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Abstract 

Expanding bound-state-in-continuum (BIC) beyond photonic crystal systems may enable broader 

applications benefiting from the unique properties of BIC states. We used photonic integrated circuit to 

realize a Fabry–Pérot BIC on a silicon chip. The devices consist of cascaded ring resonators with tunable 

resonance frequencies and phase delays. As a result, the BIC state is dynamically tunned with electrical I/O. 

We analyzed the mechanism of the formation of BIC state in this waveguide system and point out the 

fundamental differences between the BIC states and electromagnetically induce transparency (EIT) states 

in integrated photonics. The high transmission protected by the BIC state enables versatile optical filters, 

which are capable of independent control over switching, peak position, and quality factor. We also 

demonstrated the scalability of this platform. This integrated silicon photonic platform brings opportunities 

for practical BIC applications.  

 

Bound states in the continuum (BIC) are confined resonances amid a continuous spectrum of radiating 

channels. This phenomenon was initially proposed in quantum mechanics but was recently proven to be a 

much more generic behavior of all physical waves [1]. Notably, photonic crystal (PhC) slabs have become 

a promising platform for BIC studies [2]. Initially, the symmetry mismatch between some modes at high-

symmetry points, e.g., Γ points of the PhC slabs, and the free space polarizations will introduce robust BIC 

states protected by the symmetry [3]. Recently, a fine-tuned BIC off the Γ point was proposed as a result of 

the perfect cancellation of out-going waves [4]. Moreover, those BIC states are polarization singularities 

that carry non-trivial topological charges, which provides a different perspective in topological photonics 

research [5,6].  

Besides giving birth to rich physics, BIC states and near-BIC states are inherently high quality factor (Q-

factor) resonance modes, which bring about potential applications such as enhancement of nonlinear 

phenomena [7] and lasing [8,9]. Also, one can merge multiple BIC states using the PhC slab so that the 

near-BIC states can acquire even higher Q. Therefore, even deviations from the exact BIC state due to 

fabrication errors are unlikely to compromise the Q-factor [10]. Also, the nature of the polarization 

singularity at BIC states promises a lasing source with a polarization vortex, which gives rise to another 

degree of freedom in optical communications [11,12]. 

To date, most of the photonic BIC demonstrations and its applications have been realized in PhC slab 

systems. Although PhC slabs have their engineering flexibilities, such as material, lattice symmetry, and 

band structure engineering, the success of BIC realizations in PhC slabs requires a large area of low defect 

periodic structures and out-of-plane excitations [4,13]. In addition, symmetry protected BICs have been 

demonstrated in special waveguides based on anisotropic materials. The need for strongly anisotropic 

materials substantially limits their applications. The realizations of BICs in silicon photonics are still 

lacking [14,15]. 

Besides the enhanced light-matter interaction in lasing applications, the high-Q nature of BICs also poses 

an opportunity for versatile filters, which is compatible with photonic integrated circuits (PICs) and 

complementary metal oxide semiconductor (CMOS) technology [16]. By definition, high-Q modes have 



long lifetimes and low coupling rates (coefficients) to/from the continuum (delocalized states). At the BIC 

or near-BIC point, the photon hardly “sees” the resonator system but instead passes through [4], which is 

useful for realizing a transparency window.  

In this paper, we demonstrated the realization of BIC on a silicon chip, in particular, BIC filter devices on 

an active CMOS-compatible PIC platform, where the existence of the transmission peak, together with the 

peak position, peak width (Q-factor), can all be independently and dynamically controlled. We also clarify 

the fundamental difference between such BIC modes and the electromagnetically induced transparency 

(EIT) phenomena in PICs. We believe it is a leap forward towards practical applications of BIC states, and 

it provides a different methodology to PIC device design.  

We utilize the Fabry–Pérot (FP) BIC states in this paper [1,17].  With parameter tuning, we can make one 

output channel and the resonant radiation interfere and cancel each other. Fig.1A shows a schematic 

structure of its realization: the two cascaded resonators have their intrinsic resonance frequencies ω1 and 

ω2, respectively. The two resonators do not crosstalk directly, instead they only couple through the bus 

waveguides. If we assume the coupling rates at all gaps are γc/2, and the intrinsic loss rate γi/2 is negligible, 

the Hamiltonian of the resonator system is: 

𝐻 = (
𝜔𝑜 + ∆ 0
0 𝜔𝑜 − ∆

) − 𝑖
𝛾𝑐
2
( 1 𝑒𝑖∆𝜑

𝑒𝑖∆𝜑 1
) 

where ωo=(ω1+ω2)/2 is the center frequency, ∆= (ω1-ω2)/2 is the resonance detuning, ∆φ is the phase shift 

between the two resonators. Then we can further simplify the model by assuming ∆φ is an integer multiple 

of π, i.e., ∆φ=mπ, so that the round-trip satisfies the FP resonance condition (we shall call it “system on-

resonance”). The eigenvalue of the resonator system is, therefore: 

𝜔± = 𝜔𝑜 − 𝑖
𝛾𝑐
2
± √∆2 −

𝛾𝑐
2

4
 

If there is no resonance detuning, i.e., ∆=0, ωo is the real eigenvalue of the system. It means the life-time of 

this mode is infinitely long, and this is a FP BIC state [1]. 

However, if we allow a small frequency detuning compared to the coupling rate (γc/2≫∆), we can still write 

the eigenvalue using first-order Taylor expansion: 

𝜔± ≈ 𝜔𝑜 − 𝑖
𝛾𝑐
2
± 𝑖

𝛾𝑐
2
(1 −

4∆2

𝛾𝑐
2 ) 

Then ωo-2i∆2/γc is one of the eigenvalues, while ωo is a near-BIC state of the resonator system. 

We then derive the transmission characteristics for the resonator system using temporal-coupled-mode 

theory [17–19] (Appendix A).  

If the probe frequency is ωo, the transmission is protected by near-BIC state with T1: 

𝑡𝐵𝐼𝐶 =
∆2 +

𝛾𝑖
2

4
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On the contrary, if the probe frequency coincides with one of the intrinsic resonance frequencies of the two 

resonators, T0:  
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To summarize, in a cascaded resonator system, if we fine-tune the phase delay between two resonators to 

make the system on-resonance, the center frequency becomes a near-BIC point. Coupling into this mode 

from the continuum is difficult, which gives rise to high transmission. Additionally, the transmission at ω1 

and ω2 is low. Therefore, we can obtain an artificial transparency window that can be fully controlled by ω1 

and ω2: ωo determines the peak position, while ∆ controls the peak width and Q-factor. Besides, we can also 

turn the peak off by breaking the resonance condition or diminishing resonance detuning ∆. 

In addition, we would like to address the seemingly contradicting phenomena that the exact-BIC state leads 

to total reflection while the near-BIC state has high transmission. BIC and near-BIC states are high-Q states 

where coupling from the radiation continuum is difficult (energy stays in the continuum), which does not 

guarantee the direction of the output energy. From Eq.4, the direction of output is a competing result 

between ∆ and γi: for the exact BIC state ∆=0, so it shows high reflection; for near-BIC state ∆≫γi, so it 

shows high transmission instead. 

Such transmission characteristics share some similarities with the optical analog of EIT in atomic physics. 

However, there are some fundamental differences between them [20–26]. Fig.1D is the energy level 

diagram of the rigorous optical analog of EIT. A low-Q resonator couples to the ground state, while a high-

Q resonator only couples to the low-Q resonator with a coupling rate J. J is the analog of the Rabi frequency 

in the original EIT [20]. This system can be realized using two directly-coupled resonators and a single bus. 

EIT is a particular Fano resonance where two resonators have disparate Q-factors but the same resonance 

frequency. In other words, their energy levels should have zero offsets [27,28]. It is possible to construct an 

EIT analog with indirectly-coupled resonators. However, the system still needs to follow the Fano 

resonance condition. We can simulate this effect by tweaking the setup following the energy level diagram 

in Fig.1E. We lower the Q-factor of the first resonator and reduce the coupling rate of the second resonator 

while fixing their resonance wavelengths at 1533 nm. Here the Fano resonance results in the transparency 

window (Fig.1G). The shape of the peak is affected by the Q-factor difference and symmetry of the feedback 

loop [28]. In summary, the transparency window in a rigorous EIT analog is a result of Fano resonance 

(with two overlapping resonances), which is not valid for the near-BIC state.  

Fig.1F is the energy level diagram of the FP BIC. The two energy levels (resonators) have similar Q-factors 

that couple indirectly through the continuum. The transmission window requires the energy offset ∆, 

distinctive from the requirements of a rigorous optical EIT. Fig. 1H is the simulation result of the BIC state 

with two identical resonators (∆=0); both have a resonance wavelength of 1533 nm. The transmission 

spectrum shows complete reflection at the BIC point.  

Based on the derivation (Eq.4), we designed the filter device (Fig. 1B) shown in Fig.1C (Appendix B), 

whose transmission characteristics are summarized in Fig.2. The blue curve in Fig.2A is an example of a 

BIC filter, which is also the reference curve in other panels. The two rings have their intrinsic resonant 

wavelengths at 1532.4 nm and 1533.4 nm, respectively. The phase delay between the two rings is tuned to 

make the system on-resonance. The transmission at intrinsic resonance wavelengths is low, while the center 

wavelength is the protected near-BIC state with high transmission. This result agrees with the model very 

well. If we increase the phase delay between the two rings by increasing the voltage of the phase shifter 

(green and yellow curves), the FP resonance condition is not standing. The transparency window red-shifts 

and the peak becomes asymmetric. 

We can independently control the peak position and peak width by tuning two ring resonators. In Fig.2B, 

we show that we can maintain the width of the transparency window while changing the position by red-

shifting or blue-shifting the two rings together. We can also change the width and Q-factor of the 

transmission peak while fixing the position (Fig.2C). Bringing two ring resonators closer in terms of 

resonance wavelengths results in a narrower transparency window (higher Q-factor), and vice versa. The 

height of the transmission peak is a function of both detuning and loss (Eq.4). Thus a high-Q transparency 

window may have lower overall transmission. Designing the device with lower-loss waveguides would 

mitigate this issue. Note that every scenario in Fig.2B and Fig.2C is on-resonance, so the phase shifters 



between two rings are tuned when we change the peak position.  

For a filter design involving a single resonator, the resonance wavelength and Q-factor are usually 

dependent on each other, because the change of loss often accompanies the tuning process. In the BIC filter, 

however, the transparency window is not the mode of an individual resonator, but the mode of the near-BIC 

state. Therefore, the position and width of the transparency window are independent of each other. This 

flexibility is very desirable in PICs [29]. 

If one intends to use the BIC filter as an optical switch, there are three approaches. We shall regard the blue 

curve in Fig.2A as the “On” state for 1533 nm wavelength; then we can turn the transmission off by any 

one of the following approaches: 1. breaking the FP resonance (Fig.3a yellow curve, 22 dB on-off ratio); 2. 

shifting the peak position (Fig.2B purple or green curve, 25 dB on-off ratio); 3. constructing exact-BIC 

state (Fig.1H, 75 dB on-off ratio). Simulation reproduction of Fig.2A-2C with high consistency can be 

found in Fig.5. 

Scalability is a great advantage of our platform. We can cascade more detuned resonators sharing the same 

buses so that the transmission spectrum will show a series of tunable peaks [24]. As a demonstration of this 

concept, we designed a  triple-resonator device with an additional ring (r3=15.02 um) shown in Fig.3A. The 

two loops between two adjacent rings give rise to two transparency windows when the system is on-

resonance 

In Fig.3B, we show the effect when we fix the resonance wavelengths of three rings and the phase delay in 

the second loop while increasing the phase delay in the first loop. The second peak is fixed in place, but the 

first peak red-shifts until it merges into the right peak. It promises the ability to have two transparency 

windows (blue curve) or kill either one of them (yellow curve). Fig.3C is the simulation result of the same 

process, confirming the effect of tuning phase delay in one of the loops. 

Because of the thermal cross-talk in the fabricated device, we used simulations to demonstrate the potential 

of individual peak tuning in Fig.3D. Starting from two peaks with similar widths (blue curve), we can 

control the resonances of three rings so that the center frequency in the first loop is constant while the 

detuning in the second loop remains fixed. The result is that the left peak has a fixed position but varying 

width, while the right peak has a fixed width at different positions. The Q-factor of the left peak changes 

from 1.82×104 in blue curve to 9.05×103 and 6.65×103 in green and yellow curves, respectively. The 

position of the right peak shifts by 4 times and 7.66 times of the full-width-at-half-maximum (FWHM) in 

green and yellow curves, respectively, compared to the blue curve. Note that every scenario here is on-

resonance for both loops. This phenomenon follows the same principle of the dual-resonator device and 

further proves the versatility of the BIC filters. 

To realize the full potential of the cascaded ring resonator system, the following device optimizations are 

desirable: 1. An optical system with lower loss using ridge waveguide. Larger resonator rings may also help; 

2. Carrier-injection modulation that avoids thermal cross-talk and achieves higher modulation speed.   

In conclusion, we have demonstrated dynamically tunable near-BIC states using a PIC platform, which are 

highly promising for multiple on-chip functionalities. The cascaded resonators bring about the near-BIC 

state, which has high transmission and is used to construct a transparency window. We argue that this 

phenomenon fits the BIC formalism rather than the rigorous optical analog of EIT. Furthermore, the devices 

we demonstrated are versatile filters whose peak position and width can be independently controlled. They 

can also be used as optical switches. We believe the results could deepen our understandings of the general 

BIC concept and help lower the threshold of its applications. 
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Fig.1 | A. The schematic model of the dual-resonator system that demonstrates Fabry–Pérot BIC. A1  ̶ A8 are the 

electric field amplitudes in the bus near the coupling ports, a1 and a2 are the amplitudes of the resonance modes 

at steady state. ω1, ω2 are the intrinsic resonance frequencies of the two resonators. The intrinsic decay rate is 

γi/2 for both resonators; the coupling rate is γc/2 at all the gaps. B. Schematic of a silicon photonics realization. 

Two ring resonators have slightly different radii (r1, r2) coupling through two bus waveguides. The gaps (g) 

between rings and buses are of the same size to enforce same coupling rate γc(g)/2. Thermo-optic heaters (pink 

bars) tune ω1, ω2 and ∆φ with independent control voltages (V1, V2, and Vt). C. Optical image from the fabricated 

dual-resonator device. White circles denote the ring resonators, red rectangles are the thermo-optic phase shifters. 

D - F. Energy level diagrams of rigorous EIT analog, indirectly coupled EIT, and Fabry–Pérot BIC respectively. 

2∆ is the frequency offset between two resonators, J is the direct coupling rate between two resonators, 
γc(γc’) is the coupling rate between ground state and excited states. G & H. Simulation of EIT-like (Fano 

resonance) & BIC transmission with zero energy offset (∆=0) between two resonators. Spectra are plotted as 

functions of probe beam detuning relative to resonance wavelength (1533 nm). 

 

  



 

Fig.2 | Transmission spectra of BIC filters. A. Tuning the phase delay between two rings. The first curve is the 

on-resonance case with a symmetrical transparency window. Vt is the voltage of the phase shift heater between 

two rings. B. Tuning the peak position with the fixed width. C. Tuning the peak width (Q-factor) with the fixed 

position. Spectra in B and C are all on-resonance. Blue curves in A, B, and C are the same. Black arrows are 

used to guide eyes to the peaks of interest in each panel. All the curves are shifted vertically for clear illustration. 

Black, blue, and red arrows highlight the ωo, ω1, and ω2 respectively as described in Eq.4 and Eq.5. Simulation 

counterparts can be found in Appendix B. 

 

  



 

Fig.3 | A. Optical image of the triple-resonator device. White circles denote the ring resonators, red rectangles 

are the thermo-optic phase shifters. The left and middle rings are the first loop, the middle and the right rings are 

the second loop. B. Tuning the phase delay in the first loop. The blue curve is the on-resonance case for both 

loops with two transmission peaks. C. Simulation reproduction of B. D. Tuning the right peak’s position with 

the fixed width while tuning the left peak’s width (Q-factor) with the fixed position. Spectra in D are all on-

resonance in both loops. Blue curves in C and D are the same. Black arrows are used to guide eyes to the peaks 

of interest in each panel. All the curves are shifted vertically for clear illustration.  

  



Appendix A 

Transmission characteristics for the resonator system using temporal-coupled-mode theory  

The two cascaded resonators have their intrinsic resonance frequencies ω1 and ω2, respectively. 

ωo=(ω1+ω2)/2 is the center frequency, ∆= (ω1-ω2)/2 is the resonance detuning.The probe beam’s frequency 

is ω, and the detuning frequencies between the probe beam and two resonators are ∆1(2)=ω-ω1(2), respectively. 

The intrinsic decay rate is γi/2 for both resonators; the coupling rate is γc/2 at all the gaps. Following the 

electric field amplitude denoted in the schematic drawing (Fig.1A), we can describe the amplitude relations 

at steady state using a system of equations [18]: 

{
 
 
 

 
 
 (𝑖∆1 − (

𝛾𝑖
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The transmission is: 
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If we assume γc≫∆≫γi0, at ω=ωo & ∆1=∆2=∆: 
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∆2 + 𝛾𝑐𝛾𝑖
→ 1 

 

If the probe frequency coincides with one of the intrinsic resonance frequencies of the two resonators:  

𝑡𝜔1(𝜔2) =
±𝑖𝛾𝑖∆ +

𝛾𝑖
2

4

±𝑖𝛾𝑖∆ ± 2𝑖𝛾𝑐∆ + 𝛾𝑐𝛾𝑖 +
𝛾𝑖
2

4

≈
1

1 + 2
𝛾𝑐
𝛾𝑖
∓ 𝑖

𝛾𝑐
∆

→ 0 

 

From the discussions above, we shall conclude the essential requirements for a versatile BIC filter: first, 

the intrinsic loss needs to be small, otherwise the height of the transmission peak decreases; second, the 

coupling rate between the resonator and the bus should be high enough to ensure γc≫∆; third, we need to 

fine-tune the intrinsic resonance frequencies and the phase delay between the resonators. 

  

(6) 

(5) 

(6) 

(7) 

(7) 

(8) 

(9) 

(10) 



Appendix B 

BIC filter device design 

We designed the proposed device using a silicon photonics platform with 220-nm silicon-on-insulator (SOI) 

wafers (Fig.1B). The two ring resonators have slightly different radii (r1=14.98 um; r2=15 um), and they are 

controlled by thermo-optic heaters (controlled by voltage V1 and V2). Thermo-optic phase shifters connect 

the two ring resonators, and they are controlled by voltage Vt. The bus waveguides and resonator 

waveguides all have a base width of 300 nm. All the coupling gaps (g) between bus waveguides and ring 

resonators are 300 nm to enforce identical coupling rates (γc/2). AIM Photonics Foundry fabricated the 

device through a multi-project wafer (MPW) run [30]. The simulations were carried out in Lumerical 

MODE and INTERCONNECT [31].  

We simulated the coupling rate between a 15-um ring and a single bus waveguide in Fig.4A as a function 

of gap size (g) at a resonance wavelength of 1533 nm. The cross-section of all waveguides is 220 nm in 

height and 300 nm in width. The background material is silica. The coupling rate increases exponentially 

as the gap size decreases. Three dashed lines are examples of frequency detunings from the resonance. Note 

that the devices in the discussions typically have δλ<1 nm. Comparing the orange data points to the dashed 

lines, we can conclude that γc/2≫∆ at g=300 nm. It complies with the criteria that brings about significant 

transmission peak. In Fig. 4B, we show the ring heater’s capability for tuning a single ring device (r=15 

um) over most of the free spectral range (FSR). It lays a solid foundation for the device demonstrations.  

Fig.5 shows the simulation results of the filter device that shows the BIC-protected transmission peak and 

the tunability. To match the fabricated device, the cross-section of all waveguides is 220 nm in height and 

300 nm in width. The coupling gap is 300 nm at all coupling ports. The background material is silica. The 

radii of the first and second rings are 14.98 um and 15.00 um, respectively. We tune the refractive indices 

of two rings separately to simulate V1 and V2. We also tune the length of the bus waveguide between the 

rings to simulate Vt. The simulation agrees with the experimental results very well (Fig.2). 

 
 

Fig. 4 | A. Simulation of the single-bus coupling rate (γc/2) as a function of gap size using a 15-um-radius ring 

and a single bus waveguide (width of 300 nm and resonant wavelength of 1533 nm). Dashed lines indicate 

frequency detunings from the resonant wavelength. B. Measured transmission spectra of a single 15-um-radius 

ring resonator with double bus coupling. Vr is the voltage of the thermo-optic heater near the ring resonator. The 

black arrow shows the same transmission dip under different ring heater voltages.  

  



 

Fig. 5 | A. Schematic of the simulation structure. B-D. Simulation reproduction of Fig.2. Unless noted besides 

the curves, the default parameters to the BIC model are: ∆=61 GHz; γc/2=667 GHz; ∆φ=0. All the curves are 

shifted vertically for clear illustration. Black, blue, and red arrows highlight the ωo, ω1, and ω2 respectively as 

described in Eq.4 and Eq.5. The simulation results reproducing the experimental data. The simulations show 

apparent transmission dips indicating intrinsic resonance wavelengths of the rings. Note that the curvature 

near the peak is slightly different in the simulations compared to the experiments, which also result in larger 

Q-factors for the windows. This is due to the additional loss in the fabricated device that causes the 

transmission to fall off quickly around near-BIC points. 

 


