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This work presents an investigation of carrier transport in GaN-based light-emitting diodes in the
sub-threshold forward-bias regime where tunneling processes are relevant. A quantum kinetic theory
of trap-assisted tunneling is developed within the framework of the nonequilibrium Green’s function
formalism. Based on fully nonlocal scattering self-energies computed in the self-consistent Born
approximation and a multiband description of the electronic structure, the model provides access to
spectral quantities, such as the local density of states and the current density, which are essential to
understand the nature of the tunneling process. The quantum non-radiative recombination rates can
be reproduced by the conventional Shockley-Read-Hall theory, provided that the classical charge
is replaced with the correct quantum charge, which means that trap-assisted tunneling can be
described with drift-diffusion solvers complemented with appropriate quantum corrections for the
calculation of the local density of states. The sub-threshold I-V characteristics and ideality factors
predicted by the quantum kinetic model are in agreement with measurements.

I. INTRODUCTION

The presence of defects in GaN-based light-emitting
diodes (LEDs) has been often correlated to the effi-
ciency droop, the decline of the internal quantum effi-
ciency at high current levels [1, 2]. Among notable ex-
amples of defect-related droop theories, is the density-
activated defect recombination model proposed in [3],
which assumes that at high injection levels, carriers spill
from low-potential states localized near indium-rich clus-
ters, reaching strong recombination centers in the high-
potential regions. Experimental studies of recombination
processes in high-quality III-nitride emitters suggested
a wealth of physical effects beyond the commonly con-
sidered ABC model, e.g., alloy- and trap-assisted Auger
transitions with lower energy threshold, which may possi-
bly contribute to droop at high injection levels [4–6]. But
the role of defects is probably more evident at low current
densities. Below the optical turn-on, before the radiative
recombination sets in, traps may assist the tunneling of
carriers, opening additional current leakage channels that
would not be accessible by coherent band-to-band tun-
neling (BTBT). Indeed, the high ideality factors exper-
imentally observed in the sub-threshold I-V characteris-
tics of GaN-based LEDs is considered the signature of
trap-assisted tunneling (TAT) [7–10]. Therefore, TAT
is a sensitive indicator of the presence of defects, device
growth quality, and degradation due to accelerated stress
[11].

Within the drift-diffusion (DD) approximation, TAT
is usually described by means of a conventional SRH re-
combination model with electric-field-dependent carrier
lifetimes, which account for the increase of carrier cap-
ture and emission rates due to possibility of tunneling

∗ alberto.tibaldi@polito.it

from or to the trap state [12–14]. However, the so-called
field enhancement factors are not just local functions
of the electric field; in particular near heterojunctions,
they critically depend on the local density of states that
participates in the tunneling process [15]. Of particular
importance are the tail states that split from the corre-
sponding bands into the gap, extending the voltage range
of BTBT beyond the value where the alignment of the
sharp band edges vanishes. Tail states may result from
carrier-phonon and carrier-carrier interactions [16], con-
finement effects (bound states leaking in the barriers),
or simply the band bending induced by built-in and/or
applied electric fields.

In this work, we investigate TAT with a rigorous
quantum transport approach based on the nonequilib-
rium Green’s function (NEGF) formalism. The effective
mass approximation usually employed in drift-diffusion
calculations is not appropriate for the valence band,
due to band anisotropy, and the mixing of heavy- and
light-hole states. The local density of states (LDOS) is
clearly one of the critical ingredients for the calculation
of TAT [15, 17]. Therefore, a multiband k·p envelope-
function model is adopted for an accurate description of
the electronic structure. In order to include the pos-
sible contribution of phonon processes in the determi-
nation of the LDOS, the coupling to acoustic and po-
lar optical phonons is considered within the deforma-
tion potential and the Fröhlich formalism, respectively,
by means of fully nonlocal self-energies computed in the
self-consistent Born approximation. We neglect carrier-
photon interactions, since this study is limited to the sub-
threshold regime, below the optical turn-on. Following
[18], an additional self-energy is included to describe the
multi-phonon probability for non-radiative transitions.

TAT can be either seen as a thermal capture/emission
of carriers enhanced by the field, which leads to the
picture of a field-assisted recombination process (i.e.,
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the concept of field-enhancement factors), or as a tun-
neling process assisted by multi-phonon defect recombi-
nation [14]. This distinction is not needed within the
NEGF formalism, as self-energies and Green’s functions
are determined self-consistently. Thus this approach pro-
vides a rigorous validation of quantum-corrected drift-
diffusion solvers that account for TAT by means of a
modified LDOS, obtained either from analytical models
[12–15, 19–21], numerical approximations, e.g., the lo-
calization landscape theory [22, 23], or directly from the
solution of the Schrödinger equation [24].

II. THEORY

Restricting our analysis to steady-state conditions,
in which only time differences matter, we can Fourier-

transform the Green’s functions to the energy domain.
In layered structures, an additional Fourier transform is
performed with respect to the homogeneous transverse
coordinates r‖ [25]

G(r , r ′, E) = A−1
∑
k

G(k , z, z′, E)eik ·(r‖−r
′
‖), (1)

where z is the symmetry-broken direction, and A is the
normalization area. Having defined GR0 as the Green’s
function of the noninteracting system

[E −H(k , z)]GR0 (k , z, z′, E) = δ(z − z′), (2)

where H is the noninteracting Hamiltonian that includes
the electronic structure and the electrostatic mean-field
potential, the steady-state Dyson and Keldysh equations
can be written as [26, 27]

GR(k , z, z′, E) = GR0 (k , z, z′, E) +

∫
dz1

∫
dz2G

R
0 (k , z, z1, E)ΣR(k , z1, z2, E)GA(k , z2, z

′, E) (3)

G<(k , z, z′, E) =

∫
dz1

∫
dz2G

R(k , z, z1, E)Σ<(k , z1, z2, E)GA(k , z2, z
′, E). (4)

The self-energy Σ includes the boundary self-energy
expressing the openness of the system, the carrier-phonon
self-energy Σep, and an additional (local) self-energy
ΣSRH, which describes SRH recombination within the
multi-phonon defect-scattering scheme proposed in [18].
The numerical discretization of (3) and (4) is based on
a multiband 8× 8 k·p description of the electronic struc-
ture for wurtzite crystals [28–30], which includes the first
conduction band, heavy-hole, light-hole, and spin-orbit
split-off bands, see Appendix A.

Interactions with (bulk) phonons are encoded in the
self-energy

Σ≶
ep(k , z, z′, E) =

∑
λQ

|UλQ |2eiqz(z−z
′)

×[NλQ G≶(k − q , z, z′, E ∓ ~ωλQ)+

(NλQ + 1)G≶(k − q , z, z′, E ± ~ωλQ)], (5)

where the number of phonons NλQ with wavevector

Q = (q , qz) in mode λ is given by the BoseEinstein dis-
tribution, the phonon system being supposed to be at
equilibrium [31, 32]. According to deformation-potential
scattering theory, the scattering strength UQ due to the
interaction with acoustic modes is described by

UQ =

√
~D2

a

2Vρul
Q, (6)

where ul = 6.56 × 105 cm/s is the longitudinal sound
velocity in the material, Da = 8 eV[33] is the acoustic

deformation potential, ρ = 6.15 g/cm3 is the semicon-
ductor mass density, and V is the normalization volume.
Fröhlich theory of polar optical scattering gives the in-
teraction strength

UQ =

√
e2~ωLO

2V

(
1

ε∞
− 1

εs

)
Q

Q2 + q20
, (7)

where εs = 10 and ε∞ = 5.3 are the static and opti-
cal dielectric permittivities of the material, and q0 is the
inverse of the Debye-Hückel screening length (10 nm in
all the simulations below). A dispersionless longitudinal
optical phonon with energy ~ωLO = 90 meV has been
assumed.

SRH recombination is described within the multi-
phonon defect-scattering scheme proposed in [18]. For
brevity, we present the theory for electrons in the conduc-
tion band interacting for a single defect level with energy
Ed, placed at z = z0. Similar expressions hold for the va-
lence band [18]. The generalization to a distribution of
defects is straightforward if the defect levels are consid-
ered independent from each other (save for the indirect
link via the electrostatics), as implied in the conventional
SRH theory. In principle, inter-defect charge transfer is
possible. For example, defect states may act as step-
ping stones in the OFF-state of tunnel-field-effect tran-
sistors, while in the ON state, they can affect the elec-
tron transport indirectly by modifying the device electro-
statics [34, 35]. The possibility of multi-defect tunneling
through a series of defects can be neglected if the dis-
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tance between the defects is large compared to typical
tunneling paths [36]. This condition applies if the defect
density ρd is less than, say, 1015 cm−3, which corresponds
to an average distance between defects of 100 nm. For
such low defect densities, the trapped charge, which in
principle may screen spontaneous and piezoelectric po-
larization fields, can be neglected in the self-consistent
solution of the Poisson’s equation.

The (local) self-energies that describe the capture or
emission of an electron in the conduction band into or
from the defect state are [18]

Σ
≶
SRH(z, z′, E) = ρd

∑
l≥0

Mem/capt(l)

×G≶
d (E − l~Ω0)δ(z, z0)δ(z′, z0), (8)

where Ω0 is the frequency of an effective dispersion-less
phonon mode, whose energy was chosen to be equal to the
polar optical phonon energy in GaN (90 meV). A local
quasi-equilibrium is assumed for the defect correlation
functions

G<d (E) = ifd(E)Ad(E) (9)

G>d (E) = −i (1− fd(E))Ad(E), (10)

where Ad(E) = 2πδ(E−Ed) is the (unscattered) spectral
function of the defect. The multi-phonon matrix element
of the capture process is [18, 37]

Mcapt(l) =M0
dc

(l − S)2

S
exp (−S(2fB + 1))

×
(
fB + 1

fB

)l/2
Il

(
2S
√
fB(fB + 1)

)
, (11)

where S = 10 is the Huang-Rhys factor in GaN [8], Il
is the modified Bessel function of order l, and fB =
[exp ((~Ω0/kBT ))− 1]−1 is the Bose-Einstein occupation
probability of the vibrational mode. The matrix element
of the emission process can be obtained from the detailed
balance principleMem(l) =Mcapt(l) exp (−βl~Ω0), with
β = 1/(kBT ). The unknown coupling constant M0

dc be-
tween defect and conduction band states can be obtained
from the experimental capture cross sections, by compar-
ing the bulk SRH rate expression with the corresponding
NEGF version in the quasi-equilibrium limit, in which
the occupations of band and defect states are given by
Fermi statistics [18].

The defect occupation function fd is obtained from [18]

Σ<d (Ed) = ifd(Ed)Γd(Ed), (12)

where Γd = i(Σ>d − Σ<d ),

Σ
≶
d (E) = A−1

∑
k

∑
l≥0

Mcapt/em(l)

×G≶(k , z0, z0, E + l~Ω0). (13)

On a quantum-kinetic level, the steady-state conserva-

p++                 EBL        QB   QW   SP    n++
LDOS (eV-1 cm-3)

1015 1020

FIG. 1. Local density of states (left panel, color maps) of
a single-quantum-well LED in weak forward bias, showing a
complex structure of bound and quasi-bound states. Con-
tour lines (black curves) show the extension of these resonant
states in the energy gap. The green line marks the energy level
of the defect, which is assumed to be at midgap (conduction
and valence edges are represented by blue and red lines, re-
spectively) and uniformly distributed in the structure. Sharp
phonon resonances related to multi-phonon relaxation can be
observed in the logarithmic plot of the LDOS evaluated at
z = 23 nm (right panel), where USRH is maximum.

tion laws for charge carrier densities, complemented with
the Poisson’s equation accounting for electron-electron
interactions at the Hartree level, are formulated in terms
of the carrier Green’s functions and self-energies (again
we report only the equations for the electrons) [38]

∂2zφ(z) =− e

εs
[ND(z)−NA(z) + p(z)− n(z)] (14)

∂zJn(z) = eUn(z) (15)

n(z) =A−1
∑
k

∫
dE

2π
[−iG<(k , z, z, E)] (16)

Jn(z) =A−1
∑
k

∫
dE

2π
lim
z′→z

e~
m0

(∂z − ∂z′)G<(k , z, z′, E),

(17)

where e is the elementary charge, ND is the net donor
density, n and p are the electron and hole densities, m0

is the bare electron mass, and Un is the recombination
rate
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Un(z) = −A−1
∑
k

∫
dE

2π~

∫
dz′
[
ΣR(k , z, z′, E)G<(k , z′, z, E)

+Σ<(k , z, z′, E)GA(k , z′, z, E)−GR(k , z, z′, E) Σ<(k , z′, z, E) −G<(k , z, z′, E) ΣA(k , z′, z, E)
]
. (18)

Due to the additive property of the self-energies in (18),
we can decompose Un in the sum of different scattering
processes. Upon convergence of the self-consistent Born
cycle, the contribution of intraband mechanisms (e.g.,
the interaction with phonons) should vanish when the
integral over energy is performed over one of the two
(conduction or valence) bands, while, if the integration
is restricted to one of the two bands, the contribution of
ΣSRH provides the (net) SRH recombination rate USRH.

Carriercarrier interactions on a mean-field level are
included in the self-consistent solution of the Poisson’s
equation (14), which relates the Hartree electrostatic po-
tential entering the Hamiltonian, with the electronic den-
sity provided by the Green’s function expression (16). In
practice, two nested loops are need for the calculation
of the Green’s functions, an inner loop to achieve self-
consistency between Green’s functions and self-energies,
and an outer loop to update the electrostatic potential
[25].

III. RESULTS

The structure under consideration is a single-quantum-
well LED (device A2 in [7]), which includes an n-
doped GaN buffer layer (ND = 1 × 1020 cm−3), a 4 nm
GaN spacer (SP), a 3 nm In0.17Ga0.83N quantum well
(QW), a 4 nm quantum barrier (QB), a 20 nm p-doped
Al0.13Ga0.87N electron-blocking layer (EBL) with NA =
5× 1019 cm−3and a p-GaN contact region with the same
doping concentration. Incomplete dopant ionization was
assumed, with activation energies ∆ED = 20 meV and
∆EA = 200 meV for donors and acceptors, respectively.
Spontaneous and piezoelectric charges at heterointerfaces
were determined according to the model proposed by
Bernardini and Fiorentini (BF) [39]. The conduction
band-edge discontinuity was set to 70% of the energy
gap. A combined capacitance-voltage and steady-state
photocapacitance study of defect incorporation in GaN-
based LEDs indicates that the defects are located near
midgap, and that their density peaks in InGaN layers,
with some spreading in the surrounding regions, which
was attributed to the surface segregation of In atoms
[40]. For simplicity, we assume a uniform distribution of
traps located at midgap. In all simulations, uniform grid
spacings were used in energy and momentum space, with
values ∆E = 5 meV and ∆k = 5 nm−1, respectively. The
device region was discretized with a grid step of 0.5 nm
along the growth direction.

Fig. 1 shows the LDOS (color maps), i.e., the diago-

nal elements of the spectral function A = i(GR − GA),
evaluated at k = 0 for a forward bias of 2 V. The green
line represents the position of the trap level. Shades of
blue in the LDOS mark the position of (quasi-)bound
states in the QW. The black contour lines of the LDOS
indicate a decrease of two orders of magnitude in the
tail states (not visible in a linear color map) away from
the band edges. The LDOS evaluated near the EBL-QB
heterointerface, where USRH peaks is shown in the right
panel of Fig. 1 (blue lines). Superimposed to the res-
onances due to confined states extending in the energy
gap, sharp phonon resonances related to multi-phonon re-
laxation can be clearly observed in the tails of the LDOS.

In the high-electric-field region where most of the re-
combination occurs, the contribution of carrier-phonon
scattering to the formation of the tail states is negligi-
ble with respect to the field-induced contribution; the
Urbach tails due to deformation potential and polar op-
tical scattering can be better appreciated in the flat-
band regions (the quasi-neutral layers of the LED), where
the sub-gap states induced by the band bending are not
present. A detailed discussion on band-tail formation and
band-gap narrowing due to polar optical phonon and im-
purity scattering within a NEGF framework can be found
in [16]. Therefore, we may argue that the tunneling as-
sisting SRH recombination is mainly a coherent process.
However, as already observed in the case of BTBT [32],
inelastic carrier-phonon scattering is responsible for the
population of the confined states in the QW, which can-
not be reached directly from the contacts, thus indirectly
contributing to TAT.

The SRH scattering current can be computed as

JSRH(z, E) = e

∫ z

−∞
dz′ USRH(z′, E), (19)

where the spectral recombination rate USRH(z, E) is ob-
tained from (18), ignoring the integral over energy [41].

The resulting spectral current is shown for different
forward biases is shown in Fig. 2. Current-carrying chan-
nels (continuous horizontal stripes originating from the
contacts), fade away when they reach the region where
USRH (solid black line) is nonzero. The position of the
recombination window is the result of a complex inter-
play between tunneling probabilities and multi-phonon
matrix elements. At a bias of 2 V, most of the recom-
bination occurs near the EBL-QB heterojunction, where
the magnitude of the electric field is maximum (red line
in Fig. 3). The electrons reach the EBL by resonant tun-
neling (the electron spectral current approximately flows
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Vbias = 2 V Vbias = 2.4 V

FIG. 2. SRH scattering current computed with NEGF at a
forward bias of 2 V (left panel), and 2.4 V (right panel). The
continuous stripes, corresponding to current-carrying chan-
nels, switch bands where USRH is maximum. Black lines
represent the corresponding energy-integrated recombination
rates (arbitrary units). All simulations were performed at
room temperature. The total energy-integrated currents are
perfectly conserved.
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FIG. 3. SRH recombination rates computed with different
models at a forward bias of 2 V (blue lines, left axis), and
the electric field profile (red line, right axis). The SRH rate
computed with NEGF (solid blue line) is well reproduced by
the quantum-corrected SRH rate (dashed blue line) computed
from (20) with the NEGF carrier densities. Neglecting tail
states, which corresponds to the classical limit (i.e., SRH
without the inclusion of tunneling), significantly underesti-
mates the recombination rate (dotted blue line).

at the ground state energy of the QW), while holes have
to tunnel a shorter distance before to reach the virtual
states that participate to the recombination process. A
logarithmic plot of the SRH rate at 2 V (solid blue line in
Fig. 3) reveals a second smaller peak in the QW, not visi-
ble in a linear scale. This second peak gradually increases
with the applied bias, moving the recombination win-

Increasing Vbias

from 2 V to 2.5 V

holes

electrons

FIG. 4. Electron and hole densities at different forward bias
voltages.

dow towards the n-side of the junction at 2.4 V. Looking
at the carrier densities as a function the applied bias in
Fig. 4, we can see that the shift of the recombination win-
dow may be traced back to the slow increase of the hole
population in the QW. The different bias dependence of
electron and hole populations in the QW is indicative
of inefficient hole injection, which has been reported as
the origin of the inhomogeneous distribution of holes in
multi-QW LEDs [42].

SRH theory in NEGF was proven to be equivalent, in
a bulk semiconductor, to the conventional semiclassical
SRH formula [18]

USRH(z) =
np− neqpeq

τp(n+ n1) + τn(p+ p1)
, (20)

where neq, peq are the electron and hole densities at equi-
librium, n1, p1 are the corresponding quantities when
the Fermi level falls at the trap energy level, and τn, τp
are the electron and hole lifetimes corresponding to the
coupling constants M0

dc and M0
dv, respectively, see [18,

Appendix B] for the connection between multi-phonon
matrix elements and trap cross-sections. Eq. (20) can be
formally recovered from (18) only in quasi-equilibrium
conditions, i.e., when correlation and spectral functions
are related by a local fluctuation-dissipation relation [18].
It is interesting to see whether (20), with the correct
quantum carrier densities, can still reproduce the field-
enhanced SRH rate in a nanostructure. The SRH rate
obtained from (20) using the carrier densities computed
with NEGF is shown in Fig. 3 (dashed blue line). The
good agreement with NEGF calculations suggests that
drift-diffusion solvers with a quantum-corrected LDOS,
obtained, e.g., from the self-consistent solution of the
Schrödinger equation [24] or the localization landscape
theory [43], represent a viable approach to the analy-
sis of TAT. Indeed, within these quantum-corrected DD
schemes, TAT would be naturally included within the
standard SRH theory, without the need of specific mod-
els for field enhancement factors, whose expressions tend
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FIG. 5. I-V characteristics (left axis) and the correspond-
ing ideality factor (right axis), computed with the NEGF ap-
proach (solid lines) and from measurements [7] (circles). A
series resistance Rs = 1 Ω accounting for non-ideal contacts
and buffer layers, was selected to match the slope of the ex-
perimental I-V curve at high voltages.

to be overly complex, with many unknown quantities, in
particular the tunneling masses, treated as fitting param-
eters [8].

Finally, Fig. 5 shows the I-V characteristics of the LED
computed with the NEGF approach (blue line) and from
experiments (blue circles). The fitting of the experimen-
tal results was obtained assuming τn = τp = 1 ns, which
is compatible with defect concentrations and cross sec-
tions reported in [7]. In the sub-threshold regime, below
the optical turn-on, TAT is the most relevant contribu-
tion to carrier transport. Deviations from the ideal be-
haviour predicted by Shockley theory can be better ap-
preciated by looking at the ideality factor [8]

η =
q

kBT

∂V

∂[ln I]
, (21)

shown in Fig. 5 (red line and circles). Ideality factors be-
tween one and two are normally attributed to the com-
petition between diffusion and the recombination pro-

cesses, while ideality factors exceeding two are attributed
to tunneling. For bias voltages above 2.5 V, as the dif-
fusion current (dashed blue line) becomes dominant, η
decreases approaching one, before increasing again due
to the resistive behavior of the diode.

IV. CONCLUSION

This work represents the first NEGF study of TAT in
GaN-based LEDs. The computed ideality factors are in
agreement with experiments. We also show that the stan-
dard SRH formula, computed with the correct quantum
carrier densities, can reproduce NEGF results. Carrier
densities may be estimated, e.g., from localization land-
scape approaches [43], or more rigorously from the full
eigendecomposition of the Schrödinger equation. Among
possible quantum-corrected semiclassical approaches to
study carrier transport in LEDs, the Schrödinger-Poisson
drift-diffusion (SPDD) model [24] seems promising. DD
models, complemented with a quantum-corrected LDOS,
may be the only viable approach to the numerical simula-
tion of complex realistic structures. For example, disor-
der effects call for full three-dimensional LED simulations
[42], which are beyond the grasp of NEGF approaches.
Additional work is needed to verify the accuracy of such
quantum-corrected semiclassical models especially in the
high-injection regime, where out-of-equilibrium phenom-
ena such as hot carrier transport become relevant.
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Appendix A: Numerical discretization

The starting point for the numerical discretization of
the NEGF equations is the eight-band k·p bulk Hamilto-
nian for (0001)-oriented wurtzite semiconductors [30]

Hk·p =



Ec 0 −k+P2√
2

k−P2√
2

kzP1 0 0 0

0 Ec 0 0 0 k−P2√
2

−k+P2√
2

kzP1

−P2k−√
2

0 F −(K†)∗ −(H†+)∗ 0 0 0
P2k+√

2
0 −K∗ G H†− 0 0

√
2∆3

P1kz 0 −H∗+ H− Λ 0
√

2∆3 0

0 P2k+√
2

0 0 0 F ∗ −K∗ H†−

0 −P2k−√
2

0 0
√

2∆3 −(K†)∗ G∗ −(H†+)∗

0 P1kz 0
√

2∆3 0 H− −H∗+ Λ


(A1)
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written in the zone-center basis

|1〉 = |iS ↑〉 , |2〉 = |iS ↓〉 ,

|3〉 =

∣∣∣∣− 1√
2

(X + iY ) ↑
〉
, |4〉 =

∣∣∣∣ 1√
2

(X − iY ) ↑
〉
, |5〉 = |Z ↑〉 ,

|6〉 =

∣∣∣∣ 1√
2

(X − iY ) ↓
〉
, |7〉 =

∣∣∣∣− 1√
2

(X + iY ) ↓
〉
, |8〉 = |Z ↓〉 ,

with

k± = kx ± iky

Ec = Eg + ∆1 + ∆2 +
~2

2m0
[kxAtkx + kyAtky + kzAzkz] (A2)

Λ =
~2

2m0
[kzA1kz + kxA2kx + kyA2ky] (A3)

Θ =
~2

2m0
[kzA3kz + kxA4kx + kyA4ky] (A4)

F = ∆1 + ∆2 + Λ + Θ +
~2

2m0
[−iky(A+

5 −A
−
5 )kx + ikx(A+

5 −A
−
5 )ky] (A5)

G = ∆1 −∆2 + Λ + Θ +
~2

2m0
[−ikx(A+

5 −A
−
5 )ky + iky(A+

5 −A
−
5 )kx] (A6)

K =
~2

2m0
[kxA5kx − i(kxA5ky + kxA5ky)− kyA5ky] (A7)

H± =
~2

2m0
[kzA

+
6 (kx − iky) + (kx − iky)A−6 kz]± iA7(kx − iky), (A8)

where, ∆1 = ∆cr is the crystal field splitting energy and
∆2 = ∆3 = ∆so/3 where ∆so is the spin-orbit splitting
energy. The notation introduced by Veprek [29] has been
used to indicate operator ordering, needed for numerical
stability. The k·p band parameters are taken from [44].
By using the basis transformation H ′k·p = T ∗Hk·pT

T ,
with

T =



iβ∗ α 0 0 0 0 0 0
0 0 α∗ 0 0 α 0 0
0 0 0 β 0 0 β∗ 0
0 0 0 0 β∗ 0 0 β

iβ∗ −α 0 0 0 0 0 0
0 0 α∗ 0 0 −α 0 0
0 0 0 β 0 0 −β∗ 0
0 0 0 0 −β∗ 0 0 β


,

where α = ei(3π/4+3φ/2)/
√

2, β = ei(π/4+φ/2)/
√

2, and
φ = atan (ky/kx), the bulk 8× 8 Hamiltonian (A1) is
block-diagonalized with respect to the spin components
into two (real) 4× 4 blocks, which simplifies the numeri-
cal evaluation of the Green’s functions. Within a finite-
element scheme and the envelope function approxima-
tion, the basis functions include plane waves in the trans-
verse direction r‖, tent-shaped functions ti(z) peaked at

zi, and zone-centre lattice-periodic functions ua(r)

φkα =
1√
A
ti(z)e

ik ·r‖ua(r), (A9)

α = (a, i) being a compound index combining indices a
for band and i for space. Since the finite-element basis
functions {ti(z)} are not orthogonal, a mixed represen-
tation is needed for Green’s functions and self-energies
[45]. Using a contravariant representation for Green’s
functions

G(k , z, z′, E) =
∑
αβ

φkα(r)Gαβ(k , E)φ∗kβ(r ′), (A10)

and a covariant representation for self-energies,

Σαβ(k , E) =

∫
drdr ′φ∗kα(r)Σ(k , z, z′, E)φkβ(r ′),

(A11)

the basis-transformed version of (3) and (4) reads in full
matrix notation [27, 46, 47][

EM−H(k)−ΣR(k , E)
]
GR(k , E) = I (A12)

G≶(k , E) = GR(k , E)Σ≶(k , E)GA(k , E), (A13)

where G and Σ are matrices that depend parametrically
on k and E, with dimensions equal to the number of
bands times the number of spatial grid points in the
symmetry-broken direction z, and M is the (nondiag-
onal) overlap matrix

Mαβ =

∫
drφ∗kα(r)φ∗kβ(r) ≈ δab

∫
dz ti(z)tj(z), (A14)
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with α = (a, i) and β = (b, j). The last approximation is
afforded by the coarse-graining assumption of k·p theory

[46, 48]. Additional details concerning the finite-element
dicretization procedure and the implementation of the
boundary self-energies can be found in [31, 32].
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