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Abstract 

 

We report direct visualization of gigahertz-frequency Lamb waves propagation in aluminum 

nitride phononic circuits by transmission-mode microwave impedance microscopy (TMIM). 

Consistent with the finite-element modeling, the acoustic eigenmodes in both a horn-shaped 

coupler and a sub-wavelength waveguide are revealed in the TMIM images. Using fast Fourier 

transform filtering, we quantitatively analyze the acoustic loss of individual Lamb modes along 

the waveguide and the power coupling coefficient between the waveguide and the parabolic 

couplers. Our work provides insightful information on the propagation, mode conversion, and 

attenuation of acoustic waves in piezoelectric nanostructures, which is highly desirable for 

designing and optimizing phononic devices for microwave signal processing and quantum 

information transduction. 
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I. Introduction 

Acoustic waves in the radiofrequency (MHz to GHz) range propagate in solid structures with a 

speed of several km/s that is 5 orders of magnitude slower than speed of light. Therefore, 

transduction from electromagnetic waves to acoustic waves enables signal processing on a 

dramatically slower timescale and much reduced device dimensions. Because acoustic waves 

cannot propagate in vacuum, radiative crosstalk between signal channels in acoustic devices is 

also much lower than in electromagnetic devices. As a result, various types of acoustic devices, 

such as surface acoustic wave (SAW), bulk acoustic wave (BAW), and flexural plate wave (FPW) 

devices, are widely utilized as delay lines, filters, oscillators, convolvers in wireless 

communication applications [1-3], and mass, pressure, and flow sensors in sensing applications 

[4]. Recently, propagating acoustic waves are considered universal quantum interconnects 

between different solid-state qubit systems, e.g., defect centers and superconducting qubits [5-

10], for two reasons. First, the quantum states of these systems are highly susceptible to 

mechanical deformation with high coupling coefficients [11-15]; second, the acoustic wave can 

propagate with very low loss and noise at low temperatures [16,17]. There is also a strong 

interest in achieving efficient transduction between optical and microwave photons mediated by 

acoustic modes in optomechanical systems through acousto-optic coupling [18]. Optical waves 

and microwave-frequency acoustic (or phononic) modes are confined in wavelength-scale 

structures and interact through efficient acousto-optic coupling [19-26]. However, direct 

conversion from optical photons to acoustic phonons is intrinsically low in energy efficiency 

because of their large disparity in frequency (~ 5 orders of magnitude), assuming the same 

wavelengths. In contrast, converting MHz-to-GHz electromagnetic waves to acoustic phonons 

can be achieved much more efficiently using electromechanical transducers on piezoelectric 

materials [27-29]. To achieve efficient transduction, it is critical to engineer phononic structures 

to effectively guide and couple acoustic phonons into optomechanical systems. 

A major challenge for designing phononic systems is that the density of state of acoustic 

phonons is very high [30], and different polarization modes inherently couple with each other 

through geometric deformation. With a high acoustic frequency, the ratio between the phononic 

structures’ dimensions to the acoustic wavelength becomes high, making it computationally 

expensive to perform a full 3D finite-element simulation. The mechanical properties of materials 

that are deposited during device fabrication are also more susceptible to fabrication processes 
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than their optical properties, making simulations less accurate. In order to complement 

mechanical simulations, experimental probing of the acoustic fields has become an important 

field of research in recent years. For instance, MHz surface displacement fields have been 

imaged by scanning laser reflectometry [31,32], pump-probe technique [33,34], homodyne and 

heterodyne interferometry [35-37], stroboscopic X-ray imaging [38,39], scanning electron 

microscopy (SEM) [40,41], scanning tunneling microscopy (STM) [42,43], and nonlinear 

acoustic force microscopy (AFM) [44]. However, none of these techniques can simultaneously 

achieve sub-100 nm spatial resolution and > 1 GHz operation frequency, which are crucial for 

wavelength-scale acousto-optic devices. Thus, a method that allows nanoscale investigation of 

wave phenomena, such as interference, diffraction, and localization, of GHz acoustic waves is 

desirable for designing and optimizing efficient optomechanical systems. 

In this work, we report the visualization of 3.44 GHz Lamb waves in suspended 

aluminum nitride (AlN) phononic waveguides by transmission-mode microwave impedance 

microscopy (TMIM) [45,46]. The imaging results vividly demonstrate the coupling from anti-

symmetrical membrane modes to waveguide modes through a parabolic horn-shaped coupler. 

Using fast Fourier transform (FFT) filtering, we identify individual waveguide modes and 

analyze their propagation loss along the waveguide. Our work provided insightful information on 

the propagation, attenuation, and coupling of Lamb waves in phononic circuits, which cannot be 

obtained by traditional microwave network analysis. 

II. Device and Simulation 

The suspended phononic circuits in this work are fabricated on c-axis polycrystalline AlN 

thin films (thickness t = 330 nm) grown by magnetron sputtering on SiO2/Si wafers. The circuit 

consists of an acoustic waveguide with width w = 1 m and length L = 100 m, connected to two 

identical parabolic horn-shaped acoustic couplers [47,48] with a length of Lh = 100 m. The 

couplers are designed to focus acoustic waves to the waveguide from two interdigital transducers 

(IDTs), one used as a transmitter and one as a receiver. The waveguide and couplers are 

patterned by standard electron beam lithography (EBL) and plasma etching of AlN, using 240-

nm-thick SiO2 as the hard mask. The IDT fingers have an aperture width of A = 20 m. They are 

fabricated with EBL and the deposition of 7 nm Cr and 100 nm Au, followed by a standard lift-

off process. To reduce the acoustic loss due to internal reflection and destructive interference in 
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the IDT region, we use the split-finger design with a period of 3 m and 4 fingers per period 

(inset of Fig. 1a). The 3rd harmonic mode with  = 1 m excited by this IDT is the Lamb wave to 

be investigated below. Another layer of 7 nm Cr / 300 nm Au is deposited to thicken the bonding 

pads. Finally, the 3 m thermal SiO2 underneath the AlN film is removed using a vapor HF 

etcher to release the device from the substrate. 

Electrical characterization of the AlN phononic circuit is carried out with a vector 

network analyzer (VNA). The transmitter and receiver IDTs are connected to the VNA through 

microwave cables and a pair of RF probes. The measured reflection coefficient (S11) spectrum 

(Fig. 1b) shows a resonance at f = 3.44 GHz, which corresponds to the excitation of the Lamb 

mode at  = 1 m. The transmission coefficient (S21) spectrum (Fig. 1c) between the two IDTs 

shows a smaller peak at the same frequency, indicating transmission of the Lamb wave through 

the circuit. Note that the S21 spectrum shows a few ripples, which can be attributed to the 

reflection and interference of the acoustic wave and the RF crosstalk between the input and 

output IDT ports. The capacitive crosstalk background signal has been subtracted for clarity. 

 
FIG. 1 (a) Optical image of the AlN phononic circuits. The inset on the left shows the AFM image of 

the split-finger IDT. (b) S11 and (c) S21 spectra of the device measured by a VNA, showing the 

acoustic resonance at f = 3.44 GHz. (d) Simulation results plotted in deformed grids showing the anti-

symmetric (A-mode) and (e) symmetric (S-mode) modes of the free-standing membrane at the IDT 

region. 

To understand the excited Lamb mode, we model the IDT region as a large AlN 

membrane and simulate with the finite-element method (FEM). Figs. 1d and 1e show the 

simulated fundamental modes plotted in deformed grids, where the displacement fields are either 
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anti-symmetric (A-mode) or symmetric (S-mode) with respect to the xy-plane. Because the IDTs 

are patterned only on the top surface of the membrane, the electric fields generated by the IDTs 

are asymmetric along the thickness of the membrane. Consequently, the anti-symmetric 

membrane modes are predominantly excited. Therefore, the observed resonance at 3.44 GHz is 

attributed to the anti-symmetric Lamb mode, which agrees with the simulation results. 

 

FIG. 2. (a) Calculated dispersion relation of a free-standing AlN phononic waveguide with 1 µm 

width. The red and blue curves represent anti-symmetric and symmetric modes, respectively. The 

intersection points between the dashed line at f = 3.44 GHz and three lowest branches of the 

dispersion curves are labeled as A0, S0, and A1 (see text). (b) 3D simulation results showing the 

mode shape of A0 and (c) A1 modes with color indicating the displacement magnitude. 

Compared with the membrane modes discussed above, which are only confined in the z-

direction, the acoustic wave propagating in the suspended AlN circuits is also confined in the 

transverse x-direction. In the following, we will denote the Lamb modes in the subwavelength 

waveguide as waveguide modes. Fig. 2a shows the simulated dispersion relation of various 

modes on a waveguide with a width of 1 m and a thickness of 330 nm. The dashed line denoted 

the excitation frequency at 3.44 GHz, which intersects with three branches of dispersion curves 

of the waveguide modes, hereafter labeled as S0, A1, and A0, respectively. Due to symmetry 

matching, the anti-symmetric membrane mode excited by the IDTs can only couple to the A0 

and A1 modes. Fig. 2b and c display the simulated displacement fields of the two anti-symmetric 
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modes (A0 and A1). Here the A0 mode in the lowest acoustic branch is the fundamental anti-

symmetric breathing mode with  = 1 m, where the displacement field is uniformly distributed 

in the cross-section (xz plane). A1 with  = 2 m is the first-order anti-symmetric mode, where 

the displacement is out of phase between the center of the waveguide and the boundary of the 

waveguide. Detailed simulation results of the A0, S0, and A1 modes are included in Appendix A. 

III. Experimental Results 

Imaging of Lamb waves on the phononic circuit is carried out in our TMIM setup, an 

atomic-force-microscopy (AFM)-based technique with sub-100nm spatial resolution [45,46]. Fig. 

3a shows the configuration of the TMIM experiment, where the acoustic wave is launched by the 

emitter IDT and the induced surface potential modulation at GHz is detected by the tip. The 

signal is then amplified and demodulated by an in-phase/quadrature (I/Q) mixer, using the same 

microwave source as the reference signal. The time-varying acoustic signal is thus converted to 

time-independent TMIM images, which are simultaneously acquired as the topographic image 

during the scanning (Appendix B). For simplicity, we will only present one of the two 

orthogonal TMIM channels in the following discussion. 

Fig. 3b shows the SEM image of the AlN phononic circuit, where TMIM images were 

taken in several 10m  10m areas marked by dashed boxes. Near the emitter IDT, the acoustic 

pattern in Fig. 3c contains a substantial portion of left-moving waves. The corresponding 2D 

FFT spectral image is shown in Fig. 3d. The large diffusive spots near the center of FFT data 

correspond to slow-varying background signals in the real space, presumably due to incoherent 

motion of the membrane. By filtering out this feature (Fig. 3e), one can see that the highest FFT 

intensity lies along the propagation direction (y axis) with a wavevector |k| = 2  1 m-1, 

consistent with  = 2/k = 1 m of the anti-symmetric membrane mode. From the inverse FFT 

image in Fig. 3f, it is nevertheless obvious that Lamb waves with the same |k| along other in-

plane directions are present because of multiple reflections from boundaries of the parabolic 

coupler. At the bottom of this parabola (Fig. 3g), the wave front is strongly curved. 

Correspondingly, while the Lamb wave retains the wavevector |k| = 2  1 m-1, the FFT 

intensity in the y-direction drops to zero (Fig. 3h). Finally, in the other parabolic coupler near the 

exit side of the waveguide, Lamb wave with the same |k| but a much weaker amplitude is 

observed, as evidenced from both the raw and the FFT-filtered TMIM images (Fig. 3k – 3n). 
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FIG. 3. (a) Schematics of the suspended phononic circuit and the TMIM setup. (b) SEM image of the 

device. The four dashed boxes show the locations where TMIM images are acquired. (c) TMIM 

image and (d) 2D FFT spectral image in Box #1. (e) FFT image after removing the diffusive spots at 

the center. (f) Inverse FFT image of (e). (g – j) Same as (c – e) in Box #2. (k – n) Same as (c – e) in 

Box #3. Scale bars are 2 m for real-space images and 2  2 m-1 for k-space FFT images. The false-

color scales for panels (c, g, k) are the same, so are (d, e, h, i, l, m), and (f, j, n). 

We now focus our attention on acoustic modes in the suspended phononic waveguide and 

compare the results with FEM simulation in Fig. 2. Fig. 4a shows the TMIM image taken in Box 

#4, where a complex waveform of the surface potential is clearly observed. By taking FFT (Fig. 

4b) of the raw data, one can see that the TMIM results are a superposition of three distinct 

harmonic components. The fringe-like pattern along the kx direction in the FFT spectrum (Fig. 4d)
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corresponds to the double-slit feature in the TMIM image (Fig. 4c), which is from horizontal 

boundaries of the waveguide. Because of the finite size of the AFM tip, the waveguide appears to 

be slightly wider in the TMIM image than its actual width of 1 m. Other than this topographic 

crosstalk, the most prominent FFT features are the four bright lines at |ky| = 2  0.5 m-1 (Fig. 

4f). The inverse FFT image in Fig. 4e reveals that they are associated with the A1 mode with 

out-of-phase motion between the center and boundary of the waveguide, as depicted in Fig. 2c. 

Note that the signals outside the suspended nanobeam in Fig. 4e are due to both FFT filtering of 

the eigenmode profile (Fig. 2c) and topographic artifact when the tip plunges into the grooves on 

each side of the waveguide. Finally, the FFT image also display weak but discernible features at 

|ky| = 2  1 m-1 (Fig. 4h). The corresponding real-space image in Fig. 4g suggests that this is 

the A0 mode with in-phase particle motion across the width of the waveguide (Fig. 2b). The line 

profiles through the center of Figs. 4e and 4g are plotted in the corresponding insets, showing  

= 2 m and 1 m for the two modes, respectively. By comparing the amplitudes of the two 

modes, it is obvious that the A1 mode is the dominant mode excited in the waveguide. In other 

words, the anti-symmetric membrane mode in the parabolic coupler is mostly converted to the 

FIG. 4. (a) TMIM image and (b) its 2D FFT spectral image in Box #4 in Fig. 3b. (c) Filtered TMIM 

and (d) FFT images of the topographic artifact due to tranches on both sides of the waveguide. (e) 

Filtered TMIM and (f) FFT images associated with the A1 mode. (g) Filtered TMIM and (h) FFT 

images associated with the A0 mode. Insets of (e) and (g) show line cuts through center of the 

images. Note that (a) is the superposition of (c, e, g) in the real space and (b) the superposition of (d, 

f, h) in the k-space. Scale bars are 2 m for real-space images and 2  2 m-1 for k-space FFT 

images. 
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A1 mode in the waveguide, presumably due to mode conversion occurring near the tip of the 

parabolic coupler where the wavefront is distorted from the planar wavefront from the IDT (Fig. 

3g-j). This conversion is undesired for many applications where the A0 mode in the waveguide is 

preferred [26]. Therefore, a better design of the coupler will be needed and the TMIM 

measurement can provide critical insights. 

The FFT filtering method described above allows us to remove the topographic crosstalk 

from the TMIM data and analyze oscillating amplitudes of individual waveguide modes. Figs. 5a 

and 5b plot the TMIM signals of A1 and A0 mode through the 100 m long suspended 

waveguide, respectively. Representative FFT-filtered images are also shown near the entrance 

and exit points of the waveguide. For the primary A1 mode, the amplitude drops by a factor of ~ 

1.5 over a length of 100 m. The acoustic power loss is thus ~ 35 dB/mm, which is reasonable 

for the narrow waveguide. On the other hand, the decay of A0 mode is smaller ~ 20 dB/mm [26], 

although the error bar is large due to the weak signals and distorted wave profiles. 

 
FIG. 5. (a) TMIM signals of the A1 and (b) A0 modes along the 100 m waveguide. The insets show 

the filtered TMIM images associated with the A1 and A0 modes near the entrance and exit points of 

the waveguide. The red dashed lines are linear fits to the semi-log plots. All scale bars are 2 m. 

 

IV. Discussions 

Quantitative analysis of the TMIM results reveals important information about the 

acoustic mode evolution in the suspended phononic circuit that cannot be obtained by two-port 

measurements. The S21 data in Fig. 1c, for instance, convolve the piezoelectric and inverse 

piezoelectric transduction at the two IDTs, the acoustic propagation in the two parabolic couplers, 

and mode conversion in and out of the waveguide. In contrast, the TMIM imaging and FFT 

filtering allow us to focus on the waveguide modes and extract their acoustic loss in the narrow 
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waveguide. The imaging method also reveals the acoustic mode coupling between the parabolic 

horn and the waveguide. When the Lamb wave enters the waveguide, the TMIM peak-to-peak 

signal drops from ~ 100 mV on the coupler side (Fig. 3g) to ~ 60 mV in the waveguide (Fig. 4e). 

Since the acoustic power is proportional to the square of oscillation amplitude and the width of 

the free-standing film, we can calculate a power coupling coefficient of ~ 20% by assuming a 

ratio of 2:1 in effective width near the entrance point. After the propagation of 100 m, the 

TMIM signal drops to ~ 40 mV at the end of the waveguide. Using the same coupling coefficient, 

one can estimate a TMIM signal of 10 ~ 15 mV when entering the left parabolic coupler, 

consistent with the measured data in Fig. 3k. From the measured S21 of ~ 40 dB, we obtain an 

electromechanical power conversion factor of 6 ~ 7% at the IDTs, which matches well with that 

of typical IDTs on AlN membranes [21,22,26]. As a result, the TMIM experiment provides a 

quantitative picture of various components in the phononic device down to the sub-wavelength 

scale. 

Our work in visualizing GHz Lamb waves exemplifies the ability of TMIM to perform 

highly sensitive nanoscale acoustic imaging. From the calculated electromechanical power 

coupling efficiency, one can estimate the mechanical oscillation amplitude of 10 pm under an 

input power of 10 mW to the IDT (Appendix C). Furthermore, the good signal-to-noise ratio in 

the TMIM images indicates that the detection limit at a normal scan rate of 10 min per frame is 

on the order of 0.1 pm. This level of surface acoustic vibration is extremely challenging for 

scanning laser interferometry [33,34], stroboscopic X-ray imaging [38,39], and nonlinear 

acoustic force microscopy [44]. More importantly, at the operation frequency of ~ 3 GHz, the 

acoustic wavelength of 1 ~ 2 m is too small for optics-based techniques whose spatial 

resolution is diffraction limited. The AFM-based TMIM experiment, on the other hand, can 

routinely resolve sub-100nm features in the acoustic imaging. For even higher frequencies in the 

10 GHz regime, which is of critical importance for optomechanics and quantum acoustics, 

TMIM might be the only technique of choice to map out the acoustic patterns on complex device 

structures [46]. 

V. Conclusion  

To summarize, we report the fabrication of suspended AlN acoustic waveguides and the 

visualization of 3.44 GHz Lamb waves on such phononic devices. Combining finite-element 

modeling and transmission-mode microwave microscopy, we are able to identify the membrane 
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and waveguide modes and quantitatively analyze the acoustic coupling between the sub-

wavelength waveguide and a pair of parabolic couplers. The FFT filtering allows us to separate 

the contribution from the two eigenmodes of the waveguide and calculate their acoustic loss. Our 

work demonstrates the exquisite sensitivity and high resolution of the TMIM technique, which is 

expected to find future applications in electromechanics, optomechanics, and quantum science 

and engineering.  
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APPENDIX A: Finite-element modeling of the waveguide modes  

 

FIG. 6. Finite-element modeling results of the (a-c) S0, (d-f) A0, and (g-i) A1 modes the suspended 

AlN waveguide (330 nm in thickness and 1 m in width). Panels (a, d, g) are the 3D views. Panels (b, 

e, h) are projections in the xz-plane. Panels (c, f, i) are projections in the yz-plane. Periodic boundary 

conditions are used for the xz-plane and free moving boundary for the xy- and yz-planes. 

APPENDIX B: AFM and TMIM images in a large field of view 

Fig. 7 shows the simultaneously acquired AFM and TMIM images of the AlN waveguide 

device in a large field of view. The I/Q mixer in the TMIM electronics generates two orthogonal 

output channels, as displayed in Figs. 7b and 7c. The total TMIM signals, as plotted in Fig. 5, are 

vector sum of signals from the two channels. A plot of the TMIM-2 signal in Fig. 7d along the 

center of the waveguide shows the small decay of acoustic waves.  

 
FIG. 7. (a) AFM, (b) TMIM-1, and (c) TMIM-2 images in a large field of view. Scale bars are 5m. 

(d) TMIM-2 signals along the center of the waveguide in (c). 
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APPENDIX C: FEM simulation of the surface displacements and electric potential. 

 
Fig. 8. Simulated displacement fields and electric potential on the suspended AlN membrane device 

under  1 V excitation or ~ 10 mV input power at the split-finger IDT. The mechanical oscillation 

amplitude is on the order of 10 pm. Both out-of-plane and in-plane displacements contribute to the 

surface potential through different piezoelectric components (d33 and d31) of the c-axis polycrystalline 

AlN membrane. OOP: out-of-plane; IP: in-plane; PML: perfectly matching layer. 
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