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A complex object is a system with internal degrees of freedom, such as a couple of hot coffee
hand-held by a human in walking. In spite of the natural ability of humans to handle complex
objects, an understanding of how this is accomplished is lacking, yet the issue is fundamental to
applied fields such as soft robotics. Recent virtual experiments on how humans handle a moving
bowl with a mechanical ball inside have revealed that humans typically use two strategies to handle a
complex object: a low-frequency strategy in which the motions of the bowl and ball synchronized in
phase and a high-frequency strategy where antiphase synchronization occurs. Utilizing a nonlinear
dynamical model of a pendulum attached to a moving cart, subject to external periodic forcing, we
study the transition between in-phase and antiphase synchronization. We find that, in the weakly
forcing regime, as the external driving frequency is varied, the transition is abrupt and occurs at
the frequency of resonance, which can be fully understood using the linear systems control theory.
Beyond this regime, a transition region emerges in between in-phase and antiphase synchronization,
where the motions of the cart and the pendulum are not synchronized. We also find that there is
bistability in and near the transition region on the low-frequency side. Overall, our results indicate
that humans are able to switch abruptly and efficiently from one synchronous attractor to another,
a mechanism that can be exploited for designing smart robots to adaptively handle complex objects
in a changing environment.

I. INTRODUCTION

Complex objects are those with internal degrees of free-
dom that are not directly controlled externally. When a
complex object is utilized or manipulated by a user, its
internal “gears” will interact with the user in a compli-
cated manner. The use of complex objects, e.g., various
tools, has played a fundamental role in human evolu-
tion, and humans are masterful at handling and exploit-
ing complex objects. A classic example is the ability
of humans to walk at a reasonable speed while carry-
ing a cup of hot coffee without spilling [1–3]. The hot
coffee, being a thermally agitated fluid confined in the
cup, has internal degrees of freedom that interact with
the cup which, in turn, interacts with the human carrier.
The detailed physics of the chain of interactions can be
quite complex. Another example is human stick balanc-
ing, where most human individuals have no difficulty to
balance a pole at the fingertip through controlled small
movements, a topic in nonlinear and stochastic dynam-
ics pioneered by Milton and collaborators [4–8]. While
humans possess a natural and “gifted” ability to interact
with complex objects, our understanding of the interac-
tions, especially at a quantitative level, is next to zero, let
alone analyzing the influences of external perturbations
such as environmental noise. In spite of our present lack
of understanding, a feature that is certain about the in-
teractions is that they are nonlinear. We thus anticipate
nonlinear dynamics to play an important role in unlock-
ing and deciphering the dynamics of human interactions
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with complex objects, a fundamental understanding of
which is essential to frontier fields such as soft robotics,
rehabilitation, and brain-machine interface.

Recently, a ground-breaking virtual experimental
study was conducted to examine how humans manipu-
late a complex object [2, 3], with a focus on the classic
coffee-cup holding paradigm. One goal of the study was
to uncover the strategies that humans choose to han-
dle such a complex object. For this purpose, a cart-
pendulum model was articulated to mimic the dynam-
ical interaction between the cup and the hot coffee in-
side. Experimentally, the model was implemented in a
virtual environment where a cup of hot coffee is simu-
lated by a virtual cup containing a rolling ball, as shown
schematically in Fig. 1(a). The participants were asked
to manipulate the cup in a rhythmical manner to ensure
that the ball stays in the cup. The rhythmic motion
is equivalent to some kind of periodic driving, and hu-
mans are able to vary the driving force and frequency
continuously. In a description based on dynamical sys-
tems, the cart-pendulum model, as shown in Fig. 1(b),
has four variables: the displacement and velocity of the
cart as well as the rotating angle and the angular velocity
of the pendulum. This is thus a four-dimensional non-
linear dynamical system, subject to periodic driving. In
a typical experimental setting, all four variables exhibit
periodic or nearly periodic oscillations. It was found [2]
that humans tend to select either a low-frequency or a
high-frequency strategy to successfully handle the com-
plex object. A remarkable finding was that, when a low-
frequency (e.g., 0.66 Hz) strategy is used, the oscilla-
tions of the cart displacement and of the pendulum an-
gle exhibit in-phase synchronization, but antiphase syn-
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chronization arises when a high-frequency (e.g., 1.18 Hz)
strategy is selected.

In a common sense, when humans handle complex ob-
jects, the strategy used may not be fixed, depending on
the individual and the environmental conditions. It can
also occur that a human can switch the strategy in re-
sponse to internal or external perturbations. In the par-
ticular virtual experimental setting [2], since both low-
and high-frequency strategies are effective, it is conceiv-
able that some participants in the virtual experiment
did not hold on to a single strategy. How does a tran-
sition from in-phase synchronization associated with a
low-frequency strategy to antiphase synchronization as-
sociated with a high-frequency strategy, or vice versa,
occur? Especially, in the parameter space, is the bound-
ary between the in-phase and antiphase synchronization
regimes sharp, gradual, or sophisticated? In the virtual
experimental study [2], the distribution of the low fre-
quencies centers about 0.65 Hz while the center of the
high-frequency distribution is about 1.2 Hz. The fre-
quency value separating the two regimes is about 0.8 Hz.
Does the transition between in-phase and antiphase syn-
chronous dynamics coincide with this definition of the
low- and high-frequency regimes? Answers to these ques-
tions can provide insights into how soft robots may be
designed to handle complex objects in an adaptive man-
ner.

Synchronization is a universal phenomenon in nonlin-
ear dynamical systems [9, 10]. The following representa-
tive studies in different fields are particularly relevant to
our work. In physics, antiphase behaviors and synchro-
nization transitions occur in different types of systems.
Earlier, antiphase states were observed in a multimode
laser [11]. Synchronization of chaotic lasers was exper-
imentally realized [12] and phase synchronization in a
chaotic laser array was detected [13]. Synchronization
transitions can also occur in arrays of Josephson junction
systems [14]. In 2002, the then 336-year old synchroniza-
tion observations of Christiaan Huygens were reexam-
ined in modern experiments and fully understood [15]. In
physiology, synchronization and rhythmic processes are
common [16]. In cardiology, phase locking in periodically
stimulated cardiac cells is fundamental [17]. In chem-
istry, phase-lag synchronization in networks of coupled
chemical oscillators was studied [18] and echo behavior
in large populations of chemical oscillators was experi-
mentally observed and theoretically understood [19].

In this paper, we develop an understanding of the tran-
sition between low- and high-frequency strategies based
on the nonlinear dynamics of the cart-pendulum system.
Following the experimental setting [2], we systematically
investigate the dynamical states and bifurcations in the
parameter plane of the forcing amplitude and frequency
of the external periodic driving. Since the oscillations
of the dynamical variables are not exactly sinusoidal, we
use the method of Hilbert transform/analytic signal to
calculate the phase [20–24]. Our main finding is that,
in the weakly forcing regime (e.g., the coffee cup is held

loosely), the transition is abrupt in the sense that it can
be enabled by a small change in the the forcing frequency
but, beyond this forcing regime, an intermediate region
in the frequency arises in which a complicated relation
(neither in-phase nor antiphase synchrony) between the
cart and pendulum motions arises. The abrupt transi-
tion in the regime of weak forcing can be analyzed by
using a linearization of the system and explained using
the theory of linear systems control, where the transition
occurs precisely at the intrinsic frequency of the pendu-
lum through a resonance. Beyond the weakly forcing
regime, the system is nonlinear and the transition can be
understood from bistability - a phenomenon that is ubiq-
uitous in nonlinear dynamical systems [25–35]. In par-
ticular, in the phase space, the in-phase and antiphase
synchronous states can be viewed as two attractors, each
with its own basin of attraction. In addition, there is a
third attractor with a complicated relation between the
phases of the cart and pendulum motions, which we name
as the transition attractor. In the high-frequency regime,
the antiphase attractor is dominant in that its basin
of attraction contains most of the phase-space volume,
whereas in the low-frequency regime, the in-phase at-
tractor dominates. Say we start from the high-frequency
regime and gradually reduce the frequency. As the reso-
nance frequency is approached, a transition attractor is
born and the basin “volume” of the antiphase attractor
begins to decrease while that of the former starts to in-
crease. When the frequency starts to decrease from the
resonance frequency, the in-phase attractor is born and
its basin volume begins to increase while that of the tran-
sition attractor starts to decrease. Eventually, the entire
phase space becomes the basin of the in-phase attractor
for sufficiently low frequency. Remarkably, the bound-
aries separating the two basins of attraction, e.g., those
of the transition and in-phase attractors, possess a frac-
tal structure with transient chaos - the phenomenon of
fractal basin boundaries [25, 26, 32]. Visually, the fractal
structure is most dramatic near the resonance frequency.
Overall, our results indicate that the transition between
in-phase and antiphase synchronous attractors can oc-
cur upon a small amount of change in the frequency (in
the weakly forcing regime, the required amount is near
zero) - a mechanism that can be exploited for designing
smart robots to adaptively handle complex objects in a
changing environment.

II. FORCED CART-PENDULUM MODEL

The paradigmatic model [2] of humans’ handling of
a complex object is a nonlinear dynamical system sub-
ject to external periodic forcing. In particular, a couple
of hot coffee is described a ball rolling inside a bowl, as
shown in Fig. 1(a), which can be further simplified as the
classical cart-pendulum system, with the motions of the
bowl and the ball modeled by those of the cart and pen-
dulum, respectively, as shown in Fig. 1(b). The motion



3

௖

௣

௜௡௧௘௥

Conceptual model: 
Ball in cup

Mechanical model: 
Cart and pendulum
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FIG. 1. A schematic illustration of the cart-pendulum system
to simulate humans’ handling of a complex object such as a
cup of hot coffee: (a) a conceptual model of a ball rolling
inside a circular cup and (b) a nonlinear mechanical model of
a pendulum attached to a moving cart.

of the cart is restricted to a straight line. The human
handling of the coffee cup is described by an interaction
“force” Finter between the human and the cart (the cof-
fee cup), which consists of a periodic driving term rep-
resenting the human control and two terms that depend
on the displacement and velocity of the cart, respectively.
Quantitatively, the human control can be parameterized
by the amplitude and frequency of the periodic forcing.
The force acts on the cart, driving the cart to move with
velocity ẋ, which in turn excites the pendulum, causing
it to swing. The angular position θ of the pendulum
is measured as the angle made with the −y direction,
which is positive counter-clockwise, and the correspond-
ing angular velocity is θ̇. For simplicity, the cart’s trans-
lation motion and the pendulum’s rotational motion are
assumed [2] to be frictionless. The cart-pendulum sys-
tem has two degrees of freedom: the horizontal displace-
ment x(t) of the cart and the oscillation angle θ(t) of
the pendulum, giving rise to a four-dimensional phase
space: [x(t), ẋ(t), θ(t), θ̇(t)]. Due to the periodic driving,
the whole system is five-dimensional.

The system equations are

ẋ = ẋ, (1)

θ̇ = θ̇, (2)

ẍ =
mpdθ̇

2 sin(θ) +mpg sin(θ) cos(θ) + Finter

mc +mp sin2(θ)
, (3)

θ̈ = − ẍ
d

cos(θ)− g

d
sin(θ), (4)

where x =
[
x1 x2 x3 x4

]T ≡ [ x θ ẋ θ̇
]T ∈ R4 de-

notes the state vector, mc is the mass of the cart, mp is
the mass of the pendulum of length d, and g is the earth
gravitational acceleration.

As described in Ref. [2], in the virtual experiment, the
human tracks the desired cart position with a sinusoidal
reference trajectory

xdes(t) = A sin (2πft+ π/2),

which, for the cart-pendulum model, requires a sinusoidal
driving force:

Finput(t) = (mc +mp)ẍdes(t) = F sin(2πft+ π/2),

where the forcing amplitude F is given by F = −A(mc+
mp)(2πf)2. Generally, due to the dynamic constraints of
the hands and limbs of the human, there is a mismatch
between the motion of the cart-pendulum system and hu-
man tracking: the human is unable to follow the reference
command Finput(t) exactly. This feature can be taken
into account by passing the reference command Finput
through a human-limb actuator model: a mass-spring
system of stiffness K and damping coefficient B. The ac-
tuator model produces the interaction force Finter that
represents the force acting directly on the cart, which is
given by [2]

Finter = Finput(t)−K(x− xdes)−B(ẋ− ẋdes) (5)

Values of all physical parameters of the model [2] are
listed in Table I.

TABLE I. Values of physical parameters in the forced cart-
pendulum model

Parameter Value
mc 2.4 kg
mp 0.6 kg
d 0.45 m
g 9.81 m/s2

K 100 N/m
B 10 Ns/m

The model represented by Eqs. (1-4), adopted from the
virtual experimental study of balancing a rolling ball in
a bowl [2, 3], is idealized and has deficiencies. A major
deviation from real coffee-cup carrying is that the par-
ticipants of the virtual experiment can look at the coffee
cup all the time. However, in the real world (as known by
service providers at restaurants), the best way to carry
a coffee cup or bowl of soup without spilling its contents
is not to look at the liquid level. The virtual experi-
ment [2, 3] and the model thus do not capture this real
feature.

From the point of view of control, the problem associ-
ated with carrying a coffee cup while looking at the liquid
level is an example of “over-control” [6]. That is, the ner-
vous system is trying to correct small fluctuations in the
fluid level that do not need to be corrected, a control
strategy that makes the task more difficult to control.
For balance control such as balancing a pole at the fin-
gertip [4, 8], too quick a response by a controller to a
given deviation can lead to over-control.

In general, in real coffee-cup carrying, time delays and
noise are inevitably present in the human nervous system.
A seminal mathematical study of the interplay among
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FIG. 2. Representative time series of cart position x(t)
(blue) and pendulum angular position θ(t) (orange) for forc-
ing amplitude F = 5 N. (a-c) Driving frequency f = 0.6Hz,
f = 0.7Hz, and f = 0.8Hz, respectively. There is in-
phase synchronization between the pendulum and the cart for
f = 0.6Hz (a) and antiphase synchronization for f = 0.8Hz
(c).

time delays, noise, and control was carried out by Mil-
ton, Cabrera, and Ohira [6]. A finding was that such sys-
tems are controllable using readily implemented control
strategies. For example, in the case of balance control,
the human nervous system may have adopted a simple
but robust control strategy: the system is simply allowed
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FIG. 3. Representative phase-plane trajectories of cart posi-
tion x(t) and pendulum angular position θ(t). (a-c) Driving
frequency f = 0.6Hz, f = 0.7Hz, and f = 0.8Hz, respectively.

to drift until the controlled variable exceeds a threshold
that initiates a corrective action. This result provides in-
sights into humans’ remarkable ability in balance control.
It was also suggested that over-control can lead to desta-
bilization when there is time delay. The cart-pendulum
model (1-4) for coffee-cup carrying derived from the vir-
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tual experiment [2, 3] represents only a simplified de-
scription of the experiment because it does not include
any time delay, and therefore is not suited for accounting
the over-control phenomenon that is likely to be present
in the virtual experimental study and in the real world
as well (e.g., coffee-cup carrying strategy utilized by a
novice).

III. NUMERICAL RESULTS

A. In-phase and antiphase synchronization
between pendulum and cart

Figures 2(a-c) display the representative time series
of both the pendulum and the cart when the system is
forced with the reference command amplitude F = 5N
for three different values of the driving frequency: f =
0.6Hz, 0.7Hz, and 0.8Hz, respectively. For the relatively
small frequency f = 0.6Hz, the oscillations of the pen-
dulum and cart are nearly perfectly sinusoidal and they
are in phase, as shown in Fig. 2(a). In this case, there
is phase synchronization between the pendulum and the
cart. As the driving frequency is increased to f = 0.7Hz,
the oscillations of the pendulum remain to be sinusoidal
but for the cart, high-order harmonic oscillations have
emerged, as shown in Fig. 2(b). In this case, for the cart,
a unique and meaningful phase variable cannot be de-
fined. As the driving frequency is further increased to
f = 0.8Hz, the oscillations of both the pendulum and
cart are again sinusoidal, rendering existent well defined
phase variables for both. The surprising phenomenon
is that there is now antiphase synchronization [36] be-
tween the pendulum and the cart, as shown in Fig. 2(c).
The synchronous, asynchronous, and anti-synchronous
behaviors can also be visualized directly from the corre-
sponding trajectories in the plane of the dynamical vari-
ables (x, θ), as shown in Figs. 3(a-c), respectively. For
the lower frequency f = 0.6Hz, the trajectory falls on a
straight line of a positive slope, indicating perfect phase
synchronization, as shown in Fig. 3(a). In the opposite
case of antiphase synchronization at f = 0.8Hz, the tra-
jectory again falls on a straight line but with a negative
slope. For f = 0.7Hz, the trajectory (x, θ) is not a line
but a closed curve, indicating lack of a unique phase cor-
respondence. The behaviors demonstrated in Figs. 2 and
3 suggest that, as the driving frequency is decreased from
f = 0.8Hz to f = 0.6Hz, a transition from antiphase to
in-phase synchronization between the pendulum and cart
has occurred.

For a frequency value within the transition regime, as
exemplified by Figs. 2(b) and 3(b), the pendulum ex-
hibits persistently sinusoidal oscillations with a large am-
plitude while the cart undergoes non-sinusoidal, small
amplitude oscillations. For weak forcing, this behavior of
the pendulum can be heuristically understood by analyz-
ing the underlying linearized dynamical system through
the mechanism of linear resonance near the natural fre-
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FIG. 4. Absolute difference in the instantaneous phase be-
tween the pendulum and the cart displacement. The forcing
amplitude is F = 5N. (a-c) Driving frequency f = 0.6Hz,
f = 0.7Hz, and f = 0.8Hz, respectively.

quency of the pendulum ωn =
√
g/d. Likewise, the small

amplitude of cart oscillation can be explained as the re-
sult of a dynamic zero at the same resonance frequency
(Sec. IV A).
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To characterize the phase behaviors of the pendulum
and cart more precisely, we use the standard Hilbert
transform method. Letting φθ(t) and φx(t) be the instan-
taneous phase variables underlying the oscillations of the
pendulum and cart motions, respectively, we calculate
the phase difference ∆φ(t) ≡ |φx(t)− φθ(t)|. Figure 4(a)
shows that, in the frequency regime of in-phase synchro-
nization (f = 0.6Hz), the phase difference is zero. For
f = 0.8Hz in the antiphase synchronization regime, we
have ∆φ(t) = π, as shown in Fig. 4(c). In the regime of
transition between in-phase and antiphase synchroniza-
tion, a straightforward application of the Hilbert trans-
form method leads to an oscillating phase difference, as
shown in Fig. 4(b). This is due to the fact that, in this
transition regime, the phase of the cart cannot be mean-
ingfully defined. In fact, in this regime, the oscillations
in the cart position contain a secondary rotational com-
ponent in the plane of the analytic signal [22].

Transition
Bistability

FIG. 5. Transition scenarios between in-phase and antiphase
synchronization in the parameter plane of forcing frequency
and amplitude. Blue: in-phase synchronization region in
which the phase difference between the pendulum and cart
is zero; turquoise: antiphase synchronization region in which
the phase difference is π; yellow: the region in which the phase
difference does not settle into a steady state value. The ini-
tial condition is x(0) = 0, θ(0) = 0, ẋ(0) = 0, and θ̇(0) = 0.
There are two distinct transition scenarios: abrupt transi-
tion in the weakly forcing regime where the critical frequency
value is the natural frequency of the pendulum, and gradual
transition in which an intermediate frequency region of in-
determinant phase difference arises between the in-phase and
antiphase synchronization regions. The red stripes specify the
region of bistability (to be discussed in Sec. IV B), calculated

using initial conditions x(0), θ(0), ẋ(0), and θ̇(0) - all chosen
uniformly from the interval [−2, 2].

B. Transition between in-phase and antiphase
synchronization - a global picture

To systematically study the transition between in-
phase and antiphase synchronization behavior, we focus
on the parameter plane of forcing frequency and ampli-
tude (f, F ). In particular, we vary the frequency and
amplitude in the ranges (0.55, 0.8)Hz and (0, 8)N, respec-
tively, and place a uniform grid in the region. For each
parameter pair, we calculate the phase difference ∆φ. If
its value falls within ±π/10 rad of zero or π, the pa-
rameter pair is regarded to be in the in-phase or an-
tiphase synchronization regime, respectively; otherwise
the phase difference is inclusive and the parameter pair
is deemed to belong to the transition region. Figure 5 dis-
plays the three distinct regions in the parameter plane:
in-phase synchronization (blue), antiphase synchroniza-
tion (turquoise), and transition region (yellow). For small
forcing amplitude, the yellow region diminishes, indicat-
ing that the transition between in-phase and antiphase
synchronization through varying the forcing frequency is
abrupt, where the transition point is nothing but the
natural frequency of the pendulum fn = ωn/2π = 0.7431
Hz. This behavior can be understood via a detailed anal-
ysis of the linearized dynamics (in Sec. IV A). Beyond
the weakly forcing regime, the transition is not abrupt:
there is a range of intermediate frequency values in which
the phase difference does not settle into any steady state
value.

IV. ANALYSIS OF SYNCHRONOUS
TRANSITION SCENARIOS

Figure 5 reveals two distinct transition scenarios that
occur in the regimes of small and relatively large forc-
ing amplitude, respectively. In the weak forcing regime,
as the driving frequency varies, there is an abrupt tran-
sition between in-phase and antiphase synchronization.
In this case, the cart-pendulum system can be approxi-
mated by a linear model and the abrupt transition can
be understood based on the principle of linear resonance
(Sec. IV A). Beyond the weak forcing regime, a transition
region emerges between in-phase and antiphase synchro-
nization. In this case, the system is nonlinear and the
transition scenario can be explained through the phe-
nomenon of bistability (Sec. IV B).

A. Abrupt transition between in-phase and
antiphase synchronization in the weakly forcing

regime

Under weak forcing, as the driving frequency is re-
duced, the transition from antiphase to in-phase synchro-
nization is abrupt without an intermediate region with a
different kind of attractor. We use linear control the-
ory [37] to understand this behavior. In the weak forcing
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regime, the linearized state space can be designated as

x =
[
x θ ẋ θ̇ xdes ẋdes

]T
, (6)

u = Finput, (7)

y =
[
x θ

]T
, (8)

where the two auxiliary states: xdes and ẋdes from
Eq. (5), are used, and u can be regarded as a control
signal. The linearized dynamical system subject to con-
trol can then be written as

ẋ = A · x + B · u, (9)

y = C · x +D · u, (10)

with the matrices given by

A =


0 0 1 0 0 0
0 0 0 1 0 0
− K
mc

mpg
mc

− B
mc

0 K
mc

B
mc

K
mcd

− gd (1 +
mp

mc
) B

mcd
0 − K

mcd
− B
mcd

0 0 0 0 0 1
0 0 0 0 0 0



B =



0
0
1
mc

− 1
mcd

0
1

mc+mp


C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
D =

[
0
0

]
A block diagram representation of the linear control sys-
tem is shown in Fig. 6 where, for the summing junctions,
the input is assumed to be additive unless indicated by
a minus sign.

The beige subsystem Pθ from input torque τθ to the
pendulum angle θ is the standard linearized hanging pen-
dulum system with zero rotational damping, which has
imaginary-axis poles at ±j

√
g/d. The locations of these

poles in the inner-most feedback path is a fundamental
determinant of the relative dynamics between x and θ.
Let Tab denotes the closed-loop transfer function map
from signal a to signal b. The closed-loop maps from the
force reference command Finput to cart position x and
pendulum angle θ can then be written as TFinputx and
TFinputθ, respectively. The transfer functions associated
with the closed-loop maps are

TFinputx(s) =
1

mc

(
s2 + g

d

)(
s2 + B

mc+mp
s+ K

mc+mp

)
s2
(
s4 + B

mc
s3 +

(mc+mp)g+Kd
mcd

s2 + Bg
mcd

s+ Kg
mcd

) (11)

TFinputθ(s) = − 1

mcd

(
s2 + B

mc+mp
s+ K

mc+mp

)(
s4 + B

mc
s3 +

(mc+mp)g+Kd
mcd

s2 + Bg
mcd

s+ Kg
mcd

) , (12)

where s = σ0 + jω0 is the complex Laplace transform
variable. The map TFinputx has imaginary-axis zeros at

±j
√
g/d, due to the presence of the imaginary-axis reso-

nant poles associated with Pθ embedded in the feedback
path of the inner-most loop in Fig. 6, i.e., the feedback
loop associated with the second derivative of x. The map
TFinputx also contains a double integrator, which is de-
rived from the Newtonian dynamics of the cart in the
absence of damping. The remaining poles and zeros arise
from the feedback loops formed by the hand-coupling dy-

namics, which are associated with the actuator stiffness
K and damping B. The map TFinputθ does not feature

the same imaginary-axis zeros at ±j
√
g/d because these

zeros are canceled by the resonant poles in Pθ. It also
lacks the double integrator of TFinputx associated with
the Newtonian dynamics in x, which is expected. Other-
wise, TFinputθ has the same actuator poles and zeros as
TFinputx.

From the block diagram in Fig. 6, we can get the map
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B

FIG. 1. Block diagram of the equivalent linear control system in the weak forcing regime. For summing junctions, the input is
assumed to be additive unless otherwise indicated by a minus sign.

FIG. 6. Block diagram of the equivalent linear control system in the weak forcing regime. For summing junctions, the input is
assumed to be additive unless otherwise indicated by a minus sign.

Txθ from x to θ as

TFinputθ = Txθ TFinputx,

where Txθ can be obtained from Eqs. (11) and (12) as

Txθ(s) = −1

d

(
s2

s2 + g/d

)
, (13)

where Txθ is independent of the actuator dynamics asso-
ciated with the terms K and B. This can be seen from
manipulating Fig. 6 with minor block-diagram algebra.
In particular, inserting a differentiator after x and re-
connecting the B feedback path to the differentiated x
reveals an inner network TFinterx. From the interaction
force Finter to x, we see that it is the standard linearized
cart-pendulum system without actuator dynamics. The
closed-loop map TFinterx is unaffected by the external
feedback, and so are any closed-loop maps of signals in-
ternal to TFinterx, i.e., Txθ. As a result, for low forcing
amplitudes when the state x stays near the origin and the
linearized dynamics approximation is valid, the relative
dynamics between the cart position x and pendulum an-
gle θ see the same resonance structure, regardless of the
hand-coupling dynamics that in general may vary from
person to person.

Figure 7 shows the frequency response of the closed-
loop map Txθ. It can be seen that, as the frequency
increases, x and θ are perfectly in-phase until the reso-
nant frequency

√
g/d, above which x and θ are exactly

180 degrees out of phase. The attainment of the 180-
degree phase shift is immediate, rendering the transition
abrupt. This result agrees with that from the simulation
of the full nonlinear system, as shown in Fig. 5, where
the transition regime becomes increasingly narrow as the
forcing amplitude decreases, which collapses to the reso-
nant frequency of the pendulum when the forcing ampli-
tude becomes sufficiently small. The linear control analy-
sis thus provides an explanation for the abrupt transition

(a)

(b)

FIG. 7. Frequency response of Txθ. Right: magnitude re-
sponse. Left: phase response.

between the low-frequency (in-phase) and high-frequency
(antiphase) synchronous dynamics in the weakly forcing
regime.
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Qualitatively, the dynamics of the linearized system
subject to external forcing (control) can be described,
as follows. First, note that the map Txθ has two ze-
ros at DC (i.e., 0Hz). This is because, for a constant
input force Finput, the system dissipates any transient
associated with the pendulum dynamics and behaves as
a particle-mass system under a constant applied force.
From Eq. (11), we see that the output at x takes the form
of a parabola. However, from Eq. (12), we have that the
pendulum will settle into a constant position. As a result,
Txθ approaches zero at low frequencies as the x dynamics
become dominant. Second, at the resonant frequency, the
pendulum dynamics dominate. The imaginary-axis zeros
in TFinputx from Pθ cause an infinite resonance peak in
Txθ. Finally, at high frequencies, Txθ ≈ −1/d approaches
a constant value. The constant high-frequency gain is an
expected result since the pendulum subsystem hθ and
cart subsystem are both second-order in nature. As a
result, at high frequencies, the dynamical responses of
both x and θ decay at the same rate and their relative
gain approaches a constant value. This result can be seen
concretely from Eqs. (11) and (12).

B. Synchronous transition scenario in the strong
forcing regime

In the strong forcing regime, the transition between in-
phase and antiphase synchronization is not abrupt: there
is an intermediate frequency region in between the two
types of synchronous dynamics. Numerically, we uncover
the emergence of bistability about the intermediate fre-
quency region, which provides a mechanism for the tran-
sition.

Multistability characterized by the coexistence of a
number of attractors in the phase space is common
in nonlinear dynamical systems [25–35, 38]. In low-
dimensional systems, there can be only a few coexisting
attractors [25–29] or many [30, 31]. Multistability can
also arise in high-dimensional systems such as those de-
scribed by nonlinear partial differential equations, e.g.,
an electrically driven silicon nanowire [33, 39], and even
in hybrid quantum-classical systems such as the cou-
pled system of a ferromagnet and a topological insula-
tor [35, 40]. Controlling multistability was also stud-
ied [30, 34, 41–43]. Multistability can also arise in solid-
state physical systems such as semiconductor superlat-
tices [38, 44–46].

In the cart-pendulum system, for relatively large forc-
ing amplitude, e.g., F > 3.3N, the system is highly non-
linear and bistability characterized by two coexisting at-
tractors in the phase space arises. The parameter region
in which bistability arises is indicated by the red stripes
in Fig. 5. Part of this bistability region also overlaps with
the transition region. Figure 8 shows the time-series and
phase-space plots of the two distinct coexisting attrac-
tors.

To describe the observed bistability, we start from the
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FIG. 8. Illustration of bistability. Shown are two distinct
dynamical behaviors in the bistability region, which are ob-
served for the same set of parameter values (f = 0.62Hz and
F = 5N) but with different initial conditions. (a1,a2) Wave-
forms x(t) and θ(t) and the corresponding phase space plot,
respectively, from the initial conditions x(0) = 0, θ(0) = 0,

ẋ(0) = 0, and θ̇(0) = 0. This is an in-phase attractor. It
is not exactly sinusoidal, but is very close to. (b1,b2) Wave-
forms x(t) and θ(t) and the corresponding phase space plot,
respectively, from the initial conditions x(0) = 0.4, θ(0) = 0.3,

ẋ(0) = −1.1, and θ̇(0) = 1.7. This is a “Lissajous” attractor.
In the bistability regime, two distinct attractors as exempli-
fied in (a2) and (b2) coexist.

parameter regions in which bistability is absent, i.e., al-
most all initial conditions lead to trajectories approach-
ing a single attractor. There are two such “simple” re-
gions: one on the left side of Fig. 5 and another on the
right side. In the left “simple” region, the single attrac-
tor is associated with in-phase synchronization, as ex-
emplified in Figs. 2(a) and 3(a). In the “simple” region
on the right side, there is an antiphase synchronization
attractor, as exemplified in Figs. 2(c) and 3(c). In the
phase-space plane (x, θ), both attractors have a nearly
linear structure, but the in-phase attractor has a pos-
itive slope while the antiphase attractor has a negative
slope, indicating nearly perfect positive and negative cor-
relation between the dynamical variables x(t) and θ(t),
respectively.

As the parameters vary from the “simple” regions in
Fig. 5 toward the central region, the phase relation be-
tween x(t) and θ(t) becomes sophisticated, leading to
some attractors with neither zero nor π phase difference
but with “Lissajous” structure in the (x, θ) plane, as
shown in Fig. 3(b). In fact, as revealed by Fig. 2(b),
in the transition region, θ(t) remains sinusoidal but the
waveform of x(t) develops secondary oscillations, making
ambiguous a proper definition of its phase, even though



10

-3 -2 -1 0 1 2 3

x(0) (m)

-3

-2

-1

0

1

2

3

(0
) 

(r
ad

)

FIG. 9. Fractal basin boundaries. In the parameter region
where there is bistability, the boundaries between the basins
of attraction of the two coexisting attractors exhibit an appar-
ently fractal structure. The parameter values are f = 0.62Hz,
F = 7N, ẋ(0) = 1, and θ̇(0) = 0.5. The yellow regions are
the basin of the in-phase attractor, and the blue regions rep-
resent the basin of the “Lissajous” attractor as exemplified in
Fig. 8(b2).

both signals are periodic. These Lissajous attractors are
deformed from the antiphase attractors as the forcing fre-
quency decreases toward the central region. The in-phase
attractors also have deformation as the forcing frequency
increases toward the central region. But their deforma-
tion is much weaker and does not make the attractor very
different from sinusoidal.

About the same central region, we find a region with
bistability, which was marked with red stripe in Fig. 5.
In this region, the system may reach both the in-phase
attractor and the Lissajous attractor depending on the
initial states, as shown in Fig. 8. We further find that,
associated with bistability is fractal basin boundaries, as
shown in Fig. 9.

The transition scenario can then be described, as fol-
lows. For a fixed forcing amplitude, we start from the
high-frequency region. As the frequency reduces, the an-
tiphase attractor is continuously deformed until when the
pi phase difference can no longer be approximately main-
tained. This event marks the right numerical boundary
between the yellow and turquoise regions in Fig. 5. Below
but near this empirical boundary, there is only one at-
tractor in the phase space, the Lissajous attractor. At the
boundary between the yellow and the red-stripe regions,
the in-phase attractor is born, which is a periodic attrac-
tor of period one in the phase space (or a fixed point
in some Poincaré surface of section). In the frequency

In-phase attractors

Bistability

Lissajous attractors 
Antiphase
attractors 

(a)

(b)

FIG. 10. Transition scenario from antiphase to in-phase at-
tractors through bistability in the nonlinear regime. (a) Bi-
furcation diagram of the two attractors (in blue and green)
for F = 6N in terms of the maximum value of the pendu-
lum angle, (b) bifurcation diagram in terms of the maximum
value of the cart displacement. There are four distinct pa-
rameter regions, which are distinguished by the three vertical
black dashed lines. The boundary between the Lissajous and
antiphase attractors is determined by the emergence of new
local maxima of x. For a fixed value of relatively large forcing
amplitude, as the driving frequency is reduced, the system un-
dergoes the following transition sequence: antiphase attractor
→ Lissajous attractor → bistability characterized by the co-
existence of a Lissajous attractor and an in-phase attractor
→ in-phase attractor.

interval defined by the red-stripe region, there are two-
coexisting attractors: the deformed Lissajous attractor
and the in-phase periodic attractor, signifying bistabil-
ity. As the frequency is reduced from the right boundary
of the bistability region, the basin of the in-phase attrac-
tor expands while that of the deformed attractor shrinks.
At the left boundary of the bistability region, the basin of
the Lissajous attractor diminishes, leaving the in-phase
attractor as the only attractor in the system with its
basin of attractor being the entire phase space. This
nonlinear dynamical transition scenario is illustrated in
Fig. 10, where a numerical bifurcation diagram is shown
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in terms of the local maxima of the angle θ(t) (a) and
cart position x(t) (b). Note that the boundary between
the Lissajous and antiphase attractors is determined by
the emergence of new local maxima of x(t).

The results in Fig. 10 explain why the bistability region
in Fig. 5 appears on the left side of the transition region.
As the driving frequency is reduced, there are three crit-
ical values of interest: f c1 < f c2 < f c3 , marked by the left,
middle, and right left vertical dashed lines in Fig. 10(b),
respectively. First, note that the Lissajous attractor is
a continuation of the antiphase attractor, which arises
at f c3 . Second, the in-phase attractor is the result of a
saddle-node bifurcation as the the driving frequency is
reduced, which occurs at f c2 < f c3 . The bistability region
starts at f c2 where a basin of the in-phase attractor is
born. As f decreases from f c2 , this basin expands but
that of the Lissajous attractor shrinks. Bistability ends
at f c1 at which the basin of the Lissajous attractor dimin-
ishes. These observations indicate that, because bistabil-
ity is associated with the birth of the in-phase attractor,
the corresponding parameter interval is contained in the
interval of the in-phase attractor. As a result, the bista-
bility region emerges toward the left side of Fig. 5.

V. DISCUSSION

Humans have the ability to handle complex objects
such as a cup of hot coffee while walking. Such an ob-
ject is complex because the coffee, a thermally excited
fluid in a confinement, has its own motion. The fluid
motion interacts with the cup that is held by a human
hand. As humans, we take this ability as natural and for
granted, and few of us have actually realized that this
system is nonlinear and the underlying dynamics can be
quite complicated. Curiosity demands an understanding
of the dynamical mechanism of this “coffee-cup” problem.
More importantly, such an understanding is fundamen-
tal to designing soft robots capable of handling complex
objects.

Recent virtual experiments have revealed [2, 3] two dis-
tinct stable modes in humans’ handling of a complex ob-
ject: in-phase and antiphase synchronization in the low-
and high-frequency regimes, respectively. In particular,
in the low frequency regime as exemplified by a slowly
walking human holding a cup of coffee, the motion of the
hot fluid and the movement of the human hand are per-
fectly in phase. However, our experience stipulates that it
is still possible to hold a cup of coffee when we walk fast.
It turns out that the mode of operation in this relatively
high-frequency regime is antiphase synchronization [2, 3]
where the fluid and human hand motions are exactly 180-
degree out of phase. It is possible that humans are able
to use both strategies skillfully and to switch from one
strategy to another smoothly (perhaps without even re-
alizing it). To uncover how this transition occurs from a
dynamical point of view is the main contribution of this
paper.

Utilizing a nonlinear cart-pendulum system as a jus-
tified computational model [2, 3] to simulate the hu-
mans’ handling of a complex object, where the human
and coffee motions correspond to those of the cart and
pendulum, respectively, we unveil the transition scenar-
ios between the in-phase and antiphase behaviors. In
particular, in the regime of weak forcing (e.g., when the
coffee cup is not held so tightly), the transition can be
quite abrupt in the sense that a small change in the fre-
quency can immediately result in a switch between the
two strategies. However, when forcing is relatively strong
(e.g., when the coffee cup is tightly held), a sizable change
in the driving frequency is required for the transition. In
fact, in this case, a region of transition arises in which the
phase relation between the cart and pendulum is quite
sophisticated. We have demonstrated that, the abrupt
transition in the weakly forcing regime can be under-
stood by exploiting linear control theory and the transi-
tion scenario in the strongly forcing regime is the result of
nonlinear dynamics through the emergence of bistability
with fractal basin boundaries.

We note that the bistability phenomenon uncovered
here was not recognized in the pioneering papers on
coffee-cup carrying as a prototypical model for human
complex object control [1–3]. A possible virtual experi-
mental test of this phenomenon is to set the forcing am-
plitude and frequency in the bistability parameter region
(the red-striped region in Fig. 5), to use a large number
of initial conditions to start multiple experimental trials,
and to record the relative movement of the human hand
and the virtual ball. If, for a given trial, this relative
movement gives the phase relation as in Figs. 8(a1) and
8(a2), the system has settled into the in-phase attractor.
However, if the relative movement leads to a more compli-
cated phase relationship as exemplified by Figs. 8(b1) and
8(b2), the system has landed on the coexisting, phase-
unsynchronized attractor for the trial. A large number
of trials giving complementary fractions of settling into
the two distinct attractors would be unequivocal evidence
of bistability.

The transition scenarios uncovered together with a
physical understanding of the underlying dynamical
mechanisms of how humans handle complex objects can
be exploited to inform the development of better soft
robots. It is conceivable that, in the not-too-distant fu-
ture, robots would be deployed in various applications of
complex object handing or control which require coordi-
nation and movement control that humans do quite well.
For the classic example of handling a couple of hot coffee
while walking, our findings suggest the following princi-
ple when designing a soft robot. If the robot is designed
to walk at relatively small stride length, which roughly
corresponds to a small forcing amplitude in the cart-
pendulum model, then the underlying dynamics will be
approximately linear and the frequency of walking can be
arbitrary to generate either an in-phase or an antiphase
behavior to ensure smooth handling of the coffee cup be-
cause, in this case, a transition region is absent between
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the two types of synchronous motions. However, if a rel-
atively large stride length is desired (corresponding to a
large forcing amplitude), then the frequency interval as-
sociated with the transition region should be avoided, be-
cause the complicated phase relation between the robot
and the complex object there can ruin the smooth han-
dling of the latter.

In addition to the model deficiencies in relation to the
absence of time delay and the over-control problem dis-
cussed at the end of Sec. II, there is another possible
difficulty with the model (1-4). In particular, our dynam-
ical analysis of the model suggests that humans are able
to switch abruptly and efficiently from one synchronous
attractor to another. However, at the present there is
no experimental data of human movement characteristics
collected in a way that can be compared with this predic-

tion. It is possible that humans are not capable of mak-
ing such movements. A problem with quick movements
is how to minimize the jerk (third derivative), which was
discussed in the context of pole balancing at the finger-
tip [4, 8]. Experiences tell us that, for balancing a stick at
the fingertip, the human finger movements can be quite
quick, but this may not be the case for coffee-cup car-
rying. We hope our finding will motivate experimental
studies in this direction.
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namic scenarios of multistable switching in semiconduc-
tor superlattices, Phys. Rev. E 63, 066207 (2001).


