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The goal of quantum metrology is the precise estimation of parameters using quantum properties
such as entanglement. This estimation usually consists of three steps: state preparation, time evo-
lution during which information of the parameters is encoded in the state, and readout of the state.
Decoherence during the time evolution typically degrades the performance of quantum metrology
and is considered to be one of the major obstacles to realizing entanglement-enhanced sensing. We
show, however, that under suitable conditions, this decoherence can be exploited to improve the
sensitivity. Assume that we have two axes, and our aim is to estimate the relative angle between
them. Our results reveal that the use of Markvoian collective dephasing to estimate the relative an-
gle between the two directions a↵ords Heisenberg-limited sensitivity. Moreover, our protocol based
on Markvoian collective dephasing is robust against environmental noise: it is possible to achieve
the Heisenberg limit by applying the collective dephasing even under the e↵ect of independent de-
phasing. Our counterintuitive proposal with the decoherence leads to new applications in quantum
metrology.
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I. INTRODUCTION

Sensing technology is important for many practical ap-
plications [1–3], and an improved sensitivity is essential
for practical purposes. Quantum metrology is a promis-
ing approach in order to improve the sensitivity using
qubits owing to recent developments in quantum tech-
nology [4–14]. Quantum states can acquire a phase dur-
ing interaction with the target fields. The readout of
the phase provides information on the amplitude of the
target fields [15–21]. Quantum sensing allows us to mea-
sure not only the amplitude of the fields but also many
other quantities. Parameters that can be measured us-
ing qubit-based sensing include the Fourier coe�cients of
the spatially distributed fields [22], field gradient [23], fre-
quency of AC magnetic fields [24], and rotation [25, 26].
When n separable qubits are used as probes, the un-
certainty of parameter estimation scales as O(1/

p
n),

which is called the standard quantum limit (SQL). By
contrast, the uncertainty scales as O(1/n) when highly
entangled states of qubits, such as Greenberger-Horne-
Zeilinger (GHZ) states, are used [27–29]. This scaling is
called the Heisenberg limit (HL) [9, 18, 30]. Many stud-
ies have been conducted to achieve Heisenberg-limited
sensitivity [31–40].

In realistic situations, entangled qubits are a↵ected by
environmental noise during the time evolution required to
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encode the parameter information, and this decoherence
is one of the main obstacles to realizing entanglement-
enhanced sensors. If the noise acts independently on
the qubits, the entanglement of the qubits rapidly dis-
appears, and the states of the n qubits become separa-
ble. Thus, it is not trivial whether entanglement is use-
ful. Numerous attempts have been made to address the
problem of decoherence in order to overcome the SQL
with entangled sensors [20, 41–48]. Measurements in a
quantum Zeno regime can be adopted to achieve a scal-
ing of O(n3/4) if the noise is time-inhomogeneous inde-
pendent dephasing [19, 21, 42, 43, 48–50]. In addition,
quantum error correction can be applied to noisy metrol-
ogy to suppress the e↵ect of decoherence [51–55], and
this method has been demonstrated by several experi-
ments [56, 57]. Quantum teleportation is another tool
that protects quantum states from the e↵ects of noise
[48, 58, 59]. There is a protocol for reaching the HL in
the estimation of the decay rate using dephasing [60, 61].
Measurements of the environment itself improve the sen-
sitivity of parameter estimation even under the e↵ect of
noise [62]. There are several other methods for improving
the sensitivity of estimation under noise [22, 63–66].

In this paper, we show that the decoherence can be use-
ful to realize a robust quantum metrology protocol. More
specifically, we consider estimation of the relative angle
between two arbitrary axes by using collective dephasing.
Two arbitrary axes here are, for example, determined by
di↵erent quantization axes of electron spins at di↵erent
spatial locations. In this case, the estimation of the rel-
ative angle is utilized to align the quantization axes. By
using our approach, we can achieve the HL sensitivity
in ideal conditions. Moreover, our calculations establish
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that our protocol using the collective dephasing is highly
robust against noise; this protocol actually achieves the
HL sensitivity even under the e↵ect of independent noise
from the environment.

In addition, the estimation of the relative angles be-
tween di↵erent axes is of fundamental importance in
quantum sensor networks. Quantum sensing network is
an emerging technology that has many potential appli-
cations such as detecting non-local quantities or sens-
ing with security inbuilt [67–73]. We can use solid-state
qubits such as electron spins for the quantum sensing.
For the practical use of quantum sensing network, the
quantization axes of distant qubits should be aligned with
the direction that we choose. As discussed above, our
protocol to estimate the relative angle of two axes can be
used for such a calibration of the quantum sensors.

This paper is organized as follows. § II introduces the
model with which a relative angle between two axes is
measured with collective dephasing, while we analytically
calculate its dynamics in § III. We discuss the scaling be-
havior of our protocol in § IV and V. We found that our
protocol leads the HL. In § V, we analyzed the asymp-
totic behavior when the number of qubits are large. We
discuss the case when collective noise for measurement
is time-inhomogeneous [74] in § VI. § VII is devoted to
discussion of physical applications of our scheme. § VIII
concludes our work.

II. MODEL

Let us explain the setup of our estimation protocol.
Suppose that Alice has an axis and Bob has another. Al-
ice does not know the direction of Bob’s axis and tries to
estimate the relative angle between his axis and her own.
The prescription of our protocol is as follows (Fig. 1). (i)
Alice prepares qubits in a GHZ state according to her
axis and sends the qubits to Bob. (ii) Bob applies global
magnetic fields or the collective dephasing noise along his
axis on the qubits he received and sends them back to Al-
ice. (iii) Alice reads out the state. (iv) They repeat these
three steps M times. We have M = T/(tprep + t+ tread),
where T denotes the total time allowed for the protocol,
tprep denotes the time needed to prepare the GHZ state
(which includes the transportation time), t denotes the
evolution time, and tread denotes the time required to
read out the state. Throughout this paper, we assume
that the GHZ state can be prepared and read out in a
much shorter time scale than the evolution time, and we
obtain M ' T/t.

Let us explain the details of our setup. We define Al-
ice’s (Bob’s) axis as the z (z0) axis. In Step (i), Alice
prepares n qubits in a GHZ state, which is defined as
follows.

|GHZi =
1
p
2
(| "" · · · "| {z }

n

iz + | ## · · · #| {z }
n

iz), (1)

where | "iz (| #iz) is the eigenstate of �z with an eigen-
value of +1 (�1), and | "" · · · "iz denotes | "iz ⌦ | "

iz ⌦ · · · ⌦ | "iz. Here we take the ordinary notation of
the Pauli matrices as follows.

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
. (2)

Note that the x and y axes are actually fixed when the
relative phase in the GHZ state is fixed.

In Step (ii), to encode the information on the rela-
tive angle, Bob applies the collective dephasing noise or
a global magnetic field (a rival protocol) along the z0

axis to the GHZ state that he receives from Alice. In
addition, we assume that environmental Markovian de-
phasing noise independently a↵ects each qubit along the
z0 axis. We introduce the vector

~z0 = (sin ✓ cos�, sin ✓ sin�, cos ✓), (3)

which is the unit vector along the z0 direction represented
in the (x,y,z) coordinates of Alice. ✓ is the parameter to
be estimated. The Pauli matrix along the z0 direction is
written as

�z0 = ~z0 · ~� =

✓
cos ✓ e�i� sin ✓

ei� sin ✓ � cos ✓

◆
. (4)

(ii) Time evolution

(i) Prepare GHZ state

(iii) Measurement

BobAlice

Time

Magnetic field +
Collective dephasing

generator

FIG. 1. (color on line) Schematic illustration of the proposed
protocol. (i) Alice prepares a GHZ state, (ii) Bob receives this
state and lets it evolve under the applied collective noise (or
a global magnetic field), and (iii) Alice measures this state.
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Accordingly, the eigenstates of �z0 are defined as

| "iz0 =
1
p
2

⇣p
1 + cos ✓ | "iz + ei�

p
1� cos ✓ | #iz

⌘
,

| #iz0 =
1
p
2

⇣
�
p
1� cos ✓ | "iz + ei�

p
1 + cos ✓ | #iz

⌘
,

(5)

whose eigenvalues are 1 and �1, respectively.

In addition, we use the notation �(l)
↵ (↵ =

x, y, z, x0, y0, z0) for a Pauli matrix acting only on the l-

th qubit, e.g., �(1)
↵ = �↵ ⌦ I · · · ⌦ I, where I is the 2 ⇥ 2

identity matrix. Thus, the dynamics of the GHZ state
on Bob’s side is described as follows:

d⇢

dt
=� i[⌦Lz0 , ⇢] + �C

⇣
Lz0⇢Lz0 �

1

2
{L2

z0 , ⇢}
⌘

+ �I

nX

l=1

(�(l)
z0 ⇢�

(l)
z0 � ⇢), (6)

where L↵ =
Pn

l=1 �
(l)
↵ . ⌦, �C, �I characterize the

strength of the global magnetic field, collective dephas-
ing, and independent dephasing, respectively. Through-
out this paper, we take ~ = 1. Alice and Bob can tune �C
and ⌦, whereas �I is uncontrollable. We also take � = 0
for simplicity. we show that our protocol for estimating
✓ does not depend on the value of � in the parameter
regime of interest in § III. The goal is to estimate the
azimuthal angle ✓ with high precision by measuring the
state ⇢ after the above dynamics.

III. DYNAMICS DURING ENCODING
PROCESS

The exact solution of Eq. (6) is analytically given. The
reader who may be interested in the detailed analytical
calculation should also refer Appendix A.

Here, let us consider the case of �I = 0. To this
end, it is convenient to introduce the following Young-
Yamanouchi basis, according to group representation
theory [75–78], which is characterized as follows.

|j,m, iiz 2 C2n,

jmin  j  n/2,

�j  m  j,

1  i  djn =
(2j + 1)n!

(n/2 + j + 1)!(n/2� j)!
,

Lz

2
|j,m, iiz = m|j,m, iiz,

L+|j,m, iiz :=
Lx + iLy

2
|j,m, iiz

=
p
j(j + 1)�m(m+ 1)|j,m+ 1, iiz,

L�|j,m, iiz :=
Lx � iLy

2
|j,m, iiz

=
p
j(j + 1)�m(m� 1)|j,m� 1, iiz,

1

4
L2

|j,m, iiz :=
1

4
(L2

x + L2
y + L2

z)|j,m, iiz

= j(j + 1)|j,m, iiz, (7)

where jmin is 0 (1/2), and j, m take integers (half-
integers) for even (odd) n. The index i represents the
number of ways of composing n spins to obtain the total
angular momentum j. We refer to this basis as the irrep.
basis hereinafter. The following calculations might seem
to be di�cult at the first look. However, the calculations
are done only by substituting the properties (7).
Note that the same relations are valid for the Bob’s

axes when x, y, z are replaced by x0, y0, z0, respectively.
We introduce the x0 and y0 axes, which are orthogonal
to Bob’s z0 axis. The choice of these axes has rotational
ambiguity and Bob can take any pair of these axes as the
x0 and y0 axes. However, we do not discuss the explicit
direction of the x0 and y0 axes because this does not a↵ect
the estimation of ✓. Note, also, that the operator L2 is
invariant under the coordinate transformation and thus
L2 = L2

x0 + L2
y0 + L2

z0 is satisfied.
For j = n/2, we simply represent the irrep. basis

|n/2,m, 1iz(z0) (djn = 1 in this case) in terms of | " (#
)iz(z0) as

|n/2,m, 1iz(z0) =
1p

nCm+n/2
(| "" · · · "| {z }

m+n/2

# · · · #| {z }
n/2�m

iz(z0)

+ (all the other permutated states).(8)

In terms of the irrep. basis, |GHZi is described as

|GHZi =(| "" · · · "iz + | ## · · · #iz)/
p
2

=(|n/2, n/2, 1iz + |n/2,�n/2, 1iz)/
p
2. (9)

We emphasize that we can expand this vector in terms
of | " (#)iz as follows:

|n/2,m, 1iz0 =
X

�n/2m0n/2

Cmm0 |n/2,m0, 1iz, (10)

where the summation in the r.h.s. runs only over m0.
This is because L2 = L2

x + L2
y + L2

z = L2
x0 + L2

y0 + L2
z0 .

This expression is also understood in terms of permuta-
tion symmetry. Let U denote the unitary matrix whose
action is U | " (#)iz = | " (#)iz0 . The unitary U changes
the coordinate index z to z0. According to Eq. (8), the
transformation between the irrep. basis in both the z
and z0 representations is given as

|n/2,m, 1iz0 = U (1)
· · ·U (l)

· · ·U (n)
|n/2,m, 1iz

=
⇣ nY

l=1

U (l)
⌘
|n/2,m, 1iz, (11)

where the index l indicates that U (l) acts only on the
l-th qubit. Because

Qn
l=1 U

(l) is invariant under any per-
mutation of the qubits, |n/2,m, 1iz0 is symmetric under
permutation even in terms of | " (#)iz (as |n/2,m, 1iz
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is symmetric). Thus, |n/2,m, 1iz0 is represented as the
sum of {|n/2,m, 1iz}mn/2, as shown in Eq. (10).

For later convenience, we define the matrix elements

|j,miz0hj,m0| :=
1

djn

dj
nX

i=1

|j,m, iiz0hj,m0, i|, (12)

because the operations we address below are independent
of the index i. An important point is that the dynam-
ics of |j,miz0hj,m0| caused by the right-hand side of the
Lindblad equation (6) with �0 = 0 is easily calculated by

using Eqs. (7).

�i[⌦Lz0 , |j,miz0hj,m0|]

+ �C
⇣
Lz0 |j,miz0hj,m0|Lz0 �

1

2
{L2

z0 , |j,miz0hj,m0|}
⌘

= (�2i⌦(m�m0)� 2�C(m�m0)2)|j,miz0hj,m0|.(13)

Also,we find that the initial state ⇢(0) = |GHZihGHZ|
can be rewritten using Eq. (10):

⇢(0) =
X

�n/2m,m0n/2

⇢m,m0 |n/2,miz0hn/2,m0|, (14)

where ⇢m,m0 = z0hn/2,m, 1|GHZihGHZ|n/2,m0, 1iz0 . We

note that dn/2n = 1, or equivalently, |n/2,miz0hn/2,m0| =
|n/2,m, 1iz0hn/2,m0, 1|.

Then ⇢(t) when �I = 0 is given as

⇢�I=0(t) =
X

�n/2m,m0n/2

e�2i⌦(m�m0)t�2�Ct(m�m0)2⇢m,m0 |n/2,miz0hn/2,m0|. (15)

Note that the explicit form of ⇢m,m0 is given as,

⇢m,m0 =

p
nCn

2 +m nCn
2 +m0

2n+1

⇣
(
p
1 + cos ✓)

n
2 +m(�

p
1� cos ✓)

n
2 �m + e�in�(

p
1� cos ✓)

n
2 +m(

p
1 + cos ✓)

n
2 �m

⌘

⇥

⇣
(
p
1 + cos ✓)

n
2 +m0

(�
p
1� cos ✓)

n
2 �m0

+ ein�(
p
1� cos ✓)

n
2 +m0

(
p
1 + cos ✓)

n
2 �m0

⌘
. (16)

The key insight is that we have a rapid decay of the
non-diagonal terms with a rate of �C(m � m0)2. This
means that, if we have |m�m0

| = O(n), the decay rate
is an order of O(n2). This is the notable feature of the
collective behavior of the entanglement, and such a rapid
decay is the key to achieve the HL in our scheme as we
will explain later.

We also calculate the dynamics of the density matrix
with �I 6= 0 in Appendix A, which is rather technical. It
is worth mentioning that the index i is set to be i = 1
throughout the calculations above because j = n/2 is
satisfied in whole dynamics. However, this is valid only
for the case of �I = 0. When we consider the case of �I 6=
0, We have to take into account of the contribution of all
i’s and j’s, and this is the reason why the calculations
are rather complicated.

IV. SENSITIVITY SCALING WITH
MARKOVIAN COLLECTIVE DEPHASING

We show the advantages of our protocol in which Bob
uses collective dephasing for encoding the information of
the z0-axis on a GHZ state (hereafter, called Protocol D,
after Dephasing) over that using the global magnetic field
(hereafter, called Protocol F, after global magnetic Field)

in terms of the robustness against independent dephasing
by observing the sensitivity scaling.
To quantify the sensitivity, we can use either the clas-

sical Fisher information or quantum Fisher information.
Once we fix a positive operator-valued measure (POVM)
{⇧l} to measure the final state, the uncertainty of the es-
timation is bounded by the following Cramér-Rao bound:

�✓ � �✓min := 1/
p
MF✓({⇧l}), (17)

where M = T/t is the trial number and F✓({⇧l}) is
the Fisher information. See Appendix B for the details
of the Fisher information and the Cramér-Rao bound.
Throughout of our paper, we discuss the performance of
the estimation scheme by focusing only on �✓min and do
not care about �✓ itself.
In quantum estimation, we can further minimize the

uncertainty �✓min by choosing the best POVMs. We
have the following quantum Cramér-Rao bound for any
POVM {⇧l}:

�✓min
� �✓(Q)min := 1/

q
MF (Q)

✓ , (18)

where F (Q)
✓ is the quantum Fisher information defined in

Appendix B.
For Protocol D, we find an appropriate POVM, with

which we can attain the HL scaling, as shown later, and
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we use �✓min to quantify the uncertainty. Meanwhile, for
the protocol F , we adopt �✓(Q)min. Either uncertainty
of �✓min or �✓(Q)min depends on the evolution time t.
Hence, we need to optimize t for the uncertainty to take
the smallest value.

We find that a projective measurement defined by the
operator P = |GHZihGHZ| is an appropriate measure-
ment in Protocol D. This projection provides a survival
probability P (t) := hGHZ|⇢(t)|GHZi in Step (iii). Then,
Alice estimates the value of ✓ by analyzing the M out-
comes. The uncertainty of this estimation scheme is de-
termined by

�✓min =

p
P (t)(1� P (t))

|
dP (t)
d✓ |

p
M

=

p
P (t)(1� P (t))

|
dP (t)
d✓ |

q
T
t

. (19)

We find that |GHZihGHZ| leads to the uncertainty
achieving the HL scaling, as shown in Fig. 2. Therefore,
�✓min is employed for the case of Protocol D.

It is worth mentioning that we calculate the ultimate
bound of the sensitivity using an optimal POVM for the
protocol F while we calculate the sensitivity using a spe-
cific projective measurement for the protocol D. The rea-
son for this is to show a practical advantage of the pro-
tocol D over the protocol F. For the protocol F, the form
of the optimal POVM is unknown for us. On the other
hand, we know the explicit form of the measurement for
the protocol D. This means that the sensitivity bound
for Protocol D can be actually achieved while we do not
know how to achieve the bound for Protocol F. Note that
P is not necessarily the best measurement. If we could
find the optimized measurement basis in Protocol D, we
could improve the sensitivity by a constant factor.

Figure 2 (a) shows the scaling behavior of the mini-
mized uncertainty �✓min in Protocol D (�✓(Q)min in Pro-
tocol F) versus the number of qubits n for (⌦, �C, �I) =
(0, 1, 0) and (0, 1, 1) ((1, 0, 0) and (1, 0, 1)) when ✓ =
1.0 rad, while Figure 2 (b) does the case when ✓ =
0.5 rad. In the noiseless cases of (⌦, �C, �I) = (1, 0, 0)
and (0, 1, 0) in Fig. 2, both �✓min in Protocol D and
�✓(Q)min in Protocol F approach the HL for large n. How-
ever, Protocol F is fragile against independent dephasing
((⌦, �C, �I) = (1, 0, 1)) in the sense that �✓(Q)min scales as
the SQL. By contrast, Protocol D is robust against inde-
pendent dephasing ((⌦, �C, �I) = (0, 1, 1)): �✓min scales
as the HL. Therefore, Protocol D outperforms Proto-
col F for large n. Note that a specific measurement basis
(|GHZihGHZ|) is chosen in Protocol D while the uncer-
tainty in Protocol F is evaluated on the basis of the quan-
tum Fisher information without knowledge of the explicit
form of the POVM to employ.

V. ASYMPTOTIC BEHAVIOR OF SCALING

To understand the origin of the robustness of the pro-
tocol D, we analytically evaluate the scaling behavior of

FIG. 2. (color on line) �✓min in Protocol D (�✓(Q)min in Pro-
tocol F) versus the number of qubits n for (a) ✓ = 1.0 rad
and (b) ✓ = 0.5 rad. In both panels, the filled (open) trian-
gles represent �✓min

1 with the parameters ⌦ = 0, �C = 1, and
�I = 0 (1), whereas the filled (open) circles represent �✓(Q)min

1

with the parameters ⌦ = 1, �I = 0, and �I = 0 (1). The solid
(dashed) line shows the HL (SQL). The total time T is taken
as T = 1.

the minimized uncertainty �✓min under the e↵ect of in-
dependent dephasing for large n. In short time region,
P (t) is approximately given as (see, Appendix C),

P (t) ⇠ 1� �Ct(n
2 cos2 ✓ + n(1� cos2 ✓))� �Itn. (20)

If we consider Protocol D with an assigned evolution time
of t = t0/n2 where t0 denotes a time constant, we find
that P (t) and 1 � P (t) scale as O(n0). In addition,
|dP (t)/d✓| also has the O(n0) dependence. This result
implies that the minimized uncertainty (19) scales as

�✓min =
O(n0)

O(n0)
p
n2T/t0

= O(n�1) (21)

for large n, which is the HL scaling. Thus, by utilizing
the short time perturbation, we show that Protocol D
achieves the HL even under the influence of independent
dephasing. The reason why Protocol D is robust against
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independent noise is that the dynamics due to the collec-
tive dephasing is faster than that of the independent de-
phasing: we can find the time scale where only collective
dephasing is significant. Note that ✓ can be estimated
without knowing the value of � in a short time regime
because P (t) is independent of � in this regime.

We provide a possible reason of why our protocol
achieves the HL even under the e↵ect of independent de-
coherence. When we use a global magnetic field, the in-
formation of the relative angle is encoded into the phase
of the state. The independent decoherence destroys the
phase information. Meanwhile, our protocol to use the
collective dephasing encodes the information of the rela-
tive angle into the decaying behaviour of the state. Since
the contribution of independent dephasing to the state is
similar to that of the collective dephasing, the influence
of the independent noise is insignificant. Therefore, the
e↵ect of the independent decoherence is not significant in
our protocol D.

In our protocol, we focus only on independent dephas-
ing. However, the above calculation also works for any
type of independent noise. According to the definition
of the independence of noise, any independent noise be-
haves as ⇠ �Int in a short time region, like the last term
in Eq. (20). Thus, if the n2 term in Eq. (20) is present
(or equivalently, if collective dephasing noise exists), we
achieve the HL under any independent noise in the same
manner as in the above discussion.

VI. SENSITIVITY SCALING WITH TIME
INHOMONGENOUS COLLECTIVE DEPHASING

In quantum metrology, the sensitivity under Marko-
vian noise could be very di↵erent from that un-
der time-inhomogeneous one [20, 42, 43]. The time-
inhomogeneous noise model takes into account the finite
correlation time of the environment, whereas the Marko-
vian environment has an infinitesimally short correlation
time. Owing to the finite correlation time, a typical time-
inhomogeneous noise model interpolates between expo-
nential decay (which is typically observed in Markovian
noise) and quadratic decay.

We investigate the sensitivity of our protocol when
we use time-inhomogeneous collective dephasing for es-
timation in Protocol D, hereafter called Protocol Dnon.
In particular, we adopt a spin-boson model with a
Lorentzian spectral density to consider the e↵ect of the
finite correlation time. This model was analyzed in [43],
and the time-dependent decay rate was calculated as

�C(t) =
�0⌧c
t

(�1 + e�t/⌧c + t/⌧c), (22)

where ⌧c denotes the correlation time. This decay rate
interpolates between exponential decay and quadratic de-
cay. For a short (long) correlation time, ⌧c ⌧ t (⌧c � t),

we obtain �C(t) ' �0 (�C(t) '
�0t

2⌧c
). Note that ⌧c is a

tunable parameter in this paper.

FIG. 3. (color on line) Minimized uncertainty �✓min in Proto-
col Dnon (�✓(Q)min in Protocol F) versus the number of qubits
n for (a) ✓ = 1.0 rad and (b) ✓ = 0.5 rad. In both panels,
the circles represent �✓(Q)min with parameters ⌦ = 1, �0 = 0,
and �I = 1, which give the same results as in Fig. 2 (a) and
(b). In (a), the triangles (squares) represent the uncertainty
with parameters ⌦ = 0, �0 = 1, ⌧c = 0.01(0.001), and �I = 1,
whereas the triangles (squares) in (b) show the uncertainty
with parameters ⌦ = 0, �0 = 1, ⌧c = 0.005 (0.0001), and
�I = 1.

We compare �✓min in Protocol Dnon with �✓(Q)min in
Protocol F by performing numerical simulations. The
results are shown in Fig. 3 (a) and (b), where we take
✓ = 1.0 and 0.5 rad, respectively. In the numerical
simulations, we observe that either Protocol Dnon and
Protocol F approaches the SQL. Whether Protocol Dnon

is advantageous over Protocol F depends on both ⌧c
and ✓. Figure 3 shows that Protocol Dnon outperforms
Protocol F when we take a su�ciently small ⌧c. For
✓ = 1.0 rad, ⌧c = 0.001 is su�ciently small, whereas
⌧c ⇠ 0.0001 is required for ✓ = 0.5 rad. We emphasize
that Protocol Dnon can outperform Protocol F for any
✓ if we take su�ciently small ⌧c, because the scaling be-
havior of �✓min achieves the HL in the Markovian limit
⌧c ! 0. We consider a threshold of the correlation time
⌧✓lim that characterizes whether �✓min in Protocol Dmin
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overcomes �✓(Q)min in Protocol F, and discuss how we
can approximately explain the ✓-dependence of ⌧✓lim in
Appendix D.

VII. DISCUSSION

We discuss possible applications of our protocol. Our
protocol to measure a relative angle between two axes
is useful for quantum sensor networks. When the quan-
tity of interest is not local but has a global property,
quantum sensor networks can be used [67–70, 72]. En-
tangled quantum sensors are spatially distributed, and
they interact with target fields to extract the informa-
tion about the parameters of interest. It is known that
such quantum sensing networks o↵er an advantage for
some problems such as an NMR imaging [68], measuring
field gradient [79], detecting a spatial Fourier coe�cient
[80], and sensing signals in an anonymous way [73]. Im-
portantly, to implement these protocols, it is usually as-
sumed that the experimentalist knows a precise direction
of a quantization axis of each quantum sensor. Moreover,
it is desirable that the quantization axes of all sensors are
aligned in the same direction, because otherwise a com-
plicated calibration procedure is needed. Our protocol
allows Alice to measure a relative angle between an axis
of her qubits and that of Bob’s qubits, and this is useful
to make the quantization axes of the qubits aligned in
the same direction, which is crucial for the application of
quantum sensing networks.

Also, our protocol could contribute to clock synchro-
nization. We note that the synchronization of time in
di↵erent systems has been interested in and practically
important since Einstein’s times [81]. Recently, clock
synchronization based on quantum states was proposed
[82, 83]. However, one of the challenges of the quantum
clock synchronization is to have a common phase refer-
ence. Superposition states such as |+i = 1p

2
(|0i+|1i) are

defined up to a local phase shift. If an x axis direction of
Alice is the same as that of Bob, they can prepare a state
of |+i, an eigenstate of �x without the common phase
reference, because the axis direction play a role of the
common reference. Hence, our protocol has a potential
to be utilized for such a clock synchronization. However,
since our scheme requires to send the GHZ state from
Alice to Bob, we need a stable quantum channel where
the axis of the qubit is fixed during the transmission for
the purpose explained above. To assess its suitability,
further research may be needed, and we leave this as a
future work.

Let us discuss possible physical realization of our
scheme. The main di�culty of our scheme would be a
transfer of quantum states from one place to another.
However, in the Stern-Gerlach experiments [84], atoms
can travel for macroscopic distances, while keeping the
quantum nature of the spins. This clearly shows the po-
tential to realize such a transfer of quantum states.

Another example of a traveling quantum object is a
nuclear spin in a molecule solved in liquid. The nuclear
spin can di↵use in liquid or flow with liquid while keeping
its spin state. This property is employed for measuring
a di↵usion constant or a flow speed of the liquid [85].
Moreover, a quantum state of an electron spin can be
transferred to that of a polarization of an optical photon
[86–93], and so we could use the optical photons to send
the quantum states. For the experimental demonstra-
tion, we must be concerned about decrease of the fidelity
of the quantum states during the transfer. There will
be several sources that cause the decoherence. For ex-
amples, The spatially fluctuated external field coupling
induces nuclear spins in liquid. Local temperature vari-
ations cause decoherence when we use optical photons
to transfer the quantum states. To realize our scheme,
it is important to overcome such di�culties, but a more
detailed analysis is out of the scope of our paper.
We note that experimental realization of dephasing

was reported in [94–96]. This shows a feasibility of our
scheme to add collective dephasing.

VIII. CONCLUSION

In conclusion, we propose to use collective dephasing
to improve the precision of quantum metrology. Assume
that we have two axes, and our aim is to estimate the
relative angle between them. Suppose that Alice has an
axis, and Bob has another. Alice does not know Bob’s
one and tries to estimate the relative angle between his
axis and hers. Alice generates a GHZ state according
to her axis and sends it to Bob. Bob decoheres the re-
ceived state by inducing collective Markovian dephasing
along his own axis. This protocol achieves the HL for
estimating the direction of Bob’s axis under ideal condi-
tions. Moreover, we show that the protocol using collec-
tive dephasing is robust against noise; it achieves the HL
even under the e↵ect of independent Markovian dephas-
ing on each qubit caused by the environment. This is
in stark contrast to the conventional protocol that uses
unitary dynamics for encoding the information, which
cannot overcome the SQL under the e↵ect of such noise.
Although we discuss primarily the independent dephas-
ing noise, our conclusion that the HL can be achieved is
guaranteed even when the system is a↵ected by arbitrary
types of independent decoherence.
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Appendix A: Calculation of Dynamics for the �I 6= 0 case

Here, we consider the case of �I 6= 0. Because the independent dephasing term in Eq. (6) commutes with the other
two terms, it is su�cient to consider its action independently. The dynamical equation with only the third term at
the right hand side in Eq. (6) is easily solved and thus the exact solution for �I 6= 0 is written as follows:

⇢(t) =E
(n)
t · · · E

(l)
t · · · E

(1)
t (⇢�I=0(t)),

E
(l)
t (⇢) :=↵(t)⇢+ �(t)�(l)

z0 ⇢�
(l)
z0 , (A1)

where ↵(t) :=
�1 + e�2�It

2

�
, and �(t) :=

�1� e�2�It

2

�
. We rearrange Eq. (A1) as

E
(n)
t · · · E

(l)
t · · · E

(1)
t (⇢�I=0(t))

= ↵n(t)⇢�I=0(t) + ↵n�1(t)�(t)
X

l

�(l)
z0 ⇢�I=0(t)�

(l)
z0 + ↵n�2(t)�2(t)

X

1l1<l2n

�(l1)
z0 �(l2)

z0 ⇢�I=0(t)�
(l1)
z0 �(l2)

z0 + · · ·

+�n(t)�(1)
z0 �(2)

z0 · · ·�(n)
z0 ⇢�I=0(t)�

(1)
z0 �(2)

z0 · · ·�(n)
z0

=
nX

k=0

⇣
↵n�k(t)�k(t)

X

1l1<l2<···<lkn

�(l1)
z0 �(l2)

z0 · · ·�(lk)
z0 ⇢�I=0(t)�

(l1)
z0 �(l2)

z0 · · ·�(lk)
z0

⌘
, (A2)

where we assign ↵n(t)⇢�I=0(t) as the k = 0 term. For convenience of notation, we rewrite the above expression in

terms of the irrep. basis. To this end, we introduce the coe�cients A(k)
j,m,m0 as follows:

X

j

A(k)
j,m,m0 |j,miz0hj,m0| :=

X

1l1<l2<···<lkn

�(l1)
z0 �(l2)

z0 · · ·�(lk)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�(lk)

z0 . (A3)

By using Eqs. (A3) and (15), we obtain the exact solution of the dynamics with global magnetic field, collective
noise and independent one in a more convenient form:

⇢(t) =
nX

k=0

⇣
↵n�k(t)�k(t)

n/2X

j=jmin

X

�jm,m0j0

e�2i⌦(m�m0)t�2�Ct(m�m0)2⇢m,m0A(k)
j,m,m0 |j,miz0hj,m0|

⌘
. (A4)

We will show below that A(k)
j,m,m0 are iteratively calculated by

A(k+1)
j,m,m0 =

1

k + 1

⇣
4a(n, j,m,m0)A(k)

j,m,m0 + 4b(n, j + 1,m,m0)A(k)
j+1,m,m0

+ 4c(n, j � 1,m,m0)A(k)
j�1,m,m0 � (n� k + 1)

n/2X

j=jmin

A(k�1)
j,m,m0

⌘
, (A5)

with the following conditions:

8m,m0, A(0)
n/2,m,m0 = 1, A(0)

j 6=n/2,m,m0 = 0,

8j,m,m0, A(�1)
j,m,m0 = 0. (A6)

The first two equations are determined by the initial condition of the density matrix: ⇢(t = 0) = |GHZihGHZ|. The
coe�cients a(n, j,m,m0), b(n, j,m,m0), and c(n, j,m,m0) are defined as

a(n, j,m,m0) =mm0 1

2j

⇣
1 +

(2j + 1)↵j+1
n

(j + 1)djn

⌘
,

b(n, j,m,m0) =
p

(j +m)(j �m)
p
(j +m0)(j �m0)

↵j
n

2jdjn
,

c(n, j,m,m0) =
p

(j +m+ 1)(j �m+ 1)
p

(j +m0 + 1)(j �m0 + 1)
↵j+1
n

2(j + 1)djn
,

↵j
n =

n/2X

j0=j

dj
0

n .
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To check recurrence relations ((A5)), we first use the following equality [77, 78]:

nX

l=1

�(l)
z0 |j,miz0hj,m0|�(l)

z0

= 4
⇣
a(n, j,m,m0)|j,miz0hj,m0|+ b(n, j,m,m0)|j � 1,miz0hj � 1,m0|+ c(n, j,m,m0)|j + 1,miz0hj + 1,m0|

⌘
.

(A7)

We evaluate the application of the following action to Eq. (A3):

nX

l=1

�(l)
z0

⇣ X

1l1<l2<···<lkn

�(l1)
z0 �(l2)

z0 · · ·�(lk)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�(lk)

z0

⌘
�(l)
z0 . (A8)

By using Ak
j,m,m0 , this expression can be written as

nX

l=1

�(i)
z0

⇣ X

1l1<l2<···<lkn

�(l1)
z0 �(l2)

z0 · · ·�(lk)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�(lk)

z0

⌘
�(l)
z0

=
nX

l=1

�(l)
z0

⇣ n/2X

j=jmin

A(k)
j,m,m0 |j,miz0hj,m0|

⌘
�(l)
z0

= 4

n/2X

j=jmin

�
a(n, j,m,m0)A(k)

j,m,m0 + b(n, j + 1,m,m0)A(k)
j+1,m,m0 + c(n, j � 1,m,m0)A(k)

j�1,m,m0

�
|j,miz0hj,m0|, (A9)

where we use Eq. (A7) and the conditions b(n, n/2+1,m,m0) = b(n, jmin,m,m0) = 0 and c(n, n/2,m,m0) = c(n, jmin�

1,m,m0) = 0 to align the summation range. In addition, note that

nX

l=1

�(l)
z0

⇣ X

1l1<l2<···<lkn

�(l1)
z0 �(l2)

z0 · · ·�(lk)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�(lk)

z0

⌘
�(l)
z0

= (k + 1)
X

1l1<l2<···<lk+1n

�(l1)
z0 �(l2)

z0 · · ·�
(lk+1)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�

(lk+1)
z0 +

+(n� k + 1)
X

1l1<l2<···<lk�1n

�(l1)
z0 �(l2)

z0 · · ·�
(lk�1)
z0 |n/2,miz0hn/2,m0|�(l1)

z0 �(l2)
z0 · · ·�

(lk�1)
z0

= (k + 1)

n/2X

j=jmin

A(k+1)
j,m,m0 |j,miz0hj,m0|+ (n� k + 1)

n/2X

j=jmin

A(k�1)
j,m,m0 |j,miz0hj,m0|, (A10)

by a simple combinatorial calculation. By comparing the coe�cients of each basis |j,miz0hj,m0| in the above two
equations, we obtain the recurrence relation of Eq. (A5). Thus, we obtain the exact solution A4 of the dynamics with
global magnetic field, collective and independent noise.

Appendix B: Brief review of classical and quantum Fisher information

Here we briefly review the classical and quantum Fisher information [4]. We focus only on single parameter
estimation. We assign ✓ to the parameter according to the main text. We note that, however, ✓ is not necessarily the
relative angle, but a general parameter in this section. We have a density matrix ⇢✓ in which the information on ✓ is
imprinted and perform a POVM {⇧l} (⇧l � 0,

P
l ⇧l = I) on ⇢✓. From this measurement, we obtain a measurement

outcome l with a probability

P (l|✓) = Tr
�
⇧l⇢✓

�
. (B1)

We prepare the state ⇢✓ and perform POVM measurements with ⇧l. Suppose that we repeat these steps M times.
Now we introduce an estimator ✓̃(~l), which is a function of M outcomes defined as ~l = {l1, l2, l3, · · · , lM}, and identify
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the value of this estimator as the true value of the parameter ✓. The precision of the estimation is determined by the

uncertainty, �✓ :=
q
h(✓̃ � ✓)2i, where the average (h•i) is defined as

hfi =
X

~l

f(~l)
MY

k=1

P (lk|✓) (B2)

for a function of ~l. The following classical Cramér-Rao bound is satisfied for any estimator under the unbiased
condition h✓̃i = ✓,

�✓ � 1/
p

MF✓({⇧l}), (B3)

where F✓({⇧l}) is the Fisher information, which is defined as

F✓({⇧l}) =
X

l

P (l|✓)
⇣@ logP (l|✓)

@✓

⌘2
. (B4)

In particular, a two-valued measurement {⇧, I�⇧} gives

F✓({⇧, I�⇧}) =
|dP (✓)/d✓|2

P (✓)
�
1� P (✓)

� , (B5)

where P (✓) = Tr(⇧⇢✓).
In quantum estimation, we can minimize the uncertainty �✓ by choosing the best POVMs. We have the following

quantum Cramér-Rao bound for any POVM {⇧l}:

F✓({⇧l})  F (Q)
✓ , (B6)

where F (Q)
✓ is called the quantum Fisher information and is defined as follows:

F (Q)
✓ = Tr(L2

✓⇢✓),
@⇢✓
@✓

=
1

2
{L✓, ⇢✓}. (B7)

By combining Eqs. (B3) and (B6), we obtain a sequence of inequalities:

�✓ � 1/
p
MF✓({⇧l}) � 1/

q
MF (Q)

✓ . (B8)

For single-parameter estimation, it is shown that the second inequality can be saturated by taking an appropriate
POVM, although that POVM may depend on the value of the parameter to be estimated.

Appendix C: Asymptotic Scaling Behavior

According to Eq. (A4), the survival probability P (t) is given as

P (t) =hGHZ|⇢(t)|GHZi

=
nX

k=0

⇣
↵n�k(t)�k(t)

n/2X

j=jmin

X

�jm,m0j

e�2i⌦(m�m0)t�2�Ct(m�m0)2⇢m,m0A(k)
j,m,m0hGHZ|j,miz0hj,m0|GHZi

⌘

=
nX

k=0

⇣
↵n�k(t)�k(t)

X

�n/2m,m0n/2

e�i2⌦(m�m0)t�2�Ct(m�m0)2⇢m,m0A(k)
n/2,m,m0hGHZ|n/2,miz0hn/2,m0|GHZi

⌘

=
nX

k=0

⇣
↵n�k(t)�k(t)

X

�n/2m,m0n/2

e�2i⌦(m�m0)t�2�Ct(m�m0)2⇢m,m0A(k)
n/2,m,m0hGHZ|n/2,m, 1iz0hn/2,m0, 1|GHZi

⌘

=
X

�n/2m,m0n/2

⇣
e�2i⌦(m�m0)t�2�Ct(m�m0)2

nX

k=0

↵n�k(t)�k(t)A(k)
n/2,m,m0BmBm0

⌘
, (C1)
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where we define Bm = |hGHZ|n/2,m, 1iz0 |
2. We use the fact that hGHZ|j,m, iiz0 = 0 when j 6= n/2 from the first to

the second line. [See also Eq. (10).] The explicit form of Bm is given as

Bm =
nCn

2 +m

2n+1

⇣
(
p
1 + cos ✓)

n
2 +m(�

p
1� cos ✓)

n
2 �m + e�in�(

p
1� cos ✓)

n
2 +m(

p
1 + cos ✓)

n
2 �m

⌘

⇥

⇣
(
p
1 + cos ✓)

n
2 +m(�

p
1� cos ✓)

n
2 �m + ein�((

p
1� cos ✓)

n
2 +m(

p
1 + cos ✓)

n
2 �m

⌘

=
nCn

2 +m

2n+1

⇣
(1 + cos ✓)

n
2 +m(1� cos ✓)

n
2 �m + (1� cos ✓)

n
2 +m(1 + cos ✓)

n
2 �m + (ein� + e�in�) sinn ✓(�1)

n
2 �m

⌘
,

(C2)

where we use
p
1� cos2 ✓ = sin ✓ for 0  ✓  ⇡. Assuming n⌦t, n2�Ct, n�It ⌧ 1, we take the short time perturbation

in Eq. (C1) up to the first order of t:

P (t) ⇠
X

�n/2m,m0n/20

�
1� 2i⌦t(m�m0)� 2�Ct(m�m0)2 � �It(nA

(0)
n/2,m,m0 +A(1)

n/2,m,m0)
�
BmBm0

=
X

�n/2m,m0n/20

⇣
1� 2i⌦(m�m0)t� 2�Ct(m�m0)2 � �It

⇣
n+

4mm0

n

⌘⌘
BmBm0

=
X

|m|n/2

Bm ·

X

|m0|n/2

Bm0 � 2i⌦t
⇣ X

|m|n/2

mBm ·

X

|m0|n/2

Bm0 �

X

|m|n/2

Bm ·

X

|m0|n/2

m0Bm0

⌘

� 2�Ct
⇣ X

|m|n/2

m2Bm ·

X

|m0|n/2

Bm0 � 2
X

|m|n/2

mBm ·

X

|m0|n/2

m0Bm0 +
X

|m|n/2

Bm ·

X

|m0|n/2

m02Bm0

⌘

� �It
⇣
n

X

|m|n/2

Bm ·

X

|m0|n/2

Bm0 +
4

n

X

|m|n/2

mBm ·

X

|m0|n/2

m0Bm0

⌘

=
⇣ X

|m|n/2

Bm

⌘2
� 4�Ct

⇣ X

|m|n/2

m2Bm ·

X

|m|n/2

Bm �

⇣ X

|m|n/2

mBm

⌘2⌘

� �It
⇣
n
⇣ X

|m|n/2

Bm

⌘2
+

4

n

⇣ X

|m|n/2

mBm

⌘2⌘
. (C3)

To evaluate this quantity, we only have to calculate the following quantities:
X

|m|n/2

Bm,
X

|m|n/2

mBm,
X

|m|n/2

m2Bm. (C4)

Note that the following formulae are satisfied:

nX

m=0

nCmXmY n�m = (X + Y )n,

nX

m=0

m nCmXmY n�m = nX(X + Y )n�1,

nX

m=0

m2
nCmXmY n�m = nX(X + Y )n�1 + (n2

� n)X2(X + Y )n�2. (C5)

We introduce a new integer variable, µ := m + n/2, and let the sum range take integers. We evaluate
P

m Bm as
follows:

X

|m|n/2

Bm =
nX

µ=0

Bµ�n/2 =
nX

µ=0

nCµ

2n+1
(1 + cos ✓)µ(1� cos ✓)n�µ +

nX

µ=0

nCµ

2n+1
(1� cos ✓)µ(1 + cos ✓)n�µ

+ (ein� + e�in�) sinn ✓
nX

µ=0

nCµ

2n+1
(�1)n�µ

=
2n

2n+1
+

2n

2n+1
+ (ein� + e�in�) sinn ✓

(1� 1)n

2n+1
= 1. (C6)
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This equality is also understood in terms of the completeness of the basis {|n/2,m, 1iz0} in the (j = n/2) subspace:
X

|m|n/2

Bm =
X

|m|n/2

|hGHZ|n/2,m, 1iz0 |
2 =

X

|m|n/2

hGHZ|n/2,m, 1iz0hn/2,m, 1|GHZi

=hGHZ|
⇣ X

|m|n/2

|n/2,m, 1iz0hn/2,m, 1|
⌘
|GHZi = hGHZ|GHZi = 1. (C7)

Similarly,
P

m mBm and
P

m m2Bm are given by

X

|m|n/2

mBm =
nX

µ=0

⇣
µ�

n

2

⌘
Bµ�n/2 =

n

2n+1
(1 + cos ✓)2n�1 +

n

2n+1
(1� cos ✓)2n�1

�
n

2

nX

µ=0

Bµ�n/2

=
n

4

�
(1 + cos ✓) + (1� cos ✓)

�
�

n

2
= 0 (C8)

and

X

|m|n/2

m2Bm =
nX

µ=0

⇣
µ�

n

2

⌘2
Bµ�n/2 =

nX

µ=0

µ2Bµ�n/2 � n
nX

µ=0

µBµ�n/2 +
n2

4

nX

µ=0

Bµ�n/2

=
n

4

�
(1 + cos ✓) + (1� cos ✓)

�
+

n2
� n

8

�
(1 + cos ✓)2 + (1� cos ✓)2

�
�

n2

4

=
n

2
+

n2
� n

4
(1 + cos2 ✓)�

n2

4
=

n2

4
cos2 ✓ +

n

4
(1� cos2 ✓). (C9)

These equations, as well as Eq. (C7), are calculated as follows:
X

|m|n/2

mBm =
X

|m|n/2

mhGHZ|n/2,m, 1iz0hn/2,m, 1|GHZi = hGHZ|
X

|m|n/2

⇣
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⌘
|GHZi

=hGHZ|
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2
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2
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⌘
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and
X

|m|n/2

m2Bm =hGHZ|
X

|m|n/2

⇣L2
z0

4
|n/2,m, 1iz0hn/2,m, 1|

⌘
|GHZi =

1

4
hGHZ|L2

z0 |GHZi

=
1

4
hGHZ|(cos ✓Lz + cos� sin ✓Lx + i sin� sin ✓Ly)

2
|GHZi

=
1

4
hGHZ|(cos2 ✓L2

z + sin2 ✓(L+L� + L�L+)|GHZi

=
n2

4
cos2 ✓ +

n

4
(1� cos2 ✓). (C11)

By using the above equations, we obtain Eq. (20).

Appendix D: ✓ dependence of ⌧c

Here we analyze the sensitivity in Protocol Dnon. If n satisfies the condition n ⌧ 1/
p
�0⌧c, we can take a time

region where both the condition ⌧c ⌧ t ⌧ 1/n2�0 are satisfied. In this region, the survival probability P (t) =
hGHZ|⇢(t)|GHZi is given by

P (t) ⇠1� �C(t)t(n
2 cos2 ✓ + n(1� cos2 ✓))� �Itn

⇠1� �0⌧c(�1 + e�t/⌧c + t/⌧c)(n
2 cos2 ✓ + n(1� cos2 ✓))� �Itn,

⇠1� �0t(n
2 cos2 ✓ + n(1� cos2 ✓))� �Itn, (D1)
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where we use the short time perturbation with the conditions n2�(t)t, n�It ⌧ 1 in the first line and �C(t) ' �0 in
the third line. We also assume n�It ⌧ 1 in Eq. (D1). In the time region where the survival probability is written
in Eq. (D1), the same manner as in Protocol D shows that the uncertainty of Protocol Dnon approaches the HL: by
assigning t = t0/n2 (�0t0 ⌧ 1), the simple calculation gives

�✓min(n) =

p
P (t)(1� P (t))

|
dP (t)
d✓ |

p
Tn2/t0

⇠

p
�0t0 cos2 ✓

|�0t0 sin(2✓)|
p
Tn2/t0

=
1

2n
p
�0T sin ✓

, n ⌧ 1/
p
�0⌧c, (D2)

where we explicitly show that �✓min is a function of n. Meanwhile, for large n where the condition n ⌧ 1/
p
�0⌧c is

not met, we cannot take t satisfying both the conditions n2�0t ⌧ 1 and ⌧c ⌧ t. Although we do not know what kind
of scaling is realized in this region, the numerical calculations shown in Fig. 3 suggest the SQL will be attained. Thus,
we roughly model the uncertainty �✓min in Protocol Dnon as

�✓min(n) =

8
><

>:

1
2n

p
�0T sin ✓

, n < ↵/
p
�0⌧c,

Kp
n�0T

, n > ↵/
p
�0⌧c,

(D3)

where ↵ is so small number that the condition n ⌧ 1/
p
�0⌧c holds and K is a constant, which is fixed in order that

the line connects, i.e., 1
2n

p
�0T sin ✓

= Kp
n�0T

, at n = ↵/
p
�0⌧c. On the other hand, the uncertainty �✓(Q)min of Protocol

F is crudely given as

�✓(Q)min(n) =
C

p
n�0T

, (D4)

according to the numerical calculations (Fig. 3). Here C is assumed to be almost independent of ✓ as suggested in
Fig. 3. We just put �0 in Eq. (D4) in order to non-dimensionalize �✓(Q)min(n).

The condition for �✓min to overcome �✓(Q)min is given by

�✓min(↵/
p
�0⌧c)  �✓(Q)min(↵/

p
�0⌧c). (D5)

We obtain the rough requirement for ⌧c from this inequality as

⌧c  ⌧✓lim :=
↵2(2C sin ✓)4

�0
. (D6)

⌧✓lim characterizes whether �✓min overcomes �✓(Q)min in this toy model. For di↵erent parameters ✓ and ✓0, the ratio
⌧✓

0

lim/⌧
✓
lim behaves as (sin ✓0/ sin ✓)4. When we assign ✓ = 1.0 rad and ✓0 = 0.5 rad, we obtain

⌧✓=0.5
lim /⌧✓=1.0

lim = (sin(0.5)/ sin(1.0))4 ⇠ (0.569)4 ⇠ 0.105. (D7)

Thus, even though the two values ✓ = 1.0 rad and ✓0 = 0.5 rad have only factor-of-two di↵erence, the requirement on
⌧c can be tightened by an order of magnitude, as shown in Fig. 3.
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