b

2

)1/2
η(1 + ρ)

Ω2τ2g

]

. (29)

Hence

V th

V0
≃ (1 + ρ)

(

2

5b

)3/2[

1 +

(

5b

2

)1/2
η(1 + ρ)

Ω2τ2g

]

.(30)

As follows from Eqs. (26) and (27), when V exceeds the
threshold value V th, the plasma oscillations become un-
stable with the growth rate ω′′ > 0. The plasma insta-
bility threshold (ω′′ = 0), corresponds to ω′ = Ωp ≃ Ω.

The inequalities Vth < V ≤ V0(1+ρ), i.e., J th < J ≤ 1,
and ω′′ > 0 constitute the necessary and sufficient con-
dition of the plasma instability (compare with inequal-
ity (24), which is the pertinent necessary condition). One
can see that at a sufficiently large load resistance (ρ ≫ 1),
the plasma instability vanishes, i.e., the plasma oscilla-
tions become damped. The proportionality of the plasma
oscillations growth to the drag factor b seen in Eq. (27)
shows that the plasma instability under consideration is
linked with the drag effect. When b tends to zero, J th

and V th turn to infinity.
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FIG. 7. Real, ω′, and imaginary, ω′′, parts of the complex
signal frequency as functions of the deviation of bias current
J from its instability threshold value Jth for τg = 1 ps, lg =
0.5 µm, µg = 50 meV, Ω/2π = 1.3 THz, ρ = 1 (i.e., for
b = 1.25 and η = 12.56).

Figure 7 illustrates the dependences ω′ and ω′′, i.e., the
frequency of the self-excited plasma oscillations and their
grows rate versus (J − J th) numerically calculated (solid
lines) using equations Re Zω′+iω′′ = 0 and Im Zω′+iω′′ =
0 with Zω given by Eq. (23). The dashed lines in Fig. 7
correspond to an analytic approximation obtained from
Eqs. (26), (27), and (29).

VII. COMMENTS

Above, as in [7, 8], we disregarded the delay of the
BCs flight across the i-region and, hence, the pertinent
transit-time effects [5, 6, 29]. Such effects could also
be responsible for the oscillation self-excitation at the
transit-time frequency ω ∼ ωtr = 2π vW /li [5] and could
in principle, affect the instability mechanism considered
in the present paper. However, at ω < ωtr, the omis-
sion of the transit-time delay in the i-region is justified.
Indeed, for the main parameters used in the above calcu-
lations ωtr/2π ≃ 10 THz, while above ω/2π,Ω/2π were
about 1 THz i.e., ω,Ω ≪ ωtr.
The parameter crucial for the dc I-V characteristics

and high-frequency performance of the devices using the
Coulomb carrier drag is the characteristic current density
J0. Comparing J0 with the pertinent density for the

GFETs J
(GBFET )
0 [7, 8] we obtain

J0

J
(GBFET )
0

=
e2l

(GBFET )
i

πκ~ vW

√

ω0

2livW
.

Setting κ = 4 − 6 and equal lengths of the i-region
(lGBFET
i = 2li = 0.1 µm) and the gated regions, we ob-
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tain J0/J
(GBFET )
0 ≃ 0.7− 1.0. This implies that GTTSs

and GBFETs exhibit similar characteristics.

The GTTSs in comparison to the GBFETs are char-
acterized by a smaller drag factor (twice as small at
the same carrier scattering time in the gated region).
This is because in the former case, the average energy
and momentum of the injected BCs are equal to eV/2
and eV/2vW , respectively, i.e., in the GBFETs with the
thermionic emission from the source contact the GTTS
drag factor is two times smaller (for the same gated region
lengths). However, this is compensated by a smoother
decrease in Λ beyond the optical phonon emission thresh-
old. The latter also leads to a wider span, ∆J , of the
bias current in which the real part of the impedance
can be negative compared to the GBFETs. In partic-
ular, the GTTS impedance can be negative at J > 1,
while the GBFET impedance turns to the positive val-
ues once J ≥ 1. The quantity ∆J determines the char-
acteristic (maximum) output THz power emitted by a
GTTS. For 2li = 0.1 µm, taking into account J0 ≃
1.5 A/cm and assuming the GTTS width H = 10 µm,
ri = 200/1.5 ≃ 133 Ω, and Ω/2π = 1.15 THz. Hence,
as follows from Fig. 6, for |ZΩ| = 2ri ≃ 266 Ω one can
find H∆J ≃ 0.75HJ0 ≃ 1.125 mA. As a result, for the
impedance matched antenna radiation resistance equal
to 2ra = |ZΩ| = 266 Ω, the characteristic emitted THz
power Pω ≃ 337.5 µW, or Pω/H ≃ 37.5 mW/mm.

The sensitivity of the GTTS characteristics to several
parameters opens up wide opportunities of their opti-
mization.

The fact that in the GTTSs the tunneling injection
occurs in the bulk of the i-region can be considered as
an advantage (in comparison with the GBFETs), since it
weakens the requirements for the side contacts quality.

The devices based on the GTTS structures with chem-
ically doped regions can exhibit similar phenomena to
the gated GTTSs with the electrostatic doping of the p-
and n-regions. To avoid excessive scattering of the BCs
on the ionized dopants, the acceptors and donors should
not be placed too close to the channel (selective remote
doping). The plasma frequency in the ungated struc-
tures can be markedly larger than in the gated GTTSs
at the same lengths of the p- and n-regions. Shortening
of these regions is beneficial for the enhancement of the
drag factor b and, hence, reinforces of the drag related
effects.

Further development of the GTTS-based devices using
the Coulomb carrier drag can be realized using periodic
structures with the p+-i-n+ GTTSs connected in series
(with the reverse biased p+-i-n+ GTTSs and forward bi-
ased n+-p+-junctions connecting in series the neighbor-
ing GTTSs [30, 31] - the cascade GTTS. In such periodic
structures one can expect the reinforces THz emission
and the self-excitation of the propagating plasma waves
(associated with the plasma instability considered above)
with the periods equal to the multiples of the structure
period resulting in an additional functionality. The ver-
tical integration of the p+-i-n+ GTTSs with the non-

Bernal stacked (twisted) G-layers or G-layers separated
by dielectric layers such as hBN layers [6, 32, 33] could
also promote the enhancement of of the GTTS THz ra-
diation sources efficiency (see also [34]).
The early attempts to predict and realize THz plasma

instabilities in different semiconductor devices are well
documented in the literature (see, for example, [35–41]).
The most popular idea was to use the streams of differ-
ent groups of the carriers to model the situation in the
gaseous plasmas [42]. Similar concepts were revived in
applications to G-based heterostructures [43–45] (see also
the critical analysis of the pertinent problem [46]). The
main obstacle to realize the two-stream plasma instabili-
ties in semiconductor heterostructures is associated with
the difficulties to create the plasma systems with suffi-
ciently large directed velocities of at least one of the car-
rier component (in particular, the ballistic transport of
this component) maintained along a relatively long chan-
nel under the conditions of the marked carrier-carrier col-
lisions. In this regard, the plasma instabilities associated
with the positive feedback formed due to the reflection of
the plasma waves and the carriers from the side contacts
(the Dyakonov- Shur (D-S) instability [47]) might require
much more liberal conditions. In particular, the observed
plasma instability in the dual-grating G-based structures
[48, 49] is attributed to an occurrence of the D-S instabil-
ity supported by the carrier-transit time effect [29, 50].
The instability associated with the positive feedback be-
tween the BCs injected from the GBFET source [7] or
the BCs tunnel-generated in the GTTS depleted region
(studied above) on one hand, and the reverse injection
of the ECs caused by the Coulomb drag effect on the
other, can be considered as belonging to the same class
as the D-S instability. Although the realization of the
plasma instability under consideration requires the bal-
listic carrier transport in the i-region, which is assumed
to be fairly short (2li ∼ 0.1 µm), in the gated regions oc-
cupied by the ECs, the carrier mean free pass (limited by
the carrier-carrier collisions) can be substantially shorter
then this region length lg. The latter is much more prac-
tical condition than that in the situations, in which the
two-stream instability might be possible.

VIII. CONCLUSIONS

In conclusion, we predicted the current driven plasma
instability in the lateral GTTS with the C injection into
the gated p- and n-regions and the Coulomb drag of the
ECs by the BCs. The plasma instability and the perti-
nent emission of the THz radiation are associated with
the current amplification due to the transfer of the BC
momentum to the ECs. The lateral GTTS cascades and e
vertically integrated GTTSs can exhibit an enhanced the
THz emission and widen the GTTS functionality. The
GTTSs can be effective THz sources surpassing the ex-
isting nanostructure emitters.
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