
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Magnetic-Gradient-Free Two-Axis Control of a Valley Spin
Qubit in math

xmlns="http://www.w3.org/1998/Math/MathML"
display="inline" overflow="scroll">msub>mi>Si/mi>

mi>x/mi>/msub>msub>mi>Ge/mi>mrow>mn>1/mn>mo
>−/mo>mi>x/mi>/mrow>/msub>/math>

Y.-Y. Liu, L.A. Orona, Samuel F. Neyens, E.R. MacQuarrie, M.A. Eriksson, and A. Yacoby
Phys. Rev. Applied 16, 024029 — Published 17 August 2021

DOI: 10.1103/PhysRevApplied.16.024029

https://dx.doi.org/10.1103/PhysRevApplied.16.024029


Magnetic-gradient-free two-axis control of a valley spin qubit in SiGe

Y.-Y. Liu,1 L. A. Orona,1 Samuel F. Neyens,2 E. R. MacQuarrie,2 M. A. Eriksson,2 and A. Yacoby1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2University of Wisconsin-Madison, Madison, 53706, Wisconsin, USA

(Dated: July 30, 2021)

Spins in SiGe quantum dots are promising candidates for quantum bits but are also challenging
due to the valley degeneracy and weak spin-orbital coupling. In this work we demonstrate that valley
states can serve as an asset that enables full two-axis control of a singlet-triplet qubit formed in a
double quantum dot. We measure the valley spectrum in each dot using magnetic field spectroscopy
of Zeeman split triplet states. We find a finite probability of valley states to flip during interdot
transitions, which in turn provides a g-factor difference ∆g between two dots. This ∆g serves as
an effective magnetic field gradient and allows for qubit rotations with a rate that increases linearly
with an external magnetic field. We measured several interdot transitions and found that this
valley introduced ∆g is universal and electrically tunable. This could potentially simplify scaling
up quantum information processing in the SiGe platform by removing the requirement for magnetic
field gradients which are difficult to engineer.

INTRO

Quantum algorithms have been proposed to solve prob-
lems that are formidable for classical computers [1–4].
Electron spins confined to gate defined semiconductor
quantum dots hold promise as quantum bits (qubits) due
to the promise of long coherence times and the localized
nature of their control, making them promising for scal-
ing up to the large number of qubits required for real
algorithms [5–8]. Single spin qubits have demonstrated
high fidelity single qubit gates of 99.9% [9] and two qubit
gates above 98% [10]. While the difficulty in addressing
single spin quibts might be an obstacle for scaling up,
singlet-triplet (ST) qubits have the advantage of having a
Hamiltonian whose magnitude and direction can be elec-
trically tuned from the exchange energy axis (J axis) to
an additional control axis generated by a magnetic field
gradient, ∆BZ [11, 12]. This allows full two axis control
without microwave drives.

Among all semiconductor platforms, silicon/silicon-
germanium (Si/SiGe) is appealing because its weak nu-
clear spin background minimizes the decoherence caused
by magnetic field fluctuations [8, 13]. Moreover, weak
spin-orbit coupling further reduces the spin relaxation
caused by charge fluctuation. This, however, is a dou-
ble edged sword, because spin-orbital coupling can also
be used for electrical spin control. In the absence of full
electrical control, other works have used micromagnets
placed near the qubit to create a local magnetic field gra-
dient for an effective spin drive [7, 9, 12, 14]. Strong field
gradients, however, are hard to create over large areas of
the sample, posing challenges for scaling up this scheme.
Another challenge is the valley degeneracy, which may
also contribute to spin decoherence [15] and need to be
removed by lattice strain and electrostatic confinement
[16, 17]. This degeneracy can be measured using mag-
neto spectroscopy, Hall Bar measurements and dispersive
readout [16, 18, 19].

In this work we investigate a valley-assisted spin qubit
formed in SiGe double quantum dots which does not re-
quire a magnetic field gradient to achieve two axis single
qubit control. For interdot transitions where the electron
number is (4n,4m) - (4n±1,4m∓1), where n and m are in-
tegers, valley flipping is required for transitions between
ground states in each dot. We perform magnetic field
spectroscopy of Zeeman split triplet states (spin funnel
measurement) [20] to map the valley spectrum in each
dot and demonstrate that valley flipping at the interdot
transition is allowed. This valley flip provides a g-factor
difference ∆g and generates a ∆BZ rotation whose pro-
cession rate increases linearly with increasing magnetic
field like other spin-orbital qubit [21, 22]. Importantly,
this valley introduced ∆g is also electric field dependent.
The combined dependence on the magnetic and electrical
fields enables a tunable ∆BZ rotation. This could poten-
tially simplify scaling up quantum information processing
as it removes the need for fabricating micromagnets.

DEVICE AND METHOD

Figure 1(a) shows a scanning electron microscope im-
age of a typical device that utilizes an overlap gate ge-
ometry to achieve quantum dot confinement [23]. The
barrier gates, B, create potential barriers for controlling
tunneling rates and plunger gates, P, select the charge
state in each dot and tune their chemical potential. For
this experiment, a double quantum dot (DQD, marked
in yellow) is formed at the left two plunger gates P1 to
P2, while P3 to B5 control the tunneling rate to a fermi
sea. We also form a sensor dot (marked in orange) to
perform charge detection and use RF-reflectometry for
fast readout.

Figure. 1(b) demonstrates Pauli-blockade at the (4,0)-
(3,1) transition, as required for forming a singlet-triplet
qubit. The energy states of the DQD are dependent on
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Figure 1. (a) SEM of an overlap style device. The DQD and sensor location are labeled as yellow and orange dots, respectively.
(b) Charge stability diagram measured by performing charge readout as a function of plunger gate voltages after being prepared
in a random (3,1) state. Spin blockade will keep triplets in configuration (3,1) in the bright area in the (4,0) region, giving rise
to the readout position M . The position I is for the initialization of a singlet, position D is for minimizing interdot interaction
and position E is for qubit operation. (c) Schematic level diagram as a function of ε with the singlet plotted as solid lines and
triplets plotted as blue dashed lines. Inset: four possible (3,1) states interact with S(4, 0). (d) Spin funnel measurements that
serve as valley spectroscopy. Two sets of curves are emphasized by the red and yellow arrows. The valley states of the triplets
are labeled accordingly. Inset: pulse sequence.

which of the two valley eigenstates, v or v’, the electrons
occupy. Here we note that valley states v and v’ can be
different between dots, and thus there is no orthogonality.
In the (4,0) charge state the four spin valley combinations
of the ground orbital state are completely filled. The spin
blockade region shown in Fig. 1(b) is cutoff by transitions
into the excited orbital state, which is 200 µeV higher
than the ground state and allows a triplet (4,0) states.
This energy is large enough to be ignored in the spin
dynamics discussed below.

The insets of Fig. 1(c) show the four possible (3,1)
states that the ground (4,0) state can transition to with-
out a spin flip. We use the notation (3, 1)ij where the
superscript i represents the valley of the vacancy in the
left dot and j represents the valley of the electron in the
right dot. The ground (3,1) charge state is then (3, 1)v′v.
Assuming that the valley splitting in the left(right) dot
is ∆L(R), the three excited (3,1) valley states would be

(3, 1)v′v′
, (3, 1)vv and (3, 1)vv′

and are ∆R, ∆L and
∆L + ∆R higher in energy compared to the (3, 1)v′v

state. Singlet states S(3, 1)v′v′
and S(3, 1)vv couple to

S(4,0) without flipping the valley with a coupling rate tc.
S(3, 1)v′v and S(3, 1)vv′

couple to S(4,0) while flipping the
valley index at a different rate tc2. The Hamiltonian of
the singlet subspace in the basis of S(3, 1)vv′

, S(3, 1)vv,

S(3, 1)v′v′
, S(3, 1)v′v and S(4,0) can be written as

∆R + ∆L 0 0 0 tc2
0 ∆R 0 0 tc
0 0 ∆L 0 tc
0 0 0 0 tc2
tc2 tc tc tc2 ε

 (1)

where ε is the detuning between the chemical potentials
of the ground (4,0) and (3,1) charge states.

Figure 1(c) plots the schematic energy diagram of all
relevant states as a function of ε. The interdot coupling
tc, tc2 opens up the avoided crossing of all (4,0)-(3,1)
singlet transitions, and leads to the hybridization of dif-
ferent S(3, 1)ij singlets when tc, tc2 & ∆L(R) as shown by
the solid lines in Fig. 1(c). For all (3,1) triplet states, the
Pauli blockade forbids the interdot transition and give
rise to the energy levels as shown by the blue dashed
lines. An external magnetic field Bz will further split the
triplet states to T+, T0 and T− that are separated by the
Zeeman energy EZ = gµBBz (not shown in the figure).

VALLEY SPECTROSCOPY

Spin funnel measurements are standard technique that
extracts the exchange energy J(ε) between the ground
singlet and T0, by detecting the S-T+ degeneracy as a
function of magnetic field B and ε. We first prepare the
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ẽ (mV)

B
z
(T
)

tc = 12.0 ueV(c)

0 5 10

Z:\qDots\data\s
ilicon\HarvardF
ab7Dev1Data2\
sm_STPMagnet
_A_0619.mat

J0 = 0.31 T
DJ/e = -.8 T/V

.09 meV/V

-0.34

-0.32

-0.30

-0.28

10
-4

0

1

2

3
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Figure 2. (a) Fit to the curves in Fig. 1(d). (b-c) Spin funnel measurements and fits that demonstrates the gate dependence
of ∆R (b) and ∆L (c).

DQD in a singlet by loading the ground (4,0) state at I
in Fig. 1(b) and then park at M . We then abruptly pulse
the DQD to E and evolve for a time of τE = 1 µs. Finally,
we perform readout of the spin state at M . During the
process we keep the pulse along the diagonal (ε) direction
such that ∆VP2 = −∆VP1 = ε̃ with a lever arm that
converts from gate potential to energy given by ε = 0.25ε̃
meV/mV. At a detuning where EZ = J(ε), either a field
gradient or spin-orbital coupling creates an interaction
between the singlet state and the degenerate T+ state
and results in a finite probability PT of flipping the state
into a triplet state [11, 24, 25]. Fig. 1(d) demonstrates
the data over ε̃ = 0 - 3 mV and a magnetic field range
Bz = -0.9 ∼ 0.5 T. A multitude of features symmetric in
magnetic field are observed.

The orange arrows point to 4 pairs of curves where the
position of the S-T+ transition is quickly changing with
ε̃. The orange v’v curve approaches zero field at large ε̃
and maps out the the ground state singlet energy that is
plotted as the orange line in Fig. 1(c). This results from
the crossing of this ground singlet state and T+(3, 1)v′v.
The other 3 pairs are parallel to the first pair and offset
by 12 µeV, 33 µeV and 45 µeV, which corresponds to the
intersection between the ground singlet and T+(3, 1)v′v′

,
T+(3, 1)vv and T+(3, 1)vv′

. From these observations we
find valley splittings of 12 µeV and 33 µeV but we cannot
tell which corresponds to ∆L or ∆R. We take ∆L > ∆R

for convenience in the following discussion.

Our experiments take place with an electron temper-
ature of around 100 mK, which causes thermal excita-
tion to the singlet state S(3, 1)v′v′

with approximately
a 10% probability at E. The energy spectrum of this
state is plotted as the red curve in Fig. 1(c). We observe
signatures of the degeneracy between this exited singlet
state and the 4 triplet states as additional four pairs of
curves indicated by the red arrows in Fig. 1(d). The
red v’v’ curves maps the degeneracy between S(3, 1)v′v′

and T+(3, 1)v′v′
. The crossing between S(3, 1)v′v′

and
T+(3, 1)vv and T+(3, 1)vv′

leads to parallel curves with
offsets of ∆R − ∆L = 21µeV and ∆L = 33µeV. The
crossing between S(3, 1)v′v′

and T−(3, 1)v′v gives rise to
red v’v curves with an offset of ∆R = 12µeV relative to
the v’v’ and a flipped direction of curve in response to

the magnetic field because it is from the opposite Zeeman
branch.

Figure 2(a) overlaps fits for the ground and first excited
singlet energies (red and orange curve in Fig. 1(c)) with
the data in Fig. 1(d). There is reasonable agreement
between the model and data using the interdot coupling
as the only free parameter with a best fit of tc = 15 µeV.
We further utilize this spectroscopy method to measure
the gate dependence of ∆L(R). Fig. 2(b) shows the second
funnel in greater detail by reducing the range of Bz and
enlarging the range of ε̃. We fit the curve assuming ∆R =
∆R0 + ε̃∆′R and find ∆′R = 0.3 meV/V. Similarly we
find ∆′L = −0.09 meV/V as shown in Fig. 2(c). This
is comparable to results reported in previous works [15–
17, 26].

The quantitative fitting indicates that all interdot tran-
sitions are allowed, whether they involve a flip between
the valleys or not. The orange vv and v’v’ curves are
much brighter than orange v’v and vv’ curves in Fig.
1(d), which suggests a larger PT at these transitions.
This is expected because flipping the singlet S(4, 0) to
the T+(3, 1)v′v′

or T+(3, 1)vv states does not require flip-
ping the valley of the transitioning electron (Fig. 1(c)
insets). This suggests that the valley states maybe simi-
lar between dots and a systematic quantitative study in
PT would help characterize the local valley states. Our
spectroscopic technique is also applicable to valley qubits
on arbitrary materials.

TUNABLE TWO AXIS CONTROL

Coherent qubit control is explored in the subspace
spanned by the ground singlet and T0(3, 1)v′v. The
Hamiltonian can be approximated by H = J(ε)σz +
(gLBzL − gRBzR)µBσx. Here σx,z are the Pauli oper-
ators, gL(R) and BzL(R) are the g-factor and external
field at left(right) dot. This system can achieve flexible
two axis control as illustrated by the Bloch sphere in Fig.
3(a) [8, 12]. Rotation along the Z axis (J oration) can
be performed near the interdot transition where J(ε) is
large and {S, T0} are the eiganstate of the system Hamil-
tonian. X axis rotations (∆Bz rotations) are achieved at
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Figure 3. (a) The Bloch sphere for singlet-triplet qubit. (b)
The charge readout as a function of ε̃ and τE after the ∆BZ

rotation. Pulse sequences are plotted above the data. (c) A
line cut of the data in panel (b) at ε̃ = 15 mV (black dot)
and the fit (blue line) (d) The charge readout as a function
of ε̃ and τE after the ∆BZ rotationand the J rotation. Pulse
sequences are plotted above the data.

large ε where J(ε) is negligible and the energy splitting is
set by µB(gLBzL − gRBzR) and the eigenstates are | ↑↓〉
and | ↓↑〉 [11, 12].

We characterize the ∆BZ rotations by initializing the
system in S(4, 0) at M and then pulsing the DQD to spot
E to turn off J , allowing the qubit to rotate around the
∆BZ axis into superpositions of S and T0. We then pulse
back to M for readout [11, 12]. Figure 3(b) demonstrates
charge readout as a function of evolve time τE and loca-
tion (ε̃) when we set the field Bz = 1 T. For ε̃ > 10 meV,
we find an oscillation at a constant frequency f∆Bz = 5.5
MHz. In figure 3(c) we fit the oscillation at ε̃ = 15 mV
to A cos(2πf∆BzτE) exp(−(τE/T

∗
2 )2) + BτE + C. Here

we find the coherence lifetime T ∗2 = 1 µs. The constant
A = 1.2× 10−4 converts the spin probability to a charge
readout voltage, B = 5×10−5(µs)−1 reflects the readout
position drift due to waveform distortions in the pulsing
sequence and C is a background.

When ε̃ < 10 mV, the oscillation rate is larger than
f∆Bz and the amplitude is smaller, indicating a finite
J(ε), which contributes to the rotation rate and shifts the
angle from the ∆BZ axis. J rotation can be characterized
by a similar process by adding adiabatic ramping between
M (ε̃ = 0) and D (ε̃ = 15 mV) to map S to | ↓↑〉 and T0

to | ↑↓〉 [20]. The pulse sequence and result are presented
in Fig. 3(d). For 1 < ε̃ < 4 mV the rotation amplitude is
constant and the rotation rate is strongly dependent on
ε̃. Here J is dominant, and the rotation rate is electrically
tunable as expected.

We emphasize that no micromagnet or other external
magnetic field gradient source was added to this device
and thus BzL = BzL = Bz. To explore the mechanism
we measure f∆BZ

as a function of Bz. Figure 4(a) plots
charge readout as a function of τE and Bz after a ∆BZ
rotation at ε̃ = 10 mV such that J(ε̃) is negligible. The
∆BZ rotation rate is then extracted and plotted as a
function of field in Figure 4(b). The error bar δf∆Bz is
the standard deviation of f∆Bz estimated from 10 mea-
surements at the same magnetic field.

This result is consistent with a difference in the g fac-
tor of the two dots of around ∆g = 3.8×10−4 = 0.02%g.
We note that the two dots’ ground states occupy different
valley states and this ∆g is consistent with the g factor
difference between valleys as previously reported [27, 28].
In addition, we find δf∆Bz ∼ 0.5 MHz for all field. Zee-
man energy fluctuation is hδf∆Bz ∼ 2 neV and is in good
agreement with previous report [8]. This indicates that
the major source of fluctuation is the background nuclei
of 29Si in this isotopically nature silicon substrate.

This valley introduced ∆g allows the rate of the ∆BZ
rotations to be tuned by an external magnetic field. We
expect the ∆BZ rotation rate would be 14 MHz at 3 T
(beyond the current limit of our magnet), comparable
to the field gradient generated by a micro-magnet [12].
This would potentially reduce design complexity for a
large array of spin qubits because it eliminates the need
for an artificially generated field gradient.

In order to verify the generality of this phenomena,
we measured other (4n, 4m)-(4n±1, 4m∓1) transitions
where the 4 valley spin states are all filled up in one dot
and the relevant orbital of the other dot is empty. As
in the case of (4,0)-(3,1), the ground states of the (4n,
4m) and (4n±1, 4m∓1) states occupy different valley
states, which introduce a ∆g to the singlet-triplet qubit
Hamiltonian. Figure 4(c) labels these (4n, 4m)-(4n±1,
4m∓1) transitions with colored circles in the charge sta-
bility diagram. At the (1,3)-(0,4) transition, we measure
f∆Bz/Bz = 8 MHz/T which is almost double the value
for the (4,0)-(3,1) transition. This ∆g could be electrical
gate dependent.

To systematically study the gate dependence we fo-
cused on (5,3)-(4,4)-(3,5) transition where we can fix
the barrier gate voltages and only change VP1 and VP2.
At the (5,3)-(4,4) we find f∆Bz/Bz = 0. Figure 4(d)
demonstrates the ∆Bz rotation at the (4,4)-(3,5) transi-
tion using charge readout as a function of ε̃ and τE . We
find the rotation amplitude is maximized and the fre-
quency increases with ε̃ when ε̃ > 8 mV. This indicates
f∆Bz/Bz increases with ε̃. At ε̃ = 15 mV f∆Bz/Bz = 6
MHz/T and at ε̃ = 25 mV, f∆Bz/Bz has increased by 2
MHz/T. The gradient of ∆g is 200 MHz/(T · V). The
(5,3)-(4,4) transition is located at ∆VP1 = −∆VP2 > 40
mV from the (4,4)-(3,5) transition. It is not surprising
that f∆Bz/Bz = 0 at the (5,3)-(4,4) transition due to this
rapid change in ∆g.
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Figure 4. (a) The charge readout as a function of τE and
Bz after a ∆BZ rotation with ε̃ = 10 mV. Pulse used is the
same as shown in Fig. 3(a). (b) f∆bz as a function of Bz.
(c) Schematic of a charge stability diagram. Colored circles
labels the transitions that satisfy (4n, 4m)-(4n±1, 4m∓1).
The arrow indicates the direction of ε. (d) The charge readout
as a function of ε̃ and τE after the ∆Bz rotation at (4,4)
transition. Dashed lines indicates the range of ε̃ that ∆Bz

rotation is dominant and f∆bz is labeled on top.

The gate dependence of the ∆g could enable qubit op-
erations that require fast changes in ∆Bz. The charge
noise σε introduces a fluctuation in the Zeeman energy
gradient given by σεµBBZε∂∆g/∂ε. Typical charge noise
that would cause charge dephasing rate σε/h = 5 MHz
[19] would introduce dephasing rate of only 20–30 Hz
along ∆Bz axis at Bz = 1 T. Compared to the field
gradient generated by a micro-magnet, f∆Bz by ∆g can
be arbitrarily high with increasing external field. The g
factor difference between valleys has been explained by
spin-orbital coupling in previous works [27, 28]. A gate
dependent g factor has been predicted for SiGe [28] and
observed in Si-MOS system [25, 29]. As with the valley
splitting, a maximized ∆g is expected for an atomically
flat Si/SiGe interface and high external electrical field.
We thus expect a potentially higher ∆Bz gate fidelity
with better substrates and smaller QDs.

CONCLUSION

In this work we have investigated Si/SiGe DQD
transitions where the electron number is (4n,4m)-
(4n±1,4m∓1). The spin funnel measurements performed
under these conditions introduce a technique for extract-

ing the valley spectrum in each dot and prove that there
is a finite probability of valley flips during interdot tran-
sitions. The ground state in each dot occupies a different
valley state which provides a g-factor difference between
the two charge states. This g-factor gradient generates
a ∆Bz rotation that is linear to an external magnetic
field and is also gate dependent. These two dependen-
cies provide a tunable ∆Bz rotation that does not require
a micro-magent. This would potentially simplify scaling
up to large arrays of spin qubits for quantum information
processing.
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