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We study a direct-current driven maser device enabled by spin-photon coupling, where coherent
magnetic self-oscillation can be realized in a large area ferromagnetic thin film under the excitation of
spin orbit torques. We show via both micromagnetic simulation and analytical derivation that above
a critical value of the coupling strength between spin torque oscillator and microwave resonator,
magnetic oscillation develops macroscopic phase coherence, narrow linewidth, and gets phase-locked
with the photon mode. The threshold coupling strength for synchronizing individual spins reduces
as the sample dimension increases, suggesting that the spin torque oscillator maser can be readily
realized using large area thin film ferromagnets without relying on dimension confinement. Moreover,
the photon mode can directly provide microwave emission which exhibits enhanced power and
reduced linewidth with increasing number of spins, leading to a useful approach for developing
highly coherent on-chip microwave sources.

I. INTRODUCTION

Spin torque oscillators (STOs) [1, 2] have been exten-
sively studied for realizing on-chip microwave sources [3–
5], detectors [6], and components for neuromorphic ap-
plications [7, 8]. STOs were first realized with the spin
transfer torque effect in quasi-zero-dimensional magnetic
systems, such as magnetic tunnel junctions [9], nanopillar
spin valves [3, 10, 11], and nanocontacts [4]. Nanoscale,
quasi single domain structures are generally required in
these experiments since the needed excitation current
scales quickly with the magnetic area. The discovery
of the spin orbit torque effect opened up the possibil-
ity of exciting magnetic oscillations on a larger area, as
a charge current flowing across a very small cross sec-
tion can now inject spins into a magnetic film with a
much larger area [12–15]. However, coherent magnetic
self-oscillation over an extended ferromagnetic thin film
has proven to be hard due to the existence of a contin-
uous magnon band, under which magnon excitations are
quickly scattered into different modes, losing the global
phase coherence [16, 17]. To restrain this decoherence
process, dimension confinement has been introduced to
discretize magnon bands and to enforce coherent oscilla-
tion of spins at different regions of the oscillator [15, 18].
Under the size limit imposed by the coherence require-
ment, various methods have been utilized to overcome
the power bottleneck from a single nanoscale STO, in-
cluding synchronizing different STOs through electrical
connections [19, 20], spin wave interactions [21–24], and
dipolar interactions [25, 26], which bring in complexities
in circuit design and device fabrication. On the other
hand, the small volume of STOs renders them suscep-
tible to thermal fluctuations [1, 27]. Therefore, differ-
ent approaches have been pursued to achieve linewidth
reduction with the aid of external circuits and signals
[28–32].

In this paper, we propose an approach for realiz-

FIG. 1. (a) Schematic of the considered device structure. A
magnetic oscillator driven by spin orbit torque is placed in-
side a microwave cavity and inductively coupled to the cavity
photon mode. (b) Effective circuit diagram. The microwave
cavity is modeled as a serial LCR circuit. The magnetic thin
film is coupled with the LCR circuit through the rf magnetic
field Brf generated by the inductor current. No external sig-
nals are used to drive the LCR circuit.

ing magnetic self-oscillation in a large area ferromag-
netic thin film with high emission power and narrow
linewidth, by exploiting spin-photon coupling. Hy-
brid magnon-photon systems have recently attracted
great attention for reaching coherent information pro-
cessing and transduction [33–40]. On-chip architecture
with large magnon-photon coupling strength has been
demonstrated for potentially scalable device applications
[41, 42]. The integration of an active spintronic device
with the photon mode in a microwave cavity is there-
fore highly attractive for bringing new functions to these
hybrid systems. Here, with micromagnetic simulations
and analytical derivation, we study the magnetic dynam-
ics of an STO located within a microwave cavity, driven
by anti-damping spin orbit torque from a direct current
(DC). We find that under a strong enough coupling be-
tween an STO and a cavity, spontaneous magnetic oscil-
lations with macroscopic phase coherence can be achieved
without any externally applied locking signals, even in
large size ferromagnetic thin films. Moreover, with the
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increase of number of spins in the magnetic film Ns, the
coupling strength needed for overcoming the synchroniza-
tion threshold decreases, the microwave output power in-
creases, and the oscillation linewdith becomes narrower.
The idea of using cavity to realize highly coherent emis-
sion is rooted in the design principles of laser or maser
[43–45], where the phase coherence at different regions
of the nonlinear gain medium is enforced by a global
coupling mechanism – cavity photons, rather than short-
range forces such as dipolar or exchange interactions in
conventional STOs.

II. RESULTS

A. Micromagnetic Equations

Fig. 1(a) shows a schematic of our proposed device.
A spin current density Js for generating damping-like
torque is injected into a ferromagnetic thin film, whose
dynamics is coupled with the cavity photon mode. This
microwave cavity can be experimentally realized with
the usage of on-chip two dimensional resonators for the
small mode volume and the high spin-photon coupling
strength [41, 42]. The system can be represented as the
circuit diagram shown in Fig. 1(b). We assume that the
frequencies of higher order modes of the resonator are
far away from its fundamental mode and the dimension
of the ferromagnetic device is small compared with this
fundamental mode’s wavelength. Therefore, for the in-
terested spectrum region, the microwave resonator can
be modeled as a serial LCR circuit. In the presence
of resonator current, each spin experiences an oscillat-
ing magnetic field Brf generated by the inductor. For
an on-chip resonator design, Brf is uniformly polarized
across the magnetic device in one specific direction. For
the configuration shown in Fig. 1(b), to induce maxi-
mal spin-photon coupling, we set Brf = brfIx̂ along x-
direction which is perpendicular to external biasing field
B0 = B0ŷ. Here, brf is the rf field generated per unit
inductor current I. For the circuit shown in Fig. 1(b),
Brf generated by the inductor loop at the magnet lo-

cation ~r′ can be written as: Brf (~r′) = brf (~r′)I, where

brf (~r′) =
∮
L
µ0

4π
(~r−~r′)×îl(~r)
|~r−~r′|3

dl = brfx̂ with the integral

taken along ~r on the inductor loop. Here îl(~r) is the unit
vector along the current flowing direction in the induc-
tor. The dynamics of the hybrid system can be modeled
with equations:

dm̂i

dt
= τ i − γm̂i × brf I (1)

dI

dt
=
V

L
− R

L
I − brfMsVc

L

∑
i

dm̂xi

dt
+ fI(t) (2)

dV

dt
= − I

C
+ fV (t). (3)

FIG. 2. Micromagnetic simulation results of STOs without
[(a) and (b)] and with [(c) and (d)] coupling onto a microwave
resonator. (a)(c) Fourier Transform of 〈m̂x〉. (b)(d) Real-
space distribution of magnetization azimuthal angle φm in
xz-plane with D = 1280 nm. The histograms in insets show
the number of cells as a function of φm, with the bins chosen
to be 1◦. T is set to be 0 K in the simulations of this figure.

Here we employ a micromagnetic approach by consid-
ering a magnetic free layer in an STO consisting of Nc
cells. γ is the gyromagnetic ratio. m̂i is the unit vec-
tor representing the magnetic moment direction of cell i.
τ i is the total torque acting on m̂i considered in stan-
dard micromagnetic simulations, including contributions
from Zeeman field, anisotropy field, exchange field, dipo-
lar field, as well as Gilbert damping and spin torque [46].
The second torque term on the right hand side of Eq.
(1) originates from the Oersted field from the LCR res-
onator. On the other hand, because of Faraday’s law, the
oscillating magnetic moment leads to an electromotive
force onto the inductor, which is proportional to the time
change of the magnetic flux λ through the inductor loop:

λ =
∑
i

∮
L
~Ai(~r)· îl(~r)dl, where ~Ai(~r) = µ0

4π
MsVcm̂i×(~r−~r′)

|~r−~r′|3
is the vector potential at position ~r generated by mag-

netic moment MsVcm̂i of cell i at location ~r′, with Vc
being cell volume and Ms being saturation magnetiza-

tion. Using the previous expression of brf (~r′), we can

rewrite λ = MsVc
∑
i m̂i · brf(~r′). Therefore, the electro-

motive force is given by −brfMsVc
∑
i
dm̂xi

dt in Eq. (2),
with m̂xi being the projection of the m̂i vector along
the x-direction. Eq. (2) and (3) therefore describe
dynamics of current I and voltage V of the LCR res-
onator in the presence of magnetic oscillations. The
only external drive of the whole system is the DC spin
torque included in τi. To account for the thermal fluc-
tuation at finite temperature T , we include the torque
from the thermal magnetic field onto the dynamics of
m̂i in Eq. (1) [46], as well as a white Gaussian thermal
noise fI(t) and fV (t) in Eq. (2) and (3). The latter
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two noise terms satisfy fluctuation-dissipation relation of
LCR circuit with 〈fI(t)fI(t

′
)〉 = RkBT/L

2δ(t − t′) and

〈fV (t)fV (t
′
)〉 = RkBT/LCδ(t − t

′
), respectively [1, 27]

(See Appendix A for derivation). Here kB is the Boltz-
mann constant. To numerically solve the Nc + 2 coupled
dynamical equations, we augment the ordinary differen-
tial equation solver for Landau Lifshitz Gilbert equations
with additonal torque term in Eq. (1) and introduce new
time-dependent quantities I and V by modifying the mi-
cromagnetic package Mumax3 [46]. fI and fV are im-

plemented according to fI(tn) = ηI(tn)
√
RkBT/(L2∆t)

and fV (tn) = ηV (tn)
√
RkBT/(LC∆t), where ηI(tn) and

ηV (tn) are random numbers from standard normal dis-
tribution whose values are changed after every time step
with step size ∆t = tn − tn−1 [46]. Our modified simula-
tion codes are available online [47].

B. Micromagnetic simulation results

We compare the magnetic dynamics of an STO with
and without being coupled onto a microwave resonator.
For micromagnetic simulation, we set the ferromagnetic
film to be a circular disk with diameter D for simplic-
ity. We have verified that the observations in the fol-
lowing apply to other geometries such as rectangles or
long wires. The film thickness is 5 nm and each mag-
netic cell is a cuboid with size 2.5nm × 2.5nm × 5nm.
We set saturation magnetization Ms = 5.5 × 105A/m,
exchange stiffness Aex = 9 pJ/m, and Gilbert damping
coefficient α = 0.04. To reduce the threshold current
and minimize nonlinear damping [48], we introduce a
perpendicular anisotropy field of Ba = 0.66 T to par-
tially cancel the demagnetization field. The ferromagnet
is biased with a DC field along y-axis B0 = 0.18 T and
a DC spin current Js = 1.0× 1011 A/m2 which is larger
than the oscillation threshold current for all of the cases
considered below. Except for the spin current, no exter-
nal DC or AC drives are assumed on the STO-resonator
system. The parameters of the serial LCR resonator are
chosen as L = 1.56 nH, C = 0.637 pF, and R = 0.05 Ω,
which lead to characteristic impedance Z =

√
L/C = 50

Ω, quality factor of Q = Z/R = 1000, and the reso-

nant frequency ωr = 1/
√
LC = 2π × 5 GHz, close to

the uniform ferromagnetic resonance (FMR) frequency

ω0 = γ
√
B0(B0 + µ0Meff) ≈ 2π × 5.44 GHz of the ferro-

magnetic film. Fig. 2(a) shows the simulation results in
the absence of an LCR resonator (brf = 0 T/A), where
the Fourier transform of x-component of magnetic oscil-
lation 〈m̂x〉 is illustrated for D = 320, 640, and 1280 nm
at T = 0 K. With the increase of device size, the current
induced magnetic oscillation loses coherence, where the
peak power decreases and linewidth increases, consistent
with previous experimental observations [16, 17]. An in-
spection on the real-space distribution of magnetization
azimuthal angle φm [see Fig. 1(a) for definition] shows
that the lack of phase coherence of magnetic dynamics

FIG. 3. (a) Fourier Transform of 〈m̂x〉 as a function of B0.
In this simulation, brf = 25 T/A and D = 1280 nm. (b)
The average magnetization projected onto xz-plane, 〈m̂xz〉,
as a function of spin-photon coupling coefficient brf. The
incoherence-to-coherence transition happens at brf,c ≈ 11.3
T/A. (c) brf,c as a function of ferromagnetic disk diameter D.
The red curve shows the result from analytical modeling. Ns

is the number of spins in the disks. (d) Energy stored in the
resonator Er as a function of diameter D. brfD is kept con-
stant in simulations with different sample sizes, with brf = 15
T/A for D = 1280 nm. The red curve represents the analyt-
ical results. Simulation cell size is 2.5nm × 2.5nm × 5nm for
(a)(b) and 10nm× 10nm× 5nm for (c)(d). T is set to be 0 K
in simulations of this figure. In (c)(d), B0 and Js are fixed in
simulations with different diameters.

in different cells accounts for the small signal and broad
linewidth [Fig. 2(b)]. The simulation results with finite
spin-photon coupling (brf = 25 T/A) are shown in Fig.
2(c) for the D = 1280 nm sample. In contrast to the un-
coupled case, 〈m̂x〉 exhibits a much larger oscillation am-
plitude and a much narrower linewdith. Moreover, real-
space distribution of φm shows that inhomogeneities are
greatly suppressed, indicating the realization of macro-
scopically coherent magnetic self-oscillation [Fig. 2(d)].

To understand the required condition for reaching co-
herent magnetic oscillations, we carry out simulations
for the D = 1280 nm sample under different external
field B0. As shown in Fig. 3(a), when the detuning
between the STO free-running frequency ωS and the res-
onator frequency ωr is small (0.176 T < B0 < 0.208 T),
ωS is locked onto ωr. We further verify that within the
frequency-locking region, the relative phase difference be-
tween resonator and STO remains nearly constant as a
function of time, indicating phase-locking. Next, we fix
B0 = 0.18 T and study the STO dynamics as a function
of coupling coefficient brf [Fig. 3(b)]. We note that be-
low a critical value brf,c, the oscillation amplitude on the
xz-plane 〈m̂xz〉 remains almost zero, while above brf,c,
〈m̂xz〉 jumps to a much higher value, indicating a transi-
tion from incoherent to coherent oscillation. In Fig. 3(c),
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we plot the dependence of brf,c on spin number Ns by car-
rying out simulations on samples with different sizes. We
find that the threshold coupling coefficient decreases as
Ns increases, satisfying a relationship of brf,c ∝ 1/

√
Ns,

a result which can be further verified through analyti-
cal derivation (see Section II C). The scaling relation of
brf,c ∝ 1/

√
Ns implies that it is easier to achieve coherent

oscillations in samples with large Ns, e.g., with an ex-
tended thin film. brf is a factor that depends on the LCR
resonator geometry and the proximity of the magnetic
material to the inductor. For a two dimensional on-chip
resonator design with a simple inductive wire [42], one
has the relation of brf = µ0/2w, where w is the induc-
tive wire width. Previously, it has been shown that with
lithographically defined superconducting resonators, brf
on the order of 0.1 T/A can be achieved [42]. By ex-
trapolating results in Fig. 3(c), we see that with this brf,
synchronized oscillations can be reached in samples with
Ns > 1013, corresponding to a lateral dimension of ≈ 200
µm. Besides allowing easier synchronization with the res-
onator mode, a larger magnetic volume is also beneficial
for increasing the emission power. In Fig. 3(d), we stud-
ied the energy stored in the resonator Er as a function of
the sample size, which shows a linear increase with Ns,
providing a promising approach to overcome the power
bottleneck encountered in classical STOs. Moreover, dif-
ferent from previous STO designs where the magnetic os-
cillation needs to be converted to output signal through
certain magnetoresistance effects [2], the resonator can
directly provide microwave emission to the external cir-
cuit, whose strength depends on the stored energy as well
as the coupling with the external circuit [49].

C. Analytical theory for oscillator synchronization

The cavity-assisted coherent magnetic self-oscillation
can be further verified and extended with analytical stud-
ies. We rewrite Eq. (1-3) in complex oscillator represen-
tation following Slavin et al. [1, 50] (See Appendix BC):

dci
dt

+ iωi(pi)ci + Γi(pi)ci = Fmi(cr) +
∑
i 6=j

Gji(ci, cj)

(4)

dcr
dt

+ iωrcr +
ωr
2Q

cr =
∑
i

Fri(ci). (5)

Here ci, defined as a superposition of m̂xi and m̂zi by tak-
ing into account the elliptical oscillation orbit [1, 50], is
the dimensionless complex oscillation amplitude for mag-
netic cell i with power pi = |ci|2 and phase φi = arg(ci).
In our simulations with nearly compensated magnetic
anisotropy, we have ci ≈ (m̂zi − jm̂xi)/

√
2(1 + m̂yi)

where j =
√
−1. ωi(pi) is the power-dependent self-

oscillation frequency which is related to the effective field
experienced by each cell. Under first order approxima-
tion, ωi(pi) = ω0i + Kipi with Ki = dωi

dpi
. Γi(pi) =

Γi,+(pi) − Γi,−(pi) is the nonlinear damping coefficient
which includes both positive Gilbert damping Γi,+(pi)
and negative effective damping Γi,−(pi) from spin torque.
cr = I + iV/Z =

√
pre

iφr is the complex amplitude of
LCR resonator with intrinsic frequency ωr and dissipa-
tion rate ωr/2Q. Fri(ci) = −grici and Fmi(cr) = gmcr
reflect the mutual coupling between the ith magnetic cell
and the LCR resonator, with gri = ω0ibrfMsVc/L and
gm = γbrf/4 in the case of nearly compensated magnetic
anisotropy. Meanwhile, magnetic cells are also coupled
with each other through Gji, which includes exchange
and dynamic dipolar interactions between cell i and cell
j. Without Gji and Fmi, magnetization in each cell i
self-oscillates independently at frequency ωgi = ωi(pi0)
with the equilibrium power pi0 satisfying Γi(pi0) = 0, and
no global coherence is expected. The existence of short
range interaction Gji, on the other hand, allows coher-
ent oscillations from small, quasi-single domain samples,
as shown in previous experiments [2]. However, it has
been demonstrated that the short range interactions be-
come less efficient and they cannot lead to global phase
synchronization when the size of the sample goes to in-
finity [51, 52]. For this reason and also to get a closed
mathematical form, we only consider the interactions be-
tween magnetic cells and the LCR resonator, Fmi and
Fri, in the following analytical derivation and rely on the
full micromagnetic solution to check the extra influences
brought by the short range interactions Gji.

Isolating ci into its phase and power parts, the coupled
dynamics of the system is captured by the equations on
magnetic cell phase φi and resonator amplitude cr:

dφi
dt

+ ωgi = gm

√
1 + ν2

i

√
pr
pi0

sin(φr − φi − βi) (6)

dcr
dt

+ iωrcr +
ωr
2Q

cr =
∑
i

−gri
√
pi0e

iφi (7)

where νi = Ki/(G+,i − G−,i) is a parameter quantify-
ing the frequency nonlinearity of STO [1], with G+,i =
dΓ+,i

dpi
|pi0 , G−,i =

dΓ−,i

dpi
|pi0 , and βi = arctan(νi). To

capture the main physics of coupled phase oscillators,
we set all parameters except ωgi to their average value
νi = ν, pi0 = p0, βi = βm, gri = gr. In the limit of
large Nc, we assume the frequency and phase distribu-
tion of magnetic cells satisfy a probability density func-
tion f(φ, ω, t) where f(φ, ω, t)dφdω describes the fraction
of cells in phase (φ, φ + dφ) and frequency (ω, ω + dω)
[53]. To describe the coherence of the STO, we define
the phase order parameter:

Ψ =
1

Nc

∑
i

eiφi =

∫ ∞
−∞

dω

∫ 2π

0

f(φ, ω, t)eiφdφ (8)

and we can rewrite Eq. (6) and (7) as:

dφ

dt
+ ω = gm

√
1 + ν2

√
pr
p0

sin(φr − φ− βm) (9)

dcr
dt

+ iωrcr +
ωr
2Q

cr = −gr
√
p0NcΨ. (10)
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According to probability conservation, the probability
function f(φ, ω, t) satisfies a continuity equation:

∂f

∂t
+

∂

∂φ

(
f
dφ

dt

)
= 0 (11)

where dφ
dt is given by Eq. (9).

Eq. (9)-(11) give a description on the time evolution of
the phase distribution of the coupled magnetic cells. To
solve this equation set, we follow Ott-Antonsen ansatz
[53, 54] and have a tentative solution f(φ, ω, t) expressed
in Fourier series:

f(φ, ω, t) =
h(ω)

2π

[
1 +

∞∑
n=1

[α(ω, t)]neinφ + c.c.

]
(12)

where the Fourier coefficients take functional form of
[α(ω, t)]n. This type of solutions have been proven to
be useful for describing systems with large number of os-

cillators. In Eq. (12), h(ω) =
∫ 2π

0
f(φ, ω, t)dφ is the

distribution of generation frequency of magnetic cells.
The coupled Eq. (9)-(11) are solvable when the form
of the frequency distribution h(ω) is specified. Here,
to obtain a closed-form analytical solution, we assume
that frequency distribution follows Lorentzian distribu-
tion h(ω) = ∆m

π
1

(ω−ω̄)2+∆2
m

with a central frequency of ω̄

and linewidth ∆m. Under this choice of frequency distri-
bution, the phase order parameter has a simple expres-
sion Ψ = [α(ω̄ + i∆m, t)]

∗. Substituting Eq. (12) and
Eq. (9) into Eq. (11), we find the order parameter obeys
the following dynamics equation:

dΨ

dt
+ i(ω̄ − i∆m)Ψ =

gm
√

1 + ν2

2
√
p0

[
cre
−iβm −Ψ2c∗re

iβm
]

(13)
which together with Eq. (10) describes the dynamics of
the system.

Eq. (10) and (13) are two coupled differential equa-
tions with respect to Ψ and cr. The bifurcation point of
the dynamical system described by these two equations
can be obtained via linear stability analysis. By assum-
ing solutions of Ψ = Ψ0e

(λ−iΩ)t and cr = cr0e
(λ−iΩ)t

and substituting them into Eq. (10) and (13), we find
that non-trivial solution of |Ψ| 6= 0 becomes the stable
one when the coupling coefficient brf exceeds a threshold
value of brf,c, which has the following simple expression:

brf,c =

√
4Z∆m

γω0QMsVcNc
∝ 1√

Ns
, (14)

when there is zero frequency nonlinearity in auto-
oscillators (ν = βm = 0) and zero detuning between
central frequency of magnetic cells and the LCR res-
onator (ω̄ = ωr). In Appendix C, we further verify that
brf,c ∝ 1/

√
Ns holds for the more general case where the

nonlinear frequency shift of the magnetic cells and a finite
detuning are taken into account (dωi/dpi 6= 0, ω̄ 6= ωr).
Choosing parameters (∆m, δω = ω̄ − ωr, and βm) that

FIG. 4. (a) Fourier transform of resonator voltage V for sam-
ples with D = 640, 1280, and 5120 nm. Red curves for D =
640 and 1280 nm samples illustrate Lorentzian fittings. (b)
Voltage FWHM linewidth as a function of diameter D. To
ensure fair comparisons, brfD is kept constant in simulating
samples with different sizes, with brf = 15 T/A for D = 1280
nm. In this simulation, T = 300 K and the lateral size of cells
is chosen to be 10 nm.

are consistent with our simulated materials (Appendix
D), we calculate brf,c using the full analytical model and
get the red curve in Fig. 3(c), which agrees well with the
micromagnetic simulation results (solid dots).

Besides the threshold coupling strength, the amplitude
of the LCR resonator cr in the synchronized state can
also be derived analytically (Appendix C). With the same
parameter set which determines brf,c, we calculate the
stored energy in the LCR resonator Er = L|cr|2/2, as
represented by the red curve in Fig. 3(d), consistent
with the numerical simulation results, where Er scales
with Ns.

D. Simulation results on oscillation linewidth

One of the key benefits of coupling auto-oscillators
with a cavity is to get very narrow linewidths. To eval-
uate the generation linewidth of our proposed device at
finite temperature, we carry out micromagnetic simula-
tion at T = 300 K. We note that compared with the
T = 0 K case shown in Fig. 3(c), the required coupling
coefficient brf,c increases by 20%, but the synchroniza-
tion and phase-locking behaviors remain. The resolution
of the oscillation linewidth is determined by the simu-
lated evolution time for magnetization, which is further
limited by the hardware and software efficiency. For a
sample with D = 5120 nm, an upper bound of 4 kHz
is determined for the linewidth of voltage (full-width-at-
half-maximum, or FWHM) after 35 days’ simulation, as
shown in Fig. 4(a). The quality of generation signal
(Qg > 106) is much higher than intrinsic quality factor
of the LCR resonator (Q = 103), suggesting that the nar-
row linewidth does not originate from the simple filtering
effect of the resonator. To get a better understanding
on generation linewidth as a function of device size, we
perform simulations on a series of samples and the re-
sults are summarized in Fig. 4(b). It can be seen that
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the linewidth ∆f reduces as Ns increases, satisfying a re-
lationship ∆f ∝ 1/Ns (red curve), which suggests that
even narrower linewidth than shown in Fig. 4 can be
potentially achieved in real samples with larger dimen-
sions. This scaling trend is consistent with the theory
on thermal phase noise induced auto-oscillator linewidth
broadening [26, 27], where it was shown ∆f ∝ kBT/E,
with E being the oscillation energy of the system. In our
system, the total energy contains both resonator energy
and the energy of the magnetization oscillation [26, 27],
both of which are proportional to Ns. The analytical
understanding of the linewdith and the simulations be-
yond white noise, such as 1/f noise in the coupled system
[26, 55], are important future research directions.

III. DISCUSSION AND CONCLUSIONS

The proposed device structure can not only be used
as a general purpose, on-chip microwave source, but also
provides important functionalities in emerging fields such
as quantum electronics. In the field of quantum engineer-
ing, a scalable approach for interconnecting quantum bits
with high quality microwave sources is required for re-
alizing large scale quantum processors [56]. The STO
maser discussed in this paper is a compact, highly coher-
ent microwave source which can be realized using scal-
able photolithography process [41, 42]. The oscillator is
already coupled with photon mode of the cavity, which
can provide direct output to other parts of the quantum
circuits. Moreover, with modulated DC spin current, the
STO maser can generate high quality microwave pulses
with controlled envelopes, which holds potential applica-
tions in scalable quantum information processing.

In summary, we studied the dynamics of a multi-
domain STO located within a microwave resonator. We
found that different from free STOs, a STO coupled with
a microwave resonator can exhibit coherent oscillations
even in large, extended ferromagnetic thin films. In the
coherent region, the microwave emission power increases
with the dimension of the magnetic film while the genera-
tion linewidth reduces. The requirement for reaching the
coherent region can be satisfied by increasing the volume
of magnetic films and using two dimensional resonator
design that can be achieved with existing technologies.
The operation mechanism of this device is reminiscent of
a maser, with a large area STO serving as the nonlin-
ear gain medium. Although the system is described by
classical dynamical equations without referring to quan-
tized energy levels, we note that essential laser physics
can be understood in classical physics [44], with exam-
ples of free-electron lasers [57, 58] and Josephson junction
lasers [59, 60]. By harnessing spin-photon coupling and
spin orbit torque, we expect the demonstrated results
can enable compact, highly coherent, on-chip microwave
sources that are beneficial for applications in both clas-
sical and quantum electronics domains.
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APPENDIX A: THERMAL NOISES FOR
MICROMAGNETIC SIMULATIONS WITH A

MICROWAVE RESONATOR

In this section, we provide derivations of thermal noise
terms in Eq. (1-3). In the main text, we have shown that
the dynamical equations for each magnetic cell i within a
magnetic film and the serial LCR circuit with the mutual
coupling terms can be written as:

dm̂i

dt
= τ i − γm̂i × brf I (A1)

dI

dt
=
V

L
− R

L
I − brfMsVc

L

∑
i

dm̂xi

dt
(A2)

dV

dt
= − I

C
. (A3)

To consider finite temperature effect, the agitation
from thermal noise onto the dynamics of magnet and
the LCR resonator should be included. For magnetic
dynamics, we used the torque from the thermal effect
that is included in the standard Mumax3 package [46].
For the LCR resonator, we define a complex amplitude
cr =

√
pre

iφr = I + iV/Z, where Z =
√
L/C is char-

acteristic impedance. Eq. (A2) and (A3) without the
coupling term can then be combined into a single equa-
tion dcr

dt = −iωrcr − R
2Lcr + fr(t), with a complex ther-

mal noise term fr(t), where ωr = 1/
√
LC is the res-

onance frequency. (Nonresonant terms proportional to
c∗r are dropped.) Following Slavin et al. [1], we con-
sider Gaussian white noise such that 〈fr(t)fr(t′)〉 = 0
and 〈fr(t)f∗r (t′)〉 = 2Drδ(t − t′), where Dr is the diffu-
sion coefficient. Under Fokker-Planck equation, the sta-
tionary probability density function Pr(pr, φr, t) satisfies:
d
dpr

[
2pr

R
2LPr + 2prDr

∂Pr

∂pr

]
= 0 [1]. In the meantime,

Pr needs to satisfy the Boltzmann distribution under
thermal equilibrium at temperature T , Pr ∝ e−Er/kBT ,
where Er = CV 2/2+LI2/2 = Lpr/2 is the energy stored
in the resonator. This sets Dr = RkBT/L

2. Rewrite the
thermal noise terms for cr into equations of I and V , we
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obtain:

dm̂i

dt
= τ i − γm̂i × brf I (A4)

dI

dt
=
V

L
− R

L
I − brfMsVc

L

∑
i

dm̂xi

dt
+ fI(t) (A5)

dV

dt
= − I

C
+ fV (t) (A6)

where 〈fI(t)fI(t
′
)〉 = RkBT/L

2δ(t − t
′
) and

〈fV (t)fV (t
′
)〉 = RkBT/LCδ(t− t

′
), respectively.

APPENDIX B: THEORY OF NONLINEAR
AUTO-OSCILLATOR COUPLED WITH LINEAR

RESONATOR

For this section, we consider a spin-torque oscillator
(STO) modeled as a macrospin which is coupled to an
LCR resonator at T = 0 K as described by Eq. (A1-A3).
The results from this section will be used as a basis for the
derivation of the synchronization condition for coupling
multi-domain oscillators with a resonator. Here we first
recap some of the key results for a STO without spin-
photon coupling given by Slavin et al. [50] and consider
the effects of coupling terms later. For a macrospin with
M magnetic moment per unit volume (magnetization),
the Landau-Lifshitz-Gilbert (LLG) equation with spin-
transfer term can be written as:

dM

dt
= γ

(
M× δW0

δM

)
+ Tε. (B1)

Here W0 =
∫

(−H0 ·M + 2π(M · ẑ)2 − Ha

2Ms
(M · ẑ)2)dr

is the free-energy with Ha being anisotropy field, and
Tε = Th +Td +Ts includes contributions from external
microwave field Th = −γ(M×h), Gilbert damping Td =
α
Ms

(M× ∂M
∂t ), and spin torque Ts = βJs

Ms
(M× (M× p̂))

where β = gµB

2eMst
with t being thickness of the mag-

netic film and Js being the spin current density. Here
we consider H0 = H0ŷ, h = hxx̂, and that the in-
jected spin moments are oriented along −y axis. Due
to the fixed length constraint |M| = Ms, there are two
independent degrees of freedom, which can be conve-
niently described by a complex circular precession am-
plitude am given by Holstein-Primakoff transformation
am = (Mz − iMx)/

√
2Ms(Ms +My). The inverse trans-

formation is M = Ms(1−2|am|2)ŷ+Ms

√
1− |am|2((ẑ+

ix̂)am+(ẑ− ix̂)a∗m). Clearly, only am’s satisfying |am| ≤
1 have physical meaning. The equation of motion (EOM)
can be written as:

dam
dt

= −i δH0

δa∗m
+ Fa (B2)

where H0 = γW0/2Ms is macrospin Hamiltonian and
Fa = ∂am

∂M · Tε. Because of the elliptical orbit of
magnetization precession, the Hamiltonian will take a
simpler form in elliptical precession amplitudes, called

bm. The relation between am and bm amplitudes is
am = ubm − vb∗m with u =

√
(ωH + ω0)/2ω0 and

v =
√

(ωH − ω0)/2ω0, where ωH = γ(H0 + 2πMeff) and

ω0 = γ
√
H0(H0 + 4πMeff) with 4πMeff = 4πMs − Ha.

This is a canonical transformation analogous to Bogoli-
ubov transformation. In terms of bm, the EOM is:

dbm
dt

= −i δH0

δb∗m
+ Fb (B3)

where Fb = uFa + vF ∗a . Following the convention uti-
lized in Slavin et al. [50], a new complex amplitude cm =√
ωH/ω0bm is defined, where subscriptm stands for mag-

netic dynamics to distinguish from resonator dynamics
introduced later. By neglecting nonresonant terms and
keeping leading order terms, we finally write the EOM in
terms of cm:

dcm
dt

= −i δHc
δc∗m
−Γ+(|cm|2)cm+Γ−(|cm|2)cm+Fch. (B4)

Here Hc = ωHH0/ω0 = ω0|cm|2 + K
2 |cm|

4, with ω0|cm|2
being the linear term and K

2 |cm|
4 corresponding to the

non-linear frequency shift, K = γ 2ω0

ωH
(−(3(u2+v2)2−1)+

6uv(u2 + v2))πMeff. The second and third terms on the
right hand side of Eq. (B4) represent the positive non-
linear damping Γ+(|cm|2) = Γ0(1 + Q1|cm|2 + Q2|cm|4)
due to Gilbert damping, and negative nonlinear damping
Γ−(|cm|2) = ΓJ(1−|cm|2) due to spin torque effect, with

Γ0 = αωH , ΓJ = βJs, Q1 = 2 − 3(ω0/ωH)2 − 2ω
′

H/ωH ,

and Q2 = (2 − 3(ω
′

H/ωH) + (ω
′

H/ωH)2)(ω
′

H/ωH) with

ω
′

H = γ2πMeff. In the following discussions, we con-
sider the case with ΓJ > Γ0, corresponding to the op-
eration regime of STOs. The external microwave field
effect contributes to an additional driving term Fch =
γ
√
ωH/ω0(u + v)hx/2, up to leading order. These re-

sults are adapted from Slavin et al. [50] after considering
our proposed device geometry.

In the following, we consider the coupling between the
macrospin STO and the LCR circuit, which is a cou-
pling scheme raised in the current work and has not
been visited in previous publications. We first note that
the effect of LCR circuit on macrospin is to produce an
effective magnetic field h = hxx̂ = brfIx̂, resulting in
Fch = γ

√
ωH/ω0(u+v)(cr+c

∗
r)brf/4, where cr = I+iV/Z

is the complex resonator amplitude defined in the previ-
ous section. To consider the effect of STO dynamics on
the LCR resonator, we rewrite Eq. (A2) and (A3) using
cr:

dcr
dt

= −iωrcr −
R

2L
cr −

brf
L

dmx

dt
(B5)

where ωr = 1/
√
LC (Terms proportional to c∗r are

dropped). Since mx is correlated with cm through the
transformations introduced above, we can rewrite dmx

dt =

iMsVc(u+v)
√

ω0

ωH
(dcmdt −

dc∗m
dt ) up to leading order, where
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Vc is volume of the macrospin cell. Substituting the ex-
pressions of Fch and dmx

dt into Eq. (B4) and (B5) and only
keeping leading order terms, we get equations which de-
scribe dynamics of the coupled system regarding the two
complex amplitudes cm and cr:

dcm
dt

+ iω(|cm|2)cm + Γ(|cm|2)cm = Fm(cr) (B6)

dcr
dt

+ iωrcr +
ωr
2Q

cr = Fr(cm) (B7)

where Γ(|cm|2) = Γ+(|cm|2) − Γ−(|cm|2), ω(|cm|2) =
ω0 + K|cm|2, Fm(cr) = gmcr, Fr(cm) = −grcm, and

Q =
√
L/C/R is the quality factor of LCR resonator.

The parameters for the coupling terms are gm = γbrf/4
and gr = ω0brfMsVc/L. In Eq. (B6) and (B7), we
dropped terms proportional to c∗m and c∗r under rotat-
ing wave approximation [50]. In the main text, we con-
sider the case where the demagnetization field is nearly
compensated with the perpendicular anisotropy, there-
fore, we have set ωH ≈ ω0 and u+v = 1 in the equations
above. We note that gm ∝ brf and gr ∝ brfNs, where
Ns is the number of spins. Eq. (B6) and (B7) repre-
sent coupling between a nonlinear auto-oscillator and a
linear passive resonator, different from mutual synchro-
nization between two STOs (nonlinear auto-oscillators)
in previous literatures [1]. To proceed, by expressing
cm =

√
pme

iφm and cr =
√
pre

iφr , we separate Eq. (B6)
and (B7) into equations about the magnitude and about
the phase:

dpm
dt

+ 2Γ(pm)pm = 2gm
√
prpm cos(φr − φm) (B8)

dφm
dt

+ ω(pm) = gm

√
pr
pm

sin(φr − φm) (B9)

dpr
dt

+
ωr
Q
pr = −2gr

√
prpm cos(φr − φm) (B10)

dφr
dt

+ ωr = gr

√
pm
pr

sin(φr − φm). (B11)

Without the coupling term which is proportional to gm,
the relevant solution to Eq. (B8) and (B9) is the per-
sistent macrospin precession with stationary power p0

satisfying Γ+(p0) = Γ−(p0) and generation frequency
ωg = ω(p0). In the limit of weak coupling, we can ex-
pand Eq. (B8) and (B9) around the stationary point by
treating power deviation δpm = pm−p0 as a small signal
[1]:

dδpm
dt

+ 2Γpδpm = 2gm
√
prp0 cos(φr − φm) (B12)

dφm
dt

+ ωg +Kδpm = gm

√
pr
p0

sin(φr − φm) (B13)

where Γp = (G+ − G−)p0 with G+ = dΓ+

dp |p0 and

G− = dΓ−
dp |p0 . Defining ν = K/(G+ − G−) and keep-

ing leading order terms, the dynamics of Eq. (B8-B11)

FIG. 5. Locked phase Φ = φr − φm as a function of (a) brf
and (b) brfD for different diameter D, with brf ≥ brf,c. In this
simulation, T = 0 K and the lateral size of cells is chosen to
be 2.5 nm.

can be captured by the following equations:

dφm
dt

+ ωg = gm
√

1 + ν2

√
pr
p0

sin(φr − φm − βm)

(B14)

dφr
dt

+ ωr = gr

√
p0

pr
sin(φr − φm) (B15)

dpr
dt

+
ωr
Q
pr = −2gr

√
prp0 cos(φr − φm) (B16)

where βm = arctan(ν) is a phase due to nonlinear fre-
quency shift. Eq. (B14-B16) serve as a basis for de-
riving synchronization condition in a resonator-coupled
multidomain STO in the next section. Moreover, this
macropsin theory also describes the STO maser in the
synchronized region with brf ≥ brf,c, as discussed below.

We seek a stationary solution where dpr/dt = 0, which
suggests cos(φr − φm) < 0 and Φ = φr − φm a constant
in time indicating phase locking. Then we have:

pr = 4p0

[
gr
Q

ωr
cos Φ

]2

(B17)

ωr − ωg = − ωr
2Q

tan Φ + 2G
Q

ωr
cos Φ sin(Φ− βm)

(B18)

where G = gmgr
√

1 + ν2. Eq. (B18) determines the
stationary locked phase Φ, which then determines res-
onator power pr in Eq. (B17). Note that gm ∝ brf and
gr ∝ brfNs. Therefore, the locked phase Φ depends on brf
and Ns through G ∝ b2rfNs. In our simulations, am ≈ cm
due to the nearly compensated magnetic anisotropy, and
we approximate φm = arctan(−〈m̂x〉/〈m̂z〉). The locked
phases Φ as a function of diameter D and brf are ex-
tracted from the simulation and plotted in Fig. 5. We
note that cos Φ < 0 and Φ depends on brf and Ns through
the combination brfD ∝ brfN2

s as illustrated in Fig. 5(b),
consistent with the macrospin theory.

Besides, we can obtain the microwave emission fre-
quency by inserting Eq. (B17) into Eq. (B15), obtaining
dφr

dt = −ωr(1 + tan(Φ)/2Q). This indicates a relation



9

FIG. 6. Phase-locked frequency fPL with brf ≥ brf,c. Penta-
gram dots represent the peak frequencies extracted from sim-
ulation. Solid curves represent calculations using macrospin
theory and the locked phases presented in Fig. 5.

between phase-locked frequency and phase:

ωPL = ωr

(
1 +

1

2Q
tan Φ

)
. (B19)

In Fig. 6, the theoretical phase-locked frequencies calcu-
lated using Eq. (B19) and phases in Fig. 5 are shown
in solid curves, which agree well with the peak frequen-
cies obtained from simulation, represented by pentagram
dots.

APPENDIX C: SYNCHRONIZATION
CONDITION FOR MULTIDOMAIN SPIN

TORQUE OSCILLATOR WITH MICROWAVE
RESONATOR

We model multidomain STO as consisting of Nc mag-
netic cells with volume Vc. As shown in earlier litera-
tures, in the limit of large Nc short range interactions
such as nearest-neighbor interaction from exchange and
power-law interaction from dipolar field are insufficient to
achieve synchronization of different cells. Moreover, it is
mathematically challenging to derive analytical solution
for synchronization in the presence of these short range
coupling terms. Here, we only consider the interaction
between magnetic cells and the LCR resonator. We show
below that this model captures features of our simulation
results semi-quantitatively. The dynamical equations of
the system at T = 0 K are the generalization of Eq. (B6)
and (B7):

dci
dt

+ iωi(|ci|2)ci + Γ+i(|ci|2)ci − Γ−i(|ci|2)ci = Fmi(cr)

(C1)

dcr
dt

+ iωrcr +
ωr
2Q

cr =
∑
i

Fri(ci) (C2)

where i is the cell index. In general, the functions ωi, Γ+i,
Γ−i, Fmi, and Fri have i-dependent functional forms due
on spatial variation of equilibrium effective field. For each

unit cell with complex amplitude ci =
√
pie

iφi , one can
expand the equation around the stationary working point
with corresponding stationary power pi0 and generation
frequency ωgi as we did in Eq. (B14):

dφi
dt

+ ωgi = gm

√
1 + ν2

i

√
pr
pi0

sin(φr − φi − βi) (C3)

dcr
dt

+ iωrcr +
ωr
2Q

cr =
∑
i

−gri
√
pi0e

iφi (C4)

where the definition of gmi, νi and βi are in line with the
corresponding definitions of gm, ν, and βm in previous
section. These equations describe a complicated dynam-
ical system with dimension Nc+2. To obtain qualitative
features of the system, we set all parameters except ωgi to
their average value νi = ν, pi0 = p0, βi = βm, gri = gr. In
the limit of large Nc, we assume the frequency and phase
distribution of magnetic cells satisfy a probability func-
tion f(φ, ω, t) where f(φ, ω, t)dφdω describes the fraction
of cells in phase (φ, φ+dφ) and frequency (ω, ω+dω) [53].
We define the phase order parameter:

Ψ =
1

Nc

∑
i

eiφi =

∫ ∞
−∞

dω

∫ 2π

0

f(φ, ω, t)eiφdφ (C5)

and we can rewrite Eq. (C3) and (C4) as:

dφ

dt
+ ω = gm

√
1 + ν2

√
pr
p0

sin(φr − φ− βm) (C6)

dcr
dt

+ iωrcr +
ωr
2Q

cr = −gr
√
p0NcΨ. (C7)

The function f(φ, ω, t) satisfies continuity equation ∂f
∂t +

∂φ(fφ̇) = 0, where φ̇ is given by Eq. (C6). Following
the Ott-Antonsen ansatz [53, 54], we have a tentative
solution f(φ, ω, t) expressed in Fourier series:

f(φ, ω, t) =
h(ω)

2π

[
1 +

∞∑
n=1

[α(ω, t)]neinφ + c.c.

]
(C8)

where the Fourier coefficients take functional form of
[α(ω, t)]n, which has been used to describe systems with
large number of oscillators. We note that h(ω) =∫ 2π

0
f(φ, ω, t)dφ is the distribution of generation fre-

quency of magnetic cells. Substituting Eq. (C8) and
Eq. (C6) into the continuity equation, we have:

∂α

∂t
− iωα

=
gm
√

(1 + ν2)pr
2
√
p0

[
e−i(φr−βm) − α2ei(φr−βm)

]
.

(C9)

Moreover, within Ott-Antonsen ansatz, we note that
the phase order parameter can be written Ψ =∫∞
−∞ dωh(ω)α∗(ω, t). In order to obtain qualitative re-

sults, we assume that frequency distribution follows
Lorentzian distribution h(ω) = ∆m

π
1

(ω−ω̄)2+∆2
m

which
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would simplify the expression of phase order parameter
to Ψ = [α(ω̄+ i∆m, t)]

∗, using contour integration in the
upper half complex plane [53]. As a result, Eq. (C9)
governs the time evolution of Ψ, which together with Eq.
(C7) specifies the dynamics of the system:

∂Ψ

∂t
+ i(ω̄ − i∆m)Ψ =

gm
√

1 + ν2

2
√
p0

[
cre
−iβm −Ψ2c∗re

iβm
]
.

(C10)

To proceed, we write Ψ = Ψ0e
iφ0 , where the phase φ0

denotes the phase of the order parameter for magnetic
dynamics. Separate Eq. (C10) and (C7) into phase and
amplitude parts:

dΨ0

dt
= −∆mΨ0 +Gm

(
1−Ψ2

0

2

)
cos(φr − φ0 − βm)

(C11)

dφ0

dt
+ ω̄ = Gm

(
1 + Ψ2

0

2

)
sin(φr − φ0 − βm) (C12)

dpr
dt

+
ωr
Q
pr = −2gr

√
prp0NcΨ0 cos(φr − φ0) (C13)

dφr
dt

+ ωr = gr

√
p0

pr
NcΨ0 sin(φr − φ0) (C14)

where Gm = gm
√

1 + ν2
√

pr
p0

. We note that Eq. (C12-

C14) generalizes Eq. (B14-B16), and they become iden-
tical in the case of Ψ0 = 1, consistent with macrospin
picture. The parameter gr in Eq. (C13-C14) represents
coupling from a single magnetic cell, which is accompa-
nied with the number of cells Nc accounting for proper
size scaling. Eq. (C11) is a new equation which quanti-
fies the coherence of magnetic dynamics. In the absence
of coupling to the resonator (gm = 0), one can verify that
Ψ0 = 0 is a stable solution, corresponding to complete
incoherence. However, as described below, when the mu-
tual coupling strength represented by gmgrNc reaches a
critical value, this incoherence solution will lose its stabil-
ity and the alternative phase-locked solution will describe
the long-term dynamics of the hybrid system. To find
this phase boundary, we linearize Eq. (C10) near Ψ0 = 0
by discarding the Ψ2 term. Assuming Ψ = Ψ0e

(λ−iΩ)t

and cr = cr0e
(λ−iΩ)t in linearized Eq. (C7) and (C10),

we have:

[λ+ ∆r − i(Ω− ωr)] [λ+ ∆m − i(Ω− ω̄)]

=
1

2
gmgrNc

√
1 + ν2e−iβm

(C15)

where ∆r = ωr/2Q corresponds to the linewidth of the
resonator. The phase boundary for the growth of coher-
ence from the Ψ0 = 0 state is given by the condition
λ = 0+ in Eq. (C15), which can be reached by a certain
critical value of gmgrNc. We define the corresponding
threshold brf value as brf,c. Under λ = 0+, by letting
the real and imaginary parts on both sides of Eq. (C15)

equal to each other, we arrive at the following equation
for brf,c:[
δω∆r − 1

2G(brf,c) sinβm
] [
δω∆m + 1

2G(brf,c) sinβm
]

(∆m + ∆r)2

= −1

2
G(brf,c) cosβm −∆r∆m

(C16)

where δω = ω̄ − ωr, G(brf,c) = gm,cgr,cNc
√

1 + ν2 ∝
b2rf,cNs, with Ns being the number of total spins. Note

that the threshold equation Eq. (C16) depends on brf,c
and Ns only through G(brf,c) ∝ b2rf,cNs, which leads to

the conclusion that brf,c ∝ 1/
√
Ns, consistent with simu-

lation results presented in the main text. Eq. (C16) is a
generalized result of the famous Millennium bridge prob-
lem by extending it to nonlinear oscillators of STO with
nonlinear frequency shift [1, 54, 61]. Above the threshold
coupling brf ≥ brf,c, the stationary solution is described
by the phase-locked solution with nonzero Ψ0 given in
Eq. (C11-C14). Combining Eq. (C12) and (C14) by
defining Φ = φr − φ0, the phase-locked stationary solu-
tion is described by:

∆m = −G(brf)
Q

ωr
(1−Ψ2

0) cos Φ cos(Φ− βm) (C17)

ωr − ω̄ = − ωr
2Q

tan Φ + Z0G(brf)
Q

ωr
cos Φ sin(Φ− βm)

(C18)

pr = 4p0

[
Ψ0grNc

Q

ωr
cos Φ

]2

(C19)

where Z0 = (1 + Ψ2
0)Ψ0. The unknowns in Eq. (C17-

C19) are Ψ0, Φ and pr, with ∆m, ω̄, g, and βm being
material and biasing dependent parameters. Eq. (C17-
C18) depend on brf through function G(brf) ∝ b2rfNs. As
a consequence, Ψ0 and Φ can be determined from those
two equations as functions of b2rfNs when other parame-
ters are fixed. Therefore, for samples with different di-
mensions, if we pick brf slightly above the correspond-
ing threshold value of brf,c, as we did in Fig. 3(d) of
the main text, we will get the same Ψ0 and Φ since
b2rfNs remains a constant. From Eq. (C19), we then
get pr ∝ (grNc)

2 ∝ (brfNs)
2 ∝ Ns, which describes sim-

ulation results presented in the main text.

APPENDIX D: PARAMETER SET IN
ANALYTICAL MODEL

With Eq. (C16-C19), the theoretical model explains
the simulation results of brf,c and Er = Lpr/2 in main
text. With L = 1.56 nH, Ms = 5.5 × 105 A/m, and
ω0 ≈ 2π×5.44 GHz utilized in the simulations, the values
of gm = γbrf/4 and grNc = ω0brfMsVcNc/L for different
brf and D can be determined. Moreover, we estimate the
value of p0 ≈ 0.3167 from the simulation of uncoupled
case. Under the chosen optimal parameters of ∆m =
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2π × 0.326 GHz, ωr − ω̄ = 2π × 0.28 GHz, and βm =
2.43, the analytical model gives red curves in Fig. 3(c)

and (d) in the main text. For a self-consistency check,
ν = tanβm < 0 gives K < 0, which is consistent with
the fact that ω̄ < ω0.
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Two-dimensional mutually synchronized spin Hall nano-
oscillator arrays for neuromorphic computing, Nat. Nan-
otechnol. 15, 47 (2020).

[27] J.-V. Kim, V. Tiberkevich, and A. N. Slavin, Generation
Linewidth of an Auto-Oscillator with a Nonlinear Fre-

https://doi.org/10.1109/TMAG.2008.2009935
https://doi.org/10.1109/JPROC.2016.2554518
https://doi.org/10.1038/nature01967
https://doi.org/10.1103/PhysRevLett.92.027201
https://doi.org/10.1103/PhysRevLett.92.027201
https://doi.org/10.1126/science.1105722
https://doi.org/10.1038/nature04207
https://doi.org/10.1038/nature23011
https://doi.org/10.1038/s41586-018-0632-y
https://doi.org/10.1038/nphys1036
https://doi.org/10.1038/nmat1905
https://doi.org/10.1038/nmat1905
https://doi.org/10.1038/nphys619
https://doi.org/10.1038/nature10309
https://doi.org/10.1126/science.1218197
https://doi.org/10.1038/nmat3459
https://doi.org/10.1103/PhysRevLett.109.186602
https://doi.org/10.1103/PhysRevLett.109.186602
https://doi.org/10.1103/PhysRevLett.107.107204
https://doi.org/10.1103/PhysRevLett.107.107204
https://doi.org/10.1103/PhysRevB.102.054422
https://doi.org/10.1038/ncomms6616
https://doi.org/10.1103/PhysRevB.73.060409
https://doi.org/10.1038/s41598-018-31769-9
https://doi.org/10.1038/nature04035
https://doi.org/10.1038/nature04035
https://doi.org/10.1038/nature04036
https://doi.org/10.1103/PhysRevLett.98.087202
https://doi.org/10.1103/PhysRevLett.98.087202
https://doi.org/10.1038/nnano.2009.143
https://doi.org/10.1038/srep17039
https://doi.org/10.1038/s41565-019-0593-9
https://doi.org/10.1038/s41565-019-0593-9


12

quency Shift: Spin-Torque Nano-Oscillator, Phys. Rev.
Lett. 100, 017207 (2008).

[28] W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E.
Russek, and J. A. Katine, Injection Locking and Phase
Control of Spin Transfer Nano-oscillators, Phys. Rev.
Lett. 95, 067203 (2005).

[29] B. Georges, J. Grollier, M. Darques, V. Cros, C. De-
ranlot, B. Marcilhac, G. Faini, and A. Fert, Coupling
Efficiency for Phase Locking of a Spin Transfer Nano-
Oscillator to a Microwave Current, Phys. Rev. Lett. 101,
017201 (2008).

[30] V. E. Demidov, H. Ulrichs, S. V. Gurevich, S. O.
Demokritov, V. S. Tiberkevich, A. N. Slavin, A. Zholud,
and S. Urazhdin, Synchronization of spin Hall nano-
oscillators to external microwave signals, Nat. Commun.
5, 3179 (2014).

[31] S. Tsunegi, E. Grimaldi, R. Lebrun, H. Kubota, A. S.
Jenkins, K. Yakushiji, A. Fukushima, P. Bortolotti,
J. Grollier, S. Yuasa, and V. Cros, Self-Injection Locking
of a Vortex Spin Torque Oscillator by Delayed Feedback,
Sci. Rep. 6, 26849 (2016).

[32] S. Tamaru, H. Kubota, K. Yakushiji, S. Yuasa, and
A. Fukushima, Extremely Coherent Microwave Emission
from Spin Torque Oscillator Stabilized by Phase Locked
Loop, Sci. Rep. 5, 18134 (2015).
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