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We address an outstanding problem that represents a critical roadblock in the development of the Majorana-
based topological qubit using semiconductor-superconductor hybrid structures: the quantitative characteriza-
tion of disorder effects generated by the unintentional presence of charge impurities within the hybrid device.
Given that disorder can have far-reaching consequences for the Majorana physics, but is intrinsically difficult
to probe experimentally in a hybrid structure, providing a quantitative theoretical description of disorder effects
becomes essential. To accomplish this task, we develop a microscopic theory that (i) provides a quantitative
characterization of the effective potential generated by a charge impurity embedded inside a semiconductor
wire proximity-coupled to a superconductor layer by solving self-consistently the associated three-dimensional
Schrödinger-Poisson problem, (ii) describes the low-energy physics of the hybrid structure in the presence of
s-wave superconductivity, spin-orbit coupling, Zeeman splitting, and disorder arising from multiple charge im-
purities by using the results of (i) within a standard free fermion approach, and (iii) links the microscopic results
to experimentally observable features by generating tunneling differential conductance maps as function of the
control parameters (e.g., Zeeman field and chemical potential). We find that charge impurities lead to serious
complications regarding the realization and observation of Majorana zero modes, which have direct implications
for the development of Majorana-based qubits. More importantly, our work provides a clear direction regarding
what needs to be done for progress in the field, including specific materials quality and semiconductor purity
targets that must be achieved to create a topological qubit.

I. INTRODUCTION

Majorana nanowires have been among the most intensively
studied topics in physics since 2010, when it was theoreti-
cally proposed that semiconductor-superconductor (SM-SC)
hybrid platforms could host non-Abelian anyonic Majorana
zero modes (MZMs) [1–4] in the combined presence of s-
wave superconductivity, spin-orbit coupling, and Zeeman spin
splitting. The subject has also attracted serious technologi-
cal attention, way beyond its physics context, since Microsoft
Corporation chose this system as its preferred platform for
creating a fault-tolerant topological quantum computer [5–9].
A large number of experiments followed up on the theoretical
predictions using InSb or InAs nanowires and Al or Nb super-
conductors, generating a lot of excitement with reported ob-
servations of zero bias conductance peaks in tunneling spec-
troscopy [10–16], which were interpreted as possible signa-
tures of the putative MZMs. It has, however, become clear
by now that most of the experimental samples are likely to
contain potential disorder, which strongly affects the interpre-
tation of the tunneling experiments and opens the possibility
that the ubiquitous zero bias peaks showing up in the exper-
iments may actually be generated by disorder-induced non-
topological fermionic low-energy Andreev bound states [17–
26]. The subject is very much in flux and, in the absence of
a clear understanding and characterization of disorder effects,
much of what is going on experimentally remains problem-
atic, in spite of high-profile experimental publications with
claims of Majorana discovery appearing regularly.

This is the background and the context of the current the-
oretical work, in which we take a step back and ask a fun-
damental question: What happens if the nanowire, instead of
being pristine, has disorder arising from unintentional charge
impurities residing in it? The scenario considered in this ques-

tion is not hypothetical, since unintentional charge impurities
(“low doping”) constitute the commonest type of disorder in
high-quality semiconductor materials [27]. There is evidence
that the experimental nanowires do, in fact, have substantial
disorder. Given the considerable confusion about the situa-
tion surrounding the Majorana nanowire experiments and the
intrinsic difficulty of directly measuring disorder in hybrid
nanostructures, we think it is appropriate to take a quanti-
tative, microscopic approach to the problem by first solving
exactly the single impurity problem within a self-consistent
numerical scheme, then using the results to study topologi-
cal superconductivity and Majorana physics in the presence
of impurity disorder within the standard free fermion theory.

More specifically, this is what we do in this paper. First, we
provide a quantitative characterization of the effective poten-
tial generated by a charge impurity embedded inside a semi-
conductor wire proximity-coupled to a superconductor layer
by solving self-consistently the associated three-dimensional
Schrödinger-Poisson problem. Next, using the single impu-
rity effective potential obtained self-consistently, we construct
disorder potentials associated with the presence of multiple
charge impurities and solve numerically the Bogoliubov-de
Gennes (BdG) equations that describe the hybrid system in
the presence of s-wave superconductivity, spin-orbit coupling,
Zeeman splitting, and disorder arising from charge impuri-
ties. We also carry out first principles charge transport calcu-
lations and determine the tunneling differential conductance
as a function of various systems parameters (e.g., disorder
strength, chemical potential, and Zeeman splitting). Along
the way, we introduce a number of quantities that facilitate the
characterization of the low-energy physics in the presence of
disorder (e.g., the Majorana separation length and the edge-to-
edge correlation) and describe several protocols that enable a
more efficient extraction and use of experimentally accessible
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information (e.g., construction of zero-bias conductance cor-
relation maps). Given that the work presented in this paper is
multifaceted, with many independent results of importance in
their specific contexts, we first provide a summary of our key
findings, with references to the relevant equations and figures
(see Sec. II), so that the reader uninterested in the technical
details can simply learn about our main results without going
through the rest of the paper, with all its technical complexity.

We emphasize that our work is of considerable importance
to the development of a Majorana-based topological quan-
tum computer (TQC), as it addresses a critical outstanding
problem facing the realization of topological qubits using hy-
brid nanostructures, which is the platform Microsoft Corpo-
ration is working on. In particular, our finding that charge
impurities in the environment lead to serious complications
regarding the realization and observation of Majorana zero
modes has obvious direct implications for the development
of Majorana-based qubits and TQC. Our work provides a full
microscopic-based description of how experimentally avail-
able Majorana nanowire behave in the presence of charge im-
purity disorder of varying strength. More importantly, our
work provides a clear future direction regarding what needs
to be done for progress in the field, as well as quantitative
measures of the maximum allowed impurity concentrations
consistent with the full manifestation of topological MZMs
in hybrid nanostructures. In particular, based on our exten-
sive realistic calculations, we provide specific materials qual-
ity and semiconductor purity targets which must be achieved
to create a topological qubit, providing a clear blueprint for fu-
ture progress towards building a TQC. Our work establishes
a clear goal of using nanowires with impurity concentrations
around 1015 per cm3 or lower for TQC hardware to be feasi-
ble using Majorana qubits. This is a challenging target, but by
no means an impossible one.

The remainder of this paper is organized as follows. In
Sec. II we provide a summary of our key results and discuss
their significance in the context of the ongoing experimen-
tal effort to realize topological superconductivity and Majo-
rana zero modes using semiconductor-superconductor hybrid
structures. The case of a single charge impurity embedded
within a proximity-coupled nanowire is investigated in Sec.
III. The model used in our analysis is described in Sec. III A,
the details of the self-consistent Schrödinger-Poisson scheme
for calculating the effective impurity-induced potential are
presented in Sec. III B, and the results of the numerical cal-
culations are discussed in Sec. III C. Section IV is dedicated
to the multi-impurity case, with Sec. IV A describing the ef-
fective single-band model used in our analysis and Sec. IV B
discussing the results of the numerical calculations and their
implications for the low energy physics of hybrid nanostruc-
tures with charge impurities. Our concluding remarks are pre-
sented in Sec. V.

II. SUMMARY OF KEY RESULTS

In this section we provide a brief summary of our key re-
sults and indicate the relevant equations and/or figures. For

technical details and in-depth discussion of the results the
reader should consult the corresponding paragraphs in sec-
tions III and IV.

• We provide a quantitative description of the effec-
tive potential [see Eq. (28) and Fig. 3] generated
by a charge impurity embedded into a semiconductor
wire-superconductor nanostructure (Fig. 1) by solving
self-consistently the corresponding three-dimensional
Schrödinger-Poisson problem [Eqs. (1) and (2)].

• We show that the position dependence of the effective
impurity potential has a simple functional form [see
Eq. (29)], with two controlling parameters: the am-
plitude and decay length of the impurity potential in
the absence of redistribution of free charge. This can
help future device modeling in the presence of disorder,
by circumventing the need to explicitly address a nu-
merically demanding three-dimensional Schrödinger-
Poisson problem.

• We determine the distribution of the effective impu-
rity potential parameters by sampling 169 possible im-
purity locations evenly distributed over the hexagonal
cross-section of the semiconductor wire and show that
the typical values of the amplitude are on the order of
1.5 − 2 meV, while the typical decay lengths are about
8− 12 nm (Fig. 5).

• We demonstrate that the screening by the superconduc-
tor has a limited effect on reducing the magnitude and
characteristic length scale of the effective impurity po-
tential inside the semiconductor (Fig. 6). On the other
hand, screening by the free charge in the wire has con-
siderable effects (Fig. 7) and has to be incorporated
self-consistently to obtain a quantitative description of
the low-energy physics in the presence of charge impu-
rities.

• We show that the presence of multiple charge impu-
rities embedded inside the wire generates a correlated
disorder potential (Fig. 10) characterized by a corre-
lation function having a central peak of height on the
order 1 meV2 and width at half maximum in the range
20 − 40 nm (Fig. 11). The correlation function scales
with the impurity concentration.

• We introduce the precisely defined concepts of Majo-
rana separation length [Eqs. (39-41)] and the edge-
to-edge correlation [Eqs. (43-44)] as useful theoretical
tools for characterizing the effects of impurity-induced
disorder and we connect them to the differential tunnel
conductance [Eq. (45)].

• We show that generating comprehensive maps that
cover large ranges of control parameters (Figs. 13,
19, 20, and 21), rather than focusing on specific post-
selected traces, constitutes a productive approach to un-
derstanding disorder effects in hybrid devices. We sug-
gest that this should be the standard protocol for the ex-
perimental characterization of these devices, instead of
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the current focus on post-selected fine-tuned features,
which is potentially prone to serious confirmation bias
problems and provides no relevant information on the
effects of disorder.

• We find that in the low impurity density regime the sys-
tem is characterized by well separated Majorana modes
and finite edge-to-edge correlations within large areas
inside the nominally topological region, demonstrating
topological immunity to weak disorder (Figs. 13, 14,
16, and 19).

• In the intermediate impurity density regime, the param-
eter regions corresponding to significant edge-to-edge
correlations reduce to relatively small, isolated islands
located both inside and outside the nominally topolog-
ical region (Figs. 20 and 21). There is still a signifi-
cant region corresponding to well separated Majorana
modes (Fig. 20), but, typically, these modes are lo-
calized away from the edges of the system and remain
“invisible” to local probes applied to these edges (e.g.,
tunneling spectroscopy at the wire ends).

• We show that the zero-bias conductance maps (in the
tuning parameter space) are characterized by qualita-
tively different features inside and outside the nomi-
nally topological regime (Figs. 19 and 21). This sug-
gests that detailed zero-bias conductance maps could
help identify nominally topological regions even when
the presence of disorder suppresses the “standard” Ma-
jorana phenomenology expected in a clean system.

• We introduce “global” parameters that characterize the
properties of the Majorana bound states emerging in the
system in the presence of charge impurities [Eqs. (48-
49)] and we calculate the dependence of the disorder-
averaged “global” parameters on the impurity con-
centration (Figs. 25 and 26) and spin-orbit coupling
strength (Fig. 27).

• We find that well separated Majorana modes can gener-
ically emerge in the presence of charge impurities up to
relatively high impurity concentration levels, but, for a
given wire length, the presence of these well-separated
Majoranas translates into significant edge-to-edge cor-
relations only if the impurity concentration is below a
critical threshold (Figs. 25 and 26). The existence of a
disorder-dependent characteristic length scale is partic-
ularly significant in the context of the exponential pro-
tection of Majorana modes, which is necessary for fault
tolerant qubit operations.

III. SINGLE CHARGE IMPURITY

In this section, we investigate a single charge impurity em-
bedded within a semiconductor (SM) nanowire proximity-
coupled to a superconductor (SC). In particular, we address
the key question regarding the magnitude and characteris-
tic length scale of the potential inhomogeneity induced by

Vg d
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FIG. 1. Schematic representation of the SM-SC hybrid device with
an embedded charge impurity. A semiconductor nanowire (purple)
of radius R is proximity coupled to a thin superconductor (green).
An impurity (yellow sphere) of chargeQ embedded within the semi-
conductor nanowire will create a potential inhomogeneity. The band
edges of the low-energy SM subbands can be tuned near the Fermi
level using a back gate (black) separated from the wire by a thin di-
electric layer (gray).

the charge impurity. The screening due to the presence of
the superconductor and of a nearby metallic gate, as well
as the effects due to the redistribution of free charge within
the SM wire are incorporated using a position-dependent
self-consistent Schrödinger-Poisson scheme. Our model for
describing the SM-SC hybrid structure with an embedded
charge impurity is introduced in Sec. III A, the self-consistent
Schrödinger-Poisson method is presented in Sec. III B, while
the results of our analysis are discussed in Sec. III C.

A. Model

We consider the hybrid device represented schematically in
Fig. 1, which consists of a hexagonal semiconductor nanowire
of radius R (purple in Fig. 1) having a thin superconduct-
ing layer (green) deposited on two of its facets. A metallic
back gate (black) separated from the hybrid nanowire by a
thin dielectric layer of thickness d (gray) is used to tune the
band edges of the low-energy SM subbands near the Fermi
level. Up to minor modifications of the device geometry, e.g.,
having additional side gates, or depositing the SC on more
than two facets, this setup corresponds to the most prevalent
type of SM-SC hybrid device used experimentally for explor-
ing Majorana physics [10–12, 14, 26, 28–33]. The key ad-
ditional ingredient, which represents the focus of this study,
is a charge impurity Q embedded inside the SM wire, as is
indicated in Fig. 1 by a yellow sphere. In our theory, the
effects induced by the presence of the charge impurity are
calculated exactly within a position-dependent self-consistent
Schrödinger-Poisson formalism.

At this stage, the SM nanowire is modeled using a simple
effective mass Hamiltonian given by

H = − ~2

2m∗
∇2 − eφ (~r) , (1)

where m∗ is the effective mass, ∇2 is the Laplacian operator
in 3-dimensional space, and φ is the electrostatic potential in-
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side the wire. We assume that the wire is infinitely long. The
potential φ must satisfy the Poisson equation,

∇ · [ε(~r)∇φ(~r)] = −ρ(~r), (2)

where ε(~r) is a material dependent dielectric constant taking
different values inside the dielectric, the SM wire, and the sur-
rounding vacuum and ρ is the charge density within the wire.
We impose Dirichlet boundary conditions on the bottom gate
and the surface of the superconductor with potential values Vg
and VSC , respectively. Note that the boundary condition on
the SC surface accounts for the band-bending of the SM con-
duction band near the SM-SC interface [34, 35]. In addition,
we impose Neumann boundary conditions on the sides and
top of the full simulation region for Eq. (2), which are a dis-
tance b � R away from the nanowire. Note that this choice
of boundary conditions on the outer boundaries has negligible
impact on the potential within the nanowire [36]. It is con-
venient (and physically appealing) to break the total charge
density into three components,

ρ (~r) = ρo (x, y) + ρimp (~r) + ρred (~r) , (3)

where ρo is the free charge density inside the SM wire in the
absence of a charge impurity, ρimp is the charge density as-
sociated with the impurity, and ρred accounts for the redistri-
bution of free charge due to the presence of the impurity, i.e.
describes the screening cloud. Note that ρo is translation in-
variant along the direction parallel to the wire, which we take
as the z direction. The charge impurity is modeled as a small
sphere of radius Rimp and uniform charge density given by

ρimp(~r) =

{
3Q

4πR3
imp

, |~r − ~rimp| ≤ Rimp
0, |~r − ~rimp| > Rimp

, (4)

where ~rimp = ximpêx + yimpêy is the position vector of the
impurity. Note that, without loss of generality, we assume
zimp = 0. Finally, the free charge density is related to the
occupied electronic states,

ρf (~r) = ρo (x, y) + ρred (~r) = −2e
∑
n

|ψn (~r)|2 f (En, T ) ,

(5)
where ρf is the total free charge density, En and ψn are the
nth eigenenergy of the Hamiltonian (1) and the correspond-
ing eigenstate, respectively, f is the Fermi function, T the
temperature, and the factor of 2 accounts for spin degener-
acy. Note that Eq. (5) couples Eqs. (1) and (2), known as
the Schrödinger-Poisson equations. The free charge density
and the electrostatic potential are given by the self-consistent
solution of these equations.

Before presenting our method for solving the Schrödinger-
Poisson problem, a few comments about the model are war-
ranted. First, note that we have neglected the key ingredients
responsible for the emergence of Majorana physics in a SM-
SC hybrid structure, namely proximity-induced superconduc-
tivity, spin-orbit coupling, and Zeeman splitting. These addi-
tional contributions to the effective Hamiltonian, which will
be included in the finite wire model discussed in Sec. IV,

are characterized by energy scales much smaller than the typ-
ical inter-band spacing associated with the Hamiltonian in Eq.
(1), the potentials Vg and VSC , and the bare potential of the
charge impurity. In other words, the spatial profile of eigen-
states ψn and, implicitly, the charge density ρf (~r) and the
potential φ(~r) are mainly determined by the terms already in-
cluded in Eq. (1) and by the boundary conditions, while the
additional terms are expected to generate small perturbations.
Also note that we do not explicitly include the SC subsystem
in the Hamiltonian, but consider it in the boundary conditions.
Of course, the coupling between the SM and SC is crucial for
inducing superconductivity within the SM wire through prox-
imity effect. Moreover, it is known that the proximity cou-
pling to the superconductor renormalizes the low-energy spec-
trum of the hybrid system [9] and generates a shift of the SM
subbands [37]. However, these effects can be accounted for in
our model by modifying the effective mass and appropriately
shifting Vg and VSC . Consequently, to avoid the dramatic in-
crease of the computational cost associated with including the
SC in the Hamiltonian, we do not explicitly consider the SC
degrees of freedom. We stress, however, that the SC still plays
an important role in our model due to the band-bending gener-
ated by the Dirichlet boundary condition imposed on φ at the
SC surface.

B. Self-consistent Schrödinger-Poisson scheme

We start by decomposing the electrostatic potential into
three components, similar to Eq. (3). Explicitly, we have

φ (~r) = φo (x, y) + φimp (~r) + φred (~r) , (6)

where φo is the electrostatic potential in the absence of a
charge impurity, and φimp and φred are solutions of the Pois-
son equation with ρimp and ρred as source terms, respectively.
The Dirichlet boundary conditions for non-zero values of Vg
and VSC are imposed on φo, while φimp and φred are subject
to trivial boundary conditions. Next, we rewrite the Hamilto-
nian as

H = Ho +H ′, (7)

with

Ho =− ~2

2m∗
∇2 − eφo (x, y) , (8)

H ′ =− eφimp (~r)− eφred (~r) . (9)

Here, Ho is the Hamiltonian of the clean system (i.e., the wire
without a charge impurity) and H ′ represents the perturba-
tion due to the presence of the impurity. We first solve the
Schrödinger-Poisson equations with H = Ho. Details regard-
ing the self-consistent numerical procedure can be found in
Refs. [36, 38]. The key output of this initial calculation is a
set {(εα,o, ϕα) | α ∈ N} of transverse eigenenergies and cor-
responding eigenmodes. Note that the transverse wavefunc-
tion ϕα satisfies the eigenvalue equation

Ho

[
ϕα (x, y) eikz

]
=

(
εα,o +

~2k2

2m∗

)[
ϕα (x, y) eikz

]
,

(10)
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for arbitrary values of k. In other words, ϕα represents the
k-independent transverse profile of the α subband for a clean
system, while εα,o is the energy of the corresponding band
edge (i.e., bottom of the band). Since {ϕα} is a complete,
orthonormal set of transverse functions, we use it as a basis to
expand the states of the full Hamiltonian (7). Explicitly, we
have

ψn (~r) =
∑
α

ϕα (x, y) gn,α(z), (11)

where ψn is the nth eigenstate of Eq. (7) and gn,α(z) is a yet-
undetermined function of z. In principle, all subbands may
contribute to each eigenstate. In practice, however, only a lim-
ited number of low-energy subbands contribute significantly
to the low-energy eigenstates of the Hamiltonian. We there-
fore project the eigenstate (11) of the full Hamiltonian onto a
low-energy subspace defined by subbands with εα,o < εcut,
where εcut is a finite cutoff energy larger than any other rel-
evant energy scale in the problem. Note that the accuracy of
this low-energy projection can be tested by increasing εcut,
i.e., including additional transverse modes into the low-energy
basis. The basis is large-enough if further increasing it gener-
ates a negligible change of the final results.

Next, we point out that introducing a charge impurity
breaks the translation invariance along the z axis, making the
assumption of an infinite system rather inconvenient. To ad-
dress this issue, we impose periodic boundary conditions with
a supercell of length ` sufficiently large so that charge impuri-
ties in neighboring supercells have a negligible effect on one
another. In these conditions, the electrostatic potential within
the large supercell will be practically identical to the poten-
tial of an infinitely long system within a region of length `
containing the impurity. We introduce the following Fourier
transforms of the potential and charge density

φi (~r) =
∑
m

φ̃i,m(x, y)eiGνz, (12)

ρi (~r) =
∑
m

ρ̃i,m(x, y)eiGνz, (13)

where Gν = 2πm/` is a reciprocal lattice vector, ν ∈ Z, and
i ∈ {imp, red} designates different components defined in
Eqs. (3) and (6). Plugging Eqs. (12) and (13) into the Poisson
equation (2) yields[

∇⊥ · (ε∇⊥)− εG2
ν

]
φ̃i,m(x, y) = −ρ̃i,ν(x, y), (14)

for all possible values of ν, where ∇⊥ is the del operator in
the x-y plane. This reduces the original 3-dimensional Pois-
son equation to a set of independent 2-dimensional screened
Poisson equation equations with decay length, |G−1ν |. Note
that the 3D version of Eq. (14) with a point charge has the so-
lution, exp(−|Gν |r)/(4πεr), where r is the radially distance
from the point charge, which clearly illustrates the screening
effect due to the Gν term. These 2D screened Poisson equa-
tions are significantly less costly numerically, as compared to
the original 3D Poisson equation. As a result, we are able
to efficiently perform high resolution calculations of the self-
consistent potential near the impurity. By contrast, achieving

similar results using a brute force approach to the 3D Poisson
equation would require a dense discretization around the im-
purity, which would lead to significant costs in terms of both
memory and computational time.

With periodic boundary conditions, the low-energy expan-
sion of the eigenstates of the full Hamiltonian becomes

|n, kz〉 =

εα,o<εcut∑
α=1

∑
ν

|α, ν, kz〉An,kzα,ν , (15)

where kz ∈ (−π/`, π/`] is the crystal momentum in the z-
direction, An,kzα,ν = 〈α, ν, kz|n, kz〉 ∈ C, and the basis state
|α, ν, kz〉 is given by

〈~r|α, ν, kz〉 = ϕα (x, y)
ei(Gν+kz)z√

L
, (16)

where L is the total length of the system and the bra-ket no-
tation is introduced for convenience. Note that kz is a good
quantum number due to the discrete translation symmetry
with period `. Calculation of the Hamiltonian matrix elements
yields

〈α, ν, kz|Ho|β, ν′, kz〉 = εα,ν(kz)δα,βδq,ν′ , (17)

〈α, ν, kz|H ′|β, ν′, kz〉 = Ṽ α,βimp,ν′−ν + Ṽ α,βred,ν′−ν , (18)

where

εα,ν(kz) =εα,o +
~2

2m∗
(Gν + kz)

2
, (19)

Ṽ α,βi,ν =− e
∫
ϕ∗αφ̃i,νϕβ dxdy, (20)

with i ∈ {imp, red}. Using this representation, the charge
density can be expressed in the following compact form

ρ̃f,m (x, y) =
−e
L

∑
n,kz

∑
α,β

∑
ν′

An,kzα,ν′
∗
An,kzβ,ν′+ν

× f
[
En(kz), T

]
ϕ∗α(x, y)ϕβ(x, y),

(21)

where En(kz) is the eigenenergy of the nth eigenstate with
crystal momentum kz . Eq. (20) shows that both φimp
and φred generically have diagonal and off-diagonal ma-
trix elements corresponding to intra- and inter-subband cou-
plings. Consequently, the eigenstates of the full Hamilto-
nian will be linear combinations of basis states involving sev-
eral transverse modes. However, if the energy spacing be-
tween subbands is significantly larger than the perturbation
terms, Ṽ α,βimp,ν and Ṽ α,βred,ν , with α 6= β, the inter-subband
mixing is small and the subband index α becomes an “al-
most good” quantum number. This motivates us to consider
the independent subband approximation, in which we neglect
any Hamiltonian matrix element between different subbands,
i.e. 〈α, ν, kz|H|β, ν′, kz〉 = 0 for α 6= β, when calculating
the self-consistent potential. Within this approximation, the
subband index becomes a good quantum number, and we can
write the eigenstates as

|α, n, kz〉 =
∑
ν

|α, ν, kz〉An,kzα,ν , (22)
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where An,kzα,ν = 〈α, ν, kz|α, n, kz〉. The free charge density
reduces to

ρ̃f,ν (x, y) =
−e
L

∑
n,kz

∑
α

∑
ν′

An,kzα,ν′
∗
An,kzα,ν′+ν

× f
[
Eα,n(kz), T

]
|ϕα(x, y)|2 .

(23)

Finally, we can write the matrix elements of φred in a com-
pact form by introducing the subband Green’s function, g̃m,α,
defined as the solution of the Poisson equation,[
∇⊥ · (ε∇⊥)− εG2

ν

]
g̃ν,α(x, y) = −e |ϕα(x, y)|2 , (24)

with trivial boundary conditions, and the Green’s function ten-
sor,

g̃β,γν,α =

∫
ϕ∗β g̃ν,αϕγ dxdy. (25)

With these notations, the relevant matrix elements become

Ṽ β,γred,ν =
∑
α

g̃β,γν,αnα,ν , (26)

with

nα,ν =
1

L

∑
n,kz

∑
ν′

A(n,kz)
α,ν′

∗
A(n,kz)
α,ν′+νf

[
Eα,n(kz), T

]
, (27)

for ν 6= 0. If ν = 0, the structure of Eq. (27) remains the
same, but the quantity nα,0 associated with the clean system
must be subtracted, as it is already incorporated into φo. Note
that, while Eq. (26) gives both diagonal and off-diagonal ma-
trix elements, within the independent subband approximation
only the diagonal contributions containing tensor elements of
the form g̃β,βν,α are relevant for the self-consistent calculation
of the potential. Also, we point out that, once g̃β,γν,α and Ṽ α,βimp,ν
have been calculated using the self-consistent wavefunctions
of the clean system, the problem reduces to finding nα,ν self-
consistently. We perform this task using a simple iterative
mixing scheme. An iteration is numerically inexpensive, since
each subband corresponds to an independent 1D Schrödinger
equation that determines the eigenstates |α, n, kz〉. In fact, the
largest computation cost corresponds to calculating the ele-
ments g̃β,γν,α of the Green function tensor. Also note that, while
the subbands are independent as far as solving the Schrödinger
equation is concerned, they still affect each other through Eq.
(26), since nα,ν enters the expression of Ṽ β,βred,ν for all α and β.
Therefore our independent subband approximation still cap-
tures the main contribution due to inter-subband electrostatic
screening. In addition, we have explicitly checked that ne-
glecting inter-subband coupling has a negligible effect on the
spectrum of the full Hamiltonian.

Once the self-consistent solution is found, we Fourier trans-
form the matrix elements of the potential back to real space
and define the effective impurity potential matrix elements,

Vα,β (z) =
∑
ν

(
Ṽ α,βimp,ν + Ṽ α,βred,ν

)
eiGνz. (28)

These quantities provide information regarding the amplitude
and characteristic length scale of the potential inhomogeneity
induced by the charge impurity. Note that the diagonal ele-
ment Vα,α (z) can be interpreted as an effective 1D potential
for the α subband. On the other hand, the off diagonal element
Vα,β (z) couples the subbands α and β in a position dependent
manner.

For the numerical calculations we choose parameter val-
ues that roughly correspond to the currently existing InAs-Al
and InSb-Al nanowire-superconductor platforms, while being
somewhat on the reasonably optimistic side. We emphasize
that our qualitative and semi-quantitative conclusions do not
depend on the details of our parameter choice. Specifically,
we have used the following parameter values: radius of the
SM nanowire R = 35 nm, dielectric thickness d = 10 nm,
superconductor thickness WSC = 10 nm, SM permittivity
εSM = 15.15, dielectric permittivity εd = 24, effective mass
meff = 0.023, work function difference VSC = 110 meV,
radius of the charge impurity Rimp = 2.5 nm, supercell size
` = 500 nm, energy cutoff for the transverse modes εcut =
20 meV, kinetic energy cutoff of plane waves along the z di-
rection εkincut = 3 eV, Fourier coefficients satisfying |ν| ≤ 200
are used for the electrostatic potential and charge density ex-
pansions, and transverse mesh spacing within the semicon-
ductor for the Poisson, screened Poisson, and Schrödinger
equations is aSM = 1 nm.

C. Results

To understand the qualitative and quantitative characteris-
tics of the effective potential generated by a charge impurity
embedded inside the semiconductor wire, we start with a cal-
culation of the impurity potential φimp, which corresponds to
the second term in the decomposition given by Eq. (6). We
note that φimp is the solution of the Poisson equation (2) with
a source term given by ρimp from Eq. (4) and homogeneous
Dirichlet boundary conditions on the surface of the supercon-
ductor and the metallic gate. Consequently, in addition to the
bare 1/r potential of the charge impurity, φimp includes the
screening effect due to the presence of the SC layer and metal-
lic back gate. However, it does not include the screening ef-
fect due to the redistribution of the free charge within the wire,
which corresponds to φred in Eq. (6).

Maps of the screened potential amplitudes at z = 0 (i.e.,
in the plane containing the impurity) and z = 10 nm for two
different impurity locations are shown in Fig. 2. The left
panels correspond to an impurity located in the middle of the
wire, while the right panels show the potential of an impurity
located near the SM-SC interface. While at z = 0 the po-
tentials generated by the two impurities are comparable (see
top panels in Fig. 2), further away the potential of the central
impurity is much stronger that the potential generated by the
other impurity (lower panels). This indicates that the potential
of the impurity located near the SM-SC interface has a signif-
icantly shorter decay length than the central impurity, which
is the result of a stronger screening by the superconductor.
We conclude that, while the characteristic length scale of the
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FIG. 2. Impurity potential maps, φimp(x, y), within the semi-
conductor region for two impurity locations: middle of the wire,
(ximp, yimp) = (0, 0) [panels (a) and (c)] and close to the SM-SC
interface (top and upper right facets), (ximp, yimp) = (15, 25) nm,
[panels (b) and (d)]. The potential amplitudes at z = 0, i.e., in
plane containing the impurities, are comparable (top panels), while
at z = 10 nm the potential of the central impurity is much stronger
than the potential generated by the other impurity (lower panels) as a
result of weaker screening by the superconductor. Note the different
energy scales for the upper and lower panels. The impurity charge
Q = e is used for both impurity locations.

screened potential depends strongly on the location of the im-
purity relative to the SM-SC interface and the back gate, the
maximum amplitude of φimp is on the order of tens of meV re-
gardless of the location of the charge impurity. This is at least
one order of magnitude larger than the characteristic energy
scale associated with Majorana physics. Without additional
screening, the presence of charge impurities inside the hybrid
device would have catastrophic effects on the stability of topo-
logical superconductivity and Majorana zero modes. This is
a quantitative finding of extreme importance in the search for
Majorana zero modes, as it clearly reveals the fragility of the
quantum energy scale associated with Majorana physics (e.g.,
the topological gap ∼ 0.1 meV or less), which can be easily
overwhelmed by the huge (essentially classical) impurity en-
ergy scale (∼ 10 meV). This further emphasizes the critical
need for clean samples and the role of screening in limiting
the impurity-induced potential.

Next, we perform the full, self-consistent Schrödinger-
Poisson calculation and determine the effective impurity po-
tential matrix elements defined by Eq. (28). For concreteness,
we focus on a system that, in the absence of the impurity,
has the bottom of the fourth subband at the chemical poten-
tial, which is realized by properly tuning the gate potential
Vg . Since Majorana physics is controlled by the top occupied
subband, the relevant effective potential matrix elements Vα,β
correspond, in this case, to α = 4 and β = 3, 4, 5, with the
diagonal element V4,4(z) representing the intra-subband ef-
fective impurity potential and the off-diagonal elements V4,3
and V4,5 providing a measure of the impurity-induced inter-
subband coupling. The dependence of the effective potential
matrix elements on the distance |z| from the plane contain-
ing the impurity is shown in Fig. 3. We consider two cases:

50 25 0 25 50
|z| (nm)

4

2

0

2

4

V 4
,n

 (m
eV

) Q = e Q = -e

FIG. 3. The dependence of the effective potential matrix elements
on the distance |z| from the plane containing the impurity for a sys-
tem having the chemical potential near the bottom of the fourth sub-
band. The left side corresponds to a positively charged impurity
with Q = +e, while the right side corresponds to a negative charge,
Q = −e. Both impurities are located at (ximp, yimp) = (23, 0) nm.
The black solid lines correspond to the relevant intra-subband effec-
tive potential, V4,4, while the green and red dashed lines represent
the inter-subband matrix elements, V4,3 and V4,5, respectively.

positive charge impurity, Q = +e (left side of Fig. 3), and
negative charge impurity, Q = −e (right side). In both cases
the location of the impurity in the transverse plane is given
by (ximp, yimp) = (23, 0) nm. First, we note that the off-
diagonal contributions are smaller than, but comparable to the
diagonal term. If the inter-subband spacing is much larger
than ∆E ∼ 1 meV, the impurity-induced inter-subband cou-
pling is negligible and one can accurately describe the sys-
tem within the independent subband approximation. If, on
the other hand, the inter-subband spacing is comparable to
(or lower than) ∆E, inter-subband coupling becomes impor-
tant and the system has to be treated explicitly as a multi-
subband system. In this scenario, the system is expected to
be prone to the formation of topologically-trivial low-energy
states due to impurity-induced inter-subband coupling [39].
On the other hand, in the independent-subband regime the sys-
tem is expected to be less sensitive to impurity-induced disor-
der. This study focuses on the more favorable scenario in-
volving well separated subbands. We note that accessing this
regime depends critically on ensuring low subband occupancy
[36]. We emphasize that in systems characterized by small
inter-subband energy separation, which is generically the case
at high occupancy (e.g., for α > 10), inter-subband coupling
may prevent the realization of a robust topological phase even
in the absence of disorder [39]. Here, we focus on the sit-
uation corresponding to large inter-subband energy splittings
and low subband occupancies, where the inter-subband cou-
pling (induced by, e.g., charge impurities) can be safely ne-
glected. Note that, in principle, the subband occupancy can
be kept low by properly tuning the gate voltage, Vg .

The diagonal matrix elements (full black lines in Fig. 3) are
characterized by amplitudes of a few meV and decay lengths
on the order of 10 nm. In general, the amplitude of the poten-
tial generated by a negative charge is slightly larger that the
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amplitude of a positive charge potential corresponding to the
same subband and impurity location. This is a screening effect
arising from the free charge being made of electrons, which
are more effective in screening a positively charged impurity.
Note that the dependence of V4,4 on z is not monotonic, being
characterized by a fast decay at short distances followed by a
change of sign and a slow decay at long distances. Remark-
ably, this behavior, which turns out to be quite generic, is well
captured by the following empirical function

Vα,α(z) = Bαimpe
−|z|/λαimp −Bαrede−|z|/λ

α
red , (29)

where the four fitting parameters, Bαimp, Bαred, λαimp, and
λαred, depend on the band index, α, and also on the specific
location of the impurity, (ximp, yimp). Details regarding the
fitting procedure, its accuracy, and numerical fitting parame-
ters are provided in Appendix A. Note that the first and sec-
ond terms in Eq. (29) account for the effective impurity and
redistribution potentials, respectively. Moreover, while there
are four fitting parameters in the Eq. (29), which, in princi-
ple, are independent, we show in Appendix A that correla-
tions between the fitting parameters imply that one only needs
to input Bαimp or Bαimp and λαimp, i.e., two independent pa-
rameters, to obtain a realistic disorder potential. This has two
major implications. First, to understand the dependence of
the effective impurity potential on the band index and the po-
sition of the impurity, it is enough to study the dependence
of the amplitude and decay length on these parameters, which
substantially simplifies our analysis. Second, the simple form
of Eq. (29) provides an extremely useful phenomenologi-
cal model for describing charge impurities embedded within
SM-SC hybrid devices. Combined with our quantitative re-
sults described below, this enables the study of disorder gen-
erated by charge impurities without actually performing a full,
numerically-intensive Schrödinger-Poisson calculation. The
validation of the relatively simple empirical fitting of the im-
purity potential defined by Eq. (29) is an important result of
our work.

Our next task is to determine the dependence of the am-
plitude and decay length characterizing the effective disorder
potential Vα,α(z) on the position of the impurity and the sub-
band index. Here, we define the amplitude as Vα,α(z = 0),
while the decay length ξα is obtained by finding z such that
Vα,α(z) = Vα,α(0) exp(−1). We emphasize that, within the
independent subband regime, the only relevant matrix element
is the diagonal element corresponding to the top occupied sub-
band. In turn, the occupancy of the SM subbands is controlled
by the applied gate potential Vg .

To acquire some intuition, we first consider a specific exam-
ple involving a system having the bottom of the second sub-
band near the chemical potential. A map showing the depen-
dence of the amplitude V2,2(0) on the position of the impurity
is provided in Fig. 4(b). We note that the amplitude of the ef-
fective impurity potential depends strongly on the position of
the impurity. The largest amplitude corresponds to locations
where the second transverse mode has high spectral weight.
This is not surprising, considering that V2,2(0) is a matrix ele-
ment of a short range quantity over the second subband. Also
note that, as a result of having a finite work function differ-

FIG. 4. (a) Histogram of the effective potential amplitude V2,2(0).
Data taken from 169 impurity locations sampled evenly over the
hexagonal cross-section. (b) Effective potential amplitude V2,2(0)
as a function of the impurity position, (ximp, yimp). Note that the
largest amplitude corresponds to locations where the second trans-
verse mode has high spectral weight.

ence, VSC , the lowest energy modes tend to be localized in
the vicinity of the SM-SC interface. Higher energy modes, on
the other hand, are more evenly spread over the cross section
of the wire. The subband-dependent amplitude of the effec-
tive impurity potential Vα,α(0) exhibit a similar dependence
on the position of the charge impurity. To describe quanti-
tatively the distribution of potential amplitudes, we generate
a histogram of the amplitude corresponding to 169 impurity
locations sampled evenly over the hexagonal cross-section of
the wire. The results are shown in Fig. 4(a). Note that, as a
result of the second subband being localized near the SM-SC
interface, the distribution is skewed toward lower amplitudes.
For higher energy modes, the amplitude distributions are more
uniform, as a consequence of the wider distribution of spectral
weight associated with those modes.

Our analysis of the position dependence of V2,2(0) suggests
that, in general, a compact characterization of the potential
amplitude Vα,α(0) can be obtained by simply focusing on the
distribution obtained by sampling the hexagonal cross-section
of the wire. Note that the effective potential Vα,α is relevant
when the bottom of the corresponding subband is in the vicin-
ity of the Fermi level. We characterize the distributions by
specifying the minimum and maximum values of the potential
amplitude, as well as the values corresponding to the median
(50%), 25%, and 75%. A similar procedure can be used to
compactly characterize the distribution of decay lengths. The
results for subbands 2 − 10 are shown in Fig. 5. The or-
ange lines indicate the median (50%), the boxes correspond
to the 25 − 75% range, and the whiskers mark the upper and
lower boundaries of the distribution. We note that the distri-
butions corresponding to a given subband α were obtained for
a value of the applied gate potential Vg that tunes the bottom
of the subband near the chemical potential. As indicated in
Fig. 5, for Vg = 0 the system has the fourth subband near
the chemical potential. Accessing lower energy subbands re-
quires depleting the wire, i.e., applying a negative gate poten-
tial. Higher energy bands, on the other hand, become relevant
at positive Vg values. We note that the typical values of the
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FIG. 5. Distributions of the intra-subband effective potential am-
plitude, Vα,α(0), (a) and decay length, ξα, (b) for the subbands
α = 2− 10 with Q = −e. Note that the distributions corresponding
to α = 1 are not shown. The bottom of each subband is tuned to
the Fermi level by adjusting the gate potential Vg . The orange lines
indicate the median (50%) of the distribution, the boxes correspond
to the 25 − 75% range, and the whiskers mark the upper and lower
boundaries of the distribution. Each subband distribution is sampled
over 169 impurity locations evenly distributed over the hexagonal
cross-section of the semiconductor wire.

effective potential amplitude are on the order of 2 meV, signif-
icantly larger than the typical superconducting energy scales
associated with Majorana physics. The typical decay lengths
are in the range 8− 12 nm for α ≥ 3, while the lowest energy
subbands are characterized by longer (typical) decay lengths
and wider distributions due to the localization of the corre-
sponding transverse modes near the SM-SC interface.

An important question that can be raised at this point con-
cerns the role of the superconductor in screening the impurity
potential. To address it, we consider a charge impurity embed-
ded inside a semiconductor wire in the absence of the super-
conductor layer. Note that the only change with respect to the
calculations described above is the elimination of the Dirich-
let boundary condition φ = VSC at the SC surface. The dis-
tributions of the intra-subband effective potential amplitude,
Vα,α(0), and decay length, ξα, for the even subbands with
2 ≤ α ≤ 10 are shown in Fig. 6. Note that in the absence
of superconductor-induced band bending the values of Vg as-
sociated with different subbands are different from the corre-
sponding values in Fig. 5. The key result of this calculation,
which is revealed by the comparison of Figs. 5 and 6, is that
screening by the superconductor does not generate a dramatic
effect, as it reduces the typical amplitude of the effective im-
purity potential by at most a factor of two and slightly short-
ens the typical decay length. This behavior is mainly due to
the fact that the impurities inside the SM wire are typically lo-

FIG. 6. Same as Fig. 5, but for a system without a superconduc-
tor layer. The distributions correspond to even subbands with index
(from left to right) 2 ≤ α ≤ 10. Note that, as compared to the results
shown in Fig. 5, the typical values of the effective impurity poten-
tial amplitude are larger by at most a factor of two, while the typical
decay lengths are only slightly larger, which indicates that screening
by the superconductor has a rather limited effect.

cated too far from the SM-SC interface for the superconductor
to drastically screen out the impurity potential.

Another important question regards the screening of the
impurity potential due to the free charge redistribution in
the wire. To characterize the renormalization of the band-
dependent effective potential due to free charge redistribution,
we introduce the amplitude screening factor, Z(A)

α , and the in-
tegrated screening factor, Z(I)

α , defined as follows

Z(A)
α =

Vα,α(z = 0)

V impα,α (z = 0)
, (30)

Z(I)
α =

∫
Vα,α(z)dz∫
V impα,α (z)dz

, (31)

where V impα,α (z) is the real-space diagonal matrix element of
the impurity potential,

V impα,α (z) =
∑
ν

Ṽ α,αimp,νe
iGνz, (32)

with Ṽ α,αimp,ν given by Eq. (20). Note that, using Eq. (28), the
effective potential can be written as Vα,α(z) = V impα,α (z) +

V redα,α (z), where V impα,α includes the bare impurity potential
contribution and the screening by the superconductor and the
metallic gate, while V redα,α is the contribution due to free charge
redistribution. A specific example corresponding to a positive
charge impurity embedded inside a system having the chem-
ical potential near the bottom of the second subband is given
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FIG. 7. (a) Position dependence of the effective impurity potential
V2,2 (black line) and its impurity component, V imp2,2 (blue dashed
line), and free charge redistribution component, V red2,2 (orange dashed
line), for a positively charged impurity placed at ximp = −18 nm,
yimp = 10 nm inside a wire having the second subband tuned to
the Fermi level. (b) Average amplitude screening, Z(A)

α (red cir-
cles), and average integrated screening Z(I)

α (green circles), for a
positively charged impurity, Q = +e, embedded in a wire having
the chemical potential tuned near the bottom of different subbands.
The bars correspond to one standard deviation, which ranges from
0.03 to 0.13. Each subband distribution is sampled over 169 im-
purity locations evenly distributed over the hexagonal cross-section
of the semiconductor wire. (c) Same as (b) for a negatively charge
impurity, Q = −e. Note that the screening by the free charge of
negative impurities is significantly less effective than the screening
of positive impurities.

in Fig. 7 (a). Note that V redα,α has a larger decay length and a
smaller amplitude than the impurity potential. This is a gen-
eral property responsible for the sign change of the effective
potential and the “hump” (“dip” for negative impurities) fea-
ture starting near z ≈ 30 nm.

The average screening factors averaged over different trans-
verse impurity positions for a system with different occupancy
levels are shown in Fig. 7 (b) and (c) for positively and neg-
atively charged impurities, respectively. First, note that Z(A)

α

is a measure of short-range screening, while Z(I)
α takes into

account long-range contributions. Since in general V redα,α has

a longer decay length than V impα,α , we have Z(I)
α < Z(A)

α .
Second, the screening by the free charge of positive impuri-
ties is significantly more effective that the screening of neg-
ative impurities. In particular the integrated screening factor,
Z(I)
α , has values smaller than 0.2 for all subbands, indicating

that the contribution from the “hump” feature almost cancels
the contribution from the central dip. In fact, in the case of
the sixth subband the average integrated screening factor for
Q = e is actually negative, indicating over-screening by the
free charge. In addition, we note that the screening of nega-
tive impurities is more effective when the subband occupancy
increases, while in the case of positive impurities the depen-
dence on the subband index is weak. Our analysis demon-
strates that screening due to free charge redistribution in the
wire is a significant effect that has to be taken into account to

obtain a quantitative description of the low-energy physics in
the presence of charge impurities. This is physically reason-
able, since the free charge inside the SM wire resides within
the same spatial region as the impurity, making its screening
effect quantitatively dominant.

We conclude this section with a comment on the rele-
vance of the results obtained here to understanding Majo-
rana physics in semiconductor-superconductor structures. On
the one hand, the matrix elements of the effective impurity
potential obtained numerically from the self-consistent solu-
tion of the Schrödinger-Poisson problem can be used to in-
vestigate hybrid devices containing a finite number of ran-
domly distributed charge impurities. The single impurity ma-
trix elements should represent an excellent approximation, as
long as the typical distance between neighboring impurities
is much larger than the characteristic decay length ξ, so that
each impurity can be considered as independent. In addition
to the “high energy” ingredients described in Sec. III A, the
model used in this type of investigation should include the key
ingredients necessary for the emergence topological super-
conductivity, i.e., proximity-induced superconductivity, spin-
orbit coupling, and Zeeman splitting. We pursue this path in
the next section. On the other hand, the single impurity results
described above can be used to construct phenomenological
models with an effective impurity potential given by in Eq.
(29) and relevant parameters, i.e., amplitude Aα and decay
length ξα, having distributions similar to those shown in Fig.
5 (see Appendix A for more details regarding the construc-
tion of phenomenological models). This type of approach en-
ables the efficient investigation of the disordered system over
a large parameter space without the need to address a nu-
merically demanding three-dimensional Schrödinger-Poisson
problem. Hence, in addition to the results discussed below,
Majorana device modeling should indirectly benefit from our
phenomenological characterization of the impurity potential
given by Eq. (29).

IV. MULTIPLE CHARGE IMPURITIES

In this section we consider a hybrid nanowire with multiple
embedded charge impurities and investigate the effect of the
impurity-induced potential on the low energy physics, focus-
ing on the fate of the Majorana zero energy modes that emerge
in the clean system. Our analysis is based on two working as-
sumptions. i) We consider systems with low/intermediate im-
purity concentrations, which are characterized by average dis-
tances between neighboring impurities that are much larger
than the characteristic length of the effective (single) impu-
rity potential. This allows us to work within the independent
impurity approximation, in which each charge impurity gen-
erates an effective potential that is independent of the pres-
ence of other impurities and can be described using the ap-
proach discussed in the previous section. ii) We assume that
the inter-subband spacing is much larger than all other rele-
vant energy scales. This allows us to work within the indepen-
dent band approximation, which neglects the effects of inter-
subband coupling. Within this approximation, the low-energy
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physics can be accurately captured using an effective single
band model. We note that the independent band approxima-
tion is expected to break down in systems with high subband
occupancy [36]. Also note that in systems with low inter-
subband spacing the effects of impurity-induced disorder are
expected to be significantly stronger than the effects described
below, due to additional contributions from impurity-induced
inter-subband couplings [39]. So, the situation discussed here
is, in some sense, the most optimistic scenario conducive to
the emergence of topological Majorana modes; strong dis-
order, high subband occupancy, and, implicitly, small inter-
subband spacing will simply make the situation worse, with
topological physics being practically impossible to achieve in
SM-SC hybrid platforms. The effective single band model for
a hybrid wire with multiple charge impurities is introduced in
Sec. IV A. The results of our numerical analysis are discussed
in Sec. IV B.

A. Model

Within the independent subband approximation, the system
can be described using an effective one-dimensional single-
band model [1, 4] defined by the Bogliubov-de Gennes (BdG)
Hamiltonian,

H =

(
− ~2

2m∗
∂2z − µ− iαR∂zσy + Γσz

)
τz

−∆σyτy + Vimp (z) τz,

(33)

where m∗ is the effective mass, µ is the chemical potential,
αR is the Rashba spin-orbit coupling coefficient, Γ is the Zee-
man energy, ∆ is the induced superconducting pairing, Vimp
is the effective potential generated by the presence of charge
impurities, and σi and τi, with i = x, y, z, are Pauli matri-
ces in spin and particle-hole spaces, respectively. Note that all
parameters in Eq. (33) are assumed to be position indepen-
dent, and we use the values m∗ = 0.023, αR = 20 meV · nm,
and ∆ = 0.3 meV unless stated otherwise. Note that these
correspond to optimistic parameter values of InAs-Al hybrid
nanowires.

On the other hand, the impurity potential has the form

Vimp (z) =

Nimp∑
m=1

Vα,α (z − zm;Qm, xm, ym) , (34)

where Nimp is the total number of impurities embedded
within the wire, Vα,α is the effective potential generated by
a single impurity, i.e., the intra-subband matrix element given
by Eq. (28), rm = (xm, ym, zm) describes the position of
impurity m, and Qm indicates its charge. We assume charge
neutrality and consider an equal number of positive (Q = +e)
and negative (Q = −e) elementary charges distributed ran-
domly throughout the wire. Each disorder realization corre-
sponds to a specific set of Nimp impurity positions {rm} and
a set of Nimp charges {Qm}. Note that (xm, ym) can take
169 different values sampled evenly over the hexagonal cross-
section of the nanowire, while zm can take any value corre-
sponding to a lattice site of the discretized version of Eq. (33)

with az = 4 nm being the lattice spacing. For concreteness,
we assume that chemical potential is tuned near the bottom
of the second subband, so that the relevant matrix elements
Vα,α entering Eq. (34) correspond to α = 2. These matrix
elements are calculated self-consistently following the proce-
dure described in Sec. III B. The low-energy eigenvalues and
the corresponding eigenstates of the Hamiltonian (33) are then
obtained using the Lanczos method [40].

To facilitate the connection with experimental tunneling
spectroscopy, we also calculate the differential conductance
for charge tunneling into the left or the right end of the wire.
This is realized by connecting the proximitized wire to semi-
infinite leads at both ends and using the Blonder-Tinkham-
Klapwijk (BTK) formalism [41]. The normal leads are mod-
eled by the Hamiltonians,

HL(R) =

(
− ~2

2m∗
∂2z − µl + VL(R) (z)

)
τz, (35)

where the labels L and R designate the left and right leads,
respectively, µl is the chemical potential of the leads, and VL
and VR are tunnel barrier potentials at the left and right ends
of the system, respectively. The tunnel barriers are square
potential barriers of amplitude VB and length LB = 20 nm
located at the ends of the corresponding leads directly adjacent
to the proximitized wire. To evaluate the scattering matrix S,
we consider the retarded Green’s function,

G (ω) =
[
ω − H̄ − ΣL (ω)− ΣR (ω) + iη

]−1
, (36)

where H̄ is the (discretized) Hamiltonian containing the sites
within the proximitized region, as well as the barrier sites, plus
one additional site on each side of the system, immediately
outside the corresponding barrier region, ΣL and ΣR are the
self-energies obtained by integrating out the degrees of free-
dom associated with the left and right leads [42], respectively,
and η ∈ R+ accounts for dissipative broadening [21, 43]. The
boundary elements of the Green’s function (36) are calculated
using the recursive Green’s function algorithm [44]. In turn,
these elements can be related to the scattering matrix, S, us-
ing the Fisher-Lee relations [45]. Finally, the scattering matrix
elements are used to calculate the local conductance [41],

Gi =
e2

h

(
2− Tr(Seeii ) + Tr(Sehii )

)
, (37)

where Seeii and Sehii describe the reflection of incoming elec-
trons with energy ω into electrons and holes, respectively, and
i = L, R. The numerical values of the parameters used in
the diferential conductance calculations are µl = 20 meV,
VB = 40 meV, LB = 20 nm, and η = 20 µeV.

Before discussing the results, a few comments are war-
ranted. By taking the effective impurity potential, Vimp, in Eq.
(34) to be a sum of single impurity potentials, we are neglect-
ing any change of the potential due to inter-impurity coupling.
This is expected to be a good approximation, provided the typ-
ical spacing between charge impurities is larger than the single
impurity potential decay length, i.e., in the low/intermediate
impurity density regime. The results shown in Fig. 5 indi-
cate that the decay length is in the range ξ ≈ 5 − 25 nm,
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FIG. 8. Low-energy spectrum as a function of Zeeman splitting for
a wire of length L = 4.2 µm having a square potential well (a) or
barrier (b) localized near its center. The width of the square potential
is Lb = 50 nm and its height is (a) Vb = −10∆ and (b) Vb =
10∆. Red and green lines correspond to the first and second lowest
energy modes, respectively. (c) Spectrum as a function of Vb/∆ for a
Zeeman field Γ = 3∆. Blue solid and dashed lines indicate matching
parameters in panel (c) and panels (a) and (b), respectively.

which is significantly less than the typical impurity separa-
tion length for low/intermediate impurity densities. Note that
for higher impurity densities we find that Majorana physics is
completely destroyed by disorder, a conclusion that is unlikely
to be modified by including inter-impurity coupling effects.
The fact that strong disorder destroys the Majorana physics
in nanowires and other superconducting systems is now well-
accepted.

Finally, we note that the generalization of the single-band
formalism discussed here to a multi-subband approach is
straightforward. The generalized effective model is a one-
dimensional multi-subband model with inter-subband cou-
pling induced by the off-diagonal matrix elements of the ef-
fective potential, Vα,β , with α 6= β. As shown in Sec. III C,
these elements are typically smaller than, but comparable to
the corresponding diagonal elements (see Fig. 3). The inter-
subband coupling terms are expected to become relevant when
the inter-subband spacing ∆E between subbands close to the
Fermi level is comparable to the magnitude of Vα,β , which
implies ∆E <∼ 1 meV. For the case investigated here, which
corresponds to the second subband being tuned near the chem-
ical potential, the inter-subband spacing is ∆E ∼ 10 meV,
significantly larger than the amplitude of the effective poten-
tial matrix elements. Consequently, we can safely ignore the
disorder-induced inter-subband coupling. High occupancy, on
the other hand, is associated with a reduction of the inter-
subband spacing [36] and a multi-subband approach becomes
necessary. We emphasize that in the multi-subband regime
the system is less robust against disorder [39, 46]. Therefore,
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FIG. 9. Position dependence of the amplitude of the Majorana
wave functions, |χAn |2 and |χBn |2, corresponding to the lowest en-
ergy states (n = 1, 2) in Fig. 8. The values of the potential height Vb
and Zeeman field Γ are indicated inside each subplot. Note that the
lowest energy states (n = 1, red lines in Fig. 8) correspond to a pair
of Majorana modes localized near the two ends of the nanowire (red
and green modes), while the potential-induced in-gap states (n = 2,
green lines in Fig. 8) correspond to a pair of (partially) overlapping
Majorana modes localized near the middle of the wire (purple and
yellow modes). At the Andreev crossing corresponding to Γ ≈ 5.4∆
in Fig. 8(a) the two Majorana modes completely overlap [panel (c)].

our independent-subband treatment provides upper bounds
for impurity concentrations consistent with various aspects
of Majorana physics. In other words, we are considering the
most favorable scenario in order to predict the upper bound on
the allowed disorder that would still enable topological Majo-
rana physics to emerge in realistic SM-SC structures.

B. Results

The numerical results discussed in this section correspond
to a charge neutral system containing an equal number of posi-
tively and negatively charged impurities with chargesQ = +e
and Q = −e, respectively. Positive charges create local po-
tential wells, while negatively charged impurities generate ef-
fective potential barriers. To gain some intuition regarding
the effects induced by the two types of potential perturba-
tions (i.e., “well” and “barrier”), we first consider a wire of
length L = 4.2 µm having an “artificial” potential perturba-
tion localized near the middle of the wire and consisting of
a square potential well (barrier) of width Lb = 50 nm and
height Vb = −10∆ (Vb = +10∆), where ∆ = 0.3 meV
is the induced pair potential. The dependence of the corre-
sponding low-energy spectra on the applied Zeeman field is
shown in Fig. 8, panels (a) and (b). Note that the short-range
potential perturbation induces sub-gap states (green lines in
Fig. 8) when the system is in the topological regime [47, 48],
which can act as a source of quasiparticle poisoning in Majo-
rana qubits [49]. Also note that the characteristic energy of the
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in-gap mode generated by the potential barrier is much lower
than the energy of the in-gap mode generated by the potential
well, except for an isolated zero energy crossing at Zeeman
field Γ ≈ 5.4∆.

The difference between the in-gap mode induced by the po-
tential well and that generated by the potential barrier is fur-
ther illustrated by the dependence of these modes on the am-
plitude of the square potential. This dependence is shown in
fig. 8(c) for a fixed value of the Zeeman field, Γ = 3∆. Note
that the potential well generates an in-gap mode with energy
comparable to the topological gap, except a few isolated An-
dreev crossings. By contrast, the mode generated by the po-
tential barrier collapses toward zero energy with increasing
Vb. This is a specific example of a near-zero energy subgap
mode induced by an inhomogeneous potential, a scenario ex-
tensively discussed in the literature.

To identify the nature of the in-gap modes, we calculate the
corresponding wave functions in the Majorana representation.
More specifically, let ψ±En(z), with 0 ≤ E1 ≤ E2, be the
lowest energy eigenstates of the BdG Hamiltonian. We define
the following Majorana components associated with the low-
energy BdG states [50]

χAn (z) =
1√
2

[ψEn(z) + ψ−En(z)] ,

χBn (z) =
i√
2

[ψEn(z)− ψ−En(z)] . (38)

Note that χAn and χBn are not eigenstates of the BdG Hamil-
tonian, except for En = 0, and we have 〈χAn |H|χAn 〉 =
〈χBn |H|χBn 〉 = 0 and 〈χAn |H|χBn 〉 = iEn. The position de-
pendence of the amplitude of the Majorana wave functions
corresponding to the in-gap states from Fig. 8 are shown in
Fig. 9. The lowest energy states, n = 1 (red lines in Fig.
8), correspond to a pair of Majorana modes localized near the
two ends of the nanowire (red and green modes in Fig. 9).
On the other hand, the in-gap states induced by the square po-
tential perturbation, n=2 (green lines in Fig. 8), correspond
to a pair of (partially) overlapping Majorana modes local-
ized near the middle of the wire (purple and yellow modes
in Fig. 9). Note that the Majorana modes generated by the
potential well [Fig. 9(b)] have a significantly stronger over-
lap than the Majorana modes generated by the potential bar-
rier [Fig. 9(a)]. Furthermore, at the Andreev crossings, the
two Majorana modes χA2 and χB2 completely overlap, gener-
ating a “regular” Andreev bound state localized in the poten-
tial well. In general, however, the in-gap modes generated
by the local potential perturbation can be viewed as a pair of
partially overlapping quasi-Majorana modes [51] or, alterna-
tively, as a partially separated Andreev bound state (ps-ABS)
[23]. As shown below, partially overlapping/separated Majo-
rana modes emerge generically in proximitized wires in the
presence of positively/negatively charged impurities.

Next, we characterize the effective potential generated by
charge impurities embedded within the wire by providing
some specific examples and calculating the correlation func-
tion 〈Vimp(z)Vimp(z′)〉. The position dependence of the ef-
fective impurity potential Vimp(z) given by Eq. (34) for two
disorder realizations with impurity densities nimp = 1.6 ·
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FIG. 10. Position dependence of the effective impurity potential for
two specific disorder realizations corresponding to impurity densities
(a) nimp = 1.6 · 1015 cm−3 (linear density λimp = 5 µm−1) and
(b) nimp = 4.7 · 1015 cm−3 (linear density λimp = 15 µm−1). The
chemical potential of the wire is tuned near the bottom of the sec-
ond subband. These impurity potentials are used in the calculations
discussed in subsections IV B 1 and IV B 2.

1015 cm−3 and nimp = 4.7 · 1015 cm−3, respectively, are
shown in Fig. 10. The first example corresponds to a low im-
purity density of about 5 impurities per micron, while the sec-
ond example corresponds to an intermediate regime with 15
impurities per micron. These are relatively low impurity con-
centrations for semiconductor materials, but within the cur-
rent technological capability. Note that the amplitude of the
strongest potential peaks exceeds 5 meV, which corresponds
to about 17∆, a significant perturbation (more than an order
of magnitude larger than the SC gap) even taking into account
its relatively short range. The properties of the system in the
presence of the effective potential shown in Fig. 10 (a) are dis-
cussed in Sec. IV B 1, while the intermediate impurity density
regime corresponding to Vimp given in Fig. 10 (b) is investi-
gated in Sec. IV B 2.

To obtain a more generic characterization of the effective
impurity potential, we consider many disorder realizations
consistent with given values of the impurity density and cal-
culate the correlation function 〈Vimp(z)Vimp(z′)〉. The re-
sults for a system with impurity densities nimp = 0.25 ·
1016, 0.5·1016, 1·1016 cm−3, which correspond to linear den-
sities λimp = 7.9, 15.9, 31.8 µm−1, respectively, are shown in
Fig. 11. Each curve was obtained by averaging over 5·105 dis-
order realizations. Note that the potential correlation function
scales with the impurity density. For the intermediate density,
nimp = 0.5 · 1016 cm−3, the correlation function is character-
ized by a central peak of height ∝ 1 meV2 and width at half
maximum of about 40 nm.

Based on previous studies of disorder effects in Majorana
nanowires [17–20, 23, 24, 52–54], we know that the presence
of disorder generally induces low-energy sub-gap states. Also,
the simple example illustrated in Figs. 8 and 9 suggests that,
at least under certain conditions, these sub-gap states consist
of partially overlapping Majorana modes (or ps-ABSs) local-
ized throughout the wire, in general away from the ends of
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FIG. 11. Correlation of the impurity potential for a system with
impurity densities nimp = 0.25 · 1016 cm−3 (black), nimp =
0.5 · 1016 cm−3 (red), nimp = 1 · 1016 cm−3 (green), which cor-
respond to linear densities λimp = 7.9 µm−1, λimp = 15.9 µm−1,
and λimp = 31.8 µm−1, respectively. The system is charge neutral
(i.e., contains an equal number of Q = +e and Q = −e impuri-
ties, and has the chemical potential near the bottom of the second
subband. Each correlation function was obtained by averaging over
5 ·105 disorder realizations. Note that the potential correlation scales
with the impurity density.

the system. Note, however, that the presence of such non-
topological (often called “trivial”) ABSs does not necessar-
ily affect the “genuine” topological Majorana zero modes
(MZMs) that emerge in the topological regime at the ends of
the system, as shown in Fig. 9. Therefore, it is of crucial im-
portance to characterize quantitatively the spatial separation
between Majorana modes and the edge-to-edge correlation as-
sociated with the presence of MZMs at the ends of the wire
and investigate the effect of charge impurity-induced disorder
on these quantities. To this end, we introduce the Majorana
separation length, `sep, defined as follows. Let ψEn , with
En ≥ 0, be a positive energy eigenstate of the BdG Hamilto-
nian and χ(L/R)

n be its left/right Majorana components. The
corresponding Majorana separation length is defined as

`(n)sep = 〈zn,R〉 − 〈zn,L〉, (39)

where 〈zn,L(R)〉 is the expectation value of the position along
the wire corresponding to the left (right) Majorana compo-
nent. Explicitly, we have

〈zn,J〉 =
∑
ν

Nz∑
i=1

∣∣∣χ(J)
n (zi, ν)

∣∣∣2 zi, (40)

where J ∈ {L,R}, Nz is total number of sites, zi is the (dis-
cretized) z-coordinate corresponding to site i, and we sum
over the spin and particle-hole degrees of freedom indexed
by ν. Finally, we have

`sep = Maxn

[
`(n)sepF (En,U ,Ω)

]
, (41)

where F is a function that filters out the states outside a small
energy window centered at E = 0. The details of the filter-
ing are not important, as this simply corresponds to the energy

FIG. 12. (a) Majorana separation, `sep, and (b) edge-to-edge correla-
tion,C, maps for a clean system of lengthL = 4 µm. The black lines
indicate the (bulk) topological quantum phase transition correspond-
ing to Γ =

√
µ2 + |∆|2. The edge length used in the definition of

C [see Eq. (44)] is `e = 200 nm.

resolution defining “zero energy” or “zero bias” in the exper-
iment. We choose the filter function to have the form

F (E,U ,Ω) =
1

2

[
tanh

(
E − U

Ω

)
− tanh

(
E + U

Ω

)]
.

(42)
Note that F ≈ 0 for |E| � U and F ≈ 1 for E = 0, while

it smoothly interpolates between these values near |E| ≈ U
over an energy scale Ω. Throughout the rest of this work
we set U = 0.2∆ and Ω = 0.1∆. These are, most likely,
fairly generous estimates for defining the zero-energy modes.
Hence, according to Eq. (41), `sep measures the largest sepa-
ration length between the left and right Majorana components
of BdG states having a sufficiently low energy, so as to be
operationally considered a zero-energy state. Next, we define
the edge-to-edge correlation associated with the BdG eigen-
state ψEn as

Cn =

√
W

(L)
n W

(R)
n F (En,U ,Ω) , (43)

with W (L/R)
n being the spectral weight at the left/right end of

the system. Explicitly, we have

W (J)
n =

∑
ν

(`e)J∑
i

∣∣∣χ(J)
n (zi, ν)

∣∣∣2 , (44)

where J ∈ {L,R} and the summation over i is restricted to
sites that are within a distance le of the corresponding edge.
Let n0 be the state characterized by the largest Majorana sep-
aration, i.e., `(n0)

sep = `sep. Typically, n0 = 1, i.e., the largest
Majorana separation corresponds to the lowest energy mode,
unless there is a “regular” (i.e., non-separated) Andreev bound
state. We define the edge-to-edge correlation as C = Cn0

.
Note that 0 ≤ C ≤ 1, with C ≈ 1 corresponding to a low
energy BdG state having its Majorana components localized
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FIG. 13. (a) Majorana separation, `sep, and (b) edge-to-edge corre-
lation, C, maps for a disordered system of length L = 4 µm with
impurity density nimp = 1.6 · 1015 cm−3 (λimp = 5 µm−1). The
black lines indicate the topological quantum phase transition for a
clean system. The edge length used in the definition of C [see Eq.
(44)] is `e = 200 nm. Note that non-negligible values of `sep and C
occur outside the nominally topological region, while these quanti-
ties are significantly suppressed in some areas within this region.

at the ends of the system, each within a distance `e of the cor-
responding edge.

To benchmark these quantities, we start with a clean system
of length L = 4 µm and calculate the dependence of the Ma-
jorana separation, `sep, and edge-to-edge correlation, C, on
the Zeeman field and chemical potential. The corresponding
“phase diagrams” are shown in Fig. 12. The black lines mark
the theoretically known phase boundary [55] associated with
the topological quantum phase transition. Remarkably, the
area characterized by large values of the Majorana separation,
`sep <∼ L, and large edge-to-edge correlations, C > 0.5, prac-
tically coincides with the topological phase. This indicates
that the two quantities capture meaningful information about
the Majorana zero modes and the topological quantum phase
transition. Note, for example, that C decreases with increas-
ing Zeeman field as result of increasing the Majorana local-
ization length, ξ, which transfers some of the spectral weight
outside the edge regions defined by the length scale `e in Eq.
(44). We emphasize that generating two dimensional maps of
the relevant quantities as functions of various control param-
eters, such as the Zeeman splitting and the chemical potential
(or applied back gate potential), provides significantly more
information than focusing on specific parameter values. As
shown below, such maps are mandatory for properly under-
standing the effects of disorder and should represent the stan-
dard in both theoretical and experimental investigations of hy-
brid systems. We urge experimentalists to always characterize
the presence of (near) zero-energy modes by providing two-
dimensional “phase diagram” maps in the magnetic field-gate
voltage parameter space.
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FIG. 14. (a) Low-energy spectrum as a function of the Zeeman field
for a system with the same parameters as in Fig. 13 and µ = 0. Red
lines denote the lowest energy mode. (b) and (c) Spatial profiles of
the Majorana components corresponding to the lowest BdG eigen-
state (red and green) and second lowest energy eigenstate (blue and
yellow) for Γ = 0.5 meV and Γ = 1 meV, respectively. Note that in
(c) the left Majorana component of the lowest energy state (green) is
localized away from the corresponding edge, which causes the col-
lapse of the edge-to-edge correlation C in Fig. 13 in the area around
µ = 0,Γ = 1 meV.

1. Low impurity density regime

We are now ready to consider a system with randomly dis-
tributed charge impurities and investigate the effects of this
type of disorder using the quantities introduced above. We
start with a specific disorder realization corresponding to a rel-
atively low impurity density, nimp = 1.6 · 1015 cm−3, which
means λimp = 5 impurities per micron. The position de-
pendence of the impurity potential Vimp(z) for this disorder
realization is shown in Fig. 10 (a). The maps of the Majo-
rana separation and edge-to-edge correlation as functions of
Zeeman field and chemical potential are shown in Fig. 13. A
comparison of these maps with the corresponding “phase di-
agrams” in Fig. 12 reveals two distinctive features: the emer-
gence of areas with significant values of `sep and C outside
the nominally topological region and the substantial suppres-
sion of these quantities in certain areas within the topological
region. We emphasize that, although the quantitative details
of the phase diagram in Fig. 13 depend on the specific dis-
order realization and on the corresponding impurity potential
(see Fig. 10) used in the calculation, these two distinctive
qualitative features are generic.

To better understand the significance of these features, we
calculate the low-energy spectrum as a function of the Zee-
man field for a fixed value of the chemical potential, as well
as the spatial profile of the Majorana components correspond-
ing to certain representative low-energy modes. The results
for µ = 0 are shown in Fig. 14. The low-energy spectrum in
Fig. 14(a) shows the emergence of a near-zero energy mode
for Zeeman fields Γ >∼ 0.3 meV (red lines). The lowest en-
ergy mode is separated from other finite energy states by a
small gap that increases significantly for Γ >∼ 0.75 meV. This
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FIG. 15. Local differential conductance at the left (a) and right (b)
ends of the wire for a system with the same parameters as in Fig. 14.
Note that the zero-bias conductance peak characterizing GL is sup-
pressed between 0.7 <∼ Γ <∼ 1.1 meV as a result of the left Majorana
mode being pushed away from the edge, as shown in Fig. 14 (c).

behavior may be surprising if judged based on the information
in Fig. 13, which, for µ = 0, shows a strong suppression of
C at higher values of the Zeeman field. However, the spatial
profiles of the Majorana components shown in Fig. 14(b) and
(c) clarify the physics. Indeed, for Γ = 0.5 meV the lowest
energy state consists of two well separated Majorana modes
localized near the ends of the system (green and red). The left
(green) Majorana has some overlap with a ps-ABS localized
nearby (yellow and blue), which represents the second low-
est BdG state, but is weakly affected by the presence of this
bound state. Consequently, `sep is comparable to the length
L of the wire and the edge-to-edge correlation C is large. By
contrast, at Γ = 1 meV the left (green) Majorana mode is
“pushed” away from the end of the system, which results in a
reduction of the Majorana separation length and the collapse
of the edge-to-edge correlation. To understand this behavior,
note that the disorder potential shown in Fig. 10 (a) breaks
the wire into several segments where the topological condi-
tion is locally satisfied, i.e. Γ2 > (V (z) − µ)2 + |∆|2. Each
of these topological segments results in two low-energy ps-
ABSs, which can couple with ps-ABSs of other topological
segments. The final low-energy spectrum then depends upon
the details of these couplings, which evolve in a non-trival
manner with Zeeman field. Hence the lowest-energy state can
sometimes shift in space as the Zeeman field changes as is
seen in Fig. 14.

The example discussed above shows that a hybrid system
with a low concentration of charged impurities is consistent
with the emergence of well separated, near-zero energy Majo-
rana modes. However, the presence of disorder may “push”
these modes away from the ends of the system, which re-
sults in low values of the edge-to-edge correlation. In other
words, the system can host “genuine” MZMs, but they may
be “invisible” to local probes coupled to the ends of the wire.

This severely limits the relevance of tunnel spectroscopy as a
tool for detecting the emergence of Majorana zero modes in
the presence of disorder, even in the weakly disordered situ-
ation. To make further connection with experiment, we cal-
culate the local differential conductance for charge tunneling
into the left and right end of the system. The results corre-
sponding to a system with the same parameters as in Fig. 14
are shown in Fig. 15. One can clearly notice two low-energy
modes coalescing toward zero energy and generating robust
zero-bias conductance peaks (ZBCPs) at both ends of the sys-
tem. At the left end, the ZBCP persists from Γ = 0.3 meV
to Γ ≈ 0.7 meV, then it appears to split. However, as re-
vealed by the data in Fig. 14, the apparent splitting is due
to a ps-ABS localized near the left end, while the “actual”
Majorana mode (i.e., the “green” Majorana) does not become
gapped, becoming instead “invisible” to local measurements
at the edge, as it gets pushed away from the end of the wire.
Within the range 0.7 <∼ Γ <∼ 1.1 meV there is a robust ZBCP
at the right end of the wire, but no ZBCP at the left end. This
example clearly illustrates the difficulty of correctly interpret-
ing tunneling conductance results in the presence of disorder.
First, apparent splittings of the ZBCP can be misleading, as
they are not necessarily associated with the mode that gener-
ates the ZBCP. Second, the absence of edge-to-edge correla-
tion does not necessarily imply the absence of robust, well-
separated Majorana modes; it may simply mean that (at least)
one of these modes is localized away from the end of the wire.
We note that the conductance calculations shown in Fig. 15
were done in the tunneling limit, i.e., for high values of the
potential barrier amplitude. In addition, we considered some
finite dissipation, η = 20 µeV. As a result, the height of the
ZBCP is much smaller than the quantized value and there is
some particle-hole asymmetry [21, 43, 56]. These issues are
well-understood and do not in any way affect our key quali-
tative conclusion of disorder possibly pushing the zero mode
away from the end and making it invisible in standard tun-
neling spectroscopy. In some sense, this invisibility of the
topological Majorana in the tunneling measurement (a false
negative) is the ironic counterpart of the ps-ABS misleadingly
producing non-topological zero bias conductance peaks mim-
icking Majorana zero modes (a false positive)!

Next, we consider another horizontal cut through the phase
diagram in Fig. 13 corresponding to µ = 0.5 meV. For this
value of the chemical potential, the system is characterized
by large Majorana separations and edge-to-edge correlations
in the topological regime, i.e., for Γ >∼ 0.6 meV. Indeed, the
spectrum shown in Fig. 16 (a) is characterized by a robust
zero energy mode (red line for Γ >∼ 0.6 meV) and a sizable
topological gap. Note the presence of finite energy in-gap
states in the topologically trivial regime (e.g., red lines for
Γ <∼ 0.6 meV). These topologically trivial in-gap modes con-
sist of Andreev bound states with strongly overlapping Majo-
rana components localized near the ends of the wire, as shown
in Fig. 16 (b). In the topological regime, on the other hand,
the system is characterized by well separated Majorana modes
localized at the ends of the system, as shown in Fig. 16 (c)
(the green and red Majoranas) and is consistent with the large
values of `sep and C in Fig. 13.
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FIG. 16. (a) Low-energy spectrum as a function of the Zeeman
field for a system with the same parameters as in Fig. 13 and
µ = 0.5 meV. Red lines denote the lowest energy mode. (b) and
(c) Spatial profiles of the Majorana components corresponding to
the lowest BdG eigenstate (red and green) and second lowest energy
eigenstate (blue and yellow) for Γ = 0.5 meV and Γ = 1 meV, re-
spectively. Note that in (b), which corresponds to the trivial regime,
the Majorana modes strongly overlap, generating two ABSs local-
ized near the ends of the system.

The conductance traces corresponding to the µ = 0.5 meV
cut are shown in Fig. 17. The presence of the MZMs is re-
vealed by the emergence of robust ZBCPs at both ends of the
system. Note, however, that the emergence of the ZBCP looks
rather different at the two ends, with two low-energy modes
coalescing toward zero energy clearly visible at the right end
and no apparent gap closing at the left end. This behavior is
due to the fact that the right Majorana mode is adiabatically
connected to the ABS localized at the right end of the system,
while the left Majorana is connected to a trivial mode that has
low spectral weight at the left end of the system and couples
weakly to the corresponding probe, thus remaining “invisi-
ble.” Another significant feature that is clearly manifested in
Fig. 17 (a) is the enhancement of the ZBCP weight/height due
to the Majorana mode hybridizing with a bound state localized
in the barrier region. Indeed, in Fig. 17 (a) one can clearly
notice an ABS crossing zero energy at Γ ≈ 0.8 meV. This
mode is absent from the low-energy spectrum shown in Fig.
16 (a), a clear indication that it is generated by the very pres-
ence of the barrier region that couples the system to the normal
lead, as this is not included in the calculation of the spectrum.
This type of enhancement of the ZBCP due to coupling to an
ABS localized at the end of the system is also visible in Fig.
15. The results presented in Fig. 17 and discussed above in-
dicate a serious problem regarding tunnel conductance mea-
surements: the end-to-end conductance correlations, which
are often thought to be the decisive signature for the existence
of topological MZMs, may very well be quite imprecise (or
even absent) in the presence of (even weak) disorder. The ab-
sence of such correlations can be quite generic in disordered
systems and may imply either that one of the MZMs cannot
be accessed through tunnel spectroscopy at the wire end (be-

FIG. 17. Local differential conductance at the left (a) and right (b)
ends of the wire for a system with the same parameters as in Fig.
16. Correlated zero-bias conductance peaks occur at the two end
of the system for Γ >∼ 0.65, consistent with the large C values for
µ = 0.5 meV and Γ >∼ 0.65meV in Fig. 13. Note the significant en-
hancement of the ZBCP in (a) due to the Majorana mode hybridizing
with a bound state localized within the barrier region, which crosses
zero energy at Γ ≈ 0.8 meV.

cause it was pushed away), or that the observed zero mode is
simply trivial. Comparing the conductance traces at the two
ends of the system cannot discriminate between these possi-
bilities. However, generating two-dimensional conductance
maps over large parameter regions may provide additional in-
formation, as discussed below.

Having clarified the features that characterize the nominally
topological region of the phase diagrams in Fig. 13, the nat-
ural question concerns the nature of the low-energy states re-
sponsible for the emergence of high Majorana separations and
significant edge-to-edge correlations in the trivial region (of
the pristine system) with µ > 1 meV. To address this question,
we consider a vertical cut at fixed Zeeman field Γ = 1.1 meV.
The dependence of the low-energy spectrum on the chemi-
cal potential along this cut is shown in Fig. 18 (a). For
−1 <∼ µ <∼ 1 meV the system is in the nominally topological
regime and one can clearly notice the a near-zero energy mode
(red lines) protected by a finite gap over most of this interval.
The gap collapses for µ <∼ −0.25 meV. Most interestingly,
low-energy modes are also present for 1 <∼ µ <∼ 1.75 meV,
i.e., in the nominally trivial regime. To clarify the nature of
these states, we calculate their Majorana components for two
values of the chemical potential.The results are shown in Fig.
18 (b) and (c). The low-energy states can be viewed as su-
perposition of several partially-overlapping Majorana modes.
Accidentally, Majorana components associated with the low-
est energy state can have significant weights at the ends of the
system, which generates a finite edge-to-edge correlation, as
shown in Fig. 13 (b). Such zero modes accidentally arising
from the disorder-induced overlap of several Majorana modes
cannot be construed as being topological.

We have already pointed out the importance of generating



18

1 0 1 2 3 (meV)

0.3
0.0
0.3

E/
(a)

0.00
0.01

|
|2 (b) = 1.42 meV

0 1 2 3 4
z ( m)

0.00

0.02

|
|2 (c) = 1.63 meV

FIG. 18. (a) Low-energy spectrum as a function of the chemical
potential for a system with the same parameters as in Fig. 13 and
Γ = 1.1 meV. Red lines denote the lowest energy mode. (b) and
(c) Spatial profiles of the Majorana components corresponding to
the lowest BdG eigenstate (red and green) and second lowest en-
ergy eigenstate (blue and yellow) for two values of the chemical po-
tential marked by dashed purple lines in (a). In (c) the Majorana
components of the lowest energy mode (green and red) have nonzero
spectral weights at the ends of the system, which results in a finite
edge-to-edge correlation C.

two dimensional maps of the relevant quantities as functions
of various control parameters. To further emphasize this point,
we calculate the zero-bias differential conductance maps cor-
responding to charge tunneling into the left (GL) and right
(GR) ends of a system having the same parameters as in Fig.
13. In addition, we define the geometric average of the left and
right conductivities as a practical measure of the edge-to-edge
correlation. Specifically, we define

CG =
√
GLGR. (45)

The results are shown in Fig. 19. We note that the CG map
in Fig. 19 (c) closely resembles the edge-to-edge correlation
map, C, in Fig. 13. This observation has two important im-
plications. First, CG provides a good measure of the edge-to-
edge correlation that can be easily determined experimentally.
Second, for large scale calculations (e.g., when doing statis-
tics involving many disorder realizations – see below), one
can focus on the numerically-less-expensive quantity C, in-
stead of the more experimentally-relevant quantity CG, since
we find the two to be representing equivalent physics, even in
the presence of disorder. In addition, we note that for low-
impurity concentrations, the (zero energy) conductance maps
provide a reasonably good correspondence with the phase dia-
gram of the clean system, particularly in the low-field regime.
However, as shown below, this correspondence fades away
upon increasing the impurity concentration. This suggests that
the systematic mapping of the zero-bias conductance at both
ends of the system and of the corresponding correlation CG
can provide a powerful experimental tool for assessing the
strength of the effective disorder potential. Finally, we note
that CG has the highly desirable practical property that it does

FIG. 19. Zero-bias differential conductance maps for a system with
the same parameters as in Fig. 13, but having normal leads and
tunnel barriers attached at both ends. The conductance at the left
(GL) and right (GR) ends of a system and the geometric average
(CG =

√
GLGR) are shown in (a), (b), and (c), respectively. Note

that theCG map closely resembles the edge-to-edge correlation map,
C, in Fig. 13.

not require identical tunnel barriers at the two ends. As long
as a differences between the two barriers amounts to an over-
all enhancement/suppression of GL relative to GR, the corre-
sponding factor is irrelevant when calculating the correlation
CG. We note that our calculated conductance shown in Figs.
17 and 19 is characterized by zero bias values (GL, GR, and
CG) smaller than the so-called Majorana quantization value of
2e2/h, as we consider relatively high tunnel barriers and in-
clude a dissipation term. We emphasize that, in the presence
of disorder, fine-tuning the parameters to obtain quantized val-
ues of the zero-bias conductance does not provide additional
information regarding the nature of the underlying low-energy
mode. Instead, producing detailed conductance maps over ex-
tended ranges of tuning parameters, similar to those in Fig.
19, can provide additional information, including estimates of
the disorder strength. We think that generating such compre-
hensive maps is what experiments should focus on, rather than
fine-tuning parameters to achieve Majorana quantization.

2. Intermediate impurity density regime

How does the phenomenology discussed above depend on
the concentration of charge impurities, i.e., on the disorder
strength? To address this question, we consider another spe-
cific disorder realization corresponding to an intermediate
impurity density, nimp = 4.7 · 1015 cm−3, which means
λimp = 15 impurities per micron. This is still relatively low
disorder in terms of the bulk doping magnitude, but it is three
times larger than the low-disorder case (λimp = 5 µm−1) con-
sidered above. The position dependence of the impurity po-
tential Vimp(z) for this disorder realization is shown in Fig. 10
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FIG. 20. (a) Majorana separation, `sep, (b) edge-to-edge correla-
tion, C, and (c) projection, P , maps for a disordered system of
length L = 4 µm with impurity density nimp = 4.7 · 1015 cm−3

(λimp = 15 µm−1). The impurity potential Vimp(z) for this disor-
der realization is shown in Fig. 10 (b). The black lines indicate the
topological quantum phase transition for a clean system. The projec-
tion map in (c) corresponds to `min = 0.5L and Cmin = 0.25.

(b). We carry out the same calculations as above and construct
the maps corresponding to the Majorana separation, `sep, and
edge-to-edge correlation, C, as functions of Zeeman field and
chemical potential. The results are shown in Fig. 20.

In addition, we introduce a “projection map” based on the
following quantity:

P (`sep, C) =


0, `sep ≤ `min
−1, `sep > `min and C < Cmin

1, `sep > `min and C > Cmin

. (46)

In essence, P = 0 corresponds to low Majorana separa-
tion lengths (according to a criterion determined by `min),
P = −1 signals well separated Majoranas that do not gen-
erate a substantial edge-to-edge correlation (e.g., because one
of the Majorana modes is pushed away from the end of the
system by the disorder potential), while P = 1 corresponds to
the desired scenario involving well separated Majoranas and
substantial edge-to-edge correlation. The projection map cor-
responding to `min = 0.5L andCmin = 0.25 is shown in Fig.
20 (c). As compared to the corresponding maps in Fig. 13,
the suppression of the Majorana separation and edge-to-edge
correlation inside the nominally topological region is signifi-
cantly stronger. When comparing the two figures, note that Γ
extends to higher values in Fig. 20 than Fig. 13. Nonethe-
less, there is a substantial area – blue region in panel (c)
– corresponding to large values of the Majorana separation
(`sep > 2 µm), but weak edge-to-edge correlation. This sug-
gests that, even at this level of impurity concentration, there
are segments of the wire that can be viewed as effectively
topological, but their presence cannot be revealed by local
measurements at the ends of the wire. By contrast, the ar-
eas corresponding to large values of C are reduced to a few

FIG. 21. Zero-bias differential conductance maps for a system with
the same parameters as in Fig. 20, but having normal leads and
tunnel barriers attached at both ends. The conductance at the left
(GL) and right (GR) ends of a system and the geometric average
(CG =

√
GLGR) are shown in (a), (b), and (c), respectively. Note

that the correspondence between the conductance maps and the topo-
logical phase boundary for the clean system (green line) is weak.

small islands. The underlying disorder-induced nonperturba-
tive rearrangement of the Majorana spatial locations and the
corresponding signatures revealed by the Majorana phase di-
agrams are important findings of our work.

To help connect these features to experimentally measur-
able quantities, we generate the corresponding zero bias con-
ductance maps, as well as the geometric correlation CG, for
the intermediate disorder case. The results are shown in Fig.
21. First, we note the close resemblance between the C map
in Fig. 20 (b) and the CG map in Fig. 21 (c), with the excep-
tion of a few additional, loop-like features present in the CG
map that will be discussed below. Second, we point out that,
unlike the low impurity density case shown in Fig. 19, the
areas of high zero-bias conductance are almost equally dis-
tributed inside and outside the nominally topological region.
This suggest a shift of the chemical potential associated with
the emergence of low-energy modes toward higher values as
the impurity density increases, which is consistent with pre-
vious studies [57, 58]. Note that this is not due to an actual
shift of the impurity-induced effective potential, as the aver-
age value of Vimp is close to zero regardless of the impurity
concentration (see Fig. 10).

To shed further light on the nature of various streaky and
loopy high-conductance features in Fig. 21, we consider the
differential conductance as function of the applied Zeeman
field and potential bias for two specific values of the chemi-
cal potential, µ = 0 and µ = 3 meV, respectively. The first
trace cuts through several narrow, uniformly dispersing high-
conductance features that are characteristic to the nominally
topological region (see Fig. 21). As revealed by the results
shown in Fig. 22, these features are associated with Andreev
bound states crossing zero energy at different values of the
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FIG. 22. Local differential conductance at the left (a) and right (b)
ends of the wire for a system with the same parameters as in Fig. 20
and chemical potential µ = 0. Note the strong features associated
with Andreev bound states that cross zero energy at different values
of the Zeeman field. In (a) the hybridization of these states with the
Majorana mode leads to an enhancement of the ZBCP (extremely
faint near Γ ≈ 0.6 meV and clearly visible above Γ ≈ 1.4 meV).

Zeeman field. Note that robust ZBCPs signaling the presence
of well separated Majorana modes are clearly visible at both
ends of the system, but within different intervals of Zeeman
fields. The presence of these ZBCPs at µ = 0 is consistent
with the large values of the Majorana separation in Fig. 20
(a), while their emergence within different Γ intervals is con-
sistent with the low values of C in Fig. 20 (b). Also note
that, as mentioned before, the ZBCP is strongly enhanced as
a result of the Majorana modes hybridizing with the ABSs lo-
calized near the ends of the wire. Particularly interesting is
the faint ZBCP near Γ ≈ 0.6 meV, which is “revealed” by the
strong ABS mode that crosses zero energy at that value of the
Zeeman field.

Next, we focus on the µ = 3 meV trace, which cuts through
a loop-like feature in Fig. 21 (b) that has no equivalent in
Fig. 20. The corresponding low-energy spectrum is shown
in Fig. 23 (a). Note that, with increasing Zeeman field, sev-
eral low-energy modes accumulate near zero energy, with the
first one crossing zero at Γ ≈ 0.8 meV (red lines). To under-
stand the nature of the low-energy states, we calculate their
component Majorana modes. As shown in Fig. 23 (b), for
Γ = 0.86 meV the lowest energy BdG state consists of a par-
tially separated ABS (ps-ABS) localized near the right end of
the wire (red and green Majorana components in Fig. 23 (b)).
On the other hand, the second lowest energy state is a “regu-
lar” ABS consisting of two nearly overlapping Majorana com-
ponents (orange and blue) localized at the left end of the sys-
tem. As a consequence, both the Majorana separation and the
edge-to-edge correlation have small values in the area around
µ = 3 meV, Γ = 0.86 meV (see Fig. 20). At a higher Zeeman
field, Γ = 1.73 meV, the Majorana components of the lowest
energy mode – green and red in Fig. 23 (c) – are well sepa-
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FIG. 23. (a) Low-energy spectrum as a function of the Zeeman field
for a system with the same parameters as in Fig. 20 and µ = 3 meV.
Red lines denote the lowest energy mode. (b) and (c) Spatial profiles
of the Majorana components corresponding to the lowest BdG eigen-
state (red and green) and second lowest energy eigenstate (blue and
yellow) for two values of the Zeeman field, Γ = 0.86 and 1.73 meV,
respectively. Note that the lowest energy state in (b) has partially sep-
arated Majorana components (i.e., quasi-Majorana modes) localized
near the right edge, while the lowest energy state in (c) has well-
separated Majorana components.

rated and localized near the ends of the wire. This explains
the large Majorana separation and the finite edge-to-edge cor-
relation characterizing the corresponding region of the “phase
diagrams” in Fig. 20. Note, however, that these well separated
Majorana modes have a significant overlap with the Majorana
components of higher energy states, with which they can eas-
ily hybridize in the absence of an energy gap that would pro-
tect them. Consequently, `sep and C are highly sensitive to
variations of the control parameters, which explains the “small
islands” structure of the corresponding region of the phase di-
agram in Fig. 20.

Our analysis of the low energy spectrum corresponding to
µ = 3 meV suggests that the loop-like feature visible in Fig.
21 around that value of the chemical potential is associated
with the quasi-Majorana mode (or ps-ABS) emerging at the
right edge of the system [see Fig. 23 (b)]. To confirm this find-
ing, we calculate the differential conductance at the left and
right ends of the system along the same constant µ cut as the
spectrum in Fig. 23 (b). The result in Fig. 24 (b) clearly shows
the emergence of a nearly-zero bias conductance peak at the
right edge of the system that practically traces the lowest en-
ergy mode [red lines in Fig. 23 (a)] for Γ <∼ 1.4 meV. A max-
imum of the zero-bias conductance occurs at Γ ≈ 0.8 meV,
where the quasi-Majorana mode crosses zero energy and the
µ = 3 meV cut intersects the loop-like feature [see Figs. 21
(b) and 23 (a)]. We conclude that the loop-like features that
characterize the zero-bias conductance maps in Fig. 21 out-
side the nominally topological region are generated by quasi-
Majorana modes (or ps-ABSs) localized near the ends of the
system.

Turning now our attention to the left end of the system, we
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FIG. 24. Local differential conductance at the left (a) and right (b)
ends of the wire for a system with the same parameters as in Fig. 23,
but having normal leads and tunnel barriers attached at both ends.
The left conductance has no ZBCP for Γ <∼ 1.5 meV, while the right
conductance is characterized by a strong nearly-zero energy feature
associated with the loop-like feature in Fig. 21 (b) and generated by
the quasi-Majorana mode shown in Fig. 23 (b). At larger Zeeman
fields, the differential conductance is characterized by ZBCP at both
ends of the system, which is consistent with a finite edge-to-edge
correlation.

notice [see Fig. 24 (a)] the presence of strong finite bias con-
ductance peaks for Γ <∼ 1.4 meV. These peaks are generated
by the ABS localized at the left end of the system and repre-
senting the second-lowest BdG state (see Fig. 23). We note
that, as a result of finite broadening, the contribution of this
state to the zero-bias conductanceGL is finite, although small.
However, when combined with the large quasi-Majorana con-
tribution toGR, it generates a non-zero contribution to the cor-
relation CG, which can be clearly seen as “shadow” loop-like
feature in Fig. 21 (c). This spurious correlation feature can be
eliminated by considering the finite bias conductance and sup-
pressingCG if the left and right contribution are not associated
with conductance peaks located within the same energy win-
dow (E−δE,E+δE), where δE is determined by the energy
resolution. Nonetheless, the zero-bias conductance maps, in-
cluding the CG map, can play a crucial role as a first step in
characterizing the system and evaluating the effects of disor-
der. We suggest that this type of comprehensive maps, rather
than fine-tuned and post-selected “good looking” traces, in-
cluding traces with conductance ∼ O(2e2/h), should be the
standard protocol for the experimental characterization of hy-
brid semiconductor-superconductor devices. Finally, we note
that for Γ >∼ 1.5 meV the conductance is characterized by
ZBCPs at both the left and right ends, as shown in Fig. 24.
This is consistent with the finite edge-to-edge correlation ex-
pected in this regime based on the “phase diagrams” shown in
Fig. 20.

We conclude this section with a few additional remarks on
the “phase diagrams” shown in Figs. 20 and 21. First, we
note that within the nominally topological regime all “phase

diagrams” are characterized by stripy features that disperse
downwards in µ with increasing Zeeman field. We have
shown that in the case of the conductance maps these features
are associated with Andreev bound states localized near the
ends of the system that cross zero energy. In certain cases the
presence of these ABSs may enhance an otherwise “invisible”
ZBCP generated by well separated Majorana modes, which
results in a finite edge-to-edge correlation. Second, we note
that the features located outside the nominally topological re-
gion have qualitatively different characteristics. The conduc-
tance maps show several rounded, loop-like features that we
identified as being associated with partially separated Majo-
rana modes (or quasi-Majoranas). As discussed above, these
features can be eliminated from the correlation map using ad-
ditional finite bias information. The remaining features have a
stripy character and are present in all “phase diagrams.” How-
ever, unlike the stripy features emerging in the topological re-
gion, these “trivial stripes” disperse upward in µ with increas-
ing Zeeman field. Note that a qualitatively similar behavior
can be observed even at lower impurity concentrations, as re-
vealed by the “phase diagrams” in Figs. 13 and 19. These ob-
servations suggest that detailed zero-bias conductance maps
could help identify nominally topological regions even when
the presence of disorder suppresses the “standard” Majorana
phenomenology expected in a clean system. Note however,
that these results are not expected to hold if the system is
characterized by a small inter-subband spacing (i.e., it is not
in the in the independent subband regime) or if the disorder
strength exceeds a certain threshold (i.e., the system is in the
strong disorder regime). For small inter-subband spacings,
even weak disorder will make the system behave as a random
disordered class D system because of the essentially random
nature of the resultant inter-subband couplings that become
comparable to the intra-subband terms.

3. Charge impurity statistics

We have investigated the effects of impurity-induced disor-
der for two specific disorder realizations corresponding to two
different impurity concentrations. The natural questions are:
i) What is the generic behavior of the system for arbitrary dis-
order realizations corresponding to a given impurity concen-
tration? ii) What is the dependence of the results on the im-
purity concentration? To effectively address these questions,
we need to define some quantities that provide a “global” de-
scription of the two-dimensional maps discussed in the previ-
ous section. To this end, we first define the “filter function”
χ(µ,Γ; `min, Cmin, Emin) that selects control parameter val-
ues consistent with certain minimum requirements associated
with the presence of well separated Majorana modes capable
of generating edge-to-edge correlations. Specifically, we have

χ (µ,Γ)=Θ (`sep−`min) Θ (C−Cmin) Θ (Eg−Emin) , (47)

where Θ(x) is the step function, Θ(x > 0) = 1,Θ(x < 0) =
0, and Eg = E2 − E1, with E1 and E2 being lowest and sec-
ond lowest positive eigenenergies, respectively, is the quasi-
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FIG. 25. Disorder-averaged chemical potential range, 〈M〉, and
quasiparticle gap, 〈Ẽg〉, as functions of the impurity density for
a system of length L = 4 µm. The first (a,c) and second (b,d)
columns correspond to Γ = 0.5 meV and Γ = 1 meV, respec-
tively. The results corresponding to different sets of filter function
parameters, (`min/L,Cmin, Emin/∆), are color coded: (0.5, 0, 0)
– blue, (0.5, 0.2, 0) – green, (0.5, 0.2, 0.05) – red, (0.5, 0.2, 0.1) –
black. Note that the maximum impurity density, λimp = 30 µm−1,
corresponds to nimp = 9.4 · 1015 cm−3.

particle gap separating the lowest energy state from the rest
of the spectrum. Note that χ = 1 if the Majorana separation
length is larger than `min, the edge-to-edge correlation larger
than Cmin and the quasiparticle gap larger than Emin, while
χ = 0 otherwise. Next, we introduce the quantity M(Γ) de-
fined as the total chemical potential range that satisfies the
“good Majorana” criterion, χ(µ,Γ) = 1, for a given value of
the Zeeman field. Specifically, we have

M (Γ) =

∫
χ (µ,Γ) dµ. (48)

Note that for a clean system and “reasonable” values of `min,
Cmin, and Emin we have M (Γ) = 0 for Γ < ∆, i.e., in
the topologically trivial regime, and M (Γ) = 2

√
Γ2 −∆2

for Γ > ∆. In other words, for a clean system M (Γ) is a
measure of the “thickness” of the topological region along the
µ direction at a given value of the Zeeman field. For example,
Γ → ∆ (from above) implies M → 0, precisely giving the
lowest Zemman field associated with the pristine TQPT. In
addition, we define the average quasiparticle gap within the
region satisfying the “good Majorana” condition as

Ẽg (Γ) =
1

M (Γ)

∫
Eg (µ,Γ)χ (µ,Γ) dµ. (49)

To test the relevance of these quantities, we calculate the
disorder averages 〈M〉 and 〈Ẽg〉 as functions of the impurity
concentration for two values of the Zeeman field and different
sets of filter function parameters, (`min/L,Cmin, Emin/∆).
The results for a wire of length L = 4 µm are shown in
Fig. 25, while the results corresponding to a shorter wire with
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FIG. 26. Same as Fig. 25 for a wire of length L = 2 µm.

L = 2 µm are presented in Fig. 26. The averages corre-
sponding to each value of the impurity density, λimp, were
calculated using 500 different disorder realizations. Note that
if a given impurity realization is characterized by M = 0,
Ẽg is undefined, and we do not include it in the calculation
of 〈Ẽg〉. First, we observe that 〈M〉 collapses with increas-
ing impurity density reaching negligible values for impurity
densities of the order 10 − 20 impurities per micron. This
means that for higher impurity concentrations there are prac-
tically no “good Majoranas” in the system. We point out that
for the Majorana separation criterion we used a rather gener-
ous value, lmin = 0.5L, which does not guarantee the local-
ization of the well-separated Majorana modes near the ends
of the wire. This is particularly significant in Fig. 25 (b),
where introducing the edge-to-edge correlation requirement
Cmin = 0.2 strongly reduces 〈M〉 as compared to the case
Cmin = 0 (blue dots). On the other hand, the fact that the
blue dots in Fig. 25 (b) correspond to finite values of 〈M〉
over the entire range of impurity densities reveals that, even in
the presence of relatively strong disorder, the system contains
well-separated Majoranas. However, these Majoranas do not
generate edge-to-edge correlations. In other words, some seg-
ments of a long wire are likely to be in the topological super-
conducting phase, but these segments have a concentration-
dependent typical length (which is unknown experimentally)
that is less than the length L of the wire. Therefore, their pres-
ence cannot be established based on the edge-to-edge correla-
tion, which is negligible. This observation is consistent with
the specific examples discussed in sections IV B 1 and IV B 2.
Note that for the shorter system (see Fig. 26) imposing the
additional filter C > 0.2 does not reduce 〈M〉 drastically.
This is due to the fact that Majorana modes with `sep > L/2
are significantly more likely to generate edge-to-edge corre-
lations in a shorter wire, as compared to a longer wire. Fi-
nally, regarding the average quasiparticle gap, 〈Ẽg〉, we no-
tice a sharp drop at low impurity density, followed by a slower
decline toward a density-independent plateau, which starts at
λimp ≈ 15 µm−1. The height of the plateau is determined by
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FIG. 27. Disorder-averaged chemical potential range, 〈M〉, and
quasiparticle gap, 〈Ẽg〉, as functions of the spin-orbit coupling
strength, α, for a wire of length L = 4 µm. The red circles and
green crosses correspond to λimp = 7.5 µm, and λimp = 15 µm,
respectively. The filter function parameters are `min/L = 0.5,
Cmin = 0.2, and Emin = 0.

the average inter-state spacing, which depends on the length
of the wire being proportional to 1/L.

The “global” quantities introduced above provide useful
tools for studying the effects of disorder on the Majorana
physics. Most importantly, they reveal the strong dependence
of the Majorana physics on the impurity concentration. In
particular, observing edge-to-edge correlations at relatively
low values of the Zeeman field requires reducing the impurity
density below a certain threshold of about 15− 20 impurities
per micron. This type of analysis can be also useful for op-
timizing the system parameters. As an example, we consider
the dependence on the spin-orbit coupling strength. Fig. 27
shows the dependence of 〈M〉 and 〈Ẽg〉 on spin-orbit cou-
pling strength α for a wire of length L = 4 µm for two impu-
rity densities and two values of the Zeeman field. Typically,
increasing the spin-orbit coupling strength enhances both 〈M〉
and 〈Ẽg〉. However, for λimp = 15 µm−1 (green crosses) the
dependence of the average energy gap on α is weak, while
〈M〉 shows a significant enhancement only at larger values of
the Zeeman field and for α >∼ 25 meV·nm. Finally, we point
out that throughout this work the value of the spin-orbit cou-
pling strength was α = 20 meV·nm, which we consider as
relatively optimistic. While for large enough Zeeman fields
〈M〉 and 〈Ẽg〉 can be enhanced by having a stronger spin-
orbit coupling, there is not much room for optimizing the low-
field regime. Note, however, that at large field values the topo-
logical gap itself may be rather small and, again, optimization
becomes a challenge even in this regime.

V. CONCLUSIONS

We have carried out a comprehensive microscopic theoret-
ical study of disorder effects arising from the inevitable pres-
ence of charge impurities in superconductor-semiconductor

nanowire hybrid structures, focusing on the fate of the Ma-
jorana zero modes expected to emerge in these systems. The
work consists of four closely connected, but distinct, theoreti-
cal components: (1) developing a fully self-consistent realistic
Schrödinger-Poisson scheme to calculate the effective impu-
rity potential arising from the presence of charge impurities,
which takes into account electrostatic and screening effects
due to the superconductor and potential back gate, as well as
the screening by the free charge in the wire; (2) carrying out
full solutions of the BdG equations in the presence of disorder
by incorporating the effective impurity potential calculated
self-consistently for a multi-band system, as well as the super-
conducting proximity effect, spin-orbit coupling, and applied
Zeeman field; (3) obtaining, based on the solutions of the BdG
equations, effective “phase diagrams” as functions of the con-
trol parameters (i.e., Zeeman field and chemical potential) in
the presence of disorder and investigating their dependence on
the disorder strength; (4) calculating the tunnel conductance
at both ends of the system and generating the correspond-
ing “phase diagrams”, which provides insight into the exist-
ing tunnel spectroscopy experiments on Majorana nanowires.
Since the work involves multiple aspects, we have specific
conclusions regarding each component of the theory already
included in the corresponding section of this article. Instead of
repeating what is already described and discussed in depth in
sections III and IV, we summarize our most important conclu-
sions regarding the role of charge impurity-induced disorder
from the perspective of the ongoing search for non-Abelian
Majorana modes in superconductor-semiconductor nanowire
hybrid structures.

We show that the superconductor plays a rather limited role
in screening the impurity potential, while substantial screen-
ing arises from the free charges in the nanowire. We provide a
simple two-parameter empirical fitting formula for the effec-
tive screened potential, which should be useful for future sim-
ulations of Majorana devices. Quantitatively, we find that the
effective impurity potential has typical amplitudes of the order
of 1.5− 2 meV and typical decay lengths of about 8− 12nm.

We find that disorder produces zero energy states outside
the pristine topological phase boundary and we analyze in
depth the nature of these states and their possible experimen-
tal signatures. We also find that, within the nominally topo-
logical regime, the system can host well separated Majorana
modes even in the presence of significant disorder levels, but
typically the presence of these modes is not associated with
a significant edge-to-edge correlation. A key finding in this
context is that disorder may often push Majorana zero modes
away from the wire ends, thus making them invisible to local
(end-of-wire) tunnel spectroscopy. Thus, it is entirely possi-
ble (and likely) to miss the presence of Majorana zero modes
in a disordered nanowire when using tunneling spectroscopy
simply because this is a local probe sensitive only to states lo-
calized at the wire ends. Hence, in the presence of disorder,
long segments within the bulk of the wire may be topologi-
cally nontrivial, with Majorana modes emerging at their ends,
but the wire ends themselves may contain no Majorana modes,
which dramatically reduces the probability of observing edge-
to-edge correlations.
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We establish that detailed two-dimensional maps of the
zero-bias conductance as a function of Zeeman splitting (i.e.
magnetic field in the laboratory) and chemical potential (i.e.
gate voltage in the laboratory) may be the most effective op-
erational way to search for the “hidden” topological super-
conductivity and the associated Majorana modes. The current
experimental focus on looking for large zero bias peaks with
conductance∼ 2e2/h by fine-tuning the control parameters is
unlikely to solve the outstanding questions regarding the na-
ture of the low-energy states responsible for these peaks. First,
a large zero bias peak obtained through careful fine-tuning and
post selection may have nothing to do with topological Majo-
rana modes, and second, this procedure is likely to lead to
strong confirmation bias in the experiment. Instead, creating
zero bias conductance maps in the extensive parameter space
of gate voltage and magnetic field using the cleanest possi-
ble samples and comparing these maps to our theoretical re-
sults may be a much more systematic way of searching for
Majorana physics, without suffering from any confirmation
bias. In addition, this would provide much needed estimates
of the disorder strength characterizing actual superconductor-
semiconductor hybrid devices and an effective way of testing
future materials improvements that aim at reducing disorder.

We find that for reasonably realistic (but still somewhat op-
timistic) parameter choices, genuine, well-separated topolog-
ical Majorana modes should exist in nanowires for impurity
densities up to 5 · 1015 cm−3, which corresponds to around
15 impurities per micron. This would mean that a 2 − 4 mi-
cron long nanowire can contain up to 30− 60 charge impuri-
ties, but cleaner samples, with charge impurity density below
1015 cm−3, may be necessary in practice, since we ignored
any disorder arising from possible interface defects or imper-
fections. Such a low intrinsic doping of less than 1015 cm−3 is
a challenge, but is by no means out of reach in semiconductor
materials growth, as impurity contents below 1013 cm−3 have
been achieved in MBE-grown GaAs structures [59].

Our final conclusion is that charge impurities cause seri-
ous problems, but by no means destroy the topology in hybrid
nanowires, as long as their concentration is maintained below
a certain threshold. Future experiments should provide esti-
mates of the disorder levels that characterize existing hybrid
systems, while a systematic effort should be dedicated to the
production of much cleaner wires, with significantly lower im-
purity content, where Majorana zero modes could emerge eas-
ily and manifest the full range of their expected phenomenol-
ogy.

Implications of our work for the realization of Majo-
rana zero modes and topological qubits are obvious and far-
reaching. Since semiconductor nanowire-superconductor hy-
brid platforms are by far the leading TQC candidates, by
virtue of the tunability of the system through electrical gat-
ing and varying magnetic field, and because semiconductor
growth enables the realization of very pure materials, our de-
tailed macroscopic, quantitative analysis of all relevant as-
pects of Majorana physics in the SM-SC platform in the pres-
ence of charge impurity disorder provides the community with
clear and quantitative guidelines on how to make progress:
Obtain samples with 1015 per cm3 or less impurity content,
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FIG. 28. Examples of effective potential (black solid lines) and the
fitted effective potential (red dashed lines) from impurities of charge
(a) Q = −e and (b) Q = e using the fitting Eqs. (A1-A3). The
transverse positions of the impurities are indicated in the panels.
The average absolute error between the exact and fitted potentials
for |z| ≤ 100 nm is (a) 0.03 meV and (b) 0.07 meV, respectively.

produce two-dimensional parameter maps of the zero bias dif-
ferential conductance over extended parameter regions, be-
ware of the possibility that impurities may push the Majorana
bound states away from the edges, so that topology may be
hidden in tunnel spectroscopy at the ends, do not focus on try-
ing to find Majorana quantization (which are often spurious),
instead focus on the totality of the parameter space rather than
fine-tuning, carry out conductance correlations the way pro-
posed in the current work as a function of magnetic field and
gate voltage by doing tunneling from both ends, and try to
obtain nonlocal correlations not just from the two ends, but
along the wire. Our work establishes the existence of topo-
logical Majorana modes in the system in the presence of some
amount of charge impurities even when the disorder potential
is significantly larger than the SC gap, provided that the impu-
rity concentration is not too high. This is a highly encouraging
result which should inspire new efforts toward creating Majo-
rana qubits.
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Appendix A: Fitting effective impurity potentials to an analytic
function

As alluded to in the main text [see also Eq. (29)], the ef-
fective potential of a single charge impurity located at z = 0
can be well captured by fitting both the effective impurity and
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FIG. 29. Effective redistribution amplitude Bαred vs
effective impurity amplitude Bαimp when the α =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. Amplitudes are extracted from fitting the effective potential of
19 evenly spaced impurity locations within the transverse profile of
the nanowire. Dashed lines are linear regression fits to the matching
color data. See Table I for fitting parameters.

redistribution potentials to exponential functions,

Vα,α (z) = V impα,α (z) + V redα,α (z) , (A1)

V impα,α (z) = Bαimpe
−|z|/λαimp , (A2)

V redα,α (z) = −Bαrede−|z|/λ
α
red , (A3)

where Bαimp and Bαred are the amplitudes of the effective im-
purity and redistribution potentials, respectively, λαimp and
λαred are the corresponding decay lengths, and α is the sub-
band index. We place a minus sign in front of Bαred to em-
phasize that the redistribution potential (partially) suppresses
the impurity charge potential. Two examples of this fitting
are shown in Fig. 28, for a negative and positive elementary
impurity charge with the α = 2 subband tuned to the Fermi
level. We find excellent agreement between the actual and
fitted potential in both cases. Indeed, the average absolute er-
ror, |V exact2,2 − V fit2,2 |, within 100 nm of the impurity is only
(a) 0.03 meV and (b) 0.07 meV, respectively. Note that we
found the average absolute error to be of this order for all im-
purity locations sampled. Generically, we find that cases with
a negative charge impurity fit slightly better to Eqs. (A1-A3)
than positive charge impurity cases. This is due to a more
prominent “hump” feature after first crossing Vα,α = 0 for
positively charged impurities compared to negatively charged
impurities. Nevertheless, the fitting is exceptional for both
impurity charge signs.

While Eqs. (A1-A3) represent an excellent approxima-
tion for the effective potential, it requires 4 fitting parame-
ters, which may be cumbersome if one wants to construct a
phenomenological model of charge impurity disorder with-
out explicitly performing numerically expensive Schrödinger-
Poisson calculations. This motivates us to investigate whether
the various fitting parameters display correlations to reduce
the number of necessary input parameters. We indeed find
this to be the case. The resulting correlations are shown in
Figs. 29, 30, and 31 and discussed below.

0.00

0.02

0.04

1
re

d (
nm

1 ) (a) Q = + e

0 0.05 0.1
1

imp (nm 1)

0.00

0.02

0.04

1
re

d (
nm

1 ) (b) Q = e

FIG. 30. Comparison of impurity and redistribution (in-
verse) decay lengths, (λαimp)

−1 and (λαred)
−1, when the α =

2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. Decay lengths are extracted from fitting the effective poten-
tial of 19 evenly spaced impurity locations within the transverse pro-
file of the nanowire. (a) Top and (b) bottom panels correspond to
Q = +e and Q = −e, respectively. Dashed lines are linear regres-
sion fits to the matching color data. See Table II for fitting parame-
ters.

The effective redistribution amplitude Bαred as a function of
the effective impurity amplitude Bαimp is shown in Fig. 29
for several different subbands tuned to the Fermi level. The
amplitudes come from fitting the effective impurity and redis-
tribution potentials to Eqs. (A2, A3) with each data point cor-
responding to a different impurity location in the transverse
profile of the wire. For this data set, 19 evenly spaced posi-
tions in the nanowire’s cross section were sampled. We ob-
serve a general linear trend between the two amplitudes for
all three subbands in which the magnitude of the redistribu-
tion amplitude increases with increasing magnitude of the im-
purity amplitude, as seen in the linear fit lines (dashed lines).
The positive sign of the slope makes physical sense since in-
creasing the magnitude of the impurity amplitude should in-
crease the redistribution of free charge around the impurity
to (partially) counteract the perturbation of the electrostatic
environment. What’s not obvious, however, is that a linear re-
lationship should capture the dependency rather well. After
all, the Schrödinger-Poisson equations should be expected to
behave non-linearly due to the interplay between the various
occupied subbands. To quantify how well the linear fit cap-
tures the relationship, we have gathered the fitting parameters
into Table I. In particular, we wish to bring attention to the
coefficient of determination, r2, which indicates how much
of the variance of the data is explained by the linear model.
For all except the (α = 4, Q = −e) case, the linear fit ex-
plains over half of the variance (r2 > 0.5). Moreover, Q = e
cases display particularly high r2 value. We also notice that
the r2 coefficient diminishes on average with increasing sub-
band index, α, suggesting the Schrödinger-Poisson equations
are behaving with increasing non-linearity as occupation is in-
creased.

Similar to the effective potential amplitudes, we compare
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FIG. 31. Comparison of impurity amplitude Bαimp
and (inverse) decay length (λαimp)

−1 when the α =
2 (black dots), 3 (red), or 4 (green) subband is tuned to the Fermi
level. Amplitude and decay lengths are extracted from fitting the
effective potential of 19 evenly spaced impurity locations within
the transverse profile of the nanowire. Impurity charge Q = −e.
Dashed lines are linear regression fits to the matching color data.
See Table III for fitting parameters.

the (inverse) decay lengths of the effective redistribution and
impurity potentials in Fig. 3 with the subband α = 2, 3, or 4
tuned to the Fermi level. Again we observe general linear
trends and fit the data from each subband to a line. The fitting
parameters are gathered in Table II. The r2 coefficients are of
similar size to what was found in studying the relationship
between the potential amplitudes (Table I), but are slightly
smaller, indicating the decay lengths behave in a slightly more
non-linear manner.

Finally, we study the correlation between the effective im-
purity potential’s amplitude Bαimp and (inverse) decay length
(λαimp)

−1 in Fig. 31. In contrast to Figs. 29 and 30, we
only consider Q = −e, since flipping the sign to Q = e
only changes the sign of the amplitude, Bαimp. The fitting
parameters are gathered in Table III. On the one hand, we ob-
serve large coefficients of determination, r2 = 0.87, 0.80, for
α = 2, 3, respectively. On the other hand, r2 = 0.07 for
α = 3. These indicate that the relationship between the effec-
tive impurity amplitude and inverse decay length is well cap-
tured by a linear fit for α = 2, 3, but not α = 4. Evidently, as
the wavefunction moves away from the SM-SC interface with
increasing α the electrostatics become more subtle and the re-
lationship between the amplitude and (inverse) decay length
becomes more complicated.

We’re now in a strong position to create realistic phe-
nomenological models of charge impurity disorder in SM-SC
hybrids nanowires using only 1 or 2 parameters from which
we need to sample. We accomplish this by leveraging the in-
formation we’ve just laid out regarding the linear relationships
between the various fitting parameters. In the case of low-
occupancy (α ≤ 3 in this case) the relationships between the
4 fitting parameters,Bαimp,Bαred, (λαimp)

−1, and (λαred)
−1, are

well described by all three linear relationships studied in this
appendix. Therefore, one only needs to sample the Bαimp dis-
tribution to create a realistic model of disorder. Given a Bαimp
value, we only have to plug it into the linear equations given in

Tables I-III and the corresponding parameters, m and b (also
in the tables), to obtain the other three fitting parameters. In
the case of higher occupancy (α ≥ 4 in this case) the relation-
ship between Bαimp and (λαimp)

−1 is not represented well by a
linear fit. Therefore, we need to sample from both Bαimp and
(λαimp)

−1 to create a realistic disorder model. The other two
fitting parameters, Bαred and (λαred)

−1, however, can still be
obtained using the linear equations and corresponding param-
eters in Tables I and II. We then have a convenient and accu-
rate way of producing realistic disorder potential profiles due
to charge impurities in Majorana SM-SC hybrid nanowires.

TABLE I. Fitting parameters of dashed lines in Fig. 29 correspond-
ing to the fitting equation, Bαred = mBαimp + b. Coefficient of de-
termination r2 for each linear fit is given in the final column, where
r2 = 1 indicates a perfect fit.

(α,Q) m b (meV) r2

(2,+e) 0.30 -0.46 0.91
(2,−e) 0.07 0.41 0.53
(3,+e) 0.29 -0.64 0.75
(3,−e) 0.13 0.30 0.52
(4,+e) 0.43 -0.36 0.79
(4,−e) 0.12 0.81 0.34

TABLE II. Fitting parameters of dashed lines in Fig. 30 correspond-
ing to the fitting equation, (λαred)

−1 = m(λαimp)
−1 + b. Coefficient

of determination r2 for each linear fit is given in the final column,
where r2 = 1 indicates a perfect fit.

(α,Q) m b (nm−1) r2

(2,+e) 0.18 0.016 0.83
(2,−e) 0.11 0.013 0.46
(3,+e) 0.13 0.017 0.63
(3,−e) 0.22 0.009 0.59
(4,+e) 0.12 0.023 0.45
(4,−e) 0.19 0.014 0.32

TABLE III. Fitting parameters of dashed lines in Fig. 31 correspond-
ing to the fitting equation, (λαimp)

−1 = mBαimp + b. Coefficient of
determination r2 for each linear fit is given in the final column, where
r2 = 1 indicates a perfect fit.

(α,Q) m (meV−1 nm−1) b (nm−1) r2

(2,−e) 0.012 0.018 0.87
(3,−e) 0.014 0.005 0.80
(4,−e) 0.003 0.042 0.07
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