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The coherent transduction between microwave and optical frequencies is critical to interconnect
superconducting quantum processors over long distances. However, it is challenging to establish
such a quantum interface with high efficiency and small added noise based on the standard direct
conversion scheme. Here, we propose an electro-optic transduction system based on continuous-
variable quantum teleportation. Reliable quantum information transmission can be realized with
an arbitrarily small cooperativity, in contrast to the direct conversion scheme which requires a
large minimum cooperativity. We show that the teleportation-based scheme maintains a significant
rate advantage robustly for practical thermal noise and all values of cooperativity. We further
investigate the performance in the transduction of complex quantum states such as cat states and
Gottesman-Kitaev-Preskill(GKP) states and show that a higher fidelity can be achieved with the
teleportation-based scheme. Our scheme significantly reduces the device requirement, and makes
quantum transduction between microwave and optical frequencies feasible in the near future.

I. INTRODUCTION

Quantum networks [1–5] have been envisioned as high-
performance quantum processors interconnected by effi-
cient quantum communication channels. Quantum pro-
cessors require strong nonlinear interaction at single-
quanta level, which can be readily realized with Joseph-
son effect at microwave frequencies in superconducting
circuits [6–9]. However, the high attenuation and ther-
mal noise at room temperature prevent the direct trans-
mission of quantum states at microwave frequencies over
long distances. In contrast, optical photons are the ideal
candidate to transmit quantum information over long
distances with the near-zero thermal noise and low at-
tenuation at room temperature [10–14]. However, it is
challenging to develop high-fidelity deterministic quan-
tum gates due to the weak optical nonlinearity. The
complementary characteristics of microwave and optical
photons calls for a hybrid quantum platform where quan-
tum information is processed by superconducting circuits
and transmitted with optical photons. Therefore, an ef-
ficient scheme to interconvert quantum states between
microwave and optical photons is of paramount impor-
tance [15–26].

The coherent conversion of quantum states between
microwave and optical frequencies have been proposed
using various platforms [27], including nanomechan-
ics [28, 29], electro-optics [19, 30–32], magnons [33, 34],
rare-earth-ion crystals [35], and cold atoms [36]. Re-
gardless of the physical implementations, an interac-
tion Hamiltonian performing beam-splitter operations
in the frequency domain is used in all schemes to di-
rectly transduce quantum states between microwave and
optical frequencies. However, it is still challenging to
realize a transduction system with high efficiency and
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low added noise, which are required for high-fidelity
quantum state conversion. Other than direct transmis-
sion, quantum communications can also be realized ef-
ficiently with shared entanglement and classical com-
munication [22, 37–43]. A recent study [22] proposed
a scheme to establish time-bin entanglement and per-
form teleportation to transfer time-bin encoded qubits
between microwave and optical frequencies. However,
unlike direct conversion, the simple time-bin entangle-
ment is incapable of transducing complex quantum states
such as cat states and Gottesman–Kitaev-Preskill (GKP)
states [44], which are important for robust quantum oper-
ations against loss and noise [6, 44–51]. The probabilistic
nature of time-bin entanglement generation also renders
difficulty in achieving a high conversion rate. This issue
can be resolved by using continuous-variable quantum
teleportation [38–40, 43].

In this paper, we propose a transduction scheme to en-
able the conversion of complex quantum states between
microwave and optical frequencies based on continuous-
variable quantum teleportation. We use cavity electro-
optic system as the physical implementation of our pro-
posed scheme, due to its straightforward interaction. To
begin with, we show that direct conversion completely
fails such a task at small cooperativity due to zero quan-
tum capacity [52–54]. On the contrary, our teleportation-
based scheme demonstrates appreciable rates of quantum
state conversion under the same condition and provides
a strict rate advantage in a wide range of device param-
eters. In particular, our system can work at an operat-
ing temperature of 0.2 Kelvin, with robust performance
against thermal noise. This is achieved by the elimi-
nation of intermediate excitations, in contrast to other
systems. We further consider the transduction perfor-
mance of three states that are widely used in quantum
information processing, the coherent state, cat state and
finite-squeezed GKP state [44], where large advantages
can be found under practical experimental conditions.
All required operations in the teleportation-based trans-
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duction scheme can be readily realized in both microwave
and optical domains, making efficient microwave-optical
transduction possible with current experimental condi-
tions.

II. CAVITY ELECTRO-OPTICS

Superconducting cavity electro-optics [19, 30–32, 55]
is one of the most promising platforms for on-chip
microwave-optical transduction. The interaction is sim-
ple, as it directly converts quantum states and eliminates
noisy intermediate excitations in other platforms. For a
more complete comparison between the state-of-the-art
platforms, please refer to Ref. [27]. Such a system can
be realized with the setup shown in Fig. 1(a). The op-
tical cavity consists of materials with χ(2) nonlinearity,
and is placed between the capacitors of a LC microwave
resonator. The electric field across the capacitor changes
the refractive index of the optical cavity, thus modulat-
ing the optical resonant frequency. Reversely, modulated
optical fields can generate microwave field due to the op-
tical mixing (rectification) in χ(2) material. The interac-
ton Hamiltonian of cavity electro-optics has the standard
three-wave mixing form

H = i~(gâ†b̂m̂† − g∗âb̂†m̂), (1)

with two optical modes (â and b̂) and one microwave
mode (m̂). Here g is the coupling coefficient and ~ is the
Planck’s constant. If the optical mode â is coherently
pumped, a beamsplitter interaction Hamiltonian can be
realized between the optical mode b̂ and the microwave
mode m̂ for direction conversion. If the optical mode b̂
is coherently pumped, a two-mode-squeezing interaction
Hamiltonian can be realized between the optical mode â
and the microwave mode m̂ for entanglement generation
(see Appendix B). The optical (microwave) modes have
intrinsic, coupling, and total loss rates γoi, γoc, and γo =
γoi+γoc (γmi, γmc, and γm = γmi+γmc) respectively. The
extraction efficiency for the optical (microwave) mode is
defined as ζo = γoc/γo (ζm = γmc/γm). The interaction
cooperativity is defined as C = 4Ng2/γoγm, with N the
total intra-cavity pump photon number. The stable oper-
ation of entanglement generation requires C ∈ [0, 1) [31].

The optical thermal noise is neglected in our analysis
due to its small occupation even at room temperature.
The microwave thermal noise has non-zero mean occupa-
tion number nin following the Bose-Einstein distribution.

III. DIRECT CONVERSION

In the direct conversion (DC) approach, the transduc-
tion device implements an interaction Hamiltonian with
a beam-splitter form. Therefore, the direct conversion
process can be modeled as a bosonic thermal-attenuator
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ĉout

Figure 1. (a) Schematic of the teleportation based transduc-
tion scheme. The dashed box indicates the entanglement gen-
eration between the microwave mode m̂ and the optical mode
â, in a three-wave mixing described by Hamiltonian in Eq. (1)
jointly with optical pump mode b̂. (b) Entanglement gener-
ation between microwave and optical domains. Purple indi-
cates the optical pump, blue indicates the microwave modes
and red indicates optical modes. LO: local oscillator. Mod.:
modulator. PDC: parametric down conversion.

described by the input-output relation

b̂ =
√
ηDCm̂+

√
1− ηDCê, (2)

with the overall transduction efficiency [31]

ηDC = ζmζo
4C

(1 + C)2
, (3)

and ê is a thermal mode with mean photon number

NDC =
1

1− ηDC
(1− ζm)ζo

4C

(1 + C)2
nin. (4)

The quantum channel described by Eq. (2) can have a
nonzero quantum capacity only when ηDC > 1/2 [56],
which places a threshold for the cooperativity,

C ≥ −1 + 4ζmζo −
√

8ζmζo(2ζmζo − 1) ≥ 3− 2
√

2. (5)

Even the minimum value is beyond the state-of-the-art
experimental demonstrations [19, 32], therefore forbids
the reliable transduction of quantum states. We empha-
size that this requirement for direct conversion is essen-
tial and cannot be circumvented by error-correction ef-
forts [45, 51].

IV. TRANSDUCTION WITH QUANTUM
TELEPORTATION

To go beyond direct conversion, we propose to realize
the transduction between microwave and optical frequen-
cies with continuous-variable quantum teleportation. In
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this case, the transduction device is used for two-mode-
squeezing generation between the optical and microwave
modes (Fig. 1). The intuition behind this teleportation-
based transduction is that classical communication can
boost the quantum information transmission rate beyond
the unassisted quantum capacity [57, 58].

For the transduction from microwave to optical fre-
quencies, the microwave input mode ĉin and the mi-
crowave mode m̂ of the entangled state are interfered
on a 50/50 beamsplitter. The beamsplitter outputs are
measured along conjugate quadratures with homodyne
detection. While a continuous-wave pump can be used
to generate the two-mode squeezing, the local-oscillator
needs to match the input signal mode to avoid extra
noise. We consider perfect homodyne in our analyses; the
effect of loss in homodyne can be effectively taken into
account by adding loss on the input state and additional
loss contribution to the entangled microwave mode. The
measurement results are used to perform displacement
operation on the optical mode â of the entangled state
with a scaling factor κ. Then the output optical mode
ĉout will be in a state close to the input microwave state
ĉin (see Appendices C and D). The scaling factor κ can be
optimized to achieve the best performance. When κ < 1,
the overall channel is a thermal-attenuator described by
the input-output relation

ĉout = κĉin +
√

1− κ2ê, (6)

When κ > 1, it is a thermal-amplifier:

ĉout = κĉin +
√
κ2 − 1ê†, (7)

The thermal mode ê has the mean photon number

NTP =
uκ2 − 2vκ+ w

2|1− κ2|
− 1

2
, (8)

with the constants

u = 1 +
8ζm[C + nin(1− ζm)]

(1− C)2
, (9a)

v =
4
√
ζoζmC[1 + C + 2nin(1− ζm)]

(1− C)2
, (9b)

w = 1 +
8Cζo [1 + nin (1− ζm)]

(1− C)2
. (9c)

Here we assume signals are on resonance with the op-
tical and microwave cavities. When κ = 1, the channel
reduces to an additive white Gaussian noise channel with
a variance (u+ w − 2v)/2.

V. QUANTUM CAPACITY

We first compare the quantum capacities of the two
schemes, which provide the ultimate bound of quantum
information rates. We begin with the ideal case with

ideal extraction efficiencies (ζo = ζm = 1 ) at zero tem-
perature. Therefore, the thermal noise at microwave
frequency vanishes and the quantum capacity of direct
conversion can be calculated exactly [59]. However, the
teleportation-based scheme can still have non-zero noise
due to finite two-mode squeezing at C < 1. As the exact
solution to quantum capacities for thermal-attenator and
thermal-amplifier with non-zero noise is unknown, we cal-
culate the lower bounds [60] and upper bounds [58, 61]
of quantum capacities instead (Appendix E).As shown
in Fig. 2(a), the upper (solid) and lower bound (dashed)
coincide exactly for the direct conversion (blue), while
a small gap persists for the teleportation scheme (red,
see Fig. 8).The teleportation scheme has a quantum ca-
pacity strictly higher than the direct conversion regard-
less of cooperativity value C. Especially, the quantum
capacity for direction conversion is zero when coopera-
tivity is below the threshold (Eq. (5)). In contrast, the
teleportation scheme shows non-zero quantum capacity
with an arbitrarily small cooperativity. In Fig. 2(c), we
show the quantum capacity lower bound of the telepor-
tation scheme with cooperativity C = 0.1, which has
been experimentally demonstrated [19, 32]. With non-
ideal extraction efficiencies, the quantum capacity only
decreases gradually, showing the robustness of the tele-
portation scheme.

Next we consider the practical case with non-ideal ex-
traction efficiencies at finite temperature. In this case,
the thermal noise at microwave frequency needs to be
considered. We assume the microwave resonator fre-
quency 8 GHz and ambient temperature 0.2 Kelvin.
Therefore, the thermal noise occupation is nin = 0.2.
We use ζm = 0.95 and ζo = 0.9, which are experimen-
tally feasible [62, 63]. The quantum capacity lower bound
of the teleportation scheme still has non-zero values re-
gardless of the cooperativity C. In contrast, the quan-
tum capacity upper bound of direction conversion is zero
when cooperativity is below the threshold (Eq. (5)). Es-
pecially, we find that the lower bound of the teleporta-
tion scheme is higher than the upper bound of the direct
conversion in the low cooperativitiy region, meaning the
teleportation scheme strictly outperforms the direction
conversion. We also show the quantum capacity of the
teleportation scheme with different extraction efficiencies
using the condition C = 0.1 and nin = 0.2. Again, di-
rect transmission has zero quantum capacity in this case.
Compared with the ideal nin = 0 case (Fig. 2(c)), the
quantum capacity drops due to the thermal noise con-
tamination (Fig. 2(d)). Therefore, a higher microwave
extraction efficiency is needed to achieve the same quan-
tum capacity.

VI. QUANTUM STATE TRANSFER

While quantum capacity shows the ultimate quantum
information rate, the transduction performance can vary
depending on different quantum states. Here, we con-
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Figure 2. Quantum capacity comparison. (a)(b) Capacity
bounds versus cooperativity C with extraction efficiencies (a)
ζo = 1, ζm = 1 and (b) ζo = 0.9, ζm = 0.95. The noise is
irrelevant in (a) and nin = 0.2 in (b). The thresholds of the
direct conversion in Eq. (5) are indicated by the vertical black
dashed lines, with values around (a) 3 − 2

√
2 ' 0.172 and

(b) 0.216. We combined multiple different upper bounds (see
Appendix E). (c)(d) Contours of the capacity lower bound
for the teleportation-based (TP) transduction scheme, with
C = 0.1 and (c) nin = 0 (d) nin = 0.2. In these two cases, the
capacity of the direct conversion (DC) scheme is all zero.

sider the quantum states that are important for quantum
communication and computation, including the coherent
state |α〉, the cat state |cat+〉 ∝ (|α〉 + |−α〉), and the
finite-squeezed GKP states [44, 64],

|k̃〉GKP ∝
ˆ

d2α exp

[
− |α|2

2σ2
GKP

]
D̂(α) |k〉GKP , k = 0, 1,

(10)

where D̂(α) is the displacement operator and |k〉GKP =∑∞
n=−∞ |

√
π(2n+ k)〉q̂ is the perfect GKP state. The

variance σ2
GKP characterizes the GKP noise due to finite-

squeezing (see Appendix H).
For the coherent state and cat state, we directly com-

pare the Uhlmann fidelity F (ρ, σ) =
(
tr
√√

ρσ
√
ρ
)2 [65,

66] between the input and the output states (Ap-
pendix F). In the teleportation-based transduction
scheme, the fidelity will depend on the homodyne mea-
surement results. To represent the typical cases, we con-
sider the fidelity of the output state averaged over the
measurement outcome. We will optimize κ to obtain the
best fidelity.

For GKP states, as we want the phase space grid size
to be invariant, we transform the overall channel to an
additive noise channel. To do so, in the direct conversion

Figure 3. Fidelity for coherent state |α〉, cat state N+(|α〉 +
|−α〉) (with α = 2) and GKP state transduction. The
GKP state has a finite squeezing noise σGKP = 0.22 (10dB).
(a)ζm = 1 and ζo = 1, nin is irrelevant. (b) ζm = 0.95,
ζo = 0.9 and nin = 0.2. The black dotted horizontal line
indicates the fidelity threshold of 2/3.

scheme, we apply a quantum limited amplifier with gain
1/ηDC prior to transduction. For the teleportation based
scheme, we apply a quantum-limited amplifier with gain
1/κ prior to transduction when κ < 1, and an attenuator
with transmissitivty 1/κ post transduction when κ > 1.
Then, the transduction process is converted to an ad-
ditive white Gaussian noise channel (see Appendix G).
Note that here the additive noise level is not the same as
the original noise NDT or NTP.

Although GKP states and cat states both have certain
intrinsic error-correction capability. However, as this pa-
per addresses a practical state transduction protocol to
produce complex quantum states in the optical domain,
we cannot directly assume the capability to perform error
correction operations in the optical domain. For exam-
ple, in the GKP error correction procedure, a standard
approach after the noise channel would require two an-
cilla GKP states [45, 51]. In this case, these ancilla GKP
states in the optical domain will need to be produced in
the same transduction protocol from the microwave do-
main GKP states; otherwise one can produce the complex
quantum states directly without the transduction. Con-
sequently, the GKP ancilla will have the identical noise
to the GKP state being transduced, and therefore cannot
further decrease the additive noise in the GKP state in
error correction [45, 51]. For the reason above, we do not
apply error correction operations at the output side and
adopt the fidelity to directly characterize the quality of
the complex states being produced.

First we consider the ideal case of ζm = 1, ζo = 1.
We plot the fidelity for the coherent states, cat states,
and GKP states with different cooperativity values in
Fig. 3(a). The teleportation-based transduction scheme
(dashed) provides consistent advantages over the direct
transduction scheme (solid) for all three states. As co-
operativity C approaches unity, the fidelity approaches
unity and the gap vanishes as expected. We also indi-
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Figure 4. Performance of quantum state transfer: (a)(b)
fidelity for coherent state |α = 2〉, (c)(d) fidelity for cat state
|cat+〉 with α = 2 and (e)(f) fidelity for GKP state. The GKP
state has a finite squeezing noise σGKP = 0.22 (10 dB). The
left column is for direct conversion, while the right column is
for teleportation based transduction. We choose C = 0.1 and
nin = 0.2 to represent state-of-the-art experimental condition.

cate the no-cloning threshold of 2/3 [67] as black dotted
horizontal lines in Fig. 3.

With non-ideal extraction efficiencies (ζm = 0.95,
ζo = 0.9) and non-zero noise nin = 0.2, the GKP fidelity
with the teleportation scheme (green dashed) is always
higher than the direct conversion scheme (green solid),
as shown in Fig. 3(b). For coherent and cat states, the
teleportation scheme offers a better fidelity over the di-
rect conversion when the cooperativity is small. Indeed,
at the C → 0 limit, as the direct transmission scheme
simply outputs noise independent of the input, while the
teleportation scheme always produces output containing
some information about the input from the quadrature
measurements. When the cooperativity is high, however,
direction conversion offers a better fidelity. In particu-
lar, at the limit of C → 1 (see Appendix D), although
the transmissivity of the teleportation-based scheme κ
can be tuned close to unity, the additive noise mixed
in is larger than that of the direct conversion scheme.
When α is small, the states are close to vacuum, and a

lower transmissivity does not affect the fidelity as much
as higher noise, which caused the behavior when C is
large. However, when α takes larger values, the fidelity
is mainly determined by the transmissivity and the tele-
portation scheme will offer a better fidelity, as verified in
Appendix F.

Finally, we vary the extraction efficiencies ζm and ζo
for the practical experimental setting of C = 0.1 and
nin = 0.2. As we expect, at relatively low cooperativity,
the teleportation based transduction provides a better
performance over the direct transduction for all values
of extraction efficiencies. As shown in Fig. 4(a)(b), the
fidelity of the coherent state is much higher with the tele-
portation based scheme in (b) compared with the direct
conversion in (a). For the cat state and GKP state, sim-
ilar advantage can be seen in Fig. 4(c)-(f), despite the
overall fidelity of both schemes to be lower.

Overall, the fidelity of coherent-state transduction is
much higher than those for cat states and GKP states.
The reason behind is that a coherent state has a positive
Wigner function concentrated around the origin in phase
space, which is more robust to loss and noise; while GKP
states and cat states have negative and positive part of
the Wigner function; without the error-correction proce-
dure in the optical domain, they do not benefit from the
non-Gaussian nature of the states [72].

VII. DISCUSSION

We have proposed a microwave-optical transduction
scheme based on continuous-variable teleportation. The
scheme overcomes the low-cooperativity obstacle in the
direct conversion scheme and provides appreciable advan-
tages in the quantum capacity and state transfer perfor-
mance. While the analysis is based on cavity electro-
optics, the scheme also applies to other transduction
systems with intermediate excitations [22, 68]. Addi-
tional noise terms introduced by intermediate excitations
needs to be considered in that case, while the parameters
will also change. Although electro-optics platforms cur-
rently achieve the best efficiency across integrated plat-
forms [19, 27], however, as the development of technolo-
gies is a dynamical process, we do not imply that one
wants to rule out any other platforms at this stage. More-
over, the teleportation scheme can also be used for quan-
tum state transduction between different optical frequen-
cies, e.g. diamond color centers for quantum memories
and telecom band for long-distance communications. In
this case, thermal noise vanishes for both input and out-
put frequencies, corresponding to the ideal case in our
analysis (Fig. 2(a) and Fig. 3(a)). Therefore, appreciable
advantage can be obtained by using teleportation-based
transduction scheme regardless of device cooperativity
and extraction efficiency. In terms of applications, beside
error correction, our transduction scheme can be applied
to sensing protocols like microwave quantum illumina-
tion [69] and ranging [70, 71].
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Appendix A: Preliminary

1. Wigner function

Below we introduce the basic notations and definitions,
which are similar to the formalism in Ref. [73]. Readers
can also refer to Ref. [74] for a review of Gaussian quan-
tum information. Let H denote an infinite-dimensional
Hilbert space. We consider n bosonic modes associated
with tensor product of n Hilbert spaceH⊗n, which have n
pairs of independent annihilation and creation operators
(âk, â

†
k) satisfying [âi, â

†
j ] = δij . We define the quadra-

ture operators as q̂k ≡ (âk + â†k)/
√

2, p̂k ≡ i(â†k− âk)/
√

2
for unit ~ = 1. The vector quadrature operator is defined
as x̂ ≡ (q̂1, p̂1, ..., q̂n, p̂n)T which satisfies the commuta-
tion relation [x̂i, x̂j ] = iΩij , with matrix

Ω ≡
n⊕
k=1

ω, ω =

(
0 1
−1 0

)
. (A1)

An n-mode displacement operator D̂(α) is defined as
D̂(α) ≡ exp

(
αTâ† − (α∗)Tâ

)
, where α = (α1, . . . , αn)T

is a vector of n complex numbers and â = (â1, . . . , ân)T,
â† = (â†1, . . . , â

†
n)T. Alternatively, one can express

the displacement operator in the Weyl form D̂(α) =

exp
(
ix̂TΩξ

)
≡ D̂(ξ), where the 2n dimensional vector

ξ ≡
√

2(Re(α1), Im(α1), . . . ,Re(αn), Im(αn)). The Weyl
operator satisfies:

Tr[exp
(
−ix̂TΩξ1

)
exp
(
ix̂TΩξ2

)
] = (2π)nδ(ξ1 − ξ2),

(A2)ˆ
d2nξ exp

(
ix̂TΩξ

)
Â exp

(
−ix̂TΩξ

)
= (2π)nTr(Â)Î .

(A3)

With the above relations, we have the following transform
pairs:

χ(ξ; ρ̂) ≡ Tr[ρ̂ exp
(
ix̂TΩξ

)
], (A4)

ρ̂ =
1

(2π)n

ˆ
d2nξ χ(ξ; ρ̂) exp

(
−ix̂TΩξ

)
, (A5)

W (x; ρ̂) =
1

(2π)n

ˆ
d2nξ χ(ξ; ρ̂) exp

(
−ixTΩξ

)
, (A6)

χ(ξ; ρ̂) =
1

(2π)n

ˆ
d2nxW (x; ρ̂) exp

(
ixTΩξ

)
, (A7)

where χ(ξ; ρ̂) andW (x; ρ̂) are the characteristic function
and Wigner function of state ρ̂.

The following are well-known properties of Wigner
function that we will utilize in our calculations:
ˆ
d2nxW (x; ρ̂) = 1, (A8)

W (x; ρ̂1 ⊗ ρ̂2) = W (x1; ρ̂1)W (x2; ρ̂2), (A9)

Tr(ρ̂σ̂) = (2π)n
ˆ
d2nxW (x; ρ̂)W (x; σ̂), (A10)

W (xA;TrB(ρ̂AB)) =

ˆ
d2xB W (xA,xB ; ρ̂AB). (A11)

2. Gaussian states and unitaries

A quantum state is Gaussian if its Wigner function
W (x) has the Gaussian form

W (x) =
1

(2π)n|V | 12
exp

[
−1

2
(x− x̄)TV −1(x− x̄)

]
,

(A12)
where x̄ and V are the mean and covariance matrix of
state ρ̂:

x̄ ≡ Tr[ρ̂x̂], (A13)

Vij ≡
1

2
Tr[ρ̂{x̂i − x̄i, x̂j − x̄j}]. (A14)

Here we give two examples of Gaussian state relevant
to our calculations. A thermal state has x̄ = 0, V =
(1/2 +N)I2, where N is the mean photon number of
the thermal state and Ik is a k by k identity matrix.
A vacuum state |0〉 is a thermal state with N = 0. A
coherent state is defined by displacing the vacuum state
as |α〉 ≡ D̂(α) |0〉. It is also a Gaussian state with x̄ =√

2α, V = I2/2.
A Gaussian unitary is generated by a Hamiltonian in

a second-order polynomial of â and â†. It is fully char-
acterized by a symplectic matrix S and a vector d. Thus
we denote it as ÛS,d. In the Heisenberg picture, it trans-
forms the vector quadrature operator linearly via

x̂→ Sx̂+ d. (A15)

A Gaussian state is mapped to another Gaussian state
under the transform ÛS,d, with the mean and covariance
matrix transformed as

x̄→ Sx̄+ d, V → SV ST. (A16)

One can also show that, for any quantum state ρ̂, its
Wigner function transforms as

W (x′; ÛS,dρ̂Û
†
S,d) = W

[
S−1(x′ − d); ρ

]
(A17)

under the Gaussian unitary.
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Appendix B: Analysis of the interaction Hamiltonian

Inside the cavity, the χ(2) nonlinear material immers-
ing in a strong classic pump field will proceed typical
interaction between the optical and microwave fields.
In general, a spontaneous parametric down-conversion
(SPDC) process will be triggered when the pump fre-
quency is equal to the sum frequency of the optical and
microwave fields. While if the pump frequency matches
the frequency differences between the two fields, the in-
teraction will act as a frequency-domian beamsplitter.

As depicted in Fig. 1, the entanglement between the
optical and microwave fields can be generated from an
SPDC process by pumping a triple-resonance device [19].
This electro-optical system with coupling strength gE is
modelled by the total Hamiltonian

H = ~ωoâ†â+ ~ωmm̂†m̂+ i~(gE â
†m̂† − g∗E âm̂), (B1)

where â (m̂) is the annihilation operator for optical (mi-
crowave) field with resonance at frequency ωo (ωm). The
intra-cavity pump power and the phase-matching condi-
tion have been absorbed into the coupling strength gE .

The output fields can be derived by solving a group
of Heisenberg-Langevin equations in the Fourier domain
with the input–output relations [22, 75]

0 = Gâ+ Kâin, (B2)

âout = −KTâ+ âin. (B3)

Here we use the matrix form to represent the dynamics
in the Fourier domain with optical frequency detuning
∆p = ω − ωo and microwave frequency detuning ∆e =
ω − ωm. The notations are defined as the following

â = (â, â†, m̂, m̂†)T, (B4)

âin = (âin, â
†
in, â

(i), â†(i), m̂in, m̂
†
in, m̂

(i), m̂†(i))T, (B5)

G =

−
γp
2 + i∆p 0 0 −igE

0 −γp2 − i∆p igE 0
0 −igE −γe2 + i∆e 0
igE 0 0 −γe2 − i∆e

 ,

(B6)

K =


√
γpc 0

√
γpi 0 0 0 0 0

0
√
γpc 0

√
γpi 0 0 0 0

0 0 0 0
√
γec 0

√
γei 0

0 0 0 0 0
√
γec 0

√
γei

 .

(B7)

The output fields then relate to the input fields by

âout = Saâin = (KTG−1K + I8)âin. (B8)

By defining quadrature observables and the transform
matrix as (

q̂a

p̂a

)
=

1√
2

(
1 1
−i i

)(
â
â†

)
, (B9)

Q = I4 ⊗
1√
2

(
1 1
−i i

)
, (B10)

we get the input-output quadrature relation

x̂out = Sxx̂in = QSaQ
−1x̂in, (B11)

x̂in = (q̂pin, p̂
p
in, q̂

p,(i), p̂p,(i), q̂ein, p̂
e
in, q̂

e,(i), p̂e,(i))T. (B12)

Then, the input-output relation of the covariance matrix
is derived as

Vout = SxVinST
x , (B13)

in which the input covariance matrix Vin contains vac-
uum noise from the optical modes and the input mi-
crowave mode while the dissipation microwave mode is
contaminated by the thermal noise of population nin,

Vin = Diag(I6, (nin + 1/2)I2). (B14)

Taking the input covariance matrix into consideration
and assuming zero detune for both optical and microwave
modes ∆p = ∆e = 0, the covariance matrix of two output
fields finally shows in the form as

Vo,m =
1

2

 w 0 0 −v
0 w −v 0
0 −v u 0
−v 0 0 u

 , (B15)

where we reprint the parameters in Eq. (9) of the main
paper as follows,

u = 1 +
8ζm[C + nin(1− ζm)]

(1− C)2
, (B16a)

v =
4
√
ζoζmC[1 + C + 2nin(1− ζm)]

(1− C)2
, (B16b)

w = 1 +
8Cζo [1 + nin (1− ζm)]

(1− C)2
. (B16c)

Appendix C: Continuous-variable teleportation

Here we consider teleportation utilizing the entangled
state ρ̂AB between the microwave domain (A) and opti-
cal domain (B) as shown in Fig. 5. To make the anal-
yses more convenient, we apply a π/2-phase rotation to
the microwave mode to convert the covariance matrix of
(B15) to a standard form

Vm,o =
1

2

(
uI2 vZ2

vZ2 wI2

)
, (C1)

where Z2 = Diag(1,−1) is the Pauli-Z matrix. Note
that we have re-ordered the microwave mode as the first
mode and the optical mode as the second mode above,
compared with the covariance matrix of Eq. (B15).

As shown in Fig. 5, in a continuous-variable telepor-
tation scheme, to transmit an input state ρ̂in from the
microwave domain to the optical domain, one performs
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Figure 5. Schematic of the continuous-variable teleportation.

a balanced beamsplitter on the microwave subsystem A
of the entangled state and the microwave input state
ρ̂in. Then the position quadrature q̂− and the momen-
tum quadrature p̂+ of the beamsplitter outputs are mea-
sured by homodyne. The rescaled measurement result
x̃ =

√
2(q−,−p+) is then utilized to perform a displace-

ment of amount −κx̃ on the optical subsytem B of the
entangled state to produce the optical output ρ̂out. Here
we have added a factor of

√
2 in x̃ because the balanced

beamsplitter introduces a 1/
√

2 factor in quadratures.

In the following, we present the detailed calcula-
tion of the Wigner function of the output. We la-
bel the pre-shared entangled state’s Wigner function as
WAB(xA,xB) and input state’s Wigner functions as
W in(xin). The Wigner function of system AB and in-
put is a direct product W in(xin)WAB(xA,xB). Then
a 50/50 beam splitter (BS) is applied to transform the
quadeatures

(
x+

x−

)
=

1√
2

(
I2 I2

−I2 I2

)(
xin

xA

)
. (C2)

The transform of Wigner function is obtained from
Eq. (A17): W in(x+−x−√

2
)WAB(x++x−√

2
,xB). Then one

gets measurement results from homodyne detection x̃ =√
2(q−,−p+)T. At Bob’s side, the Wigner function of

system B is obtained by tracing out q+ and p−. Thus,

W (xB |x̃) =c

ˆ
dq+ dp−W

in(
q+ − q−√

2
,
p+ − p−√

2
)

×WAB(
q+ + q−√

2
,
p+ + p−√

2
,xB),

where c is a constant that normalizes W (xB |x̃). With
the substitution of x = ( q+−q−√

2
, p+−p−√

2
)T, W (xB |x̃) can

be written as

W (xB |x̃) = c

ˆ
d2xWAB [Z2(x+ x̃),xB ]W in(x).

(C3)
Suppose we perform a displacement D̂(−κx̃) at Bob’s
side to recover the input state, then the Wigner function
of the output state is obtained from property (A17) as

W out(xB |x̃) =

c

ˆ
d2xWAB [Z2(x+ x̃),xB + κx̃]W in(x). (C4)

To understand the recovery of the input state, we first
consider the ideal infinite entangled limit, where the
Wigner functionWAB(xA,xB) = δ(xA−Z2xB). In this
ideal case, we may take κ = 1 and the output Wigner
function

W out(xB) =

ˆ
d2xδ [Z2(x− xB)]W in(x) = W in(xB).

is independent of x̃. However this may not be true for
the general Gaussian entangled state. To prepare our
calculation, we note that the inverse of the matrix in
Eq. (C1) can be written as:

V −1
m,o =

2

uw − v2

(
wI2 −vZ2

−vZ2 uI2

)
. (C5)

We consider WAB given by Eq. (A12) with a zero mean
and the above V −1. Then Eq. (C4) gives

W out(xB |x̃) = c exp

[
− 1

w
(xB + κx̃)2

]ˆ
d2x (C6)

exp

[
− w

uw − v2

(
x− v

w
xB + (1− v

w
κ)x̃

)2
]
W in(x).

(C7)

We can obtain the normalize constant c from Eq. (A8)
as

c =
u

π(uw − v2)

1´
d2x exp

[
− 1
u (x+ x̃)2

]
W in(x)

. (C8)

The probability density function (PDF) of getting the
results x̃ is given by:

P (x̃) =

ˆ
dq+ dp− W

A(
x+ + x−√

2
)W in(

x+ − x−√
2

)

=

ˆ
d2xWA[Z2(x+ x̃)]W in(x)

=
1

πu

ˆ
d2x exp

[
− 1

u
(x+ x̃)2

]
W in(x). (C9)

Note in the second line the Jacobian for the change of
variables has unity determinant. The average state is
then
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W out(xB) =

ˆ
d2x̃W out(xB |x̃)P (x̃)

=
1

π(uκ2 − 2vκ+ w)

ˆ
d2xW in(x) exp

[
− κ2

uκ2 − 2vκ+ w
(x− 1

κ
xB)2

]
. (C10)

Figure 6. Schematic of an thermal-attenuator/amplifier chan-
nel. The thermal state ρ̂th has mean photon number N . η is
the attenuator transmissivity and G is the amplifier gain.

Appendix D: Thermal-amplifier and
thermal-attenuator channels

1. Wigner function transforms

In this section, we first derive the Wigner function
input-output relation for thermal-amplifier and thermal-
attenuator channels, as shown in Fig. 6. Then, we show
that the quantum teleportation process reduces to a
thermal-amplifier or a thermal-attenuator, via compar-
ing the results with Eq. (C10).

We assume that the Wigner function of input state is
W in(x), the other input is a thermal state with mean
photon number N and the Wigner function of output
state is W out(xB). By utilizing the Gaussian unitary
transform property in Eq. (A17), we obtain for the
thermal-attenuator channel Lη,N with transmissivity η

and noise N

W out(xB) ∝
ˆ
d2xW in(x) exp

[
−

(x− 1√
ηxB)2

(1 + 2N)(1− η)/η

]
.

(D1)
While for the thermal-amplifier AG,N with gain G and
noise N

W out(xB) ∝
ˆ
d2xW in(x) exp

[
−

(x− 1√
G
xB)2

(1 + 2N)(G− 1)/G

]
.

(D2)
Now the channel model of the teleportation can be ob-
tained from comparing the above with Eq. (C10). If
κ < 1, the continuous-variable teleportation channel T
reduces to a thermal-attenuator channel Lη,N with:

η = κ2, (D3)

1 + 2N =
uκ2 − 2vκ+ w

1− κ2
. (D4)

Otherwise, the continuous-variable teleportation channel
T may be modeled as a thermal-amplifier AG,N with:

G = κ2, (D5)

1 + 2N =
uκ2 − 2vκ+ w

κ2 − 1
. (D6)

When κ = 1, it is an additive noise channel with the
noise variance uκ2 − 2vκ+ w.

The above can be summarized as

Tκ2,NTP
=

{
Lκ2,NTP

if κ ≤ 1;
Aκ2,NTP

if κ > 1,
(D7)

with NTP defined in Eq. (8); the full expression in terms
of ζo, ζm and C is given by:

∣∣1− κ2
∣∣(1 + 2NTP) =

1 + κ2 +
8

(1− C)2

{
[1 + nin (1− ζm)]

[
ζo − 2κ

√
Cζoζm + κ2ζm

]
+ (1− C)

[
−ζmκ2 + κ

√
Cζoζm − (1 + nin (1− ζm)) ζo

]}
. (D8)

In the limit of C → 1, the first term in the bracket di- verges unless ζo − 2κ
√
Cζoζm + κ2ζm = 0. So we need
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κ =
√
ζo/ζm. Substituting κ into Eq. (D8), it simplifies

to ∣∣1− κ2
∣∣(1 + 2NTP) =

1 +
ζo
ζm

+
8ζo [1 + (1− ζm)nin]

(1 +
√
C)2

. (D9)

When C = 1, we finally get

∣∣1− κ2
∣∣(1 + 2NTP) = 1 + ζo

(
1

ζm
+ 2nin(1− ζm)− 2

)
.

(D10)
For direct conversion, at the high cooperativity limit
(C → 1), from Eqs. (3) and (4) of the main paper we
have ηDC = ζmζo and (1 − ηDC)NDC = (1 − ζm)ζonin.
With the parameters in Fig. 3(b), we have κ ' 0.973,∣∣1− κ2

∣∣(1 + 2NTP) ' 0.165 for teleportation and ηDC =
0.86, (1− ηDC)NDC = 0.009 for direct conversion.

When C = 0, we finally get∣∣1− κ2
∣∣(1 + 2NTP) = 1 + κ2 [1 + 8nin(1− ζm)ζm] ,

(D11)
while ηDC = 0 and NDC = 0. In this limit, in the direct
transmission case the output is entirely independent of
the input as the transmissivity is zero. In the telepor-
tation case, the protocol reduces to performing a hetero-
dyne measurement on the input and displace accordingly.
Despite the large noise in the output, the teleportation
scheme has an output classically correlated to the input,
and therefore has better fidelity.

2. Concatenation of a thermal-amplifier and a
thermal-attenuator

In this section, we address how to transform a thermal-
amplifiers/attenuator to an additive white Gaussian
noise channel described by

Nσ2(ρ̂) ≡ 1

πσ2

ˆ
d2α e−

|α|2

σ2 D̂(α)ρ̂D̂†(α). (D12)

where σ2 is the noise variance, via the approach in
Ref. [76]. For a thermal-attenuator, we apply an am-

plifier before the channel

Lη,n̄th · A1/η,0 = Nσ2(η,n̄th), (D13)

where σ2(η, n̄th) ≡ (1− η) (n̄th + 1). For a thermal-
amplifier, we append a pure loss channel afterwards

L1/G,0 · AG,n̄th = Nσ2(G,n̄th), (D14)

where σ2(G, n̄th) ≡ (1− 1/G) (n̄th + 1).

Appendix E: Bounds on quantum capacity

For direct conversion, we hope to evaluate the quantum
capacity of the thermal-attenuator channel with param-
eters in Eqs. (3) and (4) of the main paper. For telepor-
tation, we hope to evaluate the quantum capacity maxi-
mized over κ. Depending on the choice of κ, the channel
is either a thermal-attenuator or thermal-amplifier.

The quantum capacity lower bound of direct conver-
sion

Q
(LB)
DC = QLB(ηDC, NDC) (E1)

and the quantum capacity lower bound of teleportation

Q
(LB)
TP = max

κ
QLB(κ2, NTP) (E2)

have the same functional form [60]

QLB(k,N) ≡ max

[
log

(
k

|1− k|

)
− g (N) , 0

]
, (E3)

where the function g(x) = (x+ 1) log2(x+ 1)−x log2 x is
the von Neumann entropy of a thermal state with mean
occupation number x. Note that when k → 1 and (1 −
k)N → Nadd, we have

QLB(k,N) = − log2(Nadd)− 1/ ln(2). (E4)

We will utilize upper bounds derived from two-way
assisted quantum capacity [58] and the degradable ex-
tensions [61]. Combining the thermal-attenuator and
thermal-amplifier results, we have

Q
(UB)
DC = min[QPLOB(ηDC, NDC), QDE(ηDC, NDC)].

(E5)
Here the functions

QPLOB(η,N) ≡


max

[
− log2

[
(1− η) ηN

]
− g (N) , 0

]
if η < 1;

max
[
log2

(
ηN+1

η−1

)
− g(N), 0

]
if η > 1,

log2 (1/Nadd)− 1/ ln(2) +Nadd/ ln(2). if η = 1, (1− η)N → Nadd.

(E6)
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QDE(η,N) ≡


max

[
log2

(
η

1−η

)
+ h [(1− η) (2N + 1) + η]− h [η (2N + 1) + 1− η] , 0

]
if η < 1;

max

[
log2

(
1

(η−1)N

)
− 1/ ln 2 + 2h

(√
1 + (η − 1)

2
N2

)
, 0

]
if η > 1;

max
[
log2

(
1

Nadd

)
− 1/ ln 2 + 2h

(√
1 +N2

add

)
, 0
]

if η = 1, (1− η)N → Nadd.

(E7)

Figure 7. Different upper bounds for (a)ζo = 1, ζm = 1, and
(b) ζo = 0.9, ζm = 0.95, and nin = 0.2.

Here we have defined

h(x) =

(
x+ 1

2

)
log2(

x+ 1

2
)−

(
x− 1

2

)
log2(

x− 1

2
).

For the teleportation case, we will consider the same
values of κ that maximizes the quantum capacity lower
bound

κ? = arg max
κ

QLB(κ2, NTP) (E8)

when we evaluate the corresponding quantum capacity
upper bound

Q
(UB)
TP = min[QPLOB(κ?2, NTP), QDE(κ?2, NTP)]. (E9)

The capacity upper and lower bounds with κ? are pre-
sented in Fig. 2 of the main paper. We also present dif-
ferent upper bounds in Fig. 7. In Fig. 8, we present ad-
ditional data for Fig. 8(a)(b): the optimum κ? that max-
imizes the lower bound and the difference Q(UB)

TP −Q(LB)
TP

between the upper bound and lower bound for the tele-
portation scheme. Indeed, as discussed in Appendix D,
at the limit of C → 1, we need κ =

√
ζo/ζm so that NTP

does not diverge.

Appendix F: Fidelity evaluations

For a pure input state ρ̂in, we can also obtain the fi-
delity F

(
ρ̂in, ρ̂out

)
= tr

(
ρ̂inρ̂out

)
between the input ρ̂in

and the output state ρ̂out from their Wigner function

F = 2π

ˆ
dxB W out(xB)W in(xB). (F1)

Figure 8. Optimum κ and difference between upper bound
and lower bound. The black dashed lines are κ =

√
ζo/ζm.

(a)(c) ζm = 1 and ζo = 1. (b)(d) ζm = 0.95, ζo = 0.9 and
nin = 0.2.

For direct conversion, the fidelity can be evaluated
from the Wigner function relation in Eq. (D1), with pa-
rameters in Eqs. (3) and (4) of the main paper. For tele-
portation based transduction, the fidelity can be eval-
uated from the Wigner function relation in Eq. (C10).
Note that the average fidelity is equal to the fidelity of
the average state.

1. Coherent state

A coherent state |α〉 is determined by a complex num-
ber α = αR + iαI . Let us use the notation α =√

2(αR, αI)
T, then its Wigner function is

W in(x; |α〉) =
1

π
e−(x−

√
2α)2

. (F2)

In the case of direct conversion (a thermal-attenuator
characterized by ηDC and NDC), we get

F =
1

1 +NDC(1− ηDC)
exp

{
−

2α2(1−√ηDC)2

1 +NDC(1− ηDC)

}
.

(F3)
The average fidelity between input and output states in
the case of teleportation is given by:

F =
2

A (κ, u, v, w)
exp

{
− 2α2(κ− 1)2

A (κ, u, v, w)

}
, (F4)

where we define A (κ, u, v, w) ≡ (u+ 1)κ2 − 2vκ+w+ 1.
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2. Cat state

The cat states are defined as |cat±〉 ≡ N±(|α〉± |−α〉),
where N± = (2 ± 2e−2α2

)−1/2 are normalization con-
stants. The corresponding Wigner functions and the fi-
delity between the input and output are obtained simi-
larly:

W in(x; |cat±〉) = N2
±

1

π

[
e−(x−

√
2α)2

+ e−(x+
√

2α)2

± 2e−x
2

cos[2
√

2(−qαI + pαR)]
]
, (F5)

F =
4N4
±

1 + a+ b2

(
e
− 2α2(1−b)2

1+a+b2 + e
− 2α2(1+b)2

1+a+b2 ± 2e
− 2α2(2+a)

1+a+b2 ± 2e
− 2α2(a+2b2)

1+a+b2 + e
− 2α2[2a+(1+b)2]

1+a+b2 + e
− 2α2[2a+(1−b)2]

1+a+b2

)
, (F6)

Figure 9. Fidelity for coherent state |α〉, cat state N+(|α〉 +
|−α〉) and GKP state, with finite squeezing noise σGKP. We
choose ζm = 0.95, ζo = 0.9 and nin = 0.2. (a) α = 2 and
σGKP = 0.4 (2.2 dB of squeezing) (b)α = 8 and σGKP = 0.1
(17.0 dB of squeezing). Dashed lines are for teleportation
(TP) based transduction and solid lines are for direct conver-
sion (DC).

where a = (1 + 2NDC)(1 − ηDC) and b =
√
η for direct

conversion; a = uκ2−2vκ+w and b = κ for teleportation.
In the main paper, we conclude that when α is large,

the crossover of performance in Fig. 3(b) will not happen.
Here we verify it with α = 8 in Fig. 9(b). Indeed, we see
the teleportation scheme (dashed) is consistently better
than the direct transducrion scheme (solid).

Appendix G: Additive noise analyses

We can utilize the channel concatenation relations in
Appendix D2 to convert the transduction channels to
additive white Gaussian noise channels.

For the direct conversion case (DC), considering the
transmissivity in Eq. (3) and noise Eq. (4) of the main
paper, we can amplify accordingly before the transduc-

tion to obtain the additive noise variance

σ2
DC = 1 +

4C[nin(1− ζm)− ζm]ζo
(1 + C)2

. (G1)

For the teleportation based transduction approach, we
need to consider different values of κ to obtain the mini-
mum additive noise. When κ ≤ 1, we can amplify prior
to transduction to obtain an additive noise variance

σ2
TP =

1

2

[
(u− 1)κ2 − 2vκ+ 1 + w

]
, (G2)

where u, v, w are defined in Eqs. (9) of the main paper.
Here “TP” stands for teleportation. In this case, σ2

TP is
minimized when κ = min[1, v/(u − 1)]. Similarly, when
κ ≥ 1, we can append a pure-loss channel after transduc-
tion to obtain an additive noise variance

σ2
TP =

1

2

[
(w − 1)

1

κ2
− 2v

1

κ
+ 1 + u

]
, (G3)

which is minimized when κ = max[1, (w − 1)/v].
The comparison between direct conversion and tele-

portation based schemes can be done by considering
Eq. (G1) and Eqs. (G2) and (G3). The results are in
Fig. 10.

We find that the teleportation based transduction pro-
vides a lower additive noise level in the entire parameter
region. In particular, at the large cooperativity limit of
C → 1, we have v/(u− 1) = (w − 1)/v =

√
ζo/ζm. If

ζm > ζo, we take κ = v/(u− 1) and

σ2
TP =

1− ζo + nin(1− ζm)

1 + nin(1− ζm)
. (G4)

While if ζm ≤ ζo, we take κ = (w − 1)/v and

σ2
TP =

(1 + nin)(1− ζm)

1 + nin(1− ζm)
. (G5)

We can verify that in both cases, σ2
DC ≥ σ2

TP for C = 1.
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Figure 10. Contour plots of the additive noise variances for
cooperativity C = 0.1 and (a)(b) nin = 0 and (c)(d) nin = 0.2.

Appendix H: GKP fidelity evaluation

An ideal GKP state is a sum of equal weighted eigen-
state of position or momentum quadrature. For the qubit
case, up to normalization, we have:

|0〉GKP =

∞∑
n=−∞

|
√
π2n〉q̂ , (H1)

|1〉GKP =

∞∑
n=−∞

|
√
π(1 + 2n)〉q̂ . (H2)

A GKP state with finite-squeezing can be modeled as an
ideal GKP state with a Gaussian envelope of variance
σ2

GKP. As shown in Ref. [73], the state is further reduced
to an ideal GKP state with additive noise σGKP when
σGKP �

√
π, via random shifts. The level of squeezing

equals 1/∆, where

1− e−∆

1 + e−∆
= σ2

GKP. (H3)

We calculate the squeezing in dB by 10 log10(1/∆). The
explicit Wigner function of |0̃〉 for d = 2 dimension GKP
code words with variance σGKP = σ is given by [77]:

WGKP(q, p) =
1

N

{
e
− q2+p2

2Λ/(4σ2)

[ ∞∑
n=−∞

Gσ2 (q − nΓ)

][ ∞∑
n=−∞

Gσ2

(
p+ n

πΛ

Γ

)]
+

e
− q2+p2

2Λ/(4σ2)

[ ∞∑
n=−∞

Gσ2

(
q − (n+

1

2
)Γ

)][ ∞∑
n=−∞

(−1)nGσ2

(
p+ n

πΛ

Γ

)]}
, (H4)

where N is the normalized constant, Λ = 1 − 4σ4 and
Γ = 2

√
π. The output Wigner function is obtained using

Eq. (C10). Then the fidelity between the input and the

output states is given by Eq. (A10). We set κ to con-
vert the overall channel to an additive noise channel and
evaluate the fidelity numerically.
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