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Abstract

The end of Moore’s law for CMOS technology has prompted the search for low-power computing

alternatives, resulting in promising approaches such as nanomagnetic logic. However, nanomag-

netic logic is unable to solve a class of interesting problems efficiently, as it only allows for forward

computing, due to the need for clocking and/or thermal annealing. Here, we introduce nanomag-

netic self-organizing logic gates that can dynamically satisfy their logical proposition, irrespective

of whether the signal is applied to the traditional input or output terminals, thus allowing for

reversible computing. We present a design of a self-organizing NAND gate whose logically cor-

rect states are occupied equally in thermodynamical equilibrium, and illustrate its capabilities by

implementing reversible Boolean circuitry to solve a two-bit factorization problem via numerical

modelling. Our approach offers an alternative path to explore memcomputing, an unconventional

computing paradigm whose usefulness has already been demonstrated by solving a variety of hard

combinatorial optimization problems.

I. INTRODUCTION

Magnetic logic is a promising alternative to the standard complementary metal–oxide

semiconductor (CMOS) technology. To date, this paradigm has brought us domain wall

logic [1, 2], spintronic field-effect transistors [3, 4], magnetic tunnel junctions [5, 6] repro-

grammable magnetic random access memory cells [7], and skyrmion logic devices [8]. An-

other promising approach is nanomagnetic logic [9–12] (NML), where nanomagnetic islands

interact through their stray-field coupling. These interactions define the energy landscape of

the islands, and hence constrain the equilibrium orientation of their magnetization. By forc-

ing the orientation of suitable ‘input’ islands one can impose an equilibrium configuration

on an ‘output’ island, which can be leveraged to realize logic operations. However, this ap-

proach suffers from the need for clocking [13, 14] and/or thermal annealing [15, 16] for which

fast convergence to the ground state is not guaranteed, impeding their use for reversible logic

operations. There, the entire logic circuit must relax to equilibrium as a whole, instead of

through a cascade of local gate relaxations. These difficulties are a well-known general prop-
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erty of quenching problems [17] in complex effective energy landscapes [18] where numerical

solvers often employ cluster flipping operations to induce a long-range order in their energy

minimization algorithms [19, 20].

Despite several proofs of concept of such nanomagnetic logic [21–24], it is still unclear

what the advantages are compared to the widespread CMOS designs that power the in-

numerable applications we employ nowadays. In fact, it seems increasingly evident that

“beyond CMOS” technology is not simply a matter of better devices. It also requires a

fundamental rethinking of our computing paradigm, which, in turn, calls for novel ways in

which logic operations are performed [25].

As an alternative, a type of terminal-agnostic logic was suggested in Ref. [26], where a

given gate can dynamically “self-organize” into its logically correct states, irrespective of

whether the signal is applied to the traditional input terminals, or the output terminals.

These self-organizing logic gates (SOLGs) form the elementary building blocks of digital

memcomputing machines [26]. These are machines that employ time non-locality (memory)

to simultaneously process and store information. Their usefulness has already been demon-

strated by solving a variety of hard combinatorial optimization problems, including, Boolean

satisfiability (SAT), maximum satisfiability, integer linear programming, and even training

of neural networks (see, e.g., Ref. [27] for a brief review of these applications). The practical

implementation of SOLGs suggested in Ref. [26] relies on resistive memories in addition

to active devices, realizable with CMOS. Consequently, this design necessarily leads to an

increased spatial footprint and sub-optimal energy consumption, two important aspects of

any future computing paradigm.

Here, we introduce a novel concept of SOLGs that instead employs stray-field coupled

nanomagnetic islands to perform terminal-agnostic logic: nanomagnetic self-organizing logic

gates. In view of their design and mode of operation, we expect these systems to improve

significantly over those suggested in Ref. [26], thus offering an alternative path to explore

memcomputing.

Our strategy to build these gates relies on two main properties. First, we show that

appropriately tailored stray-field interactions can enforce the logic proposition of the gate

with equal population of all correct states, which is called balancedness [28]. Second, we

employ a dynamic error suppression, to limit the time spent in excursions between logically

correct states as a result of thermal fluctuations. The combination of these two features
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makes these gates fundamentally different than stochastic gates, such as those proposed in

Ref. [29].

We will show that the combination of these two features is sufficient to implement a

nanomagnetic SOLG, which can be used to construct reversible nanomagnetic SO-circuits.

This will be demonstrated using a two-bit multiplier, which is capable of solving a simple

factorization problem.

II. GATE DESIGN

A. Balanced gates

Because directly mapping a whole computational problem to an arrangement of nano-

magnetic islands whose energy landscape reflects the problem’s solution is far from trivial,

we focus on the design of the functionally complete NAND gate, from which any Boolean

circuit [30] can be constructed in a bottom-up approach. This approach thus allows us to

construct, e.g., a two-bit multiplier in a similar way to that used in CMOS-based logic cir-

cuits. However, to reduce the number of nanomagnetic islands that is needed to construct

a certain circuit, it may be beneficial to use building blocks capable of inherently emulating

more complex functionalities. For instance, an arrangement of nanomagnetic islands that

directly mimics the behavior of a half-adder may consist of fewer islands than when the

half-adder is constructed bottom-up with NAND gates. Finding such designs is, however,

not a trivial task. It will therefore be left to future work as minimizing the number of islands

of a particular circuit is beyond the scope of this article.

Irrespective of the hardware realisation, for probabilistic logic to work, the gates need

to be balanced [28], i.e. with equal probability for all logically correct states. To illustrate

this necessity, we consider a theoretical, unbalanced, NAND gate only defined by its state

probability distribution as shown in the upper panel of Figure 1(a). The upper panel of

Figure 1(b) shows the state probability distribution of a circuit built up out of three of these

unbalanced gates. For the sake of simplicity, the connected terminals are assumed to always

share the same logical value, i.e., either bit 0 or bit 1, which allows us to calculate the prob-

ability of a state as Pcircuit(A,B,C,D,O) ∝
∑i,j=1

i,j=0 Pgate(A,B, i)Pgate(i, C, j)Pgate(j,D,O).

Even for a circuit as small as three gates, erroneous results arise due to the unbalancedness
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FIG. 1. Effect of balancedness on logic circuit. (a) Boltzmann probability distribution for a

unbalanced and a balanced NAND gate. The relative probability Prel is obtained by dividing the

probabilities of all of the possible states by the probability of the most likely logical state. The

inputs (marked in yellow) and the output (marked in green) are “free”, i.e., they can take the

logical values 0 and 1. (b) Boltzmann probability distribution for 3 NAND gates in series with

free inputs and output. The terminals that are connected always share the same logical value.

The horizontal red line indicates the probability of the most likely logically incorrect state, while

the horizontal blue line indicates the probability of the least likely logical state. If the circuit

consists of unbalanced gates (upper panel), some logically correct states are indistinguishable from

the logically incorrect states. In contrast, the same circuit built up out of balanced gates does not

suffer from this problem (lower panel).

of the constituent gates: the least likely logically correct (horizontal blue line) and most

likely logically incorrect state (horizontal red line) become indistinguishable. This is not

the case when the circuit is assembled using balanced gates, as shown in the lower panel of

Figure 1.

Recently, a balanced NAND gate consisting of 19 nanomagnetic islands with in-plane

magnetization has been designed whose three lowest energy states present a four-fold degen-

eracy corresponding to the four NAND logic states [31]. This design, and any NML design

that would be balanced following the definition given in Ref. [28], i.e. that the energies of
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all logic states are equal, has the drawback that it requires a slow and nontrivial anneal-

ing scheme to operate correctly since its equal population is only achieved in the T = 0 K

temperature limit. Therefore, we design a gate whose logically correct states are occupied

equally in thermodynamic equilibrium, i.e., also at a nonzero temperature.

B. Gate design

We consider gates which consist of nanomagnets that are magnetized out-of-plane and

located on the same lattice plane. The nanomagnets have a cylindrical shape with a diameter

of d = 8.4 nm and a thickness of t = 6.5 nm, i.e., sufficiently small to have a single-domain

state, which allows us to use a macrospin approach. In thermodynamic equilibrium, the spins

are either fixed, or free to evolve according the stochastic Landau-Lifshitz-Gilbert (sLLG)

equation, and the perpendicular magnetization component of each island is interpreted as

a logical 0 or 1 depending on its sign: mz < 0 (bit 0); mz > 0 (bit 1). However, to find

a balanced gate, it is not computationally feasible to investigate every possible design by

solving the full sLLG equation. Therefore, in our search for a suitable gate design, we

focus on solely evaluating the two-state behavior to find potential gate candidates. This

analysis assumes that all free spins are in local equilibrium states mi = (0, 0,±1), for

which the magneto-crystalline anisotropy energy is minimal. Using this two-state model,

the requirement that the logically correct states must be occupied equally in thermodynamic

equilibrium is met when the relative Boltzmann probabilities of these states are equal. The

Boltzmann probability of a spin-flip state σs is given by

P [σs] =
exp−βε(σs)

Σs exp−βε(σs)
, (1)

where β is the inverse thermal energy and the normalizing denominator runs over all 2Nfree

spin-flip states with Nfree the number of free islands. The relative energy ε(σs) of a spin-flip

state is determined by the sum of all pairwise stray-field interactions, and can be written as:

ε(σs) = Σi,j=1,...,N

(
µ0M

2
SV

2

8π|ri,j|3

)
mi,zmj,z, (2)

with N the total number of nanomagnets (free and fixed). MS, V , µ0, and rij denote the

saturation magnetization, the magnetic volume, the magnetic permeability of free space,

and the pairwise distance vector rij ≡ ri − rj between islands i and j, respectively. A gate
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design is thus fully characterized by all pairwise distance vectors, which will be adjusted

together with the magnetic moment of the fixed nanomagnets in order to balance the gate.

The gate design presented in Fig. 2(a) displays the behavior of a balanced, self-organizing

NAND gate. It consists of four nanomagnetic islands: two inputs, one output and a so-called

fixed bias island, with both inputs having equal distance to the output and to the fixed bias

island, which guarantees that the logically correct states 011 and 101 are balanced. The

magnetization of the fixed bias island is fixed at mz = −1, e.g., with the aid of exchange

bias [32]. The position of the bias island is such that the bias field it creates is twice as

large on the output as on the inputs, which balances the logically correct states 001 and

110. Finally, to balance all logically correct states, the strength of the bias field, i.e., the

magnetic moment of the bias island, is set properly.

The magnetic moment of the bias island and its distance to the output is determined by

the angle between the inputs and the output. We choose this angle to be 120◦, from which

it follows that the distance should be equal to 2.41R and that the magnetic moment of the

bias island should be 22.6 times as large as that of the inputs and output. The latter can

be achieved by using a bias island with a larger diameter and thickness, possibly also made

from a material with a high saturation magnetisation (e.g., iron or cobalt). The angle of

120◦ is chosen in order to trade off between logically incorrect states with high energy, and

having a small value of b = Mbias

M in/out
. The former increases the reliability of the gate, whereas

the latter is beneficial from an experimental point of view.

Balanced gates are still however possible under the constraint of using only magnetic

islands with identical magnetic moments, i.e, b = 1. Such a balanced SO-NAND geometry

is presented in Fig. 2(b). It consists of two inputs, one output and multiple bias islands that

are placed on a regular triangular grid. Differing only in the way in which the bias fields

are generated (i.e. either one large island, or multiple smaller ones), the gate designs shown

in Fig. 2(a) and (b) give rise to the same physical behavior (i.e, logical probabilities), so

allowing us to refer to both as “our gate”.

To demonstrate the balancedness of our gate, we plot the Boltzmann probabilities as a

function of temperature for the eight possible metastable states in Fig. 2(c), corresponding

to the input and output islands magnetized (anti-)parallel to their uniaxial anisotropy axis,

i.e., mz = ±1. The probabilities are calculated using the two-state model [see Eqs. (1-2)]

with saturation magnetization MS = 1000 kA/m, magnetic volume V = πd2t = 360 nm3,
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FIG. 2. Balancedness of SO-NAND gate. (a) Balanced SO-NAND gate consisting of four

nanomagnetic islands, schematically represented by circles. The input islands (marked ”A” and

”B”) are shown in yellow and the output (marked ”O”) in green. The black circle represent a bias

island with fixed magnetization mz = −1 and with a magnetic moment which is 22.6 times as large

as that of the input and output islands. R = 11.34 nm. (b) Balanced SO-NAND gate on regular

triangular grid, with multiple fixed bias islands (black: mz = −1, gray: mz = +1). The magnetic

moment of the bias islands is the same as that of the input and output islands (c) Boltzmann

probabilities based on the two-state model. Although the total probability of logically correct

states decreases with increasing temperature, their individual probabilities remain matched as the

thermal energy is varied. (d) The island macrospin dynamics are simulated at 300 K indicated with

the vertical dashed line in panel (c). The likelihood of each logical state is shown for varying relative

magnetic moment of the fixed bias island(s). To recover the balancedness, the bias island(s) should

have a magnetic moment of only 90% (as indicated by the arrow) relative to the value obtained

with the two-state model.

and R = 11.34 nm. Thus, our design is optimal both with respect to the difference in

probability between logically correct states and their total probability, although the latter

decreases with increasing temperature.
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C. Dynamical behavior

To investigate the gate’s out-of-equilibrium behavior in nanomagnetic logic, we replace

the two-state model by a more realistic dynamical macrospin model which takes thermal

fluctuations into account, and use the macrospin simulation tool Vinamax [33] to solve the

sLLG equation

ṁ = −γ m×
[
∇mE(m)

µ0MSV
+ Htherm

]
+ α(m× ṁ), (3)

where ṁ is the time-derivative of the normalized magnetization, γ the gyromagnetic ratio, α

the unit-less Gilbert damping constant and Htherm the stochastic thermal field. The damping

constant is set at α = 0.4, a similar to the values reported for thin Co/Pt multi-layers and

films [34–36]. In Eq. (3), E(m) denotes the magnetic free energy of the ensemble, which

is given by the combination of uniaxial magneto-crystalline anisotropy of each nanomagnet

plus the sum of all pairwise stray-field interactions:

E(m) =
∑
i

[
−KV (mi · u)2 − µ0M

2
SV

2

8π

∑
j 6=i

(
3(mi · rij)(mj · rij)

|rij|5
− mi ·mj

|rij|3

)]
. (4)

The easy-axis, u, coincides with the ẑ-axis, and the magneto-crystalline anisotropy strength

is set at K = 60 kJ/m3. We use the same values for MS, V , and R as before, and simulate

at T = 300 K (room temperature). These parameters correspond to a ratio of the switching

energy barrier to kBT of 5.2 such that the resulting thermal switching dynamics play on time

scales that allow the collection of sufficient statistics about the state probability distribution

within a reasonable computation time. These statistics are obtained by checking the logical

state of the system each 10 ps during a period of 4 ms to 40 ms (depending on the size of the

system). For the sake of simplicity, we always use an initial state in which the magnetization

of all free islands is set at mz = −1. However, the simulated time is sufficiently long to

ensure that the results are independent of the initial state, and represent the probabilities

in thermodynamic equilibrium.

In this dynamical macrospin model, the magnetization of an island can deviate from the

easy-axis, although the z-axis remains the preferential orientation. However, the additional

degrees of freedom negatively impact the balancedness of the gate due to the enlarged phase

space. As shown in Fig. 2(d), the balancedness can be recovered by tuning the magnetic

moment of the bias island(s). It turns out that the bias island(s) should have a magnetic

moment of only 90% (as indicated by the arrow) relative to the value obtained with the
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FIG. 3. Probabilities of the logical states, obtained with a dynamical macrospin approach using

different relative bias strengths for varying (a) damping, (b) temperature, and (c) anisotropy

constant. The highlighted region corresponds to the simulation parameters used throughout this

work.

two-state model. Figure 3 shows that this tuning is robust with respect to variations in

temperature and material parameters, as a 20% change in the damping, temperature, or

uniaxial anisotropy constant of our system only result in a 2% change of the required bias

to recover the balancedness.

The proposed geometry is challenging to robustly manufacture experimentally with the

currently available lithographic techniques. However, our approach can be extended to larger

length scales without affecting the results, as long as the ratio of the switching energy barrier

to kBT is kept constant (i.e, at 5.2), which can be achieved by, e.g., lowering the saturation

magnetization. The same argument can also be applied to issues pertaining to the tuning of

timescales discussed in the rest of the study. By altering the size of the islands one also tunes

their mean switching time thus globally rescaling the gate operation speeds. Nonetheless,

we performed additional simulations to assess the robustness of our SO-NAND gate against

variations in the island size, and found that it still works reliably when the magnetic volume
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of the input and output islands is drawn from a Gaussian distribution with a standard

deviation of 5% of the mean value of 360 nm3. This reliability can be partially attributed

to the applied DES scheme (see below).

III. DYNAMIC ERROR SUPPRESSION

A. Concept

Although the arrangement of nanomagnetic islands we have presented above gives rise to

a single balanced SO-NAND gate, the size of circuits which can be constructed using such a

gate is limited by the fact that even a small (per gate) probability of logical incorrectness will

tend to propagate and grow within the context of a larger circuit. To overcome this issue, we

introduce a dynamic error suppression (DES) scheme, which suppresses the incorrect states

while preserving the balancedness of the gate. Here, a DES scheme refers to an external

agent, e.g., a spin-polarized current, which is applied to improve the logically correct behavior

of a gate or circuit, and for which an additional power source is required.

The DES scheme, visualized in Fig. 4, is implemented in the model by periodically check-

ing the logical correctness of each gate after a time τDES. If the gate is found to be in a

logically incorrect state, an additional biasing field is applied on each input and output is-

land for a duration of τon. This τon is chosen as a small fraction of the average switching time

of the biased gate: τon = 0.05τswitch. For our parameters, τon = 10 ps and τswitch = 200 ps, as

it takes our NAND gate on average 200 ps to switch from the logically incorrect 111-state

to a logically correct state when the ES fields are fully applied, i.e., when all mz are fixed

at mz = +1 in Eqs. (5):

BA
ES = −(0.080 T)

[
mB
z /(
√

3)3 +mC
z

]
(5a)

BB
ES = −(0.080 T)

[
mA
z /(
√

3)3 +mC
z

]
(5b)

BC
ES = −(0.080 T)

[
mA
z +mB

z

]
+Badd. (5c)

The superscript A and B refer to the input islands, and C refers to the output island.

mz denotes the instantaneous magnetization along the easy axis, and Badd = +0.049 T

for a NAND gate. The factor (
√

3)3 takes into account that the magnetostatic interaction
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FIG. 4. Schematic representation of the dynamic error suppression (DES) scheme. The logical

correctness of the gate is periodically checked, i.e., after a time τDES. If the gate is found to be in a logically

incorrect state, an additional biasing field is applied on each input and output island for a duration of τon.

(a) τDES = 4 τon. (b) τDES = τon.

between the input islands is weaker due to the larger distance between these islands [see

Fig. 2(a)]. For a coupling between two islands – which is used for assembling circuits – the

ES fields are set at

BD
ES = +(0.080 T) mE

z (6a)

BE
ES = +(0.080 T) mD

z (6b)

to promote that the magnetization of islands D and E point in the same direction.

These ES fields help to escape from an incorrect metastable state while still allowing the

gate to explore different states. The rate at which this DES scheme is applied, τDES/τon, is

tuned in order to find a trade off between the time the gate remains in a logically correct

state and allowing the gate from accessing the full configuration space.

The most important aspect of the DES scheme is that it acts locally at the level of each

individual gate and the individual couplings, so that all gates in the circuit independently

suppress their respective logical errors, without requiring information about the state of

the entire system. This local DES scheme acts similarly to the dynamic correction module

(DCM) of a self-organizing gate that is used in conventional memcomputing machines [26].

There, the DCM of a certain gate reads the state of all of its terminals (voltages), and injects

a correction signal on each terminal (current with appropriate sign) until the gate satisfies

its logical proposition. The correction signal only depends on the state of the gate, i.e., on
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local information. However, in our present DES scheme we allow for some degree of thermal

fluctuations to help explore new states, while in the original DCM, no such fluctations are

required.

B. Physical implementation

Such a DES scheme could be physically implemented by adding an extra hardware layer

to the magnetic gate. The state of the nanomagnets can be read out through a magnetic

tunnel junction (MTJ) and forward logic can be used to detect the incorrect state and drive

a correction signal in the form of a spin polarized current to help the incorrectly aligned

magnets to switch to a logically correct state. A lower power alternative could by realized

by making use of voltage controlled magnetic anisotropy (VCMA) [37, 38] to increase the

switching probability of the logically incorrect island during the τDES.

Estimating the power requirements of such a DES scheme is hard at this stage, as no

hardware realizations have been evaluated. On top of the forward CMOS logic, the major

power consumption will be in the read out of the state. Considering a MTJ-based state

detection similar to those used in p-bit implementation [39] with a 1 ns probe current pulse,

the detection of all 3 elements in one NAND gate would require about 10 fJ. Biasing the

elements using the spin transfer torque would require 1 or 2 orders of magnitude more power,

but when a VCMA based biasing is used, the dissipation will only be dynamic. With the

considered geometry of one island having a capacity of about 10−19 F, the dynamic losses

will be negligible.

C. Comparison with p-bit logic

Whereas our local DES scheme may be reminiscent of the biasing used in p-bit logic

inversion [40], for p-bit operation, the time-varying current through each sMTJ depends on

the global state of all the logical bits in the system. Without the application of globally-

determined spin currents, however, no logically correct behavior would be observed, as the

sMTJ elements are not coupled through stray-field interactions, or in any other way that

imposes logical behaviour, in contrast to nanomagnetic islands. Thus, p-bit logic only works

due to a power consuming external agent (i.e., error suppression) that allows spin currents to
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flow through the sMTJ elements. Stated differently, the p-bit logical functionality is entirely

embedded within the error suppression, and requires global information. This is in sharp

contrast to our approach, which only periodically suppresses logically incorrect states –which

anyway are rare, as a result of the magnetostatic interactions– using only local information.

For an individual gate, this is typically only applied for less than 1% of the time.

It is important to note that the time between two consecutive switches, anywhere in the

system, decreases with increasing system size as τswitch ∝ τsMTJ/N , with τsMTJ the natural

switching time of an individual unbiased sMTJ and N the number of sMTJ elements. This

is because the switching probability of any one free sMTJ element can be roughly considered

Poisson-distributed with mean switching time τsMTJ/N . Thus, the intermediate operation of

magnetoresistive state read, followed by digital elaboration of the biasing current intensities

and their application must take place on a timescale τbias � τsMTJ/N to ensure proper

performance. Consequently, the p-bit logic inversion is hard to scale as τbias will reach the

experimental limit for growing system size. One can of course engineer the sMTJ elements

to have increasingly slower natural switching times with growing system, but this comes at

the cost of having a longer total operation time to find the solution of the N -bit function

which one wants to invert, as it takes a Boltzmann machine τtot ∝ τsMTJ
2N

N
to stochastically

sample all of the possible configurations.

In contrast to p-bit logic, the timescale on which our local DES scheme is applied is not

proportional to 1/N , because the strength of the ES field exerted on a certain island does

not depend on the magnetic state of all N islands, but only on the local state of the islands

that belong to the same gate or inter-gate coupling. Hence, the timescale of our DES scheme

is limited by τswitch ∝ τisland/NNAND, with τisland the natural switching time of an individual

unbiased island and NNAND the number of islands a NAND gate consists of. This limit

remains constant irrespective of the total circuit size, allowing to build circuits of any size.

The difference between a global and a local DES scheme also manifests itself in the

knowledge one must have about the solution of the targeted problem. A global DES scheme

implies that there is an overhead system capable of determining the correct result of the

entire problem, which allows to bias the system out of incorrect states. As a consequence,

tackling a different problem requires one to redesign the entire global DES scheme. In

contrast, for a local DES scheme, it suffices that one knows what the logically correct

state of a single (NAND) gate (or whichever fundamental constituent gates are used) are,
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regardless of the complexity of the targeted problem.

IV. CIRCUITS

Now, we focus on how to assemble circuits using our SO-NAND gate, of which the state

probability distribution is shown in Fig. 5(a) for several ratios of τDES/τon. Because of the

inversion symmetry between the truth tables of a NAND gate and a NOR gate, the same

geometry behaves as a balanced SO-NOR gate when the magnetization of the fixed bias

island is reversed [as shown in Fig. 5 (b)] and when we additionally set Badd = −0.049 T

in Eq. (5c). This symmetry allows us to use this same design to realize a circuit with the

functionality of an SO-XNOR gate, which can be constructed by making use of SO-NAND,

SO-NOR and a SO-NOT gates as shown in Figure 5(c). The SO-NOT gate simply consists

of two adjacent nanomagnetic islands, for which the minimum energy state corresponds

to an anti-alignment of their magnetization. The interactions between different gates are

neglected, except for the islands which are part of the same coupling. These islands are

magnetically coupled to align their magnetization. Aside from the DES biasing of individual

gates, we introduce a modified DES scheme for such couplings, as detailed above. The

probability distributions of the SO-XNOR gate are shown in Fig. 5(d).

We will now demonstrate the use of our nanomagnetic SOLG in more complex logic

circuits. In Figure 7(a), we present a self-organizing two-bit multiplier (SO-2BM). A bottom-

up approach is employed to construct the SO-2BM, relying on a SO-NAND and a SO-NOT

gate to build a SO-AND gate, and using the SO-XNOR design just introduced [see Fig. 5(c)].

In the simulations, all gates are treated as quasi-independent building blocks, meaning that

islands of different gates only interact magnetostatically if they belong to the same coupling.

In simulations, it is therefore unnecessary to consider the relative positions of different gates,

thus avoiding the need for complicated geometries.

As an example of a reverse computation, the four output islands of the SO-2BM, labeled

from a to d, are fixed to represent specific numbers to be factorized (0, 1, 2, 3, 4, 6, or

9). For example, number “6” translates to a = 0, b = 1, c = 1, and d = 0, where a,b,c

and d correspond to a bit value of 1,2,4 and 8, respectively. This state can be set by fixing

ma
z = −1, mb

z = +1, mc
z = +1, and md

z = −1, respectively. Fixing the magnetization of

these output islands can achieved, e.g., with the aid of exchange bias [32]. However, the
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FIG. 5. Performance of SO-NAND gate and SO-XNOR gate with dynamic error sup-

pression (DES). (a) State probability distributions of a SO-NAND gate for different DES check

times, τDES. The relative probability Prel is obtained by dividing the probabilities of all of the

possible states by the probability of the most likely logical state. (b) The SO-NOR gate is realized

with the same geometry as the balanced SO-NAND gate, the only difference being the reversed

magnetization of the fixed bias island. (c) Schematic representation of a SO-XNOR gate. (d)

State probability distributions of a SO-XNOR gate for different τDES. The symbol “?” means that

input islands A or input islands B are not logically consistent. All logically inconsistent states are

aggregated into the X-state (X stands for 0 or 1).

balancedness of a gate with a fixed output has to be recovered in order to account for the

change in phase space as compared to the free operating mode where the magnetization of

each island can deviate from its easy axis. To obtain this goal, the magnetic moment of the

bias island(s) should be tuned differently. For a SO-NAND gate whose output is fixed at
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FIG. 6. SO-gates with a fixed output. (a) The balancedness of a SO-NAND gate with output 1 is

recovered at a relative bias of 1.04, corresponding to the point where the probabilities of all logically correct

states are equal, as indicated by the arrow. The two-state model corresponds to relative bias of 1. (b) State

probability distributions of a SO-NAND gate with fixed output. The relative probability Prel is obtained by

dividing the probabilities of all of the possible states by the probability of the most likely logical state. (c)

State probability distributions of a SO-XNOR gate with fixed output.

bit 1, this tuning results in a value of the relative bias equal of 1.04 (instead of 0.90), as

shown in Fig. 6(a). We use the same tuning for a NAND gate with an output fixed at bit 0,

although the requirement of being balanced is met by definition as there is only one logically

correct state, namely the 110-state. The state probability distributions of a SO-NAND and

a SO-XNOR with a fixed output are shown in Fig. 6(b) and Fig. 6(c), respectively.

Given the fixed magnetization of output islands a to d, the SO-2BM is allowed to explore

its state space. The magnetization of the input islands, labeled from A to D, correspond to

the solution of our computation. For example, mA
z < 0 and mB

z > 0 mean that N = A+2B =

2, while mC
z > 0 and mD

z > 0 mean that M = C + 2D = 3. Figure 7 demonstrates that our

SO-2BM is capable of decomposing any output number into its (prime)factors. Each possible

factorization has been found without clearly favoring nor penalizing any solution, which

indicates that the balancedness remains largely conserved throughout the whole system.
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FIG. 7. Operation of a self-organizing two-bit multiplier. Schematic representation of a self-

organizing two-bit multiplier and the state probability distributions for a fixed output, showing

that for any fixed output we retrieve the correct factorization(s) with great probability. The

relative probability Prel is obtained by dividing the probabilities of all of the possible states by

the probability of the most likely logical state. All states of which one of the inputs is logically

inconsistent are aggregated into the “?, ?”-state. The rate at which the DES scheme was applied,

τDES, is set to 4τon.

V. CONCLUSION

In conclusion, we have shown that the use of balanced logic gates at nonzero temperature,

supplemented with a local dynamic error suppression can be leveraged to build nanomagnetic

self-organizing logic gates. These are terminal-agnostic gates that can dynamically satisfy

their logical proposition regardless of whether information is committed to the gate’s inputs

or outputs. They are the nanomagnetic equivalent of the building blocks required by digital

memcomputing machines, which have already shown great promise in the solution of a

variety of combinatorial optimization problems [27].

In particular, we have proposed a SO-NAND gate design that employs stray-field cou-

pled perpendicularly-magnetized nanomagnetic islands. Because this gate is functionally

complete, it allows to construct circuits in a bottom-up approach.

As an exemplary application, we have demonstrated number factorization by reversing

the Boolean logic of a two-bit multiplier.
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It is worth stressing that this approach is fundamentally different from the one suggested

in Refs. [29, 41, 42] where the magnetic states of Boltzmann machines have been designed

to be constrained by spin-current biasing of isolated superparamagnetic tunnel junctions

(sMTJ). Although this approach was notably demonstrated on a small, yet emblematic,

prime factorization operation [40], it suffers a significant digital overhead because the in-

dividual current biases of all sMTJ elements in the circuit depend on the global magnetic

state, i.e., the magnetic state of all elements. This means that the current biases need to

be recalculated and adapted on the timescale between two consecutive switches anywhere

in the circuit [40], since such switches affect the global magnetic state. However, the time

between two consecutive switches decreases with increasing system size, making p-bit logic

inversion hard to scale since there is a critical system size for which the time to update the

current biases reaches the practical limits. In contrast, our local DES scheme can be applied

on timescales that only depend on the number of islands of individual gates used in the

circuit, which remain constant regardless of the total circuit size, thus potentially allowing

the inversion of circuits of any size. In addition, a local DES scheme only requires a-priori

knowledge about the logically correct states of a single (NAND) gate, which implies that it

can be used to tackle every Boolean problem, hence omitting the need of redesigning the

DES scheme as is the case for global DES schemes.

The disadvantage of a bottom-up approach is the overhead in the number of nanomagnetic

islands needed to build a circuit. For example, our two-bit multiplier consists of 46 islands,

which exceeds the number of sMTJ elements that are used in the p-bit logic of Borders et

al. [40]. However, there, the small number of sMTJ elements is achieved by considering

a circuit which is specifically designed to factorize a fixed number into two primes. This

contrasts our more general approach, which allows to build circuits that are able to reverse

any multiplication, without any additional design conditions. Though, the overhead in the

number of nanomagnetic islands can be significantly reduced, e.g. with an arrangement that

directly mimics the functionality of a two-bit multiplier (or, at least, by using half-adder

building blocks instead of individual NAND gates). However, finding novel gate designs

capable of inherently emulating such complex functionalities while requiring a smaller overall

number of islands is not a trivial task. Future work will attempt to use generative machine

learning models to aid in the search for such design improvements.

Regardless of these developments, the nanomagnetic self-organizing gates presented here
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represent a first important step towards the realization of unconventional computing ar-

chitectures for the solution of a wide variety of problems of interest in academia and in-

dustry. Of particular interest are those related to cryptographically-important functions

such as RSA [43] (Rivest–Shamir–Adleman) and ECDSA [44] (Elliptic Curve Digital Signa-

ture Algorithm), as well as many-to-one hashing functions [45], which are central to digital

security [46] and blockchain protocols [47].
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and RL Stamps. Creep and flow regimes of magnetic domain-wall motion in ultrathin pt/co/pt

films with perpendicular anisotropy. Physical review letters, 99(21):217208, 2007.

[36] Shigemi Mizukami, EP Sajitha, D Watanabe, F Wu, T Miyazaki, Hiroshi Naganuma,

M Oogane, and Yasuo Ando. Gilbert damping in perpendicularly magnetized pt/co/pt films

investigated by all-optical pump-probe technique. Applied Physics Letters, 96(15):152502,

2010.

[37] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar,

T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki. Large voltage-induced magnetic

anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 4(3):158–161, 2009.

ISSN 1748-3395.

23



[38] Martin Weisheit, Sebastian Fähler, Alain Marty, Yves Souche, Christiane Poinsignon, and

Dominique Givord. Electric field-induced modification of magnetism in thin-film ferromagnets.

Science, 315(5810):349–351, 2007. ISSN 0036-8075.

[39] Matthew W. Daniels, Advait Madhavan, Philippe Talatchian, Alice Mizrahi, and Mark D.

Stiles. Energy-efficient stochastic computing with superparamagnetic tunnel junctions. Phys.

Rev. Applied, 13:034016, Mar 2020.

[40] William A Borders, Ahmed Z Pervaiz, Shunsuke Fukami, Kerem Y Camsari, Hideo Ohno, and

Supriyo Datta. Integer factorization using stochastic magnetic tunnel junctions. Nature, 573

(7774):390–393, 2019.

[41] Brian Sutton, Kerem Yunus Camsari, Behtash Behin-Aein, and Supriyo Datta. Intrinsic

optimization using stochastic nanomagnets. Scientific reports, 7(1):1–9, 2017.

[42] Kerem Y Camsari, Brian M Sutton, and Supriyo Datta. p-bits for probabilistic spin logic.

Applied Physics Reviews, 6(1):011305, 2019.

[43] Shaina Garg and Mukesh Kumar Rana. A review on rsa encryption algorithm. International

Journal Of Engineering And Computer Science, 5(7), 2016.

[44] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algo-

rithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[45] Paul C Van Oorschot and Michael J Wiener. Parallel collision search with application to hash

functions and discrete logarithms. In Proceedings of the 2nd ACM Conference on Computer

and Communications Security, pages 210–218, 1994.

[46] Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

[47] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,

2019.

24


