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Abstract 
We analyze the magnetic mode structure of axially-magnetized, finite-length, nanoscopic 

cylinders in a regime where the exchange interaction dominates, along with simulations of the 

mode frequencies of the ferrimagnet yttrium iron garnet. For the bulk modes we find that the 

frequencies can be represented by an expression given by Herring and Kittel by using 

wavevector components obtained by fitting the mode patterns emerging from these simulations. 

In addition to the axial, radial, and azimuthal modes that are present in an infinite cylinder, we 

find localized “cap modes” that are “trapped” at the top and bottom cylinder faces by the 

inhomogeneous dipole field emerging from the ends. Semi-quantitative explanations are given 

for some of the modes in terms of a one-dimensional Schrodinger equation which is valid in the 

exchange dominant case. The assignment of the azimuthal mode number is carefully discussed 

and the frequency splitting of a few pairs of nearly degenerate modes is determined through the 

beat pattern emerging from them. 

 

1. Introduction 

  With recent advances in sub-micron patterning techniques, dynamic magnetic studies of 

arrays of objects (so as to have large signals) for which the largest dimension is few hundred 

nanometers or less is attracting increasing attention. With advanced techniques it is even possible 

to probe the dynamic properties of individual sub-micron particles1,2,3. Measurements on such 

samples can even be performed in the absence of an external field, i.e., solely in the presence of 

the internal demagnetization field (for shapes where such a field exists), provided the sample is 

small enough to be in a single domain state4. Modes with an odd number of maxima and minima 

can be excited directly with a uniform microwave field; coupling to modes with higher wave 

numbers will be more challenging5.  

 In this paper, we report on an exhaustive numerical study, using the OOMMF 

micromagnetic simulation code6, of the resonance modes of Yttrium Iron Garnet (YIG) 

cylinders, primarily of diameter d = 75nm and height h = 300 nm, although some aspects have 

been studied for other values of h (7.5–1200 nm). Our methodology shares many features with 

the work of McMichael and Stiles7 on two-dimensional elliptical disks and three dimensional 
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thin cylindrical discs. Our three-dimensional geometry displays a much richer mode structure, 

however, requiring a more detailed theoretical framework. In addition, we have also developed 

techniques to resolve modes that are nearly degenerate in frequency. 

 Here we will primarily be concerned with size-quantization effects arising from finite 

sample dimensions. In particular we will examine the mode spectrum in samples having a 

cylindrical shape with radius a (and corresponding diameter d = 2a) and height h, both 

analytically and numerically. Due to the ease of preparation of some materials as wires, such 

samples are widely studied experimentally, e.g., in permalloy Py8 and  in Ni9,10. Cylinders of 

finite length with h/d ratios of order unity and larger can be readily patterned using optical and e-

beam lithography by creating hole arrays in a resist followed by deposition and liftoff11.  

1.1. Theoretical background   

 Free spins in a magnetic field H precess at the Larmor frequency, H  , where 

g | e | /2mc   with g, e, and m being the electron g-factor, charge and mass. As noted, in 

materials having an internal magnetization additional fields are present which can alter the 

precession frequency. To describe this and related effects, Landau and Lifshitz12 (LL) introduced 

the following equation of motion 

 


     
0

d
( )

dt M

M
M H M M H ;      (1.1) 

here H  is the total field at a given position within the sample arising from the external field as 

well as that produced by the magnetization itself and an effective field arising from quantum 

mechanical exchange; it can also include crystalline anisotropy, but this is suppressed in what 

follows. The second term on the right-hand side of Eq. (1) is incorporated to phenomenologically 

account for damping, which will largely be neglected in what follows. In addition to satisfying 

Eq. (1) and M H  must satisfy appropriate boundary conditions at the surface of the body.  

 For ellipsoidal samples (including degenerate forms thereof), and in the presence of a 

homogeneous external field H , the magnetization M  is nominally homogeneous as is the 

resulting demagnetization field; one can then observe sharp absorption lines in ferromagnetic 

resonance (FMR) experiments (in the absence of strong damping), all spins then seeing the same 

local field. The resonance frequency of this uniformly precessing mode in a spheroidal sample 

(where two of the principal axes of the ellipsoid are identical) with the external field 0H  along 

the axis of rotation is given by what is commonly called the Kittel formula,13 
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  0 0H 4 (N N )M     ,       (1.2) 

where N  and N  are coefficients accounting for the effect of demagnetization perpendicular 

and parallel to the rotation axes (with 2N N 1   ), and 0M  is the internal magnetization, 

taken as a constant; note   may differ from the free-space value due to atomic and solid-state 

effects.  

 In addition to the uniformly precessing mode there exist non-uniform modes14 which we 

can characterize by some effective wavelength,  . At shorter (nanometer) scale wavelengths, the 

exchange interaction dominates, and the associated modes are termed exchange modes, 

introduced by Bloch15. The importance of modes with longer wavelengths (in suitably large 

samples), was emphasized by Clogston, Suhl, Walker and Anderson16,17. They arise from a 

solution of Eq. (1) together with 0 B  and the Maxwell boundary conditions; they are 

commonly referred to as magnetostatic modes. Modes in the region where both exchange and 

magnetostic effects compete are called dipole/exchange modes. 

 For the case of a sphere some of the low-lying magnetostatic modes were examined by 

Mercerau and Feynman18. They were later studied in much greater detail for spheroidal samples 

by Walker19.  

 For the case of an infinitely long cylinder ( zN 2 ;N 0    ) with 0H  parallel to the 

rotational axis, which is relevant to the work presented here, the mode structure was studied by 

Joseph and Schlomann20. Here we encounter families of purely azimuthal as well as radially 

quantized modes propagating up and down the cylinder axis, which approach 0H   at large k 

(in the absence of exchange). Recently this problem was reexamined by Arias and Mills21 who 

also considered the effects of exchange via perturbation theory. 

 At shorter wavelengths the effects of exchange contribute. In this regime the frequency of 

a mode with wave vector k 2 /    for a spheroidal sample with the external field 0H  aligned 

along the rotational axis can be described by the Herring-Kittel formula,22 which we discuss in 

Appendix A 

 2 2 2
0 0 ex 0 0 ex 0(H 4 N M D k )(H 4 N M D k 4 M sin )           ;  (1.3) 
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here exD  is a parameter measuring the strength of the exchange (see below), 2 2 2
zk k k  , 

zk  and k  are the components of the wavevector parallel and perpendicular to the spheroid axis, 

and 1
ztan (k / k )

   is the angle between the spin wave propagation direction and the 

spheroid axes. Note that at k = 0 the factor involving N that appears in Eq. (1.2) is absent from 

Eq. (1.3), since it is assumed that the transverse demagnetization field is “screened out” at short 

wavelengths. Indeed   is ill defined at precisely k = 0 since   is ambiguous. This shortcoming 

also signals the importance of the magnetostatic modes at intermediate k values; i.e., as the 

sample size is reduced there is a crossover between dipole dominated and exchange dominated 

modes. Modes with k values straddling these regimes are the dipole-exchange modes mentioned 

above. At short wavelengths, which will be the case in sufficiently small samples, Eq. (1.3) 

should provide a representation of the mode structure in rotationally symmetric samples, 

provided suitable quantized values of zk  and  k  are available; we will utilize Eq. (1.3) to 

represent some of our finite-size sample simulations in what follows.  

 More generally and in the absence of exchange effects, magnetostatic effects would 

dominate the mode frequencies, which for a spheroid would lie in the range 

 0 0 0 0 0(H 4 N M 2 M ) (H 4 N M )          ;     (1.4) 

note the number of modes in this interval is bounded only by the number of spins; i.e., the mode 

density is very high, making the resolution of the individual modes extremely difficult at shorter 

wavelengths (where they pile up). When exchange is present the mode frequencies are spread 

over a much wider interval. 

 In an inhomogeneous external field, or for samples with an arbitrary shape, one might 

initially expect to observe a line-broadening (as happens in most nuclear magnetic resonance 

experiments). However, in the presence of exchange this is not the case and well-defined modes 

emerge as will be discussed further below.  

1.2. Plan of the paper 

 We develop the theoretical framework for our problem in Sec. 2, beginning with a 

discussion of cylindrical symmetry and the resulting angular momentum quantum number (or 

azimuthal mode number) in Sec. 2.1. In the magnetostatic limit it is convenient to take this as the 

total angular momentum, m, as done by Walker, and by Joseph and Schlomann. In the exchange 

dominated limit, it becomes more important to understand the separation of the angular 
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momentum into its orbital and spin parts. The major component of a mode has spin sm 1  and 

orbital angular momentum m pl  , and there is a small admixture of sm 1   and m p 2l   . 

Accordingly, we find it better to label the modes by the orbital angular momentum p of the major 

component. This is especially so when examining the computer-generated mode patterns since 

the orbital behavior of any component of M  is immediately apparent. 

 That the two components of a mode are so unequal goes hand in hand with the fact that 

modes with ml = p and −p are nearly degenerate, as we discuss in Sec. 2.2. A clear understanding 

of this issue is important, as this near degeneracy can lead to some confusion when looking at the 

mode patterns. In one case, we have resolved this degeneracy (see Sec. 3.4) by exciting and 

examining the beat pattern between the ±p modes. 

 In Sec. 2.3, we show that exchange dominated modes in long cylinders are approximately 

described via a Schrodinger-like equation for a particle in a cylindrical box with a modified 

boundary condition, such that axial and radial dependence of the mode function factorizes, and 

the resulting quantization gives rise to axial and radial mode numbers. In an infinite cylinder this 

separation is exact, which is exploited to good effect in the analyses of Joseph and Schlomann 

and of Arias and Mills. In a finite cylinder, the separation is approximate since the 

demagnetizing field is non-uniform, and flares away from the axis near the perimeter of caps at z 

= 0 and z = h. We give a semi-quantitative argument in Sec. 2.4 that the Schrodinger equation 

possesses bound state solutions near these caps, corresponding to “cap modes” which we see 

very clearly in our simulations. For any p, there are two such modes (one for each cap), whose 

frequencies lie below those of the bulk modes with the same p. This means that the uniform 

FMR or Kittel mode, which is the lowest bulk mode with p = 0, is not the lowest frequency mode 

of the body. For this case, we present numerical results for the solution of the Schrodinger 

equation in Sec. 2.5, and find good agreement with the simulations. 

 The cap modes are an unexpected feature of our study, as they do not exist in an infinite 

cylinder or a finite sized ellipsoid of revolution. Similar “end modes” were found by McMichael 

and Stiles7, who did not however investigate their origin. We expect that such localized modes 

will exist near the surfaces of other sample shapes as well whenever the demagnetizing field 

departs significantly from uniformity. 

 Our simulational approach is described in Sec. 3. It is based on the OOMMF code 

developed at the National Institute of Standards and Technology.  After finding the static 
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equilibrium magnetization, eq ( )M r   (Sec. 3.1), we can excite the system by applying pulses that 

are localized in either space, time or both23. The spatial center and the width and frequency 

bandwidth are varied depending on which mode(s) we wish to excite. The resulting time 

development of ( , t)M r  is Fourier transformed, and the point-wise power spectrum is added over 

all the cells. The resulting sum displays peaks at many mode frequencies, and by honing in on 

individual peaks, we can identify the magnetization patterns for each mode as explained in Sec. 

3.3. 

 Once a particular mode pattern is obtained in a simulation it can be used as is or altered in 

some way, say by combining it with some other mode, to study the subsequent development in 

time. This is a potentially promising way to study mode-mode coupling or large amplitude 

responses which we hope to pursue in the future. As an application of this idea, and as noted 

above, ±p modes are sometimes nearly degenerate, as are the even and odd super-positions of the 

cap modes. In Sec. 3.4 we show that by starting the simulation in a suitable real-space pattern we 

can find a beat pattern in the time development of the magnetization from which we can obtain 

the frequency splitting of the modes. We have performed this exercise for only a few cases as it 

is computationally intensive, and the physical principles are the same for the other cases.  

 In Sec. 4 we tabulate the frequencies of all the modes we have found (approximately 90) 

and discuss the assignment of mode numbers further. The assignment of the longitudinal 

quantum number zn  on the basis of the one-dimensional Schrodinger equation is particularly 

tricky as the existence of the cap modes forces nodes in the bulk mode functions near the caps, 

and prevents accurate fitting of the lowest few bulk modes to a sinusoidal form zsin(k z)  with zk  

strictly equal to π/h times an integer. Nevertheless, an unambiguous labeling of the modes is 

possible. 

 In Sec. 5 we show that the mode frequencies that we obtain agree surprisingly well with 

the Herring-Kittel expression (1.3) provided we identify k  and zk  in this formula correctly. 

We give reasons why this agreement might be so good, explain how the wavevector components 

are found, and how this allows us to organize the normal mode spectrum into families of modes 

labeled by p. 

 Spatial patterns for a variety of modes are given in Sec’s. 6 and 7 (in Figs. 11–18 and Fig. 

20). These patterns are the centerpiece of our paper, and show beautiful regularity and symmetry. 
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In Sec. 6 we consider only the d = 75 nm, h = 300 nm sample, while in Sec. 7 we consider the 

lowest three p = 0 modes as a function of h. We find that at small h/d (disc-like sample), the 

symmetric cap mode (which has the lowest frequency of all three) is in fact the mode that one 

would regard as the uniform FMR or Kittel mode, and its frequency is well fit by the Kittel 

formula with an appropriate choice of demagnetization coefficients. For large h/d however, it is 

the lowest bulk mode (whose frequency lies above the two cap modes) that should be identified 

with the Kittel mode. For intermediate values of h/d ≃ 6–8, the Kittel formula does not actually 

describe any of the modes. This point has not been appreciated before. Once again it illustrates 

the richness of the normal mode spectrum in non-ellipsoidal samples. 

 Finally, Sec. 8 summarizes our conclusions. Here we take the opportunity to emphasize 

the importance that simulations of the small amplitude mode structure in nano-structures have 

for present and possible future applications, some of which are currently speculative in character.  

2.  Modes in the exchange dominated limit 

 In the presence of an isotropic exchange interaction, and neglecting the effects of damping, 

Eq. (1.1) takes the form24 

 

 
     

 
 

 
     

 

ex 2
2
0

ex 2

0

d 2A

dt M

D
        ,

M

M
M H M

M H M

         (2.1) 

where exA  is a parameter fixing the strength of the exchange interaction and ex ex 0D 2A / M  

Here H  is the applied magnetic field, 0ˆH z , plus the dipolar or demagnetizing field generated by 

M .  In a cylinder of finite height, the dipolar field is not uniform, especially near the caps, and 

so the static equilibrium field, eq ( )M r  is not everywhere parallel to ẑ . A linearized normal 

mode analysis should therefore consider deviations eq( , t) M r M , which do not lie in the x-y 

plane. If exchange is strong, however, the non-uniformity in eqM  is very small (this is true for 

all the simulations we have performed), and we may then take z 0 M . This assumption makes 

it much easier to discuss the physics, and relaxing it only obscures the key ideas without adding 

substance. We stress that it is not essential to our argument, especially with respect to the 

symmetries and the azimuthal quantum number. With this assumption, we may write 
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  2 1/2
0 ˆ( , t) M (1 m ) ( , t)  M r z m r ,        (2.2)  

where m  has only x and y components and is dimensionless since we have scaled out 0M . 

 For small deviations, | | 1m , the linearized LL equation can be cast as  

       2
z 0 d ex

d ( , t)
ˆ H ( ,z) ( , t) M ( , t) D ( , t)

dt

m r
z r m r h r m r .    (2.3) 

Here zH ( ,z)r  consists of the applied field, 0ˆH z , together with the position dependent 

longitudinal demagnetization field arising from the static magnetization, and dh  is the (small) 

demagnetization field induced by m . (We use cylindrical coordinates  (r, ,z)r  here and 

below.) 

2.1 Assignment of the angular momentum quantum number 

 Equation (2.3) defines an eigenvalue problem with cylindrical symmetry, so there must 

exist solutions with definite azimuthal mode number. In the zero-exchange or magnetostatic 

limit, the analysis is best done in terms of a scalar magnetic potential ψ, which varies as 
ime  in 

the eigenmodes; the integer m (which we must be 

careful to distinguish from the scalar value of m ) is 

then naturally interpreted as the angular momentum 

quantum number. In the strong exchange limit, the 

problem is better formulated in terms of m  directly, 

which as a vector field transforms differently under 

rotations than a scalar field25 (such as ( ) r  in the 

Schrodinger equation).  

 Let us examine the effect of a rotation on the 

vector m  at a point (x,y,z)  by an angle   about the z 

axis to a vector m  at the point (x , y ,z)  . We need 

only carry this analysis out to leading order in  . The 

components of the rotated vector m  are then (see Fig. 1.) 

     x x ym (x ,y ,z) m (x,y,z) m (x,y,z) ,        (2.4a) 

      y x ym (x ,y ,z) m (x,y,z) m (x,y,z) .       (2.4b) 

Fig. 1. Transformation of a vector field. 
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The coordinates  (x , y ,z)  themselves are related to (x,y,z)  as 

        x xcos ysin x y ,          (2.5a) 

        y ycos xsin y x .          (2.5b) 

If we expand the left side of (2.4a,b) to first order in  , note that to zeroth order 

   (x ,y ,z) (x,y,z)m m , and recall the definition of the (dimensionless) orbital angular 

momentum operator zl  in quantum mechanics as 

 
   

     
   

z i x y i
y x

l ,         (2.6) 

we can write m  in terms of m  as 

       x z x ym (x,y,z) (1 i )m (x,y,z) i [ im (x,y,z)]l ,     (2.7a) 

      y z y xm (x,y,z) (1 i )m (x,y,z) i [im (x,y,z)]l .      (2.7b) 

Equation (2.7) can be rewritten in the form    

 
          

                    

x x xz

y y yz

m m m1 i 0 0 i
i

m m m0 1 i i 0

l

l
.     (2.8) 

 For a scalar field, ( )r , we would simply have     z( ) (1 i ) ( )r rl , but the presence of  

the last term in (2.8) mixes the two components of the vector field m . This can be interpreted as 

arising from an “internal” or “spin” angular momentum of  sm 1  that is added to or subtracted 

from the orbital angular momentum m l  associated with our vector field m  (a tensor of rank 1). 

A similar separation exists in the description of light fields26.  

 Consider the case of a vector field of the form 

  
 ip

xm ( ) a(r,z)er ,    ip
ym ( ) b(r,z)er      (a, b arbitrary).   (2.9)   

This field has orbital angular momentum m pl , but has no definite spin angular momentum. 

For it to have a definite spin a and b must be proportional according to    

 
   

     
  

x
s

y

m 1
m 1

m i
         or  

   
      

  

x
s

y

m 1
m 1

m i
.          (2.10a, b) 

Writing   x ym m im  it then follows that  

 


          ip
s totm 1yields m 0, m e and m p 1       (2.11a) 
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and 

 


           ip
s totm 1yields m e , m 0and m p 1       (2.11b) 

where we wrote  tot sm m ml . It follows that an eigen mode with total angular momentum 

p 1  must be of the form 

  
  

 

     
      

    

x i(p t) i((p 2) t)

y

m ( , t) 1 1
F (r,z) e F (r,z) e

m ( , t) i i

r

r
    (2.12) 

where we have adopted an 
 i te  time dependence following standard practice. The physical 

solution is obtained by taking the real part of this complex-valued solution. We shall see below 

that for positive frequency solutions,  F F   in the strong exchange limit, and it is often 

convenient to neglect F  entirely. It is then more useful to label the modes by p, the orbital 

angular momentum of the dominant component, F . This is especially so when looking at mode 

patterns generated by OOMMF, since we can read off p by seeing how many times m  turns as 

we go around a circle in the x-y plane. For example, in a p = 0  mode (see Figs. 11a and 11b) m  

appears uniform, while in p = −1 (Fig. 13) and p = 1 (Fig. 14) modes m  winds by 2π and −2π, 

respectively as we go anti-clockwise around a circle. 

 In the magnetostatic limit by contrast,   F / F O(1) , and the m labeling is better. Thus, 

for the sphere, while we would describe the uniform or Kittel mode as having p = 0, Walker 

assigns m = 1 to it (see his Fig. 3 where the mode is labeled (110)). 

2.2. Near degeneracy of p and − p modes  

 When exchange dominates over dipole-dipole interactions, we may as a first approximation 

neglect dh  in Eq. (2.3). In component form the equation then reads 

  x y2
ex

y x

m ( , t) m ( , t)d
H(r,z) D

m ( , t) m ( , t)dt

   
      

  

r r

r r
      (2.13) 

or 

  2
ex

d
m ( , t) i H(r,z) D m ( , t)

dt
     r r        (2.14) 

with 

 x ym ( , t) m ( , t) im ( , t)  r r r .         (2.15) 
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We seek solutions of the form 

 i tm ( , t) m ( )e 
 r r            (2.16) 

and demand that 0 , with the understanding that the physical solution will be given 

by the real part. These solutions then obey  

  2
z exH (r,z) D m ( ) m ( )     r r .       (2.17) 

This equation is like a one-particle Schrodinger equation, and since γ > 0 in our convention, the 

operator on the left is a positive operator which cannot have negative eigenvalues. Since we also 

demand that ω > 0, we must choose m 0  . Finally, since our finite cylinder retains full 

azimuthal symmetry, the solution for m  takes the form ipm (r, ,z) F (r,z)e 
   , where 

F (r,z)  can be chosen to be real, and ω has the same (positive) value for either sign of p.  In 

terms of the general form (2.12), this solution corresponds to putting F 0  , and a physical 

solution 

 
x i(p t)

y

m ( , t) 1 cos(p t)
F (r,z) e c.c. 2F (r,z)

m ( , t) i sin(p t)


 

     
       

     

r

r
.   (2.18) 

 If we now include the dipolar field dh  as a perturbation, we can expect that F  will 

become nonzero, with 2
0 exF / F 4 M / D k   , where 2 / k  is the typical length scale on which 

the solution varies. 

 The source of the degeneracy with respect to ±p is that Eq. (2.13) is invariant under 

reflection in the yz plane provided we do not also reflect the vector m .  Hence the operation 

x xm (x,y,z) m ( x,y,z)   and y ym (x, y,z) m ( x, y,z)   also produces a solution. This 

operation is equivalent to φ → − φ, or alternatively to p → − p. Inclusion of the dipole-dipole 

interaction destroys this invariance: the field dh  produced by the operation is not the same field 

as before. 

 Strictly speaking therefore, modes differing only in the sign of p are not degenerate, 

although the non-degeneracy may be small.  Indeed, as explained below, we have spent 

significant effort to numerically resolve the splitting and have not always succeeded. The 

physical origin of this non-degeneracy is just that the applied external field breaks time reversal 

and parity symmetries. In the magnetostatic limit, this point emerges directly from the solution in 
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terms of the scalar potential. Joseph and Schlomann27 find that |m| |m|    for the volume 

modes (where we have here used m instead of p to label the modes), and that only m > 0 

solutions exist for the surface modes. This is an extreme form of the nondegeneracy, and is the 

cylindrical analog of Damon and Eshbach’s28 discovery of one-sided surface modes in the slab 

geometry. Joseph and Schlomann also find that the ±p splitting becomes smaller with increasing 

zk  or increasing radial mode number (see their Fig. 5). The same behavior is found for the 

general spheroid by Walker,29. Arias and Mills on the other hand, appear to us to be finding that 

modes with the opposite sign of the angular momentum are degenerate; we are unable to 

pinpoint why. 

 The near degeneracy of ±p modes also underlies whether one sees azimuthal standing or 

running wave patterns in the OOMMF simulations. We discuss this issue in Sec. 3.3 below.  

2.3. The long cylinder in the exchange dominated approximation 

  For an infinite cylinder the variables in the Schrodinger equation separate and we can 

write 

    0 p z zF (r,z) m J (k r) Acos k (z h / 2) Bsin k (z h / 2)          (2.19) 

yielding 

    
x

0 p z z
y

m ( , t) cos(p t)
m J (k r) Acos k (z h / 2) Bsin k (z h / 2)

m ( , t) sin(p t)


   
            

r

r

 .           (2.20) 

Here pJ  is the Bessel function of order p. For a long but finite cylinder Eq. (2.19) should be a 

good approximation except for the cap modes.  

 If we take the modes p  and p  as degenerate we can superimpose them and form 

standing waves in  , an operation we carry out in the next section.  Inserting any of these forms 

into (2.8) yields the frequencies 

  2 2
0 ex zH D (k k )    .        (2.21) 

If we adopt the boundary condition (discussed below) 

 
d

0
d

 
  

 
n m

r
           (2.22) 

where n  is a vector normal to the surface, the values of k  will be fixed by the condition 
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pdJ (k a)

0
dk




           (2.23) 

where a is the cylinder radius. We write the solutions of Eq. (2.23) as 
rp,n

k  where rn  denotes 

the number of additional zeros of pJ  (other than those for p 0J   at r = 0) within the cylinder of 

radius a. We will find that (2.23) agrees quite well with the simulations.  

 For the finite cylinder we present the argument in two stages. In the first stage we assume 

that the inhomogenity in the static demagnetization field can be ignored and take 

0 0H(r,z) H 4 N M    with N  being the longitudinal demagnetization coefficient. The 

solution (2.21) continues to hold but the mode frequencies are given by 

  2 2
z 0 0 ex z(k ,k ) H 4 N M D (k k )        .     (2.24) 

The allowed values of k  are given by rp,nk as discussed above, but the quantization of zk  is 

less simple. If the end caps are taken to be at z 0and z h    , then to have a definite parity under 

reflection in the mid plane at z h / 2 , the mode function must depend on z as either 

 zcos k (z h / 2)  (even parity) or  zsin k (z h / 2)  (odd parity), but the association between 

zk  and the parity depends on the boundary condition applied at the caps. 

 If the boundary condition is taken as ( ) 0 n m , then the allowed zk  values are 

 z z zk , 0, 1, 2
h


      .        (2.25) 

Even parity is associated with even z  and odd parity with odd z . 

 If instead the boundary condition is taken as 0m , the allowed values of zk  are 

 z z zk , 1, 2
h


              (2.26) 

Now even parity is associated with odd z  and odd parity with even z . 

 The boundary condition obeyed by OOMMF mode functions is closer to ( ) 0 n m  

than to 0m . In addition, they do have definite parity. Except for the two lowest frequency 

modes, which we call “cap modes” and which require a separate discussion,  they are well fit by 

the  zcos k (z h / 2)  and  zsin k (z h / 2)  forms. However, it is advantageous to allow for a 

shift and write  
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 z zk
h


            (2.27) 

where 

 z z z      z( 2)          (2.28) 

We can refer to z  as an “end defect” analogous to the concept of a quantum defect in atomic 

spectroscopy30. With this correction Eq. (2.24) continues to be a good approximation to the mode 

frequencies.  

 We comment further on the boundary condition (2.22) that the normal derivative vanishes 

at the surface. The isotropic continuum exchange field 2
exD M   arises from a microscopic 

i jS S  Heisenberg interaction, which has the property that for any pair of spins, the torque on iS  

due to jS  cancels that on jS  due to iS . Thus, the total exchange torque on the body vanishes and 

Eq. (2.22) is the continuum expression of this fact. This argument dates back to Ament and 

Rado31 and has been used by many authors since.  Aharoni32 offers a different derivation. Thus, 

it would appear to be very general, and valid for any exD , however small. For the magnetostatic 

limit, exD 0 , there is however no such condition on M . Turning on exD  perturbatively would 

then appear to lead to a contradiction. This is not so for the following reason. 

 In the boundary value problem for the spatial form of the eigenmodes, exD  multiplies the 

highest derivative, and is thus a singular perturbation from the mathematical point of view. Such 

perturbations are known to lead to thin boundary layers where the solution changes character 

rapidly33. Thus, while the normal derivative at the surface may formally be zero, there could be 

large curvature in the boundary layer, and the derivative of m  as we approach this layer need not 

be small. This is especially relevant for our OOMMF simulations, where the discretization into 

cells may: (a) be too coarse to reveal any boundary layer behavior, and (b) fundamentally 

preclude measurements of this derivative by fitting to the mode functions. In this case adoption 

of an end defect z  is an effective practical procedure. 

2.4. A variational solution for a cylinder of finite length  

 In the second stage of our argument, we attempt to include the inhomogeneity in the static 

demagnetizing field by adopting the trial form 

 ± pm ( ) = Z(z) J (k r)cos(p ) r .         (2.29) 
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If we substitute this form in Eq. (2.17), together with some radially averaged z-dependent 

magnetic field H(z) , we obtain the following one-dimensional eigenvalue problem 

 
2

2
ex

2

d
Z(z) H(z) D k Z(z) 0

dx


  
       

    

       (2.30)  

with the boundary conditions 

 Z (0) = Z (h) = 0  .           (2.31) 

In the spirit of this variational approach we could obtain H(z) ) by averaging with respect to 

2
pJ (k r) , which would lead to slight differences between modes with differing k .  

Alternatively, we can use the analytic expression for the dipole field along the cylinder axis 

zH (z, r 0)  that arises from spins which are fully aligned (as expected for the case where the 

exchange is totally dominant)34. Assuming a cylinder of radius a and height h, and setting z = 0 

and z = h at the caps, the resulting demagnetization field along z-axis is 

  
 

demag 0
2 2 22

h z z
H r 0,z 2 M 2

z ah z a

 
       

 
   

.   (2.32) 

 In the limit of a / h 0 ,  demagH r 0,z 0   (corresponding to an infinite rod) and in 

the limit of a / h ,  demag 0H r 0,z 4 M     (corresponding to a thin disk). Fig. 2 shows 

the resulting magnetic field for YIG cylinders having a diameter of 75nm and lengths of 75, 150, 

300, 600, and 1200nm as calculated from Eq. (2.32) (dashed lines) and along the r = 0 axis by 

OOMMF. The close correspondence arises from the dominance of exchange in these small 

diameter samples. 

2.5. Zeros of mode functions and mode labels 

 The demagnetizing field plays the role of an external potential in the Schrodinger equation 

(2.30), and the strong decrease in this field near the end caps leads to surface bound states or cap 

states whose wave functions die off exponentially away from the caps. In principle there could 

be many bound states, but for our parameters we find only one state at each cap. All higher 

energy states are extended along the z direction, and since the demagnetization field is 

essentially uniform in the bulk of the cylinder, their wavefunctions behave approximately as 

sinusoidal standing waves. 
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 Let us now recall that for a one-dimensional Schrodinger equation with a reflection sym- 

metric potential, the states with successively higher energy alternate in parity and have 

successively increasing number of zeros, with the lowest energy state having no nodes and even 

parity. Further their wave functions must be mutually orthogonal. For our problem, these 

theorems are satisfied as follows. The two cap states are nearly degenerate but they are admixed 

by tunneling to form even and odd parity states with zero and one node respectively. (See, 

however, the discussion in Sec. 7 on how the inclusion of dipole-dipole interactions modifies the 

energy ordering.) The first extended state must then have even parity and two nodes. To be 

approximated by  zcos k (z h/2)  and to be orthogonal to the cap states, we must have 

zk 2 / h
   corresponding to z 2   and a negative end defect z . Higher extended states must 

have higher values of z . In this way we see the need for the restriction z 2   in Eq. (2.28) and 

for the end defect at the same time. 

  For each value of p and rn , we could label the differently quantized modes along z by the 

Fig. 2. The dashed line shows the analytic demagnetization field calculated from Eq. (2.32) 

using 04 M 1750Oe  for YIG cylinders with a diameter of 75nm and five different 

lengths of 75, 150, 300, 600, 1200nm in a field of 2000Oe. For comparison the solid line 

shows the field computed by OOMMF along the line r = 0.  Note how for long cylinders the 

field profile near one cap is insensitive to the presence of the other cap.  
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number of their zeros. The lowest extended or bulk mode in any family with given p and rn  

would then have the label z 2  , while the cap mode would be labeled z 0  . This is 

unaestehetic and also does not differentiate between the physically different character of the cap 

modes vis a vis the bulk modes. We therefore label the bulk modes by an index zn , with 

 z zn 2               (2.33) 

For the cap modes we replace the number zn  by the letters ‘g’ (gerade, even parity) and ‘u’ 

(ungerade, odd parity). For reference we summarize the correspondence between the number of 

zeros and the mode labels as follows:  

  No. of zeros  Mode label 

         0         g 

         1         u 

        z  z zn 2    

The modes are labeled by the scheme r z(p n n )   with the letters ‘g’ or ‘u’ for cap modes in lieu 

of zn . In particular the mode nominally identified as the uniform FMR mode has the label (000) 

(but see the discussion in Sec. 7). 

2.6. Numerical results for the variational approximation and comparison with simulations 

 We now describe some results from the numerical integration of Eq. (2.30) together with 

the position dependence of  demagH r 0,z  given by Eq. (2.32). Imposing the boundary 

condition (2.31) at the faces then yields Z(z)  together with the eigenvalues  z rn (p,n ) , 

where for the general case z rn (p,n )  denotes the eigenvalue for given values of the azimuthal 

and radial mode numbers, p and rn . Given that we have neglected the transverse dipolar field in 

obtaining Eq. (2.30) we expect the resulting eigenvalues to be most accurate in the limit of large 

zn  mode numbers, and particularly when both rp 0 and n 0     (which corresponds to 0   in 

Eq. (1.3)). 

 The dashed lines in figure 3 show the resulting form of Z(z) for the lowest lying cap 

mode with p = 0 and no radial nodes for cylinders with a diameter of 75nm and heights of 75, 

150, 300, 600, and 1200 nm in a field of 2000G. Note the approximately exponential decay of 

the amplitude as we proceed deep into the interior for the longer samples confirming their 

surface like character.  Also shown are the OOMMF simulations obtained using procedures to be 
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outlined below (the fact that their amplitudes do not go strictly to zero in longer samples arises 

from a contamination from other modes). Accompanying antisymmetric modes (not shown) are 

also highly localized while in addition having a node at the cylinder midpoint. 

 As is evident, the semi-analytic results for Z(z) are surprisingly good for h 300nm . The 

frequencies however are not. These could be improved by including the transverse dipolar field 

using perturbation theory, which will raise the frequency. We have not attempted this exercise 

since our approximate treatment is quite rough in the first place and it would not add to our 

qualitative understanding. 

 

 

Fig. 3.  The dashed lines show the behavior of the mode function Z(z) vs. z obtained from integrating Eq. 

(2.30) for the (00g) cap mode for cylinders with a diameter of 75nm and heights of 75, 150, 300, 600, and 

1200nm. The solid lines show the OOMMF simulation results for the same parameters. 

 

 As a crude estimate of the cap mode frequency we can compare it with the frequency of a 

hat box (disc) with a radius equal to its height. Reported demagnetization coefficients35 for this 

aspect ratio are N 0.4745  and N 0.2628  . For a field 0H 2.000 kOe   and 

04 M 1.750 kOe    Eq. (1.2) yields f = 4.568 GHz. For our exchange dominated sample it is 

reasonable to add a correction of order 
2

exD / a 1.0GHz    which raises the frequency to 5.6 

GHz which is to be compared with the OOMMF value of 6.64 GHz. (For our cylinders, a = 

37.5nm and we have taken Dex = 5  10-9Oecm2 as is appropriate for YIG.) 
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 Fig. 4. The dashed line shows the mode function Z(z) vs. z obtained from integrating 

Eq. (2.33) for the (00g), (000), (002), and (004) modes. The solid line shows the 

corresponding forms arising from OOMMF. Note the behavior at the cylinder faces 

closely conforms with the boundary condition (2.22). 
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    Table I. End defect for (00nz) modes. 

Mode Label z hkz,fit/ z 

000 2 1.62 −0.38 

001 3 2.50 −0.50 

002 4 3.68 −0.32 

003 5 4.78 −0.22 

004 6 5.84 −0.16 

005 7 6.96 −0.04 

006 8 7.90 −0.10 

007 9 8.92 −0.08 

008 10 10.01 +0.01 

009 11 10.91 −0.09 

00,11 13 12.96 −0.04 

00,13 15 14.98 −0.02 

00,15 17 16.92 −0.08 

 Calculations for the extended states with mode number zn 0,1,      were also performed. 

Here we encounter progressively higher mode frequencies scaling approximately as 
2
zn .    Figure 

4 below shows the result of such calculations for the (00g), (000), (002), and (004) modes 

according to the designation (p nr nz) where p and nr refer to the azimuthal and radial behavior 

which is discussed in Section 3.4, but is absent in this one-dimensional model.  Table I lists 

values of zk h/π , z  and z  for these and neighboring modes. Note that z 0   with 

increasing z . We will explain why modes (00,10), (00,12), and (00,14) are not in this table 

at the end of Sec. 3.2.  

 3. Computational Approaches 

 The material studied here is YIG which was chosen for its long mode lifetimes. Whether 

these long lifetimes survive in submicron structures is an open question. The majority of the 

studies were for a sample with h = 4d = 300 nm. The material parameters used are typical for 

YIG 36:  γ = 2π × 2.8 GHz/kOe, saturation magnetization Ms = 139emu/cm3, damping constant 

–5 =5  10  , and exchange constant –7
exA  = 3.5 10 erg/cm. The applied field was 2 kOe 

along z direction. Damping was turned on to relax the system to its initial state, and turned off 

after the system was excited for most simulations. In the few that it was not, it was too small to 

have any significant effect. 

 As noted above our simulations were carried out with the OOMMF code developed by the 
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U. S. National Institute for Standards and Technology. This program divides a chosen sample 

into cells on a rectilinear grid and numerically integrates the LL equation in time for their 

magnetizations, i(t)M , as they evolve under the influence of the torques acting on them arising 

from an external field, the nearest neighbor exchange interaction, and the dipolar fields of the 

remaining cells (anisotropy fields can be included but will be ignored in what follows). Each 

magnetic moment is located at the center of the cell. The number of cells scales with the cube of 

a characteristic sample dimension but was nominally fixed at 1/54 cells/(nm)3 corresponding to a 

cell size of 3 nm 3 nm 6 nm   for the d 75 nm, h 300 nm   sample. There are 50 cells in the z 

direction, and 489 cells in the xy plane (489/625 = 0.7824 vs. /4 = 0.7854). In Sec. 7, we 

simulate samples with other values of h. As described there, we then use cells with the same x 

and y dimensions (3 nm × 3 nm), but depending on the value of h, the dimension z is adjusted 

appropriately. 

3.1. Static equilibrium 

 Prior to exciting the system, the spins were initially aligned along the cylinder axis 

(parallel to the external field) after which the system was evolved in time (with damping) until it 

stabilizes in an equilibrium configuration. Various tests can be applied to determine that it is a 

global equilibrium state. This part of our simulations yields the static magnetic field distribution 

which could also be used for the calculations in Section 2.  

3.2. Exciting the system 

 Several different excitation schemes were utilized. In the simplest of these, all spins were 

tipped by a small fixed angle relative to their equilibrium orientations in a plane containing the z 

axis as an initial condition. This favors the excitation of uniformly precessing modes. To drive a 

particular non-uniform mode the spins were tipped from their equilibrium positions in a manner 

that mimics the mode (such as that obtained as the mode pattern in a prior simulation)37. To drive 

a broader spectrum of modes that is localized around a time 0t  and some position 0r  we tip the 

spins in some direction according to the function  

 
y 00 x 0 x 0

0 0 0 0

sin[ k (y y )]sin[ (t t )] sin[ k (x x )] sin[ k (z z )]
F(t, ) A

(t t ) (x x ) (y y ) (z z )

      


   
r  (3.1) 

where x y x,  k ,  k  and k     control the extent to which the excitation is localized in time and 

space. Here x, y, z denote cell coordinates. Such pulses can also be introduced at multiple times 
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and positions to favor the excitation of modes with differing spatial and temporal properties. In 

particular inclusion of only the last factor induces modes propagating along z. Forms can be 

constructed that favor the excitation of radial or azimuthal modes. Finally, some simulations 

were performed in which individual spins were tipped in random directions within some 

specified average angular range. This excites a very broad range of modes and if the tipping 

angles are large (e.g., approaching 180o) generates a “hot” system, from which it is difficult to 

extract clear modes. Altogether, we tried more than ten different excitation pulses in an effort to 

identify modes with different symmetry and numbers of nodes. Despite this, our mode table (see 

Sec. 4) has gaps. In some cases, modes are nearly degenerate [for example modes (003), (-10g), 

and (-10u)] and cannot be easily resolved. In others, they were too high in frequency to be seen 

with the particular excitation pulse employed. We are confident that these modes exist and that 

our mode classification is complete. 

3.3. Identifying modes 

 As the system state simulated by OOMMF evolves in time from some chosen initial 

configuration, the magnetization vectors i( , t)m r  at the (discrete) cell sites ir  are recorded at 

regular time intervals. From this data set we can perform a cell by cell fast-Fourier transform 

(FFT) within some chosen time interval available from the simulation to obtain the complex 

quantities i( , )m r . We stress that the OOMMF simulation does not assume that eq ( )M r  is 

along ẑ  or that the deviations i( , t)m r  are in the x-y plane, although the most useful information 

is contained in these components for low amplitude mode studies. From the FFT, we follow 

McMichael and Stiles and construct the cell-wise power spectra, 

 2
x i x iS ( , ) | m ( , ) |  r r ,        (3.2) 

together with their sum over the entire sample,  

 x x i

i

S ( ) S ( , )   r ,         (3.3) 

and likewise for y iS ( , )r  and yS ( ) . As noted by them, this definition of a power spectrum is 

very different from the power spectrum of the integrated magnetization (total magnetic moment 

of the sample), which is what makes them so useful in mode identification; in particular, the 

frequencies where these total sample power spectra have sharp maxima are identified as possible 

mode frequencies of the system. As an example, the power spectra in Eq. (3.3) are given in Fig. 
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5 which shows various modes including a very high frequency mode that is aliased to less than 5 

GHz due to a Nyquist critical frequency of 50 GHz. 

 Suppose a mode has been identified at a frequency a . With the sign conventions used 

in our numerical FFT program, the mode pattern associated with this frequency is given by 

  a(a) i( t )
i i( , t) ( , )e    m r m r .       (3.4)  

The phase    is arbitrary and amounts to a choice of the zero of time. To avoid unnecessary 

minus signs, we choose 3 / 2    which gives  

 (a)
i i a( ,0) ( , ) m r m r , (a)

i i a( ,T / 4) ( , ) m r m r ,    (3.5) 

with aT 2 /    being the time period of the mode. Hence, by examining the imaginary and real 

parts of the vector i a( , )m r  we can, respectively, obtain the real-space vector magnetization at 

some time and a quarter cycle later for the spatial pattern associated with some nominal mode at 

the specific frequency. By plotting these vector fields, we can get a highly visual depiction of the 

mode, permitting easy mode assignment and further analysis. 

 

 

Fig. 5. An example of an FFT spectrum. The left and right y axes show  xS ω  and  S ωz . The power 

spectra are given in arbitrary units, but with relative scales for the left and right axes as shown. See Eq. (3.3). 

A broad sinc pulse as described in Eq. (3.1) was used to excite this spectrum.  
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In constructing the power spectrum, modes with higher frequencies than the inverse of the 

chosen integration time step, which violate the Nyquist sampling criterion and are then aliased to 

lower frequencies, must be identified and rejected. In the exchange dominated samples 

considered here some of them can be identified as spurious peaks with frequencies lower than 

the known uniform modes, but in dipole dominated larger samples genuine modes below the 

uniform modes are expected. More generally they must be identified by altering the time interval 

over which the transform is performed to determine if some mode moves its position. Most 

simulations were done with a time step of 10 ps and for a duration of 10.24 ns. 

 A curious spatial aliasing was also observed (as evidenced by a rapid spatial variation of 

the mode intensity on the scale of the cell period) in some patterns; it is thought to be associated 

with a spatial FFT that is performed to calculate the dipole field in the underlying program. Such 

modes must also be rejected.  

3.4. Implications of the p degeneracy for OOMMF patterns 

 Using the procedures described we can construct mode maps in chosen planes by plotting 

the complex cell amplitudes, x yˆ ˆ( , ) m ( , ) m ( , )    m r r x r y , at frequencies where the power 

spectrum shows maxima. On the basis of these patterns we are typically able to assign 

approximate mode numbers p, nr and nz, and designate them as r z r z(pn n ) (pn n )
( , )m r  for that 

frequency, r z(pn n )   . The p mode number requires special attention as we now discuss. In 

what immediately follows we will drop the mode designation, regarding it as being understood.  

 Writing the complex function ( , )m r  in component form as 

 
x x x

y y y

m ( , ) m ( , ) im ( , )
( , )

m ( , ) m ( , ) im ( , )

       
            

r r r
m r

r r r
,      (3.6) 

the corresponding behavior in the time domain follows as   

 
x x x i t

y y y

m ( , t) m ( , ) im ( , )
( , t) e

m ( , t) m ( , ) im ( , )
 

      
           

r r r
m r

r r r
 

 
x x

y y

m ( , )cos t m ( , )sin t

m ( , )cos t m ( , )sin t

      
        

r r

r r
.     (3.7) 

If the modes of the system have a pure p character, as in Eq. (2.11), we can write the above 

components as 
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  xm ( , ) m(r,z,p, )cos(p )    r , xm ( , ) m(r,z,p, )sin(p )    r ,          (3.8a, b) 

 ym ( , ) m(r,z,p, )sin(p )     r ,  ym ( , ) m(r,z,p, )cos(p )    r .                  (3.8c, d) 

Hence, we can write ( , t)m r  as 

  
x

y

m (r,z,p, t) cos(p t)
( , t) m(r,z,p, )

m (r,z,p, t) sin(p t)

    
     

    
m r  .        (3.9) 

Here the magnetization vector rotates as   changes with a radially symmetric amplitude. In our 

approximation, where the variables r and z separate, we would write the solutions that have even 

parity as 

  
x

0 z p
y

m ( , t) cos(p t)
m cos k (z h / 2) J (k r)

m ( , t) sin(p t)


    
    

    

r

r
.   (3.10) 

 If the modes of the system have a pure p character and in addition p and p  are 

degenerate we can form symmetric and antisymmetric standing wave super-positions of the two 

forms of Eq. (3.10) to obtain 

 
x x

y x

m (r,z,p, t) m (r,z, p, t)
( , t)

m (r,z,p, t) m (r,z, p, t)

  
  

  
m r  

 
cos(p t) cos( p t)

           m(r,z,p, )
sin(p t) sin( p t)

    
   

    
    (3.11) 

which results in the following two forms 

 
cos( t)

m(r,z,p, )cos(p )
sin( t)

 
   

 
       (3.12a)  

 
sin( t)

m(r,z,p, )sin(p )
cos( t)

 
   

  
,              (3.12b) 

or if our model product form is assumed, 

  0 z p

cos( t)
m cos k (z h / 2) J (k r)cos(p )

sin( t)


 
   

 
,     (3.13a) 

  0 z p

sin( t)
m cos k (z h / 2) J (k r)sin(p )

cos( t)


 
   

  
.     (3.13b) 

Here again the spin direction rotates (in both senses) but now the amplitude is modulated in  . 

A similar discussion applies to the solutions that are odd parity.  
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 In Appendix B we discuss how a pure p mode pattern can be extracted from a 

superposition of +p and –p OOMMF patterns.  

3.5.  Separating nearly degenerate modes 

 As noted above, in the absence of the dipole interaction modes with +p and –p are 

degenerate.  When this interaction is present such modes are split; i.e., according to the 

discussion of section 3.4 our eigen modes will be running waves in  . But the splitting rapidly 

decreases for larger mode numbers, and for running times less than 
1t   , where   is the 

splitting, the power spectrum displays a single (slightly broadened) peak at the mode frequency. 

In order to resolve the splitting in a power spectrum the OOMMF run times must be increased. 

 When the splitting is not resolved in the power spectrum the resulting mode patterns 

display a standing wave character. For a few of these we used the standing wave mode pattern as 

an initial configuration and ran the program long enough to display a beat pattern in time from 

which the splitting could be accurately determined. An example of this technique is shown in 

Fig. 6 for the cylinder with d = 75 nm and h = 300 nm. Fig. 6a shows the case of the ( 105)  

modes with an average frequency of 17.29 GHz. Note a beat waist occurs at t = 32.68 ns from 

which we calculate the mode splitting as 30.60 MHz. 
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Fig. 6. Beat patterns emerging from the time evolution arising from the splitting 

of (a) the ( 105)  modes with an average frequency 17.29 GHz and a splitting of 

30.60 MHz, (b) the , rp 0 n 0  , g and u cap modes with an average frequency 

6.54 GHz and a splitting of 14.4MHz. 

  

 A very small splitting also occurs between the symmetric (or gerade, denoted g) and anti-

symmetric (ungerade, denoted u) combinations of the cap modes. In the Schrodinger equation 

language of Sec. 2, this is a tunnel splitting between the surface bound states. This splitting is 

intrinsically small and hard to resolve in long cylinders, although we have resolved it for the 

rp 0, n 0  , g and u cap modes for the cylinder with h = 300 nm. Now f 6.54 GHz  and 

f 14.4 MHz  . The corresponding beat pattern is shown in Fig. 6b.  

4. Frequencies of low-lying modes 

 Most computations were carried out on a YIG sample with h = 4d =8a = 300 nm  in a 

static field of 0H 2000 Oe . To test the behavior at small and large zk  some calculations were 

carried out for samples with h = 7.5, 37.5, 75, 150, 600 and 1200 nm. The material parameters 

used are typical for YIG, as given earlier in section 3. 

 Table II lists the frequencies r z r zp n n p n nf / 2    of low lying modes as obtained from 

the peaks in the power spectrum; all entries are for h = 4d =8a = 300 nm  and in a static field of 

0H 2000 Oe . The mode numbers come from a comparison of the accompanying mode pattern 
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with the forms discussed in Sec. 2 with special attention to the number of radial and longitudinal 

zeros and how m  winds around the z axis. By fitting to the form (2.21) we can assign discrete 

wavevectors, 
r,nk  and 

znk ; these values are used for a comparison with the HK formula as we 

describe in the next section. All modes with p 0  have a node at r = 0 ; for larger values of k , 

additional radial nodes can be present and their mode number is denoted as rn 0 . Modes listed 

as p  are nearly degenerate in the sense discussed above, and the mode patterns display 

standing waves in   as described by Eq. (3.9a,b). 

Table II.  The mode frequencies for a YIG cylinder with a height of 300nm and a diameter of 

75nm in a static magnetic field 0H = 2000 Oe, organized into families with given mode 

numbers p and nr.  Multiply listed modes (e.g., (–115) and (  115)) were observed with both 

pure and with mixed +p and –p character, depending on the methodology used  to extract 

them (e.g. FFT vs. beat pattern) .  

 

 



 29 

 

 

 

 

Table II 

Mode Frequencies vs. p,   r zn , and n  

p nr nz f (GHz) p nr nz f (GHz) p nr nz f (GHz) 

0 0 Even cap (g) 6.543 1 0 g 10.35 ±1 0 5 17.29 

0 0 Odd cap (u) 6.543 1 0 u 10.35 ±1 0 7 21.78 

0 0 0 7.813 1 0 1 11.91 ±1 0 11 33.98 

0 0 1 8.105 1 0 3 13.96 ±1 1 g 35.16 

0 0 2 8.887 1 0 5 17.29 ±1 1 u 35.16 

0 0 3 10.06 1 0 7 21.78 ±1 1 1 36.91 

0 0 4 11.52 1 0 9 27.44 ±1 1 3 39.26 

0 0 5 13.38 1 0 11 33.98 ±1 1 5 42.68 

0 0 6 15.53 1 0 13 41.5 ±1 1 9 52.83 

0 0 7 17.97 0 1 0 22.66 ±2 0 g 15.82 

0 0 8 20.7 0 1 1 23.24 ±2 0 u 15.82 

0 0 9 23.63 0 1 2 24.22 ±2 0 1 18.07 

0 0 11 30.27 0 1 3 25.49 ±2 0 2 18.36 

0 0 13 37.79 0 1 4 27.05 ±2 0 3 19.63 

0 0 15 46.09 0 1 5 28.91 ±2 0 5 22.95 

−1 0 g 10.06 0 1 6 30.96 ±2 0 9 33.11 

−1 0 u 10.06 0 1 7 33.4 ±2 0 11 39.65 

−1 0 1 11.72 0 1 8 36.04 ±2 0 15 55.37 

−1 0 2 12.7 0 1 9 38.96 ±3 0 g 24.02 

−1 0 3 13.87 0 1 10 42.19 ±3 0 u 24.02 

−1 0 4 15.43 0 1 11 45.51 ±3 0 1 25.59 

−1 0 5 17.19 0 1 12 49.12 ±3 0 3 27.83 

−1 0 6 19.34 −1 1 g 35.16 ±3 0 5 31.25 

−1 0 7 21.78 −1 1 u 35.16 ±3 0 7 35.84 

−1 0 8 24.41 −1 1 3 39.26 ±3 0 11 47.95 

−1 0 9 27.34 −1 1 5 42.68     

−1 0 10 30.57 −1 1 6 44.82     

−1 0 11 33.98 0 2 g 55.57     

−1 0 12 37.6 0 2 0 56.64     

−1 0 13 41.5 0 2 2 58.3     

−1 0 14 45.51 0 2 4 61.23     

−1 0 15 49.71 0 2 6 65.53     

    0 2 8 70.41     
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Fig. 7. a) Typical fit of the radial OOMMF amplitude to the function 1J (k r)  for 

the (–105) mode.  b) Typical fit of the axial OOMMF amplitude to the function 

( )zcosk z h / 2  for the (006) mode. 
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5. Comparison of simulated frequencies with the Herring-Kittel expression 

 It is interesting to examine the extent to which the OOMMF mode frequencies in Table II 

can be represented by the Herring-Kittel frequencies as given by Eq, (1.3). To do this we need 

values of zk  and rp,nk  for the extended modes. A preliminary value of zk  follows from 

counting the number of nodes along z. Better values emerge38 from fitting rm (z, r 0, )   to 

 zcos k (z h / 2)  or  zsin k (z h / 2) . Values for p,nk  were obtained by fitting rm (z, r, )  to 

p p,nJ (k r)  at some z with p,nk  as an adjustable parameter. Fig. 7a, b shows examples of such 

fits. Note that although we do not employ it to find zk  and k , the boundary condition at the 

faces for this mode closely approximates maximum amplitude as opposed to maximum 

derivative. 

 We now show some plots of the frequencies, r z r z(p n n ) (p n n )
f / 2    inferred from the 

simulations, for various modes r z(pn n )  versus zk  at fixed p,nk  with these latter values 

obtained by the above procedures.  Also shown are the frequencies predicted by the H - K 

expression, Eq. (1.3), for the same wave-vector components and a demagnetization coefficient of 

N 0.098 .  

  The   symbols in Fig. 8 show the results of the OOMMF simulation for the 

z(00n )  modes, as a function of zk  in units of / h , for which the lowest frequency is 

7.81GHz. Not included are the accompanying cap-mode frequencies which are both 6.41GHz 

within the resolution. The continuous curve shows the frequencies predicted by the Herring-

Kittel (H - K) formula. The agreement is surprisingly good, especially at small zk  where H - K 

is expected to break down. To some extent this may arise from the fact that the internal magnetic 

field is position dependent, being lower at the caps, and thereby producing an effect partially 

compensating that of N . The  symbols show the predictions of the one-dimensional 

Schrodinger equation as described in section 2.2. 
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Fig. 8. The frequencies of the z(00 n )  modes vs. zk  as obtained from OOMMF 

simulations ( symbols), Herring-Kittel formula (continuous line) and the 

Schrodinger equation  ( ), as discussed in section 2.2. For the Schrodinger 

equation data zk h /   is a proxy for zn 2 . 

 

 

Fig. 9. The symbols show the OOMMF simulations for the mode frequencies versus the 

dimensionless wave-vector zk  for p = 0 and r    n 0, 1 and 2 ; the continuous curves show 

the predictions of the H – K expression.  
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 The symbols in Fig. 9 show the OOMMF simulations of p = 0 mode frequencies as a function of 

the dimensionless zk  for rn 0,  1 and 2  while the continuous curves show the predictions for the 

corresponding mode numbers of the H -  K formula. Again, the agreement is excellent. Readers may 

notice that some modes are missing in these plots. This is because they were not excited with the 

protocols used, but we are confident they exist and that their mode patterns conform with the general 

framework presented here.  

 

Fig. 10. The OOMMF mode frequencies vs. zk  for rn 0  and 

     p 0, 1, 2, 3 . The curves show the predictions of the H – K equation. 

 

 

 Lastly, Fig. 10 shows the OOMMF simulations for mode frequencies vs. zk  for rn 0  

and p 0,  1,  2,  3      . The H - K formula again gives an excellent overall representation.  

 Analogous to our approximating the position dependence of the bulk states with a form 

zcos(k z)  we can use 
ze  and 

(z h)e 
 to qualitatively describe the amplitude in the vicinity of 

the cylinder faces for the cap mode; i.e., we take k as imaginary by writing k i  , in which case 

2k  is replaced by 
2  in a Herring-Kittel like expression, which pushes the frequency below 

that of the first extended mode.  

5.1. Why the H - K formula works so well 
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 The H - K relation is sometimes referred to as a spin-wave dispersion relation, and indeed 

it is tantamount to saying that the normal modes of the body can be described by a continuous (or 

quasicontinuous) variable k. As explained in Appendix A, this assertion is grossly incorrect 

when the spatial variation of m is on a scale comparable to the dimensions of the body39; the 

mode functions must then take account of the shape of the body, and be described by discrete 

sets of appropriate mode numbers, which may or may not be wavevector-like. 

 To the extent that some discrete modes with slow spatial variation are well described by 

wavevector-like variables, then for those modes the H - K expression can be expected to give the 

frequency to good approximation, especially if one is in the exchange dominated limit. This is 

the situation in the present investigation. We have seen that for every bulk mode, we can identify 

a reasonably well-defined zk  and an orbital angular momentum quantum number p. We also see 

a radial dependence in (r)m  that pretty well matches a Bessel function pJ (k r)  from which can 

obtain a k . 

 That the mode functions should look this way is not an accident. We have some support for 

this functional behavior from the theory of the infinite cylinder in the exchange dominated limit. 

We intend to publish the details of this theory separately, and here we only summarize the key 

results. In first order perturbation in the small parameter 

 
0

2
ex

M
=  

D k
             (5.1) 

we find that the mode function is given by

   z
x i(p t) i((p 2) t) ik z

p
y

m 1 11
J (k r) f (r) e f (r)e e

m i i2

     


      
        

      
.  

               (5.2) 

The corrections f   are both O( ) . We add here that we discovered the properties of the mode 

functions by experimenting with OOMMF first, and developed the theoretical framework later.  

6. Examples of mode patterns 

Table II in section 4 lists approximately 90 modes which we have identified. We will 

now present some accompanying mode patterns which display various behaviors. All figures in 

this section pertain to YIG cylinders with a diameter d = 2a = 75 nm and a height h = 300 nm in 

a magnetic field H0 = 2000 Oe. 
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There is a wealth of information in these figures as we now explain. They all depict 

various aspects of the frequency space Fourier amplitude m(r, ), which is a complex vector, 

i.e., its x, y, and z components are all complex numbers. The real parts make a vector, and so do 

the imaginary parts, which we can call the real and imaginary parts of the complex vector, 

( , ) m r  and ( , ) m r . We discard the z component leaving the xy projection m⊥(r, ). 

Circular panels such as Figs. 11a and 11b show xy cross sections of the cylinder, while 

rectangular panels such as Fig. 11c show yz cross sections through a diameter of the cylinder. In 

the circular panels, the arrows show the directions and relative magnitudes of either ( , ) m r  

or ( , ) m r , while the thin black lines show contour levels of the magnitudes of these same 

vectors, i.e., either ( , ) m r  or ( , ) m r . These contour levels are also color coded 

according to the scale on the right. As explained in Sec. 3.3 — see Eqs. (3.4) and (3.5) — the   

panel shows the spins a quarter-cycle after the   panel. That is, time proceeds from   to  , 

which is reflected in the sequence of panels a) and b) when both   and   parts are shown. In 

the rectangular panels we show contours of xm ( , ) r ; again, the contours are color coded. 

Because the circular panels show the magnitude of the vector in the xy plane, while the 

rectangular panels show only the x component, the contour levels in the two types of panels 

cannot be directly compared. Depending on just how a particular mode is excited, the spins can 

have larger projections along the x or y directions at the particular time captured in the xy cross 

sections, and this can further affect the values of the contour levels in the rectangular panels vis-

a-vis the circular ones. If the spins were at 45 to the x and y directions in the xy cross sections, 

the values in the rectangular panel would be 2–1/2 of the circular panels. In general, however, we 

can only expect these values to be of similar magnitude within a factor of order unity. The most 

salient feature is the variation or the relative Fourier amplitude within a panel. We add here that 

our simulations are done with 50 vertical layers of cells of height 6 nm each. There is a layer 

extending from z = 144 to 150 nm, and another from z = 150 to 156 nm. Hence, circular panels 

such as in Figs. 11a and 11b that are labeled z = 147 nm correspond to the midpoint of the cell 

layer just below the midplane of the cylinder; panels labeled z = 3 nm such as in Fig. 12a show 

the lowest layer; panels labeled z = 39 nm such as in Figs. 15a and 15b show the 7th layer from 

the bottom. However, in the text and figure captions we have described the panels at z = 3 nm 
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and z = 147 nm as lying at z = 0 and z = h/2, as this is more natural and intuitively easier to 

understand. 

In the interest of clarity, we shall repeat these points as necessary, and add further 

information about the patterns as we discuss them one by one. 

We start with the lowest lying modes: the nominal bulk uniform precession or cylindrical 

Kittel (0, 0, 0) mode with f = 7.813 GHz, which is concentrated within the body of the cylinder, 

away from the caps, together with the even (0, 0, g) and odd (0, 0, u) cap modes concentrated on 

the top and bottom cylinder faces with a mean frequency of 6.543 GHz and a splitting that is too 

small to be resolved. 

Fig. 11a shows 
 000

(x, y,z h 2, )  m  while Fig. 11b shows 

 000
(x, y,z h 2, )  m  for the (0, 0, 0) bulk mode with f = 7.813 GHz; here 

( , , 2, )x y z h  m  and ( , , 2, )x y z h  m  denote the normalized vector fields of the 

Fourier amplitude given by following prescriptions: 

i
1 2

21
cell i

i

( , )
K

N ( , )





 


 
  

  


m r

m r

 and i
1 2

21
cell i

i

( , )
K

N ( , )





 


 
  

  


m r

m r

 (6.1) 

where K is a global constant scale factor whose value is chosen as 1000 for convenience for all 

mode patterns (this and subsequent ones). The arrows indicate the xy projection of the 

magnetization. The lines and color coding depict the contours of constant amplitude, either 

 i, m r  or  i, m r . Ideally these would be concentric circles but there is always 

contamination at some level from other modes. There may also be numerical errors associated 

with the discretization. Time proceeds from   (panel (a)) to   (panel (b)), a quarter cycle later. 

Fig. 11c shows 
 000
xm (x 0,y,z, )   , again with contour lines together with color 

coding. Note the contour lines are quite parallel to the faces, a behavior that arises from the 

strong influence of exchange in these small samples and validates the factorized form Eq. (2.19) 

for  ,F r z . 



 37 

Fig. 12a shows 
 00g

(x, y,z 0, )  m  for the symmetric (g) cap mode with f = 6.543 

GHz. Figs. 12b and 12c show 
 00g
xm (x 0,y,z, )    and 

 00u
xm (x 0,y,z, )    for the even 

(g) and odd (u) cap modes respectively. We see that the mode intensity is strongly concentrated 

near the cylinder faces, dropping off rapidly as one proceeds to the interior. Note the anti-

symmetric character of the u mode is clearly apparent as seen from the node at z = h/2. 

Figs. 13a, b show 
 10u

(x, y,z 0, )

  m  and 

 10u
(x, y,z 0, )


  m  of the (−1, 0, u) 

antisymmetric 10.06 GHz cap mode which has a node at r = 0. Note how the spins wind through 

an angle of 2 as we proceed counter-clockwise around the line r = 0. Fig. 13c shows 

 10u
xm (x 0,y,z, )


    where the antisymmetric behavior in z is evident. 

Figs. 14a, b show 
 10u

(x, y,z 0, )  m  and 
 10u

(x, y,z 0, )  m  for the neighboring 

p = +1 mode with a frequency of 10.35 GHz. Here one encounters the “retrograde” motion 

associated with the oppositely winding sense of m with the azimuthal angle . 

We next consider a mode with multiple nodes along z. As remarked earlier the splitting 

between ±p modes diminishes as the overall mode numbers increase, so we designate them with 

both signs since our mode projection method generally yields a superposition. Here we consider 

the (±1, 0, 5) mode(s) with f = 17.29 GHz. Figs. 15a, b show 
 105

(x, y,z 39nm, )

  m  and 

 105
(x, y,z 39nm, )


  m  while Fig. 15c shows 

 105
(x 0, y,z, )


  m . (We recall that z = 

39 nm is the midplane of the 7th layer of cells from the bottom of the cylinder.) Note the mode 

patterns in the xy plane now display nodes since the modes with p = +1 and p = −1 interfere to 

form a partial standing wave. Our plot in the yz plane contains the two end nodes arising from 

orthogonality to the cap modes discussed above (the patterns for which we do not show) as well 

as the five interior nodes. If we use the projection technique described in Appendix B, we can 

again separate the two modes. This is shown in Figs. 16a and 16b where we plot 

 105
(x, y,z 39nm, )


  m  and 

 105
(x, y,z 39nm, )


  m . These are also the modes for 

which we resolved the splitting via the beat pattern in Fig. 6a. 
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As an example of a mode with a larger azimuthal mode number and mixed p character, 

Fig. 17 shows a plot of 
 305

(x, y,z 39nm, )

  m , which has a frequency of 31.25 GHz. 

Finally, we present a mode with additional radial nodes. Such a mode will have a high frequency 

considering the relatively small diameter of our sample. Figs. 18a and 18b show 

 020
(x, y,z h 2, )  m  and 

 020
xm (x 0,y,z, )    for the (020) mode with a frequency of f 

= 56.64 GHz. 
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Fig. 11. Mode pattern for the lowest (Kittel-like) bulk (0 0 0) mode, with a frequency of 

7.813 GHz. Parts a) and b) show an x - y cross section of the imaginary and real 

parts of the Fourier transform amplitude through the cylinder mid point while part 

c) is the real y - z cross section containing the cylinder axis. The arrows show the 

direction of the spins. The spin orientations for the real part correspond to a time 1/4 

cycle later than that for the imaginary part. The lines show contours of constant 

| ( , ) |m r  in (a) and (b) and of constant ( , )x m r  in (c); these values are also color 

coded according to the scale given to the right. 
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Fig. 12.  The p = 0, nr = 0 cap 

modes. Part a) shows the real x - y 

cross section at z = 0 of the  

(00g) symmetric cap mode; this 

mode has the globally lowest 

frequency of 6.543 GHz. Parts b) 

and c) show the real and 

imaginary y - z cross sections of 

the g and u modes respectively 

containing the cylinder axis of the 

from which the surface 

confinement is apparent. 
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Fig. 13. Parts a) and b) show the imaginary and real x - y cross 

sections at z = 0 of the (–1 0 u) antisymmetric cap mode with a 

frequency of 10.06 GHz. Part c) is the real y - z cross section 

containing the cylinder axis from which the surface 

confinement is apparent. 
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Fig. 14. Parts a) and b) show the imaginary and real x - y cross sections at z = 0 of the 

(10u) antisymmetric cap mode with a frequency of 10.35 GHz. Important to note here is 

the retrograde character of the spin winding. 
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Fig. 15. Parts a) and b) show the imaginary and real x - y cross sections at z = 39 nm of the 

( 105)  modes with a frequency of 17.29 GHz. Note the standing wave behavior of these 

cross-sections arising from the superposition of azimuthally counter propagating modes.  

However, at a fixed point in space the spins still precess counterclockwise. Part c) is the real y 

- z cross section containing the cylinder axis.  
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Fig. 16. Here the projection technique described in Appendix B has been used to separate the modes 

with p = +1 and p = –1 from the same data used to construct figure 15. Note the azimuthal intensity is 

now constant as appropriate for running waves. 

 

 

Fig. 17.   The real x - y cross section of 

the ( 305)  bulk mode with a 

frequency of 31.25 GHz showing a 

multiplicity of azimuthal nodes. Note 

also the deep central node due to the 
3r  behavior of 3J (k r) . 
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Fig. 19. The dependence of the frequency on h for the lowest zk  bulk mode (000), symmetric cap 

mode (00g), and antisymmetric cap mode (00u) of a YIG cylinder with d =75nm. Also shown is the 

frequency predicted by the Kittel expression. The inset shows the region where the symmetric cap 

mode crosses over the antisymmetric cap mode for small h. In the region below about 100nm the 

(00g) mode replaces the (000) mode as the quasi uniform mode we associate with the Kittel formula. 

See discussion. 

 

7. Evolution of the low-lying mode behavior with cylinder height 

 Although the majority of our simulations for mode patterns were carried out for a YIG 

Fig. 18. The real x-y and y-z cross-sections of the (020) mode with a frequency 

of 56.64 GHz exhibiting multiple radial nodes.  
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cylinder with d = 2a = 75 nm and h = 300 nm, the behavior of the three lowest lying p = 0 

modes, (000), (00g), and (00u), was studied over the much wider range of h extending from 

7.5nm to 1200 nm40. Fig. 19 shows the frequencies emerging from the OOMMF simulations 

together with the predictions based on the Kittel expression, Eq. (1.2), according to the 

demagnetization coefficients found by Joseph and Schlomann41.  Importantly we see that the 

(00g) “cap mode” evolves into the dominant mode in the thin-disc limit, while the (000) bulk 

mode becomes dominant (although lying slightly higher in frequency) in the long cylinder limit. 

The Kittel formula, which is a single equation, actually describes two different modes in these 

limits and does not apply well to any mode for 150 nm ˆ  h ˆ  300 nm. The level crossing of the 

(00g) and (00u) modes does not violate the Wigner-von Neumann anti-crossing theorem due to 

their even and odd character. Furthermore, the apparent violation of the ordering of energy levels 

of 1d Schrodinger equations is resolved by noting that the dipole-dipole interaction is a non-local 

perturbation which puts the eigenvalue problem outside the Sturm-Liouville class. 

 
Fig. 20. The contours of constant intensity for three modes of a YIG cylinder with d = 75 nm and h = 37.5 nm. 

a) The 4.59 GHz symmetric (00g) cap mode, corresponding to the Kittel mode in the thin-disc limit; note it 

has no nodes. b) The 13.57 GHz antisymmetric (00u) cap mode.  c) The 42.97 GHz (000) “bulk” mode. 

 

 It is clear from this discussion that the true behavior of the dominant FMR response 

cannot be described by a simple Kittel-like expression; a characterization in terms of 

demagnetization coefficients is inadequate and glosses over the spatial complexity of the mode 

with the greatest spectral weight in a uniformly excited sample. 
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 Some mode patterns for a YIG cylinder with d = 75 nm and h = 37.5 nm are shown in 

figure 20. The cell size for these simulations is 3 x 3 x 1.5 nm3. Fig 20a shows the shows the 

4.59 GHz symmetric (00g) “cap” mode which for these dimensions has become the dominant 

mode. It is a cap mode in name only since it spans the entire sample. Rather than the planar 

constant amplitude contours encountered in the longer cylinders, this mode now has 

approximately cylindrical ones. Figure 20b shows the antisymmetric cap mode for a cylinder 

with the same dimensions which now has a significantly higher frequency of 13.57 GHz; here 

the contours of constant amplitude run approximately parallel to the faces indicating that the odd 

mode has substantially changed character from the even one. Lastly, we show the bulk mode in 

Fig. 20c. Consistent with the results in Fig. 19 this mode has the highest frequency, 42.97 GHz. 

The contours of constant amplitude run approximately parallel to the faces and we obtain a quite 

regular sine wave with one complete wavelength along z.  

 

8. Conclusions and possible applications 

 We have explored the mode structure of nanoscopic cylinders of yttrium iron garnet, both 

analytically and through many-spin simulations, in a regime where the effects of exchange 

dominate the response.  In addition to the extended (bulk) modes, which can be classified in 

terms of the azimuthal, radial, and axial mode numbers designated as r zp,n ,n , we find 

symmetric and antisymmetric combinations of cap modes, that are localized at each of the 

cylinder faces. In all cases they lie lower in frequency than the accompanying family of modes 

zn  for given azimuthal and radial mode numbers rp and n . When examining the height 

dependence, we find that the dominant FMR response cannot be precisely described by a simple 

Kittel-like formula. How this picture would change in passing to the dipole dominated limit is 

deserving of additional study. 

 By way of applications, there is a growing effort directed at using magnetic bits for 

computation as well as data storage. In particular it has been demonstrated that the required logic 

operations can be accomplished with lines and arrays of dipole-coupled, single-domain, bar 

magnets with dimensions of a few hundred nanometers42. While promising, this approach is still 

restricted to what can be done using binary macro-spin flips (and cascades thereof) of the 

individual magnets.  
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 Looking further ahead it is natural to ask if logic functions can be performed by 

exploiting the internal dynamics of nano particles. For the case of wave-guide based operations 

this is already a world-wide activity43. But here we envision exciting (and mixing) large 

amplitude resonant modes within a single nanoparticle. This can involve a single or multiple 

inputs applied simultaneously or sequentially, with different microwave frequencies and/or 

polarizations. When the particles are small the various modes are well separated and can be 

addressed individually and rapidly. By exploiting intrinsic nonlinearities and optimizing the 

sample dimensions (to tune the mode frequencies), different pump frequencies can be efficiently 

mixed, a topic we are exploring independently. Progress in this direction requires an 

understanding of the low amplitude mode structure of the particles involved. 

 Apart from the cap modes, the modes studied here are all extended in character and in 

that sense are the standing wave counter part of the plane wave modes that are the typical 

starting point of most non-linear analysis.  However ongoing simulations of nano-scale cylinders 

and elliptical discs at large precession amplitudes display instabilities involving the edge-

nucleation of dynamic vortex and antivortex modes. Possibly related instabilities occur at 

domain walls in stripes44,45. The connection between such states and low-lying extended modes 

in understanding large amplitude precession dynamics in nanomagnets is currently unclear.  
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Appendix A: The Herring - Kittel equation 

 The Herring - Kittel (H - K) expression, given earlier as Eq. (1.3), is 

 
2 2 2 2 2

in,z ex in,z 0 ex(H D k )(H 4 M sin D k )            (A.1) 

where we wrote in,z 0 0H H 4 N M    with N  an axial demagnetization coefficient, and  
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which fixes the exchange energy density used in the OOMMF simulation,  
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 .          (A.3) 

To understand the remarkable agreement between our OOMMF results and this formula, 

let us recall how it is derived.  

 The linearized Landau-Lifshitz equation is  
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d 2A
ˆ H M

dt M

 
      

 

m
z m h m        (A.4) 

where h is the dynamic demagnetization (or dipolar) field induced by m. Fourier transforming 

with respect to space and assuming a time dependence,  
i te 

 we obtain 
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0
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ˆi H M k
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m z m h m .      (A.5) 

The field h  is governed by the Maxwell equations, 

  = 4π ,        = 0   h m h   ,         (A.6) 

together with the requirements that the normal component of 4  b h m and the tangential 

component of h be continuous at the boundary of the particle. If we now Fourier transform Eq.’s 

(A.6), and simply ignore the effects of the boundary conditions we obtain 

 
k

k 2
4

k


  

k m
h k .            (A.7)  

Inserting (A.7) into Eq. (A.5), requiring the equations for the resulting two components to be 

compatible, and taking in,zH  to be homogeneous, leads immediately to the HK formula, Eq. 

(A.1).  

 From the above derivation we see that, qualitatively, the HK approximation accounts for 

the axial (static) demagnetization but neglects some part of the transverse contribution.  Since the 

dipole-dipole interaction is long ranged, this neglect is qualitatively profound, and quantitatively 

valid only for short wavelengths, when ka  1
 . When this condition is satisfied we can argue 

that the magnetic charges induced on the “lateral” surface by m change sign rapidly on a length 

scale 
1k , so the field produced by them dies off on the same length scale and may be ignored in 
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the bulk of the particle. To further clarify this behavior, we will derive the HK formula in a 

second way.  

 As is known from magnetostatics, the (normalized) magnetic field, ( )h r , can be regarded 

as arising from a magnetic charge density ( )m r  according to  

 
3

3V

( )
( ) 4 ( )d r

| |



     




r r
h r m r

r r
 .        (A.8)  

The integral here is taken to extend infinitesimally beyond the particle volume, as indicated by 

the superscript in V
. In this way both volume and surface charges are included. If we Fourier 

transform this equation, we obtain 
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h k          (A.9)  

where k  is the Fourier transform of unity over the particle volume: 
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We can write (A.9) more compactly as 

 k 2
4

k

 
    

 

k
k

k m
h k           (A.11)   

where ∗  denotes a convolution. For a cylinder of height h and radius a, 
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k .         (A.12) 

When zk h 1  and  k a 
   in the convolution in Eq. (A.11), k  can be approximated by a 

delta-function, ( ) k , and we recover Eq. (A.7). For smaller k this approximation is invalid. 

  

Appendix B.  Relation between standing and running waves in   

The magnetization fields corresponding to running waves associated with orbital angular 

momentum p and –p (with p > 0) have the form, 

        p ˆ ˆ, t F r,z cos p t sin p t     m r x y ,    (B.1a) 

        p ˆ ˆ, t F r,z cos p t sin p t        m r x y ,    (B.1b) 
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where  F(r,z)  is an unspecified function. By superposing these fields, we obtain a standing wave 

pattern, 

          s
p p p ˆ ˆ, t F r,z cos p cos t sin t        m r m m x y .   (B.2) 

We wish to recover the running wave patterns from a knowledge of the standing wave pattern. 

To do this, we first transform the latter by rotating the amplitude by p, and the vector by 

direction by . The transformed field is,  

 
      

       

T s
p p, t r,z, 2p , t 2

ˆ ˆF r,z sin p sin t cos t .

     

       

m r m

x y
    (B.3) 

It is now easy to see that the difference of the transformed and the original stationary wave 

pattern gives us pm : 

      s T
p p p, t , t , t 2  

 
m r m r m r .       (B.4a) 

Likewise, the sum gives pm : 

      s T
p p p, t , t , t 2

  
 

m r m r m r .      (B.4b) 

 What this means is the following. Supposing OOMMF has produced a pattern which has 

p nodal lines in  at some fixed time. We denote this pattern by s
pm  as above. We then consider 

the vector fields 

 
 

 

 

 

 

 

s s
p,x p,yp,x

s s
p,y p,y p,x

m r,z, m r,z, 2pm r,z, 1 1

2 2m r,z, m r,z, m r,z, 2p





        
    

              

.   (B.5) 

If these combinations are used as initial conditions in OOMMF, they should evolve into p  and 

p  running waves as indicated. In this way we can obtain positive confirmation that these 

running waves are indeed eigenmodes; this is how we separated the p  and p  modes shown in 

Fig.’s 15 and 16. 
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