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Carrier transport in type-II superlattice photodetectors is investigated by means of a rigorous
nonequilibrium Green’s function model based on a physics-based Büttiker-probe formalism. In-
traband scattering self-energies (carrier-phonon interactions) are computed in the self-consistent
Born approximation, while interband self-energies (Shockley-Read-Hall and optical transitions) are
included in terms of semiclassical generation-recombination rates, neglecting interband renormaliza-
tion effects. Current conservation is achieved with an efficient Newton-Raphson algorithm. While
carrier transport in infrared detectors is usually understood in terms of quantities (e.g., mobilities
and quasi-Fermi levels) that are admittedly not germane to NEGF theory, the proposed model pro-
vides a quantum-kinetic description of tunneling, miniband transport, hopping, and carrier extrac-
tion within a drift-diffusion-friendly framework. The connection with semiclassical theories allows
to explore the possibilities offered by Poisson-Schrödinger or localization landscape drift-diffusion
approaches.

I. INTRODUCTION

Some specific properties of type-II superlattices
(T2SLs), in particular the splitting of the HH1 and
LH1 subbands and the characteristics of the evanescent
states connecting the (propagating) valence and conduc-
tion band states, hold the promise of an ideal absorb-
ing material with small Auger recombination coefficients
and reduced band-to-band tunneling at arbitrarily small
band gaps [1]. Motivated by these favorable theoreti-
cal predictions, antimonide-based T2SLs were proposed
as a possible alternative to the well-established infrared
detector technology based on mercury cadmium telluride
(HgCdTe), with the additional potential advantage of the
competitive costs afforded by the standard III-V growth
technology. As type-II infrared detectors are now ap-
proaching, but still not outperforming the dark current
characteristics of state-of-the-art HgCdTe detectors, at
least in the long-wavelength infrared region, gradually
emerging is the question whether the performance of
T2SL detectors is ultimately limited by the presence of
extrinsic recombination centers, or by intrinsic carrier
transport properties, which could be possibly improved
by proper superlattice design.

The most striking aspect of type-II superlattice (T2SL)
photodetectors is perhaps the extreme diversity of the
possible carrier transport mechanisms, which range from
miniband transport to Wannier-Stark hopping, depend-
ing on geometrical parameters, temperature, and the
presence of built-in and/or applied fields [2]. Especially
in the long-wavelength infrared (LWIR) spectral region,
the hole miniband is typically very narrow compared to
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the electron miniband. Therefore, vertical electron trans-
port appears phonon scattering-limited, which is indica-
tive of miniband transport, while vertical hole transport
is best described by hopping between localized states me-
diated by electron-phonon coupling, with transport being
favoured by scattering, rather than inhibited. The hole
mobility may be significantly reduced in the presence of
disorder, while electron transport is much less sensitive
to the presence of defects. Indeed, the very concept of
miniband conduction breaks down when the miniband
width is very small, as growth imperfections may com-
pletely disrupt the alignment of the energy levels in the
weakly coupled limit [3].

It is generally understood that native defects asso-
ciated with GaSb are responsible for the SRH-limited
minority-carrier lifetimes observed in InAs/GaSb T2SLs,
while gallium-free InAs/InAsSb superlattices exhibit
much longer lifetimes, comparable with those obtained
in HgCdTe alloys, but a longer superlattice period is
needed to achieve long wavelength cutoffs, which results
in reduced vertical hole mobilities and weaker absorption
coefficients [4].

Although approximations may apply in specific cases,
a general theory is needed whenever the miniband width,
the scattering-induced broadening, and the potential
drop per period take similar values [2]. This is the most
likely scenario in type-II superlattice detectors, where
there is generally a coexistence of localized states act-
ing as trap centers, and miniband states sufficiently ex-
tended to allow transport above the mobility edge [5].
Based on a self-consistent description of electronic struc-
ture and scattering processes – in which the broaden-
ing of the states emerges naturally – the non-equilibrium
Green’s function (NEGF) approach seamlessly describes
the transition between these transport regimes. How-
ever, the staggering computational cost required by the
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calculation of the Green’s functions, especially in the
multiband case, limits the NEGF analysis to very sim-
ple structures [3]. These considerations strongly prompt
towards exploring the possibilities offered by simplified
NEGF models based on the effective mass approxima-
tion, or even quantum-corrected semiclassical approaches
based on the well established numerical framework of the
basic drift-diffusion (DD) model, which has been success-
fully employed for the calculation of the relevant figures
of merit (quantum efficiency, crosstalk and modulation
transfer functions) of bulk HgCdTe detectors [6].

Among possible quantum-corrected semiclassical ap-
proaches [7–11], the Schrödinger-Poisson drift-diffusion
model (SPDD) represents a natural extension of the clas-
sical DD framework. Quantum effects are incorporated
by means of a modified local density of states (LDOS) [8]
derived from the Schrödinger equation, while the scat-
tering mechanisms are still phenomenologically encoded
in appropriate mobility models. Recent advances in the
calculation of the LDOS from the localization landscape
theory [12, 13] make such quantum-corrected DD ap-
proaches promising for three-dimensional device simula-
tion. Notable carrier transport studies inspired by An-
derson localization theory [14] have been presented in
the context of type II superlattice (T2SL) InAs/InAsSb
photoconductors [15], and nitride-based light emitting
diodes (LEDs) [16]. It should be mentioned, however,
that the localization landscape (LL) theory was origi-
nally proposed to study the ground state properties of
disordered systems. As the landscape paradigm was just
recently shifted to the analysis of carrier transport prop-
erties, many aspects of this interesting development need
to be clarified. For example, in a superlattice, one may
expect that tunneling currents caused by the tail states
in the barrier layers should be somehow included in the
lowering of the effective potential, but a quantitative as-
sessment of this intuition is still missing.

A recent study of carrier transport in GaN-based LEDs
has reported a quantitative agreement between NEGF
calculations based on the Büttiker probe formalism and
quantum-corrected DD simulations [17], save for situa-
tions with pronounced tunneling and interference effects.
The discrepancies between NEGF and semiclassical mod-
els, which appear when the density of states is strongly
modified with respect to be bulk case, were attributed to
the somewhat arbitrary distinction between carriers pop-
ulating bound and unbound states, which is implicit in
any DD model that attempts to solve the dynamics of the
two populations coupled by rate equations [17], and to
the use of phenomenological Büttiker probe self-energies,
whose expression does not depend on the Green’s func-
tions [17]. Since we are concerned with carrier transport
in a superlattice, where the transport itself is made pos-
sible by the formation of minibands, we propose a DD-
friendly, yet rigorous NEGF model based on a physics-
based formulation of the Büttiker probe self-energies, ex-
tending the work in [17] to T2SLs. The model is ap-
plied to nBn detectors, which are essentially a photo-

diode with the junction (space charge region) replaced
by an electron blocking unipolar barrier (B), and the p-
type contact replaced by an n-type contact, see [18] for a
classification of barrier detectors. As a preliminary step
towards the development of a library of material parame-
ters for the most common T2SL configurations, we com-
pare the NEGF simulations with a quantum-corrected
SPDD model based on the full eigen-decomposition of
the Schrödinger equation. In the spirit of LL approaches,
no distinction is made between localized and delocalized
states in SPDD, which enables a more fair comparison
with NEGF results.

II. THEORY

We assume a single-band effective-mass Hamiltonian
for one-dimensional slab systems (to simplify the nota-
tion, we write only the equations corresponding to elec-
tron transport, the extension to the bipolar case being
straightforward)

H(z, kt) = −∂z
~2

2m∗e,z
∂z + EC(z) +

~2k2t
2m∗e,t

, (1)

where m∗e,t, m
∗
e,z are electron effective masses along the

in-plane and growth directions, respectively, and EC is
the conduction band edge. We also assume that re-
tarded components of Green’s functions and self-energies
depend only on the energy E and the norm of the in-plane
wavevector kt (O = G,Σ) [19]

OR(kt, z, z
′;E) = OR(z, z′;E − Ekt), (2)

The quantum-kinetic version of the DD equations, i.e.,
the continuity equation expressing charge conservation,
complemented with the Poisson equation accounting for
electron-electron interactions at the Hartree level, reads
[20]

∂2zφ(z) =− e

ε
[ND(z)−NA(z) + p(z)− n(z)] (3)

∂zJn(z) = eUn(z) (4)

n(z) =− i

∫
dE

2π
G<(z, z, E) (5)

Jn(z) = lim
z′→z

e~
m0

(∂z − ∂z′)
∫

dE

2π
G<(z, z′, E), (6)

where e is the elementary charge, ε is the dielectric con-
stant, ND, NA are the donor and acceptor densities, n
and p are the electron and hole densities, m0 is the bare
electron mass, and Un is the (net) recombination rate

Un(z) = −2

~

∫
dE

2π

∫
dz′
[
ΣR(z, z′, E)G<(z′, z, E)

+ Σ<(z, z′, E)GA(z′, z, E)−GR(z, z′, E)Σ<(z′, z, E)

−G<(z, z′, E)ΣA(z′, z, E)
]
. (7)
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A full implementation of carrier transport requires
the self-consistent solution of the Dyson equation and
Keldysh equations

GR(z, z′, E) = GR0 (z, z′, E)

+

∫
dz1

∫
dz2G

R
0 (z, z1, E)ΣR(z1, z2, E)GA(z2, z

′, E)

(8)

G<(z, z′, E) =∫
dz1

∫
dz2G

R(z, z1, E)Σ<(z1, z2, E)GA(z2, z
′, E),

(9)

where GR0 is the Green’s function of the noninteracting
system. The retarded Green’s function gives the exci-
tation spectrum of the nanostructure and is related to
the local density of states (LDOS), the lesser Green’s
function describes how the states are occupied and deter-
mines the relevant one-particle properties, such as charge
and current densities. The independent evaluation of
the density of states and their occupation violates Pauli
blocking [21]. The coupling of the Dyson and Keldysh
equations is indeed one of the most demanding features
of the NEGF formalism [21]. The Büttiker probes were
originally proposed as a phenomenological model to pro-
vide a simplified description of the relevant (intraband)
self-energies, e.g., electron-electron and electron-phonon
scattering, which are usually obtained within the self-
consistent Born approximation through a fixed-point it-
erative solution of the NEGF equations [22–24]. Within
the Büttiker formalism, current conservation is achieved
by simply adjusting the position-dependent Fermi levels
of the probes using a fast converging Newton-Raphson
algorithm. But the numerical and conceptual simplic-
ity of the Büttiker probes does not limit their applica-
tion to phenomenological and oversimplified dissipation
models, as was shown in the context of quantum cas-
cade lasers [19]. Recently, carrier-phonon self-energies
compatible with the Büttiker probes formalism were em-
ployed in atomistic simulation of graphene nanotransis-
tors [25]. Following [25], deformation potential scattering
assisted by acoustic and optical phonons results in a (lo-
cal) intraband self-energy compatible with ansatz (2)

ΣRBP(z, z, E) =
~D2

AkBT

ρvla
GR(z, z, E) +

~D2
tK

2ρω0a

×
{[
n0 − f

(
E − E0 − E(n)

BP

)
+ 1
]
GR(z, z, E − E0)

+
[
n0 + f

(
E + E0 − E(n)

BP

)]
GR(z, z, E + E0)

}
, (10)

where f is the Fermi-Dirac function, E
(n)
BP(z) is the

position-dependent Fermi level of the Büttiker probes in
the conduction band, DA, DtK are the acoustic and op-
tical deformation potentials, respectively, ρ is the den-
sity of the material, vl is the longitudinal sound velocity,
E0 = ~ω0 is the energy of optical phonons, n0 is the
number of optical phonons, and a is the lattice constant.

TABLE I. List of simulation parameters.

Quantity Value

DA 8 eV

DtK 1 · 109 eV/cm

ρ 5.32 g/cm3

vl 6.56 km/s

E0 30 meV

m∗
e,t 0.045m0

m∗
e,z 0.035m0

m∗
h,t 0.05m0

m∗
h,z 0.28m0

In principle, polar optical scattering should be included
as an additional self-energy, but the momentum depen-
dence of the Fröhlich scattering potential would not be
compatible with the implicit summation over transverse
wavevectors granted by ansatz (2). Moreover, the spatial
nonlocality that originates from the long-range nature of
the Coulomb potential cannot be described within the
Büttiker probe formalism, which implicitly assumes di-
agonal self-energies. A common approximation in the
analysis of quantum cascade lasers is to ignore the mo-
mentum dependence of the self-energies, e.g., by evaluat-
ing the matrix elements at typical in-plane momenta [26].
This approximation gives accurate results when typical
momentum transfers are chosen carefully [27], although
the energy dependence of the scattering processes is not
represented correctly [21, 28]. The underestimation of
the carrier-phonon coupling strength in local scattering
models [29] can be approximately corrected by multiply-
ing the self-energies by a compensation factor obtained
from Fermi golden rule [30]. Neglecting nonlocal effects
and momentum dependence, the polar optical self-energy
takes the same form of the optical deformation poten-
tial self-energy [19], which allows us to consider DtK as
an effective parameter that comprehensively describes in-
elastic carrier-phonon interactions, both polar and not,
within the approximations discussed above. The numer-
ical values of DtK and other parameters employed in the
simulations are reported in Table I.

The lesser component of the Büttiker self-energy is

Σ<BP(z, z, E) =

i
m∗e,t
π~2

kBT F0

(
E − E(n)

BP

kBT

)
ΓBP(z, z, E) (11)

with the broadening function

ΓBP(z, z, E) = i
[
ΣRBP(z, z, E)− ΣABP(z, z, E)

]
. (12)

The sum over transverse wavevectors, necessary for the
calculation of the observables, has been carried out by
replacing in (11) the Fermi-Dirac function f with the
zero-order incomplete Fermi-Dirac integral F0 [31, 32].
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Turning our attention to the continuity equation (4),
the additive property of the self-energies in (7), allows
to decompose Un in the sum of different scattering pro-
cesses. Upon convergence, the contribution of intraband
mechanisms (the interaction with phonons) should van-
ish when the integral over energy is performed over one of
the two (conduction or valence) bands. Interband scat-
tering processes, e.g., optical and Shockley-Read-Hall
(SRH) transitions, connecting the conduction and va-
lence bands, can be treated within the NEGF formalism
on equal footing with inelastic quantum transport [33],
but in the spirit of the drift-diffusion approximation, we
neglect interband renormalization effects by computing
Un with semiclassical expressions [17, 34]. In order to
investigate the extraction efficiency of T2SL detectors,
we assume Un = USRH −GOP, where GOP is a constant
optical generation rate computed from the absorption in
the material and the photon flux, and USRH is the (net)
SRH recombination rate given by

USRH(z) =
np− neqpeq

τp(n+ n1) + τn(p+ p1)
, (13)

where neq, peq are the electron and hole densities at equi-
librium, and n1, p1 are the corresponding quantities when
the Fermi level falls at the trap energy level.

Representing carrier states in a finite-element basis,
the NEGF version of the continuity equation (4) reads in
full matrix notation

e

~

∫
dE

2π
Tr{hG<(E)−G<(E)h} = eUn, (14)

where h = EM − H, M is the overlap matrix, and the
trace is performed over finite-element degrees of freedom.
A simple iteration scheme between Green’s functions and
self-energies in the self-consistent Born approximation
may take several thousands iterations to converge, de-
pending on the localization of the states [29]. On the
other hand, a Newton-Raphson algorithm may achieve
convergence in just few iterations. Among the advan-
tages of the Büttiker formalism is the possibility to com-
pute the Jacobian matrix analytically. Usually, the Pois-
son equation is solved in a separate (outer) self-consistent
loop, but we prefer to find the self-consistent electrostatic
(Hartree) potential and Fermi levels within a single New-
ton iteration scheme, exactly as in a DD model, using the
identity

∂φG
R = −GR∂φ(h− ΣR)GR, (15)

to compute the derivative of the retarded Green’s func-
tion with respect to the potential φ. Boundary conditions

are enforced by fixing the unknowns E
(n)
BP, and φ in ad-

ditional superlattice layers on both sides of the contact
regions.

Formally, the Fermi levels of the Büttiker probes co-
incide with the Fermi levels only at equilibrium, where
the fluctuation-dissipation theorem applies. However,
if we invoke the concept of quasi-equilibrium, it makes

sense to compare the Fermi levels of the probes with the
quasi-Fermi levels obtained with a quantum-corrected
DD model.

A. Schrödinger-Poisson drift-diffusion

The Schrödinger-Poisson drift-diffusion (SPDD)
model, includes quantum corrections to the electro-
statics by means of a modified LDOS. In steady-state
conditions, the model equations read (for shortness we
write only the equations for electrons)

∂2zφ(z) = −e

ε
[ND(z)−NA(z) + p(z)− n(z)] (16)

∂zJn(z) = eUn(z) (17)

Jn(z) = eµen∂z

(
ẼC + kBT logNC + kBT log γn

)
(18)

−∂z
~

2m∗e,z
∂zψn(z) + EC(z)ψn(z) = Eψn(z) (19)

where

γn =

F1/2

(
E

(n)
F − ẼC

kBT

)

exp

(
E

(n)
F − ẼC

kBT

) (20)

accounts for Fermi-Dirac statistics [35]. The electron
charge is computed as

n(z) =
m∗e,t
2π~2

∑
i

|ψ(i)
n (z)|2F0

(
Ei − E(n)

F

kBT

)
, (21)

EC = φ − ∆EC is the conduction band edge, while the
effective conduction band edge ẼC is obtained from

n(z) = NCF1/2

(
E

(n)
F − ẼC

kBT

)
, (22)

where NC is the 3D effective density of states. The
quantum-corrected DD formulation presented here is
equivalent to the approach proposed in [8], in which the
quantum corrections have been included in γn. SPDD
shares the same idea of the LL approach, in particu-
lar the definition of an equivalent semiclassical confining
potential seen by the carriers, with the only difference
that the quantum electron density is not approximated
by a landscape equation, but it is obtained directly from
the full eigen-decomposition of the Schrödinger equation
(19). While the SPDD approach may not be viable in
three-dimensional simulations, it provides a benchmark
for the accuracy of LLDD models.

III. RESULTS

Among possible candidates for the assessment of the
sophisticated physics in T2SLs, barrier infrared detec-



5

kt = 0.02

kt = 0.045

kt = 0

hh1

c1

-1     -0.8    -0.6   -0.4 -0.2     0   0.02 0.04   0.06 0.08   0.1

kz/(π/d) kt/(2π/a)

E
n
er

g
y
 (

eV
)

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

FIG. 1. Subband structure of a superlattice consisting in the
alternating sequence of a 18/24 Å InAs/GaSb T2SL, com-
puted with a multiband k·p model for wavevectors along the
growth (left panel) and in-plane (right panel) directions. The
in-plane dispersion for kz = 0 is shown in black, while the
blue curves are for equally spaced values of kz up to the mini-
Brillouin-zone boundary π/d (d is the superlattice period).
Luttinger parameters are from [36]. The dashed red lines are
the subbands computed in the effective mass approximation.
The inset in the left panel shows the first heavy-hole (hh1)
subband dispersion along kz for different values of the (nor-
malized) transverse wavevector kt; the coloured strips mark
the corresponding minibands.

tors provide the opportunity to analyze separately car-
rier transport properties of electrons (minority carriers in
pBp configurations) and holes (minority carriers in nBn
configurations) [37, 38]. We consider an nBn detector,
consisting of a 50 nm-thick GaSb/AlSb superlattice bar-
rier interposed between a 200 nm-thick InAs/GaSb ab-
sorber with a cutoff wavelength of 4.8µm, and a top con-
tact layer of the same superlattice.

Fig. 1 shows the subband structure of the superlattice
absorber computed with a 8×8 k·p model [3]. While,
the lowest conduction subband (c1) shows strong disper-
sion along both growth (z) and in-plane (x, y) directions,
the highest valence subband (hh1) is highly anisotropic,
being actually ‘light’ in the in-plane directions, and al-
most dispersion-less along the growth direction. As a pre-
liminary step towards a computationally feasible NEGF
model applicable to realistic devices and compatible with
the drift-diffusion framework, we proceed by approximat-
ing the electronic structure in terms of parabolic valleys.
Specifically, we treat the longitudinal effective masses
m∗e,z, m

∗
h,z as fitting parameters to reproduce the position

of the c1 and hh1 minibands at zero transverse momen-
tum, which gives the effective band gap of the superlat-
tice, and we choose the transverse effective masses m∗e,t,
m∗h,t so as to fit the in-plane dispersion. The effective

mass approximation (red dashed lines in Fig. 1) repro-
duces well the k·p electronic structure at small wavevec-
tors. The non-parabolicity of the c1 subband due to the
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FIG. 2. Local density of states of the nBn structure, shown for
zero transverse momentum. The reverse bias applied to the
top (right) contact is 0.1 V. The superlattice absorber consists
of 40 InAs/GaSb (18/24 Å) periods with n-type 1017 cm−3

doping; the same superlattice was used also for the top con-
tact region. The doping was increased to 5 × 1018 cm−3 on
both sides of the structure. The barrier is implemented with
an undoped GaSb/AlSb (18/24 Å) superlattice to avoid the
valence band offset that typically arises when AlGaSb is used
as the barrier material [39]. The first conduction miniband of
the superlattice absorber extends approximately 0.2 eV above
the effective conduction band edge ẼC (blue solid line), while
the first valence miniband is strongly localized in the weakly
coupled GaSb quantum wells, just below ẼV (red solid line).
The band diagram (thin blue and red lines) computed with
NEGF is shown for a reverse bias of 0.1 V; the SPDD band
diagram (not shown for clarity) is almost superimposed to
the NEGF result, save for small differences arising from the
broadening effects, which are not included in the Schrödinger
equation. All simulations are performed at 150 K.

interaction between conduction and valence bands, and
the slight increase in the dispersion of the hh1 subband
along the growth direction due to heavy-hole/light-hole
mixing at intermediate values of the in-plane momentum
kt (see inset), cannot be captured by single band models.
The last feature has important implications in hole trans-
port, as discussed in [40]. We will return to this point
later when we will discuss the hole mobility. The effec-
tive masses fitting the subband structure of the absorber
layer are reported in Table I.

Fig. 2 shows the LDOS (color maps), and the conduc-
tion and valence band edges EC, EV (blue and red thin
lines) of the nBn structure, computed with the NEGF
approach at a reverse bias of 0.1 V. In all NEGF simu-
lations, we used uniform grids in real and energy space,
with steps ∆z = 0.5 nm and ∆E = 5 meV, respectively
(the present approach is compatible with self-adaptive
energy discretization techniques, see [41] for implemen-

tation details in NEMO5). The effective band edges ẼC,

ẼV evaluated with the SPDD model (blue and red thick
lines) are computed from the corresponding carrier den-
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FIG. 3. Dark-current-voltage characteristics of the nBn struc-
ture computed at T = 150 K and T = 200 K, with SPDD
(solid lines) and NEGF (open circles).

sities. Based on the same description of the electronic
structure, SPDD and NEGF predict the same electron
and hole concentrations, save for small discrepancies that
can be attributed to the broadening of the states, and to
a lesser extent, to energy renormalization effects, both of
which are not included in the Schrödinger equation. It
can be clearly seen that ẼC and ẼV mark the lower and
upper borders of the first conduction and valence mini-
bands of the superlattice absorber, respectively, meaning
that they can be interpreted as landscape potentials for
the corresponding carriers. In the barrier region, ẼC has
a triangular shape reflecting the depleted electron den-
sity according to (22). The states in the GaSb/AlSb
barrier are not visible in Fig. 2, as the energy scale has
been limited to 0.5 eV (above this energy the spectral
current is negligible). The different widths of the elec-
tron and hole minibands has important implications on
carrier transport: electron transport is mainly a coherent
process through extended Bloch states, while hole trans-
port is entirely non-coherent, meaning that the holes are
strongly localized in the weakly coupled quantum wells,
and their motion across the miniband is made possible
by carrier-phonon scattering. The possible presence of
compositional and geometrical fluctuations, not consid-
ered here, could make the difference between electron and
hole mobilities even more striking [3].

Fig. 3 shows the dark-current-voltage characteristics of
the nBn structure computed with NEGF (circles) and
SPDD (solid lines) at different temperatures. Inspection
of the dark current components reveals that the pho-
todetector is GR-limited at both temperatures. In gen-
eral, barrier detectors have different dark current contri-
butions, including SRH generation in the depletion re-
gion, the diffusion current due to the thermal (SRH and
Auger) generation of carriers in the neutral region of the
absorber, intraband tunneling of the (majority) electrons
across the barrier, and band-to-band tunneling (BTBT)
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FIG. 4. Spatially- and spectrally-resolved current density
(color maps) with a light illumination intensity of POP =
0.1 W/m2, and at a reverse bias of 0.1 V. The Fermi levels
of the Büttiker probes (NEGF) and the quasi-Fermi levels
of the carriers (SPDD) are shown in solid and dashed lines,
respectively.

[18]. A SRH-limited minority-carrier lifetime of 10 ns was
assumed for both electrons and holes (typical values ob-
served in InAs/GaSb T2SLs are below 100 ns, and have
been attributed to native defects associated with GaSb
[6]). The trap energy level was assumed at the midgap
of the superlattice [42]. BTBT cannot be described
within the effective mass approximation embraced in this
work (see [3] for a NEGF description of interband tun-
neling within a multiband description of the electronic
structure). However, in the voltage range explored by
Fig. 3, BTBT is not expected to be relevant. Auger
and radiative recombination may be included within the
Büttiker-probe formalism in a similar way as SRH, but
since our objective is to assess the viability of quantum-
corrected approaches, we postpone this extension to a
future work. A very good agreement between NEGF
and SPDD results was obtained adjusting the hole mo-
bility in the SPDD model to µh = 1 cm2V−1s−1. Similar
calculations in a dual pBp structure (obtained replacing
the GaSb/AlSb electron barrier with an InAs/AlSb hole
barrier) predicted an electron mobility of approximately
µe = 1000 cm2V−1s−1.

These mobilities should be interpreted as apparent mo-
bilities, and they make sense only in the mathematical
framework in which they are defined, in this case a drift-
diffusion model with quantum-corrections to account for
the lowering of the barriers (tunneling effects) and the in-
crease of energy ground states (confinement effects). The
electron mobility estimated with the present approach is
comparable with NEGF mobility calculations performed
with a more accurate k·p description of the electronic
structure, but limited for computational reasons to the
superlattice absorber, as discussed in [3]. On the other
hand, the effective mass approximation leads to an under-



7

Position z (nm)
50 100 150 200 250

C
ur

re
nt

 d
en

si
tie

s 
(n

A
/c

m
2 )

0

100

200

300

400

500

600

700

800

J
n
NEGF

J
p
NEGF

J
n
DD

J
p
DD

J
tot
NEGF

FIG. 5. Energy-integrated spatial profile of electron and hole
currents obtained from NEGF (cyan and magenta solid lines),
and the corresponding currents computed with the SPDD
model (blue and red dashed lines). As GR processes are sup-
pressed in the barrier (see Fig. 6), the electron and hole cur-
rents remain constant in this region. The total NEGF current
(solid black line) is perfectly conserved.

estimation of the hole mobility with respect to multiband
NEGF calculations, which predict µh ≈ 20 cm2V−1s−1,
in agreement with experimental results [43]. This differ-
ence may be traced back to the longitudinal dispersion of
the hh1 miniband at intermediate transverse wavevectors
induced by the mixing between heavy-hole and light-hole
bands [40]. The Büttiker formalism may be extended to
the multiband case, although ansatz (2) does not apply
anymore. We will postpone this investigation to a fu-
ture work. In any case, it should be noted that the hole
superlattice mobility is much smaller than the bulk mo-
bilities of the constituent materials, which indicates that
the definition of effective (bulk-like) conduction and va-
lence band edges does not justify the use of bulk mobility
models in the hopping regime.

In a properly designed barrier detector, the flow of the
majority carriers (electrons in nBn detectors) should be
blocked, without impeding the flow of the minority carri-
ers. Inspection of the dark current contributions confirms
that (intraband) electron tunneling is indeed negligible
in the structure under study, as expected from the large
energy separation (approximately 1 eV) between conduc-
tion minibands in the absorber and barrier layers. In the
absence of tunneling of the majority carriers, part of the
success of the SPDD model in reproducing NEGF I-V
characteristics of barrier detectors relies in the ability to
predict the correct carrier densities, from which the re-
combination rates follow. Less satisfactory is the capabil-
ity of the SPDD model to describe the filtering properties
of the barrier layer. When the width of the superlattice
barrier is reduced from 50 nm to 25 nm, the dark current
predicted by NEGF is just slightly increased, meaning
that the detector performance is still limited by SRH,

while the SPDD model significantly overestimates the
dark current (dashed line in Fig. 3). The discrepancies
between NEGF and SPDD emerging at very small barrier
widths, suggest that although the qualitative behaviour
of tunneling is captured by SPDD through the lowering
of the effective potential, the design of the barrier layer
in infrared T2SL detectors may require a more rigorous
analysis that only genuine quantum models can provide.

Among such models, the NEGF formalism has the ad-
ditional advantage to provide spectrally-resolved quanti-
ties. The spectral current computed under illumination
at T = 150 K is shown in Fig. 4. The narrow strips fol-
lowing the miniband edges represent electrons and holes
photogenerated in the absorber diffusing in opposite di-
rections, the electrons to the left, the holes towards the
contact layer beyond the electron barrier. The spread-
ing of the electron spectral current in the highly-doped
end of the absorber is indicative of electron relaxation by
phonon scattering.

It is interesting to compare the Fermi levels of the
Büttiker probes with the quasi-Fermi levels computed
with the SPDD model, see Fig. 4. In the barrier region,
the electron Fermi levels have an error-function shape,
almost step-like in the NEGF calculations, i.e., the elec-
trons tunneling from the top contact through the bar-
rier, rapidly become members of the absorber “ensem-
ble”, adjusting to the Fermi level on the other side of the
barrier (a similar behaviour can be observed in short-
channel FETs [44]). In the almost field-free superlattice
absorber, the NEGF and SPDD Fermi levels of the (ma-
jority) electrons are almost constant. On the other hand,
the Fermi levels of the (minority) holes show a stair-case
profile, which is more visible near the barrier layer, where
the electric field is present. This behaviour suggests that
hole transport is best described by sequential tunneling,
i.e., tunneling to the neighbouring well followed by relax-
ation. These effects are captured by the SPDD model,
although some small discrepancies in the Fermi levels can
be noticed.

The energy-integrated electron and hole currents under
illumination computed with NEGF and SPDD are com-
pared in Fig. 5. In NEGF calculations, current conserva-
tion was achieved in just few iterations. This is perhaps
the most important advantage of the Büttiker formal-
ism. In the superlattice absorber, the electron and hole
currents have the typical shape expected in a selectively
contacted device. In contrast to p-n junction photodi-
odes, in nBn detectors, the photogenerated holes crossing
the barrier enter the contact layer as minority carriers,
where they recombine at a rate governed by the carrier
lifetime, prolonging the duration of the photoevent [37].
The majority carriers are effectively blocked by the bar-
rier, as the energy-integrated electron current is virtu-
ally zero in the barrier region. The carrier extraction
efficiency ηext = Jsc/Jgen defined as the ratio between
the short-circuit current Jsc and the generation current
Jgen = q

∫
dz GOP (z) was found to be limited to 25% by
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FIG. 6. Spatial profile of the SRH recombination rate in dark
and illumination conditions. For simplicity, the optical gen-
eration is assumed constant in the absorbing region. The
competition of SRH recombination and optical generation in
the superlattice absorber is clearly visible.

the short diffusion length of the holes. Finally, the spatial
profile of the SRH recombination rate computed in dark
and in illumination conditions confirms that SRH gen-
eration is mostly limited to the depletion region on the
left side of the electron barrier, see Fig. 6. Trap-assisted
tunneling (TAT) is already included in both NEGF and
SPDD formulations. Field-enhancement factors, which
are introduced in the expression of the SRH rate to ac-
count for the presence of the tail states that participate
to the recombination process [45], are not needed here,
since this effect is already included in the quantum charge
densities used in (13).

IV. CONCLUSION

In conclusion, NEGF calculations can be approxi-
mately reproduced by the SPDD model by correcting
the LDOS with a Schrödinger solver and extracting car-
rier mobilities from NEGF calculations. The evaluation
of critical figures of merit of infrared T2SL detectors,
such as interpixel crosstalk and the modulation trans-
fer function (MTF), requires three-dimensional simula-
tions to model lateral diffusion from the pixel corners
and neighboring pixel interactions. In particular, the
MTF is sensitive to the mobility anisotropy (the hole
mobility is much larger along the in-plane direction than
the growth direction), which directly impacts detector
performance [46]. These effects are clearly beyond the
grasp of NEGF approaches. The effective semiclassical
confining potentials ẼC and ẼV seen by the carriers can
be efficiently computed from LL approaches. Recent LL
calculations of carrier transport in nitride-based LEDs
showed that the LL theory captures quantum localiza-
tion and tunneling effects in disordered systems [47]. In
T2SL barrier detectors, the precise evaluation of the lo-
cal density of tail states is critical to evaluate sequential
tunneling processes, TAT, and intraband tunneling of the
majority carriers across the barrier. The accuracy of LL
approaches in reproducing carrier densities and tunnel-
ing probabilities should be carefully tested before three-
dimensional quantum-corrected DD simulations of T2SL
detectors may be attempted.
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[22] M. Büttiker, “Four-terminal phase-coherent conduc-
tance,” Phys. Rev. Lett., vol. 57, no. 14, pp. 1761–1764,
1986.

[23] S. Datta, “Nanoscale device modeling: the Green’s func-
tion method,” Superlatt. Microstruct., vol. 28, no. 4, pp.
253–278, 2000.

[24] R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and
M. S. Lundstrom, “A simple quantum mechanical treat-
ment of scattering in nanoscale transistors,” J. Appl.
Phys., vol. 93, no. 9, pp. 5613–5625, 2003.

[25] J. A. Vaitkus and J. H. Cole, “Büttiker probes and the
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