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Kirill Bronnikov1,2, Jesús Arriaga3, Arkadii Krokhin4,∗ and Vladimir P. Drachev1,4†
1Skolkovo Institute of Science and Technology, Moscow, Russian Federation 143025

2 Institute of Automation and Electrometry of the SB RAS, Novosibirsk, Russian Federation 630090
3Instituto de F́ısica, Universidad Autónoma de Puebla,

Apartado Postal J-48, 72570, Puebla, Mexico and
4Department of Physics, University of North Texas,
1155 Union Circle #311427 , Denton, TX 76203

(Dated: October 7, 2021)

It is demonstrated that a system of two interfacing hyperbolic metamaterials may be used for
direct subwavelength imaging in the visible range. The proposed configuration consists of two
anisotropic photonic crystals: a multilayered metal-dielectric structure and an adjoined wired struc-
ture. The analytical calculations and numerical modeling show results that the light emitted by a
dipole placed on the top of the multilayered structure propagates within a narrow cone along the
direction n, where Re ε(ω,n) = 0. Due to impedance matching and negative refraction at the inter-
face, a bright image with a maximum transverse size of ∼ 50 nm is focused in the wired structure
at the wavelength λ = 670 nm.

I. INTRODUCTION

A perfect flat lens proposed by Veselago1 and mathe-
matically justified by Pendry2 consists of a slab of meta-
material with n = −1 surrounded by a medium with
n = 1. It can produce an ideal image since it collects all
propagating and evanescent waves emitted by a source
and transfers them to the image without losses due to
perfectly matching layers. Dispersion and absorption in
real materials place a natural limit for the resolution3

that makes the concept of perfect lens flawed. Never-
theless, a negative refractive index slab serves as a flat
superlens breaking the subwavelength limit in optics4–6.
Recently, a Veselago flat lens was experimentally real-
ized in microwave region7, where negative refractive in-
dex n = −1 was obtained with a slab of Weyl metacrys-
tal.

Imaging in the far-field with subwavelength resolution
requires transformation of evanescent modes radiated by
an object in the near-field to propagating waves. This
transformation was achieved by introducing a multilay-
ered cylindrical,8–10 or spherical11 stack of hyperbolic
metamaterial (HMM) into a projecting device. Applica-
tion of HMM in optical devices allows realization of sub-
wavelength interference pattern from multilayered slab12

or array of metallic nanowires in dielectric13. While these
studies demonstrate a possibility of manipulating with
light patterns at subwavelength scales, they do not con-
sider a question about imaging of an object at the fo-
cal plane. Two slit interference was applied for sub-
wavelength photolithography for gratings fabrication12.
Here we propose a structure of two planar HMMs that
allows subwavelength imaging of light source. This fo-
cusing system allows photolithography of any image pro-
duced in the focus plane. Due to hyperbolic dispersion,
the emitted light propagates in each HMM along nar-
row epsilon-near-zero channels, suffering negative refrac-
tion at the interface. However, the effects of dispersion
and dissipation in the metallic constituents of the struc-

ture are explicitly taken into account. The parameters
of the HMMs media are selected to satisfy the match-
ing of impedances at the interface that strongly reduces
losses at reflection. As a result, the record-high trans-
mission is numerically achieved for silver-aluminum and
silver-silica constituents allowing bright image with sub-
wavelength resolution exceeding the values reported in
the modern literature. Specifically, we got the focal spot
size to wavelength ratio l/λ = 0.075 versus the values
0.41, 0.37 reported in Refs. [10,11] respectively.

II. IMAGING SYSTEM DESIGN

There are two types of hyperbolic media within the
class of uniaxial optical crystals. For type I the isofre-
quency surfaces are of two sheets hyperboloids, and for
type II they are of one sheet hyperboloids, schemati-
cally shown in Fig. 1. The optical axis is along axis
z with the corresponding component of permittivity ten-
sor εz = ε‖. In the x − y plane the crystal is isotropic
with εx = εy = ε⊥.

In type I HMM the metallic properties dominate along
axis z, therefore ε‖ < 0 and ε⊥ > 0. The dispersion of
the extraordinary wave is given by

k2x + k2y
|ε‖|

− k2z
ε⊥

= −ω
2

c2
. (1)

In type II HMM metal conductivity dominates in the
x − y plane, i.e., ε‖ > 0 and ε⊥ < 0. The dispersion
relation for extraordinary wave is

k2x + k2y
ε‖

− k2z
|ε⊥|

=
ω2

c2
. (2)

The ordinary wave propagates in a uniaxial crystal like
in an isotropic medium with refractive index

√
|ε⊥|.

Let us consider the refraction of an extraordinary plane
wave at the horizontal interface z = 0 between two hy-
perbolic media. Let the region z > 0 is filled by type II
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FIG. 1: Two isofrequency surfaces of extraordinary
wave with hyperbolic dispersion. (a) Hyperboloid of two
sheets corresponds to type I HMM. Can be realized as a pho-
tonic crystal of metallic rods in dielectric matrix. Blue sphere
is an isofrequency surface of ordinary wave. (b) Hyperboloid
of one sheet corresponds to type II HHM. Can be realized as
a superlattice of metal and dielectric layers.
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FIG. 2: Scheme of negative refraction at the interface
between two hyperbolic media. The incident plane wave,
characterized by wave vector ki and group velocity vg(i),
comes from type II HMM (z > 0) with ε‖ = 3.9, ε⊥ = −7.
Red hyperbola shows dispersion in this medium given by Eq.
(2), where k0 = ω/c. After negative refraction at the interface
z = 0, the plane wave is transmitted to type I HMM (z < 0)
with ε‖ = −3.9, ε⊥ = 7 with dispersion shown by blue hyper-
bola, Eq. (1). The transmitted wave has the wave vector kt

and group velocity vg(t).

HMM with ε‖ = 3.9 and ε⊥ = −7 and the lower semi-
space z < 0 is filled by type I HMM with ε‖ = −3.9 and
ε⊥ = 7. The dielectric properties of the upper and lower
media are mutually ”conjugated” in order to minimize
the reflection losses, as shown below.

The dispersion relations for these HMMs are given in
Fig. 2 by red (HMM II) and blue (HMM I) hyperbolas.
The wave vector ki in the incoming wave has components
(kx(i) > 0, kz(i) > 0). For this wave vector the group
velocity vg(i) = ∇ω(k)|k=ki has a negative vertical pro-
jection that corresponds to energy propagation towards
the interface. While the vertical component of ki is pos-
itive, i.e. the phase grows outward the interface, this
wave transfers energy from upper to lower semi-space.
A backward propagation regime is typical for waves in
HMMs when phase and group velocities have opposite
projections14.

The wave vector kt of the transmitted wave is obtained
from the momentum conservation, kx(i) = kx(t). From
two points on the blue hyperbola, satisfying this conser-
vation law, the one on the low branch corresponds to the
refracted wave, since here the vertical projection of group
velocity is negative.

Mutual orientation of the vectors of group velocities in
the incident and refracted wave in Fig. 2 is a signature of
negative refraction at the interface between two HMMs
of different types. Here we show that due to negative
refraction at the interface between two weakly absorb-
ing HMMs a real subwavelength image is formed by con-
verging rays, similarly to an image obtained with ideal
Pendry’s flat lens.

It follows from the plot in Fig. 2 that the incoming
wave is a propagating mode if the angle of incidence
θ exceeds the critical value θmin = arctan

√
|ε‖/ε⊥| =

arctan(
√

3.9/7). Here the angle θmin defines the hyper-

bola’s asymptote kz =
√
| ε⊥ε‖ | kx.

We briefly remind the fundamental properties of
monochromatic plane wave propagating in a medium
with uniaxial anisotropy and hyperbolic dispersion. It
follows from Maxwell’s equations

(ω/c)H = k×E, (ω/c)D = −k×H (3)

that the mutual orientation of the vectors k,E,D,H, and
the Pointing vector S = c

4π (E ×H) is as shown in Fig.
3a. The four vectors, k,E,D,S are coplanar since each
of them is orthogonal to H. The optical axis also lies in
the same plane. The direction of propagation of electro-
magnetic energy is defined by the vector of group velocity
vg = ∂ω(k)/∂k, which coincides with the direction of the
Pointing’s vector S for a transparent (or weakly absorb-
ing) media.

For the extraordinary wave the length of the wave vec-
tor k = (ω/c)

√
ε(θ) depends on the angle θ it makes

with the optical axis, where angular dependence of the
dielectric constant is given by the equation15

1

ε(θ)
=

sin2 θ

ε‖
+

cos2 θ

ε⊥
. (4)
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FIG. 3: a) Mutual orientation of the vectors in a plane
wave propagating in a uniaxial crystal with optical axis along
dashed line. Pairs of orthogonal vectors are marked by the
same color. The direction of Poynting’s vector S corresponds
to a medium with hyperbolic dispersion, as it follows from the
direction of group velocity vg(i) in Fig. 2. Angles θ and ϕ are

related, tanϕ = Re
(

ε⊥
ε‖

)
tan θ.15 b) Angular dependence of

the dielectric permittivity in a dissipative hyperbolic medium

with ε
(1)
⊥ = −7+ i 0.5, ε

(1)

‖ = 3.9+ i 0.5 and in a dissipaionless

one with ε
(2)
⊥ = −7, ε

(2)

‖ = 3.9.

In a dissipationless type II HMM (ε‖ > 0, ε⊥ < 0) the
dependence ε(θ) has a point of singularity at θ = θmin
where ε(θmin) = ∞. At this point the function ε(θ)
changes its sign suffering an infinite discontinuity, see the
green line in Fig. 3b. Dissipation removes this singular-
ity. The real part of ε(θ) changes its sign passing through
zero, as shown by the blue line. In this case the angle
θmin obtained from the equation Re ε(θ) = 0 is shifted by

− δ
2

2

ε‖−|ε⊥|
(ε‖|ε⊥|)3/2

from the angle arctan(
√
ε‖/|ε⊥|), where

δ = Imε⊥ = Imε‖.
The line θ = θmin divides space into two parts with

metallic (Re ε(θ) < 0) and dielectric (Re ε(θ) > 0)
response. It is known that surface plasmon-polariton
is an eigenmode propagating along metal-dielectric
interface15. Since the virtual boundary θ = θmin sepa-
rates metal region from dielectric region, a bulk plasmon-
polariton mode, may propagate along it16,17. This mode
is tightly localized and it serves as a carrier of the sub-
wavelength image.

III. SUBWAVELENGTH IMAGE OBTAINED
FOR TWO HOMOGENEOUS HYPERBOLIC

MEDIA

Let us consider two semi-infinite, homogeneous, hyper-
bolic media with interface at z = 0. The upper medium
(a) is the type II HMM with Re εa|| > 0, Re εa⊥ < 0.

The low medium (b) is the type I HMM with Re εb|| <

0, Re εb⊥ > 0. The optical axis in each medium coincides
with axis z. The light source is a point dipole oriented
perpendicular to axis z placed in the upper medium at
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FIG. 4: Near-field subwavelength image of a point dipole
(shown by white arrow) with λ = 670 nm obtained by nega-
tive refraction at the interface between two HMM’s. Color
map shows spatial distribution of Poynting’s vector. (a)
The HMM’s satisfy the condition (9) of minimum reflec-
tion: εa‖ = 3.9, εa⊥ = −7 + 0.18i, εb‖ = −3.9 + 0.18i, and

εb⊥ = 7 + 0.26i. (b) Less dissipative HMM’s with parameters
not matching the condition of minimum reflection: εa‖ = 4,

εa⊥ = −7 + 0.1i, εb‖ = −2 + 0.1i, and εb⊥ = 9 + 0.1i.

120 nm above the interface, as shown in Fig. 4. The
dipole radiates at the wavelength λ = 670 nm. Its image
with subwavelength resolution is formed in the near-field
zone.

The parameters of the hyperbolic media must be opti-
mized to minimize reflection losses for the extraordinary
(TM) wave. While the field emitted by the dipole also
contains the TE mode (with electric field parallel to the
interface), it does not propagate in the upper medium
where εa⊥ < 0. The fields of the incident TM wave prop-
agating in the upper medium are oriented as shown in
Fig. 3a. The fields of the reflected wave and refracted
wave are calculated from the electrodynamics boundary
conditions. The details of calculation are given in Ap-
pendix. The following formula gives the reflection coeffi-
cient defined as R = |Hr|2/|Hi|2:

R(θ) =

∣∣∣∣∣∣∣∣
cos θ

√
εb⊥ε

a(θ) + εa⊥

√
1− εa(θ)

εb||
sin2 θ

cos θ
√
εb⊥ε

a(θ)− εa⊥
√

1− εa(θ)

εb||
sin2 θ

∣∣∣∣∣∣∣∣
2

. (5)

Here εa(θ) = εa|||ε
a
⊥|/(|εa⊥| sin

2 θ−εa|| cos2 θ) is the angular

dependence of permittivity in medium a given by Eq.
(4). Note that for θ > θmin the function εa(θ) takes only
positive values.

The condition of total transmission, R(θ) = 0 is satis-
fied if

cos θ
√
εb⊥ε

a(θ) + εa⊥

√
1− εa(θ)

εb||
sin2 θ = 0. (6)

If the dielectric constants of both hyperbolic media are
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FIG. 5: Reflection coefficient vs angle of incidence. Green line
is for nondissipative media: εa‖ = 3.9, εa⊥ = −7, εb‖ = −3.9,

and εb⊥ = 7. Blue line is for weakly dissipative media: εa‖ =

3.9, εa⊥ = −7 + 0.18i, εb‖ = −3.9 + 0.18i, and εb⊥ = 7 + 0.26i.
Yellow line is for moderately dissipative media: εa‖ = 3.9 +

0.5i, εa⊥ = −7 + 0.7i, εb‖ = −3.9 + 0.2i, and εb⊥ = 7 + 0.3i.
Blowup of the region near the minimum is shown in insert.

real, this equation has the root

θB = arctan

(
εa‖|ε

b
‖|

|εa⊥|2
· |ε

a
⊥|+ εb⊥
εa|| + |ε

b
‖|

)1/2

, (7)

which is the Brewster angle for the interface between
two uniaxial media. Note that the angle θ defines the
direction of the wave vector k, which is different from
the direction of Poynting vector S, see Fig. 3. For two
isotropic media with linear dispersion Eq. (7) is reduced

to the well-known result, θB = arctan(
√
εb/εa).

If the light source is placed in the upper medium
(medium (a) in Fig. 4) the emitted radiation propa-
gates within a narrow cone20 along the line ϕ0 defined
from tanϕ0 = (|εa⊥|/εa‖) tan θmin, see Fig. 3. Thus, to

realize the condition of minimum reflection, the angle of
incidence θmin must be the Brewster angle: θB = θmin.
This occurs for symmetrically conjugated media, when
εa‖ = |εb‖| and |εa⊥| = εb⊥. Since the function εa(θ)→∞ at

θ → θmin, the value of the reflection coefficient is calcu-
lated by L’Hôpital’s rule that gives, limR(θ)θ→θmin = 0.
According to Fig. 2, in a nondissipative hyperbolic
medium the wave incident at θ = θmin has ki → ∞.
The latter means that total transmission cannot be re-
alized at θ = θmin. However almost total transmission
occurs for the angle slightly exceeding θmin and finite
wave vector, if the media are dissipative. Angular de-
pendence of the reflection coefficient (5) is shown in Fig.
5 for dissipationless (green line), weakly dissipative (blue
line), and moderately dissipative (yellow line) structures.
Even in the latter case the reflection remains very weak
near θmin = arctan

√
3.9/7 ≈ 0.641 ≈ 36.74◦ and the

minimum is slightly shifted towards larger angles.
The interface between two hyperbolic dissipationless

media remains perfectly reflective for the angles of inci-
dence 0 ≤ θ ≤ θc, where

θc = arctan

√√√√ εa|||ε
b
|||

|εa⊥|(εa|| + |ε
b
|||)

(8)

is the root of the equation εb|| = εa(θ) sin2 θ. For the

selected parameters of the media the critical angle is
θc = arctan

√
3.9/14 ≈ 0.486 ≈ 27.83◦. It is shown in

Appendix that at θ = θc the z-component of kt vanishes.
For θ ≤ θc the wave vector in medium (b) becomes pure
imaginary. Since θc < θmin the wave vector for the wave
incident at angle θc is also pure imaginary. Thus, an in-
teresting optical phenomenon – total internal reflection
of evanescent wave at the interface between two hyper-
bolic media occurs for θc < θmin. This is the reason for
R = 1 at θ < θc for the green-dashed curve in Fig. 5.
The dependence R(θ) exhibits a singularity, at θ = θc,
which is related to vanishing Poynting vectors in both
media when θ → θc.

At θ > θc the z-component of transmitted wave be-
comes real, giving rise to a sharply increasing transmis-
sion, which becomes perfect (R = 0) at θ = θmin due to
excitation of bulk plasmon-polariton. For larger angles,
θ > θmin both media exhibit a dielectric behavior and the
reflection coefficient growth, approaching 1 for θ = π/2.
Note that for two hyperbolic media the effect of total in-
ternal reflection takes place for small angles of incidence,
unlike the same effect in dielectrics, where the angle of
incidence must exceed some critical value. If both media
are isotropic Eq. (8) for θc is reduced to the well-known

result θc = arcsin
√
εb/εa.

Finite dissipation smoothes the singularity of R(θ) at
θ = θc but the behavior of this function remain practi-
cally the same, as it is seen from the plots in Fig. 5.
The minimum of reflection occurs very close to the angle
θ = θmin for dissipative HMM’s with conjugated param-
eters:

|Re εa⊥| = Re εb⊥, Re εa‖ = |Re εb‖|. (9)

This condition is satisfied for the imaging system
shown in Fig. 4a and it is broken for the system in Fig.
4b. Both figures demonstrate the distribution of Poynt-
ing’s vector S of a point dipole radiation obtained by
Comsol Multiphysics. While the structure in Fig. 4a is
more dissipative, it produces a brighter image with bet-
ter resolution. Losses due to reflection at the interface
seen in Fig. 4b render a more negative effect on the qual-
ity of the image than stronger dissipative losses existing
in the system in Fig. 4a. The impedance matching in
design of subwavelength hyperlens was achieved in Ref.
[18], where image magnification was numerically realized
using principles of transformation optics.

The effect of negative refraction at the interface results
in the focusing of emitted radiation in the second slab,
similarly to image formation in Pendry’s lens. Due to two
paths with equal optical length, the local field at the focus



5

is enhanced by constructive interference. An estimate for
the characteristic size of the image is limited by the pixel
size, ∼ 10 nm in Fig. 4. Additional calculations with the
pixel size about 5 nm indicates, that the waist size at the
focal point for the image in Fig. 4 does not exceed 10±5
nm, i.e. it lies in a deeply subwavelength range.

It is clearly seen in Fig. 4 that electromagnetic en-
ergy radiated by the dipole is concentrated asymptoti-
cally within two narrow cones along the lines separating
the regions with metallic and dielectric response. While
the interface is in the near zone, the tendency for concen-
tration of energy along these lines is already clearly seen.
Radiation of a dipole in an uniaxial dielectric medium
was calculated in Ref. [19]. Detailed distribution of the
field pattern in a homogeneous hyperbolic medium was
studied in Ref. [20]. Distribution of light intensity in each
half-plane in Fig. 4 coincides qualitatively with that ob-
tained in Ref. [20] for a dipole oriented perpendicular to

the optical axis.

IV. EFFECTIVE PARAMETERS OF LAYERED
AND WIRED STRUCTURES

Homogeneous media a with εa⊥ < 0, εa‖ > 0 and b with

εb⊥ > 0, εb‖ < 0 can be considered as long-wavelength

limits of periodic layered and wired structure respec-
tively. Their dielectric properties in the homogenization
limit can be calculated analytically. The selected layered
structure consists of layers of silver with dielectric func-
tion εm(λ) and thickness p separated by layers of silicon
oxide with parameters εd and q. In the long-wavelength
limit, d = p+ q << λ, where λ is the wavelength in vac-
uum, the effective dielectric function εa‖(λ) corresponding

to plasmonic-like mode is obtained from the equation21

cos

2πp

λ

√
εm
εa‖
− 1

 cos

2πq

λ

√
εd
εa‖
− 1


−1

2

(
εd
εm

√
εm − εa‖
εd − εa‖

+
εm
εd

√
εd − εa‖
εm − εa‖

)
sin

2πp

λ

√
εm
εa‖
− 1

 sin

2πq

λ

√
εd
εa‖
− 1

 = 1. (10)

The effective dielectric function εa⊥(λ) is explicitly given
by the following formula21:

εa⊥(λ) =
λ2

2(πd)2

[
1− cos

(
2πp

λ

√
εm

)
cos

(
2πq

λ

√
εd

)
(11)

+
1

2

(√
εm
εd

+

√
εd
εm

)
sin

(
2πp

λ

√
εm

)
sin

(
2πq

λ

√
εd

)]
.

The wired stricture of period d consists of silver cylin-
ders of radius R imbedded in a silicon dioxide back-
ground. The effective dielectric function εb‖ is the

weighted average of εm and εd

εb‖ = fεm + (1− f)εd, (12)

where f = πR2/d2 is the filling fraction of metal. The
other effective dielectric function is expressed through a
series over the reciprocal lattice vectors G22,

εb⊥ =

η − 1

2

∑
G,G′ 6=0

G ·G′η(G)η(−G′)M−1(G,G′)


−1

(13)
Here η̄ = f/εm + (1− f)/εd and

η(G) =
1

Ac

∫
Ac

ε−1(r) exp(−iG · r)dr (14)

is the Fourier component of periodic function 1/ε(r), in-
tegration runs over the unit cell with area Ac = d2, and
M−1(G,G′) is the inverse of the matrix

M(G,G′) = G ·G′η(G′ −G). (15)

Using Eqs. (10)-(15) the parameters of any layered or
wired nanostructure can be easily calculated. It takes
some effort to optimize the parameters of the both struc-
tures to satisfy Eq. (9). The following values for the ef-
fective dielectric constants were found for the wavelength
λ = 670 nm:

εa⊥ = −7.05 + i0.18, εa‖ = 3.90, (16)

εb⊥ = 7.05 + i0.26, εa‖ = −3.89 + i0.18. (17)

These values are obtained for p = 4 nm, q = 6 nm (f =
p/(p+q) = 0.4), R = 5 nm, d = 16.45 nm (f = πR2/d2 =
0.29). The dielectric properties of the constituents at λ =
670 nm were collected from Ref. [23]: εAg = −20.86 +
i0.43, εSiO2 = 2.18, εAl2O3 = 3.07 + i0.07. Note that the
value of εa‖ is pure real since the corresponding imaginary

part does not exceed 10−2 and can be neglected.
For both structures the ratio d/λ ∼ 10−2 corresponds

to deeply subwavelength limit. Therefore, the obtained
values of the effective dielectric constants are quite close
to that obtained in the quasi-static limit or in Maxwell-
Garnet approximation.
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FIG. 6: a) Proposed scheme of the imaging system with lay-
ered and wired structures. Black arrow at the top corner is
a dipole radiating at λ = 670 nm; b) distribution of averaged
Poyinting | < S > | in the x− z plane where the dipole is dis-
placed (at y = 200 nm) ; c) and d) distribution of | < S > |
in the x − y cross-section at the interface z = 0 and at the
focal plane z = zf , respectively.
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FIG. 7: Transmission of emitted light vs wavelength.

V. SUBWAVELENGTH IMAGING WITH
LAYERED AND WIRED STRUCTURES

We propose a finite size realistic imaging system with
the materials and geometrical parameters mentioned
above . Medium a (upper slab) contains 7 periods of
Ag/SiO2 bilayer with an extra layer of SiO2 on the top.
Medium b is a slab of photonic crystal of vertical Ag
nanowires in Al2O3 matrix of total thickness approxi-
mately 240 nm. The distribution of light emitted by a
dipole in this structure is shown in Fig. 6.

It is clear from Fig. 6 that the general pattern of light

distribution is similar to that obtained for the uniform
slabs in Fig. 4. Namely, light emitted by the dipole
propagates within a narrow cone, along the straight lines
making angles ±ϕ(θmin) with axis x. After negative re-
fraction at the interface, two waves interfere at the focal
point. However, one can emphasize some features spe-
cific for the structured slabs in Fig. 6. In the multi-
layer slab each beam extends along the metal-dielectric
boundaries due to surface plasmon-polariton excitation.
Similarly, the beams extend along the wires in the second
slab, where bright areas appear in the space between the
wires, and darker areas are the metallic wires. Due to
beam extension in two orthogonal directions in the wired
and layered medium, the symmetry between the source of
light and its image, which is obvious from Fig. 4, is lost.
Note that the metallic inclusions are practically trans-
parent for light since the optical skin depth c/ωp ≈ 22
nm exceeds their thickness. Here ωp = 8.9 eV is plasma
frequency for silver. Due to inequality c/ωp << R, the
magnetization of silver wires in the ac field emitted by
the dipole can be neglected24. Distribution of intensity
in Fig. 6 supports interpretation of hyperbolic metama-
terials as a medium that supports propagation of coupled
surface plasmon modes25.

Figure 6c demonstrates the spatial distribution of light
intensity in the interface plane z = 0. The maximum
intensity is observed in the plane of polarization of prop-
agating TM-wave (x − y-plane) within the base of the
resonance cone. The intensity is minimal along axis z,
where the evanescent TE-wave is polarized. The distri-
bution of intensity in the focal plane z = zf is shown in
Fig. 6d. The position of the focal plane is obtained as
a half height on the curve of intensity distribution over
z. Wired structure with higher intensity in the dielectric
background is clearly seen in Figs. 6c,d. To estimate
the size of the image we used a standard procedure. The
image size l is calculated as the full width of intensity
distribution in the x − y plane taken at half maximum.
It gives lx ≈ 35 nm along axis x and ly ≈ 50 nm along
axis y. These subwavelength values exceed the resolu-
tions reported in previous studies performed at shorter
wavelengths. For example, the ratio l/λ = 0.075 for the
image shown in Fig. 6d. The reported in Refs. [10,11,26]
results for l/λ are respectively 0.41, 0.37, 0.55. At the
same time much higher image resolution, λ/117, was ob-
tained in the microwave region27. In the microwave ex-
periment with Weyl metacrystal the obtained resolution
of 0.2 was relatively low7.

The efficiency of the proposed imaging system depends
on the wavelength. The main factor is the transmission
ratio T , which is the ratio of intensities at the focus and
near the source. The plot of transmission ratio for the
wavelength interval 650-750 nm is shown in Fig. 7. Ap-
propriate choice of the filling factor of silver in both hy-
perbolic media makes it possible that each point in the
graph fulfilled the matching conditions Eq. (9). The
maximum at 670 nm is due to competition between the
resonant enhancement of electromagnetic field in a col-
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lection of metallic nanoparticles28 and Joule dissipation.
Both these factors vary with the wavelength that leads
to the maximum of transmission at λ = 670 nm. Higher
than 10% transmission is predicted for the bandwidth
660-740 nm.

The proposed scheme needs a combination of layered
and wired hyperbolic media to produce a focused image
of an object in the near field. Optical hyperlens proposed
in Ref. [8] and experimentally realized in Ref. [10] trans-
fers subwavelength pattern in the far field using hyper-
bolic medium with cylindrical symmetry without focus-
ing. Due to curved geometry the hyperlens magnifies the
image, while the image clarity deteriorates. In the spher-
ical hyperlens realized in Ref. [11] the sub-diffractional
image is formed by narrow weakly-divergent beams. Al-
most nonspreading propagation is realized due to flat-
tened isofrequency contours with relatively large curva-
ture. This spherical hyperlens produces subwavelength
image in two lateral dimensions. A flat lens with n ≈ −1
has been fabricated in Ref. [26]. It produces high-quality
images with subwavelength resolution in the ultraviolet.

The lenses proposed in Refs. [8,10,26] allow subwave-
length patterning beyond the near field. Our scheme pro-
duces image at the near-field with higher resolution. For
the image in Fig. 6d the resolution l/λ = 0.075 exceeds
much the results l/λ = 0.41, 0.37, 0.55 reported respec-
tively in Refs. [10,11,26]. Higher resolution is achieved
due to presence of two hyperbolic media, that guarantees
preservation of the subwavelength components up to the
focal point. The proposed near-field scheme is valid for
subwavelength photolithography12.

A possibility of imaging using two hyperbolic media
was proposed by Zhao et al.29. The imaging system pro-
posed there consists of two layered structures with the
same metallic (silver) and different dielectric (air and
high refractive index polymer) constituents. An ultra-
violet image of an object of two subwavelength slits was
obtained by numeric modelled. Our scheme is also based
on two metamaterials as that in Ref. [29]. However, in
our case a combination of layered and wired structures
allows to naturally achieve conjugate hyperbolic media
with different signs for εa‖ and εb‖ as well as different signs

for εa⊥ and εb⊥. In our scheme the conditions of perfect
transmission through the interface (9) can be easily sat-
isfied. For two layered media with the same metal these
conditions cannot be fulfilled at a reasonable filling frac-
tions of metal leading to essential losses at reflection.

VI. CONCLUSIONS

We proposed an optical near-field imaging system with
deeply subwavelength resolution based on interfaced type
I and type II hyperbolic media. The subwavelength
image of a point source is formed by two interfering
beams propagating along symmetric optical paths sep-
arating the regions with metallic and dielectric response.
The hyperbolic media with the necessary optical param-

eters can be realized as metal-dielectric composites with
layered and wired structures operating in the regime
of homogenization. Light radiated by a source in the
layered medium suffers negative refraction at the inter-
face and is focused at the symmetric point in the wired
medium. The proposed imaging system produces an im-
age of about 50 nm wide of a point dipole radiating at
the wavelength of 670 nm. The proposed imaging scheme
may be applied for construction of flat hyperlenses with
subwavelength resolution and other devices of subwave-
length optics.
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VIII. APPENDIX

Let a plane wave with TM-polarization and amplitude
E0 is incident on an interface between two uniaxial op-
tical crystals. Orientation of the vectors k, E, and S‖vg
in the incident and refracted wave is clear from Figs 2
and 3a. Magnetic field H is parallel to axis y and tan-
gential component of electric field Ex = (ckz/ωε⊥)H.
Continuity of magnetic field H and electric field Ex at
the interface z = 0 leads to the set of linear equations{

Hi +Hr = Ht
1
εa⊥

(
k(i)zHi + k(r)zHr

)
=

k(t)z
εb⊥

Ht.
(18)

Here indices i,r, and t label the components of the inci-
dent, reflected and transmitted wave, respectively. Solv-
ing these equation with respect to Hr and Ht we get the
following Fresnel formulas:

Hr =
εb⊥k(i)z − εa⊥k(t)z
εa⊥k(t)z − εb⊥k(r)z

Hi, Ht =
εb⊥(k(i)z − k(r)z)
εa⊥k(t)z − εb⊥k(r)z

Hi.

(19)
The x-component of the wave vector is conserved at re-
flection and refraction

k(i)x = k(r)x = k(t)x =
ω

c

√
εa(θ) sin θ. (20)

Here ε(θ) is defined by Eq. (4) with ε⊥ = εa⊥ and ε‖ = εa‖.

The z-components of the wave vector in the incident and
reflected wave are equal by modulus but have opposite
signs

k(i)z = −k(r)z =
ω

c

√
εa(θ) cos θ (21)

The z-component of kt in the transmitted wave is ob-
tained from the dispersion relation (2). It follows from
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Fig. 2 that Re k(t)z < 0, i.e.

k(t)z = −ω
c

√√√√εb⊥

(
1− εa(θ)

εb‖
sin2 θ

)
. (22)

The reflection coefficient is defined as

R =
|Hr|2

|Hi|2
=

∣∣∣∣∣εa⊥k(t)z − εb⊥k(i)zεa⊥k(t)z + εb⊥k(i)z

∣∣∣∣∣
2

, (23)

where the components of the wave vectors are given by
Eqs. (21) and (22).

If both media are dissipationless the reflection coeffi-
cient equal to 1 at θ = θc. The critical angle θc, which is
the angle of total internal reflection, is obtained from the
condition of vanishing k(t)z, i.e. vanishing of the trans-
mitted wave. It is clear that R = 1 if k(t)z = 0 in Eq.
(23). Moreover, for conjugate media (9) this remains true
even for θ < θc since the components k(i)z, k(r)z, and k(t)z
become pure imaginary and the phase of each square root
in Eqs. (21) and (22) is obtained from the condition of
exponential decay of the corresponding evanescent wave.
To avoid singularity 0/0 in calculation of the reflection
coefficient the dielectric functions should be taken with
infinitesimally small imaginary parts.
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