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High Power X-band Relativistic Backward-Wave Oscillator with Degenerate
Synchronous Regime Operating at an Exceptional Point
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An exceptional point of degeneracy (EPD) is induced in a system made of a linear electron beam
interacting with an electromagnetic (EM) guided mode in a vacuum tube made of a corrugated
circular metallic waveguide with distributed output ports. This scheme enables a degenerate syn-
chronous regime in backward wave oscillators (BWOs) where the electron beam provides distributed
gain to the EM mode with distributed power extraction. Particle-in-cell simulation (PIC) results
demonstrate that the proposed EPD-BWO has a starting-oscillation current that scales quadrat-
ically with BWO length to a non-vanishing value, which does not occur in standard BWOs and
demonstrates the occurrence of the EPD and hence the degenerate synchronism operational regime.
The degeneracy of two interactive hybrid modes is also verified by observing the coalescence of their
complex-valued wavenumbers at the EPD frequency. Observations on the kinetic energy distribu-
tion of the electrons along the BWO demonstrate that the proposed EPD-BWO regime is capable
of achieving higher power conversion efficiency at higher levels of power generation due to its ability
of maintaining the synchronism for longer BWO lengths compared to the standard BWO regime of
operation.

I. INTRODUCTION

An exceptional point of degeneracy (EPD) is here
demonstrated in a system made of an electron beam in-
teracting with an electromagnetic (EM) guided mode.
The characterizing feature of an exceptional point is the
spectral singularity resulting from the degeneracy of at
least two eigenstates. We stress the importance to refer
to it as “degeneracy” as implied in [1]. Despite most of
the published work on EPDs are related to parity time
(PT) symmetry [2, 3], the occurrence of EPDs does not
necessarily require a system to satisfy the PT symmetry
condition, however, in several case it involves a system
to simultaneously have gain and loss [4]. The system
we consider in this paper involves two complete different
media that support waves: an electron beam (e-beam)
that supportsspace charge waves and a waveguide that
supports EM waves. Exchange of energy occurs when
an EM waves in a slow wave structure (SWS) interacts
with the e-beam. In this paper the degeneracy condition
is enabled by the distributed power extraction (DPE)
from the SWS waveguide as shown in Fig. 1. The en-
ergy that is extracted from the e-beam and delivered to
the guided EM mode is considered as a distributed gain
from the SWS perspective, whereas the DPE represents
extraction “losses” and not mere dissipation [5, 6].

Backward-wave oscillators (BWOs) are high power
sources where the power is transferred from a very en-
ergetic e-beam to a synchronized EM mode [7]. The ex-
tracted power in a conventional BWO is usually taken at
one end of the SWS [8, 9] as shown in Fig. 1(a). One
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challenging issue in BWOs is the limitation in power gen-
eration level. Indeed conventional BWOs exhibit small
starting beam current (to induce sustained oscillations)
and limited power efficiency without reaching very high
output power levels [10]. Several techniques were pro-
posed in literature to enhance the power conversion effi-
ciency of BWOs by optimizing the SWS and its termina-
tion. For example, non-uniform SWSs were proposed to
enhance efficiency of BWOs in [11], in [12] a resonant re-
flector was used to enhance efficiency to about 30%, and
a two-sectional SWS was also proposed to enhance the
power efficiency in [13]. These were optimization tech-
niques. Here, instead, we demonstrate the effectiveness
of a regime of operation of a BWO based on a mechanism
not utilized yet in contest of BWOs, i.e., exploiting the
properties pertaining to the physics of an EPD realized
using a DPE scheme as depicted in Fig. 1(b). We refer to
a BWO that is operating at an EPD, like the one in Fig.
1(b), as an EPD-BWO. In this paper we show the phys-
ical mechanism of an EPD arising from the interaction
of an e-beam and and EM wave in a SWS and we show
how this finding can be used as a regime of operation in
what we call an EPD-BWO to produce very high power
with high efficiency.

In our previous work in [5] a theoretical and idealis-
tic analysis of EPD-BWOs based on a generalized Pierce
model [14] was presented. Here, the demonstration of the
EPD-BWO physical mechanism, is provided in a realistic
system as the one in Fig. 1(b) using particle-in-cell (PIC)
simulations. PIC simulations provide some of the most
accurate results available from the state of the art mod-
eling techniques of realistic vacuum electronics devices
and by many are regarded as an essential step toward
the experimental demonstration of a prototype. A re-
alistic interaction between an electromagnetic wave and
an electron beam is investigated in a cylindrical metal-
lic SWS with various extraction ports as shown in Fig.
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1(b). This paper proves the existence of the EPD in such
a system by first demonstrating the asymptotic trend of
the starting e-beam current that decreases quadratically
with SWS length to a non-vanishing value, which was
predicted theoretically in [5] and here demonstrated us-
ing accurate PIC simulations. In this paper, we also de-
rive an important formula that estimates the value of the
e-beam current that generates the EPD (it was not pro-
vided in [5]). Besides the observed unconventional trend
of the starting current peculiar of the occurrence of an
EPD, using PIC simulation, we also show the degeneracy
of the complex-valued wavenumbers of two hybrid modes
(EM waves interacting with the electron beam) in the re-
alistic waveguide system when the beam dc current is set
to specific value at a specific frequency. We provide the
performance of the EPD-BWO in terms of output power
and power efficiency: they greatly exceed those provided
by a comparable conventional design of a BWO Fig. 1(a).
We show the main physical reason behind the high power
conversion efficiency associated with the proposed EPD-
BWO regime by observing the electrons kinetic energy
distribution along the SWS using PIC simulations. We
observe that the EPD-BWO better maintains the syn-
chronism and electron coherence over the SWS length as
compared to standard BWOs and therefore allows higher
level of power conversion. Therefore this paper not only
demonstrates the physical existence of an EPD in a vac-
uum tube with distributed power extraction, by means
of accurate PIC simulations, it also shows a design of an
EPD-BWO and its great potentials in terms of very high
power generation and efficiency.

II. FUNDAMENTAL CONCEPTS: EPD IN
THEORETICAL PIERCE-BASED MODEL

The interaction between the e-beam charge wave and
the EM wave in the SWS occurs when they are synchro-
nized, i.e., when the EM wave phase velocity vph = ω/βp
is matched to the average velocity of the electrons u0,
where βp is the phase propagation constants of the “cold”
EM wave, i.e., when it is not interacting with the e-beam.
The synchronization condition provides an estimate of
the oscillation frequency of BWO ( ω ≈ u0βp ) and is con-
sidered as an initial criterion, because the phase velocity
of the “hot” modes, i.e., in the interactive system, are
different from vph and u0 due to the interaction [14, 15].

The interaction between the e-beam and the EM
wave in vacuum tube devices was theoretically studied
by Pierce in [14]. Assuming a wave eigenfunctions of
the interactive system of infinite length in the form of
φ(z, t) ∝ eiωt−ikz, Pierce showed that the solutions of
the linearized differential equations that govern the elec-
tron beam charges’ motion and continuity in presence of
the SWS EM field yield four eigenmodes whose dispersion
relation is given by the following characteristic equation
[14, 15]

(a)

(b)

FIG. 1. (a) Conventional BWO where the power is extracted
from the waveguide end; (b) EPD-BWO where the power is
extracted in a distributed fashion to satisfy the EPD condi-
tion. The power is extracted using distributed wire loops (as
an example) that are connected to coaxial waveguides.
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where β0 = ω/u0 is the unmodulated beam wavenumber,
V0 and I0 are the e-beam equivalent dc voltage and dc
current, respectively, and Zc is characteristic impedance
of the cold EM mode. The Pierce model has been ex-
tended in Ref.[5, 6] to the case of a SWS with DPE, where
the propagation constant and characteristic impedance
of the cold EM mode are complex: βp = βpr + iβpi and
Zc = Zcr + iZci.

A second order EPD occurs in the interactive system
when two solutions of (1) are identical, k1 = k2 = ke,
where ke is the degenerate wavenumber, at a given an-
gular frequency ωe. This yields that two hot modes have
exactly the same phase velocity ω/Re(ke) which means
that synchronization is achieved in the interactive system
and not in the cold system. The conditions that lead to
having two degenerate wavenumbers of hot modes are
D(ωe, ke) = 0 and ∂kD(ωe, k)

∣∣
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= 0 [16], which yet is

simplified by getting rid of ke to [5]
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The above condition represents a constraint involving
the operational frequency ω, e-beam dc voltage V0 and
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current I0, and cold SWS circuit wavenumber βp and
characteristic impedance Zc to have an EPD.

When DPE occurs in the SWS, the propagation con-
stant and characteristic impedance of the “cold” EM
mode (i.e., without coupling to the electron beam) are
complex: βp = βpr + iβpi and Zc = Zcr + iZci. The cold
propagation constant imaginary part βpi accounts for
power attenuation along the SWS due to the leakage of
power out of the SWS. Note that βprβpi > 0 for a “back-
ward” EM wave that is traveling in the cold SWS (we
are using the exp(iωt) time dependency which implies
that the EM modes propagates as exp(−iβpz)). Since
the phase propagation constant βpr is positive, because
it has to match the electron beam effective wavenum-
ber β0 = ω/u0, one has βpi > 0. Furthermore, for a
backward wave with βpr > 0, one has Zcr < 0 since
power travels along the −z direction in the cold SWS.
Therefore in the above formulas we have that Zcβp =
(Zcrβpr − Zciβpi) + i (Zciβpr + Zcrβpi) is complex.

Note that an EPD requires the coalescence of the two
eigenvectors associated to the two degenerate eigenval-
ues as well. This has been proven in Ref. [5] by ana-
lytically determining the two eigenvectors and by show-
ing their analytical convergence. Here we want to add
another perspective to ensure the system has an EPD,
by showing that this strong degenerate condition is re-
lated to the description of the two degenerate eigenvelues’
perturbation in terms of the Puiseux fractional power
expansion [17] that, truncated to its first term, implies
(kn − ke) ≈ (−1)

n
α1
√
ω − ωe where kn, with n = 1, 2,

are the two perturbed wavenumbers in the neighborhood
of (ωe, ke). The enabling factor for this characterizing
fractional power expansion is the fact that at the point
(ωe, ke) we have ∂ωD(ω, ke)

∣∣
ωe
6= 0 and therefore (2) will

yield a branch point (k − ke) ≈ α1
√
ω − ωe in the dis-

persion diagram, where α1 =
√
−2∂ωD/∂2kD

∣∣
(ωe,ke)

as

shown in Ref. [17]. The existence of the Puiseux series
results in having a Jordan block in the system matrix
which is one of the characterizing features of EPDs, as it
was shown in [5] in details, in terms of the two coalescing
eigenvectors.

The cold propagation constant imaginary part βpi ac-
counts for power attenuation along the SWS due to the
leakage of power out of the SWS as shown in Fig. 1(b).
Under the assumption that |βpi| � |βpr| the complex
EPD condition in (2) is simplified to
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A detailed formulation of the derivation and the as-
sumptions used to derive (3) is presented in Appendix
A. From a theoretical perspective, the EPD condition is
satisfied just by tuning the e-beam dc current I0 to a
specific value which we call EPD current I0e [18]. The
EPD condition in (3) shows that the required e-beam
dc current I0e increases cubically when increasing the

amount of distributed extracted power, which is repre-
sented in terms of the imaginary part βpi of the cold
SWS’s EM mode. The fact that an EPD e-beam current
I0e is found for any amount of distributed power extrac-
tion, implies a tight (degenerate) synchronization regime
is guaranteed for any high power generation. Therefore,
in principle the synchronism is maintained for any de-
sired distributed power output, according to the Pierce-
based model. Note that this trend is definitely not ob-
served in standard BWOs where interactive modes are
non-degenerate and the load is at one end of the SWS
(i.e., βpi ≈ 0 in SWSs made of copper without DPE).

The starting current for oscillation in a conventional
BWO, where the supported modes are non-degenerate,
was theoretically studied in [9]. The starting oscilla-
tion condition is determined by imposing infinite gain
Av → ∞ , where the gain Av is defined as the field am-
plitude ratio at the begin and end of the SWS [9]. Ac-
cordingly , the starting current of oscillation in a conven-
tional BWO scales with the SWS length ` as Ist = ζ/`3

[9, 19] , where ζ is a constant. When a BWO with DPE
operates in close proximity of the EPD, i.e., when the
beam dc current I0 is close to the EPD current I0e,
there are two coalescing modes out of the three inter-
acting modes with positive Re(k) and they are denoted
by k1 = ke + α

√
I0 − I0e and k2 = ke − α

√
I0 − I0e [17],

where α =
√
−2∂ID/∂2kD

∣∣
(ωe,ke)

is constant. By impos-

ing infinite gain Av →∞ for this case, it has been shown
in [5] that the starting current of oscillation is determined
in term of the EPD current and the SWS length as

Ist|EDP−BWO = I0e +
( π
α`

)2
. (4)

This remarkable result shows that the starting current
decreases to the EPD beam current for increasing length
of the SWS, in contrast to the starting current in con-
ventional BWOs that vanishes for increasing length of
the SWS. The demonstration of these two scaling laws
varying the SWS length of a realistic structure as in Fig.
1 is carried out in the next section using PIC simulations.

III. PARTICLE-IN-CELL SIMULATIONS OF
DEGENERATE SYNCHRONOUS REGIME IN

BWO

We demonstrate the EPD-BWO regime by taking a
conventional BWO design operating at X-band shown in
Fig. 1(a). The proposed EPD-BWO is shown is Fig. 1(b)
where DPE is introduced using distributed wire loops
that are connected to coaxial waveguides. The original
SWS geometry shown in Fig. 2(a), is a circular copper
waveguide with azimuthal symmetry and with inner and
outer radii of Ri = 11.5 mm and Ro = 16.5 mm, respec-
tively, and period d = 15 mm. The surface corrugation of
SWS in one period is described by a flat surface R(z) =
Ro for 0 ≤ z < w, where w = 5 mm, and a sinusoidal
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(a) (b)

(c)

FIG. 2. Details of the longitudinal cross-sections of a SWS
without (a) and with DPE (b). (c) Dispersion of EM guided
modes in the “cold” SWSs in (a) and (b), without (blue curve)
and with (red curve) distributed power extraction (DPE), re-
spectively. The dispersion shows the real and imaginary parts
of the complex wavenumber. The non-zero imaginary part of
wavenumber (red line) shows that the SWS in (b) exhibits
distributed power extraction. The black line is the “beam
line” described by β0 = ω/u0 , and the intersection point
with the curve of βpr = Re(βpr) represents the approximative
synchronization point.

corrugated surfaces for the rest of the period described as
R(z) = (Ro+Ri)/2+((Ro−Ri)/2) cos(2π(z−w)/(d−w))
for w ≤ z < d. The whole body of the BWO is made of
copper with vacuum inside. The DPE is introduced by
adding two wire loops in each unit cell, above and below
as shown in Fig. 2(b), that couple to the azimuthal mag-
netic field (shown in Fig. 3(b)), and by Farady’s Law an
electromotive force is generated that excites each coaxial
waveguide, similarly to the way power is extracted from
magnetrons (Ch. 10 in Ref. [7]). The coaxial cables have
outer and inner radii equal to 2.57 mm and 0.5 mm, re-
spectively, leading to a 98 ohm characteristic impedance.

A. EM modes in cold SWS

We first analyze the EM modes supported by the two
cold SWSs in Fig.2(a) and in Fig. 2(b) (we refer to a
“cold” SWS when we do not consider the interaction with
the e-beam). Therefore, Fig. 2(c) shows a comparison
between the dispersion relation of the EM modes in the
two “cold” SWSs: one used in the conventional BWO

(a) (b)

FIG. 3. Field distribution for the TM-like mode supported
by the SWS in Fig. 2(a): (a) electric field in a unit cell
of the longitudinal cross-section of 2(a), and (b) magnetic
field on the transverse cross-section at the largest radius of
the corrugated circular waveguide. Fields are found with the
mode solver of CST Studio Suite.

in Fig. 2(a), and the other one used in the BWO with
DPE in Fig. 2(b). The dispersion diagram shows only
the EM mode that is TM-like, i.e., the one with an axial
(longitudinal) electric field component, with electric and
magnetic field distributions shown in Fig. 3. The disper-
sion curves in Fig 2(c) show that the EM mode in the
cold SWS with DPE is a backward wave that has a prop-
agation constant with non-zero imaginary part βpi at the
frequency where the interaction with the e-beam would
occur, i.e., at the point where the EM wave phase velocity
ω/βpr is synchronized to the relativistic velocity of elec-
trons u0 = 0.88c, where c is the speed of light in vacuum.
This means that the cold SWS in Fig. 2(b) is suitable
for our design of a BWO with an EPD [5, 6]. The com-
plex wavenumber dispersion relation in presence of DPE,
shown in Fig 2(c), is obtained by using two multi-mode
ports at the begin and end of a SWS unit-cell where each
port has 30 circular-waveguide modes (almost all evanes-
cent) that sufficiently represent the first TM-like Floquet
mode in the periodic SWS, while all the coaxial waveg-
uides are matched to their characteristic impedance to
absorb all the outgoing power. This is done using the Fi-
nite Element Frequency Domain solver implemented in
CST Studio Suite by DS SIMULIA that calculates the
scattering parameters of the unit cell, that have then
been converted to a transfer matrix to get the SWS com-
plex Floquet-Bloch modes following the same method in
[20].

B. Existence of EPD-BWO regime

We demonstrate the EPD-BWO regime by considering
a conventional BWO operating at X-band whose SWS
is shown in Fig. 2(a), with added DPE ports as in
Fig. 2(b). An example of the dispersion of the complex-
wavenumber modes in the interactive (“hot”) EM e-beam
system with DPE has been shown in [5, 6] using the
Pierce-based model revealing the occurrence of an EPD
in an idealize system made of transmission lines. Here in-
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(a)

(b)

FIG. 4. Output signals and their corresponding spectra for:
(a) Conventional BWO where the output power is only ex-
tracted from one port as shown in Fig. 1(a). (b) EPD-BWO
where power is extracted from multiple ports as shown in
Fig. 1(b), they all have the same frequency of oscillations. In
both cases, the time-window used for the Fourier transforms
is depicted by a rectangle.

stead we provide a concrete demonstration of the EPD-
BWO regime in the SWS in Fig. 1(b) using PIC sim-
ulations, and resorting to some unique features of the
EPD in the e-beam - EM wave interactive system, that
supports two degenerate modes in the hot SWS. Sim-
ulations based on the PIC solver, implemented in CST
Studio Suite, use a relativistic annular e-beam with dc
voltage of V0 = 600 kV, inner and outer radii of Rib = 9
mm and Rob = 10.3 mm, respectively, and with dc axial
magnetic field of 2.6 T to confine the electron beam. The
cathode is modeled using the dc emission model with 528
uniform emission points. The full-wave simulation uses
around 1.3M Hexahedral mesh cells to model the SWS.

The output signals and their corresponding spectra for
both BWOs, with and without DPE, are shown in Fig.
4 where a self-standing oscillation frequency of 9.7 GHz
is observed when the used beam dc current is I0 = 1740
A for both cases.

We study the starting e-beam current for oscillation
in both types of BWO (the conventional one, and the
EPD-BWO in Fig. 1) by sweeping the e-beam current
I0 and monitoring the RF power and its spectrum of the
waveguide output signal at the right end of the cylindrical
waveguide. Using a SWS with 11 unit-cells we show in
Fig. 5 the output power at the main port at the right
end of the SWS when the e-beam current is just below
and just above the threshold current. A self-standing
oscillation frequency of 9.7 GHz is observed when the e-
beam dc current I0 for the conventional BWO is at or
larger than than 250A, while for the EPD-BWO, self-

(a)

(b)

FIG. 5. Output signal at the right-end waveguide port and
its corresponding spectrum when the SWS has 11 unit-cells,
at (blue) and below (black) the e-beam starting current for:
(a) Conventional BWO, and (b) EPD-BWO. The frequency
spectrum shows that there is not self-standing oscillation at
9.7 GHz when the e-beam dc current is below the oscillation
threshold, i.e., when the current is below 250A for the con-
ventional BWO, and below 1230A for the EPD-BWO, but
self-standing oscillation occurs at these two e-beam current
values, hence they represent the starting currents for the two
types of BWOs. It is important to stress that the figure shows
only the output power at the right-end port of the EPD-BWO,
and that the output value of the EPD-BWO from only the
right-end waveguide port is comparable to the one coming out
of the conventional BWO.

standing oscillations is observed for an e-beam current
I0 equal or greater than 1230A. Such oscillations are not
observed for smaller e-beam current, as for example 225A
for the conventional BWO and 1170A for the EPD-BWO.
Therefore we conclude that the the starting current of
oscillation is approximately 250A for the conventional
BWO, and 1230A for the EPD-BWO, when the SWS
length is 11 periods.

To assess the occurrence of an EPD we verify the
unique scaling trend of the starting current in (4) by
repeating the previous study for different SWS lengths.
Fig. 6 shows the starting current scaling trends for both
conventional BWO and EPD-BWO based on PIC simu-
lation results, varying the number of periods of the SWS.
The dashed lines represent fitting curves and the case of
EPD-BWO shows very good fitting with 99% R-square.
In comparison to a conventional BWO, the EPD-BWO is
characterized by a starting current (threshold) that does
not tend to zero as the SWS length increases, and a scal-
ing that is a quadratic function of the inverse of the SWS
length.
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FIG. 6. Scaling of starting e-beam current for oscillation in
conventional BWO and EPD-BWO. Dashed lines represent
fitting curves. The EPD-BWO shows a starting current trend
that does not vanish for long SWS.

C. Power performance: EPD-BWO compared to a
conventional BWO

We compare the RF conversion power efficiency (RF
output power over dc e-beam power) of the conventional
BWO with that of the EPD-BWO in Fig. 7 for e-beam dc
currents that exceed the starting current, assuming the
SWS has 11 unit-cells. The figure shows that the EPD-
BWO has higher efficiency and also higher level of output
power compared to a conventional BWO with same di-
mensions. The results show that the EPD-BWO has a
maximum efficiency of about 47% at about 0.5 GW out-
put power (the sum of the power from each output in
Fig. 1(b)). Instead, the conventional BWO has a max-
imum efficiency of about 33% at an output power level
of about 0.27 GW. It is important to point out that the
EPD-BWO has a higher threshold beam current to start
oscillations compared to the conventional one which is in
consistent with the theoretical results in [5] and with the
requirement of generating higher power levels.

Figure 8 shows the electric field distribution for the
conventional BWO and the EPD-BWO when the e-beam
dc current I0 is 1750 A, in both cases, for a SWS of 11
unit cells. The figure shows that for the conventional
BWO the power is extracted only from the main port
at the right end, whereas for EPD-BWO most of the
power is extracted in a distributed fashion from the top
and bottom coaxial waveguides, resulting in much high
power and high efficiency as demonstrated in Fig. 8.

FIG. 7. Comparison between the efficiency of a conventional
BWO and an EPD-BWO using N = 11. The EPD-BWO
shows improved efficiency at higher level of power generation
compared to the conventional BWO.

(a)

(b)

FIG. 8. Electric field distribution in the SWS for: (a)
conventional BWO and (b) EPD-BWO. The figure in (b)
shows power extraction in distributed fashion from the coaxial
waveguides at the top and bottom of the circular waveguide.

IV. MAINTAINING SYNCHRONISM AT HIGH
POWER LEVELS

The interaction between the electron beam and the
guided EM field requires synchronism. Synchronism is
achieved when the electrons average velocity and phase
velocity of the EM wave supported by the SWS are
matched. The power delivered to the EM field in
the BWOs is provided by the electrons’s kinetic en-
ergy. Therefore, extracting more energy from the elec-
tron beam would result in further decreasing the average
speed of electrons, which in turns leads the system out
of synchronism. Consequently, the level of power extrac-
tion and the power conversion efficiency would be lim-
ited because synchronism is maintained only for finite
SWS lengths. The advantage of using the EPD concept
in BWOs through introducing DPE is that the synchro-
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nism is maintained for higher levels of power extraction as
compared to conventional BWOs. To show that, we com-
pare the synchronism in the EPD-BWO regime and in the
conventional BWO by performing PIC simulations and
monitoring the electrons kinetic energy along the BWO
as shown in Fig. IV. PIC simulations are performed for
structures with a number of unit-cells N = 20 to be able
to see the electrons behavior over a large length. The
plots in Fig. IV presents the phase plots of electrons

showing the space bunching of electrons . PIC simu-
lator used about 6 × 106 particle charges to model the
electron beam, where each particle has a macro-charge
of about qp = −7 × 106e (e = 1.602 × 10−19 C) that
represents a cloud of electrons, where e is the charge of
one electron. Each plot in Fig. IV shows the kinetic
energy of the electrons along the structure , i.e., each
dot in the plot corresponds to the kinetic energy of ev-
ery electron belonging to a given particle charge at posi-
tion z. We show first the conventional BWO case when
the beam dc current I0 = 30 A is just above the esti-
mated starting current Ist = 29.8 A. For this case the
EM mode-charge wave synchronization is maintained for
almost all the SWS length as shown in Fig. 9(a). The
electrons energy distribution along the SWS, at a given
time instant after reaching the steady state regime, be-
comes more irregular when we increase the beam dc cur-
rent as shown in Fig. 9(b) and Fig. 9(c). These figures
show that length over which the synchronization and co-
herence of electron is satisfied, decreases when trying to
extract more power by increasing the beam dc current.
We now compare the EPD regime with the one of the con-
ventional BWO using the same beam dc current, which
is approximately 18 times the starting current of conven-
tional BWO case and approximately equal to the starting
current of the EPD-BWO case (I0 =550 A). The phase
space plot of the electrons at a given time instant af-
ter reaching the steady state regime in Fig. 9(c) and
Fig. 9(d) shows that the EPD-BWO better maintains
the synchronism and electron coherence over the whole
SWS length as compared to the conventional BWO, at
higher power levels. These observations contribute to
the explanation of why the EPD-BWO regime leads to
higher output power levels and higher power conversion
efficiency than those of a conventional BWO. The dashed
black line in each figure represents the time-averaged ki-
netic energy of the electrons at each z -location calcu-

lated as Ek,avg(z) =
1

T

∫ t=tref+T
t=tref

Ek(z, t), where tref is

any time instant after steady state regime is reached,
T = 1/f and f is the oscillation frequency, and Ek(z, t)
is equivalent electrons kinetic energy calculated as the
mean of electrons energy existing in small proximity of
1 mm window along the coordinate z at time instant t.
Comparing Fig. 9(c) and Fig. 9(d), the electrons kinetic
energy, and hence the electrons average velocity, is main-
tained for longer lengths as compared to the BWO with
standard regime, and therefore would result in a higher
energy transfer and higher power conversion efficiency.

(a)

(b)

(c)

(d)

FIG. 9. Phase space plot of electrons showing the electrons’
kinetic energy distribution at a time instant after reaching
the steady regime. (a), (b) and (c): conventional BWO when
the beam dc current is 30 A, 200 A and 550 A. (d): EPD-
BWO when the beam dc current is just above the starting
current for oscillation 550 A. (a), (b) and (c) show that syn-
chronism is lost when attempt to increase power extraction
level by increasing the beam dc current, whereas for DPE case
in (d), synchronism is maintained for a longer SWS length
when compared to the conventional BWO in (c), assuming
that they use the same beam dc current. The dashed black
lines in the figures represent the time-averaged kinetic energy
which decreases with growing z -location because of the energy
transfer from electron beam to the SWS.
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FIG. 10. Setup used to determine the complex wavenumber
versus frequency dispersion relation of hybrid modes in hot
SWSs based on PIC simulations. Each unit cell in the hot
SWS is modeled as a multi-port network circuit with equiv-
alent voltages and currents representing EM waves (Vn, In)
and space-charge waves(Vbn, Ibn) dynamics.

V. DEMONSTRATION OF DEGENERATE
DISPERSION OF HYBRID HOT MODES USING

PIC SIMULATIONS

The goal is to verify the degeneracy of the wavenum-
bers of the modes of the interactive system (i.e, the hy-
brid modes) in the hot SWS using PIC simulations. Pre-
viously, the degenerate dispersion has been shown using
the approximate analytical method based on the Pierce
model [5]. Here we adopt the general procedure described
in [21] to estimate the complex-valued wavenumbers of
the interactive (hybrid) modes, and show the hybrid
mode degeneracy using data extracted from PIC simu-
lations. The procedure is based on exciting the SWS
from both sides by EM waves having monochromatic sig-
nal as illustrated in Fig. 10, and then calculating the
hybrid-system state vectors that describe the EM field
and the electron beam dynamics at discrete periodic lo-
cations along the SWS. The time domain data extracted
from PIC simulations are transformed into phasors after
reaching a steady regime. We then find the transfer ma-
trix of the unit-cell of the “hot” SWS that best relates
the calculated state vectors. Once the estimate of the
unit-cell transfer matrix is obtained, we find the complex
values of the wavenumbers of the hybrid eigenmodes in
a hot SWS using Floquet theory. The details ofthe steps
used to generate the hybrid-modes dispersion relation in
the hot SWS are provided in Appendix B.

The wavenumber-frequency dispersion describing the
complex-valued wavenumber of the hybrid eigenmodes
in the hot SWS is determined by running multiple PIC
simulations of a SWS with 11 unit-cells at different fre-
quencies and then determining the transfer matrix of the
unit-cell at each frequency using Eq. (B3). Calculations
are based on using a beam dc current of I0 = 260A,

which is the value of EPD beam current (pertaining to
the infinitely long SWS) according to the fitting shown
in Fig. 6; the use of this current value of current should
guarantee the coalescence of two interactive modes. It
is worth mentioning that the used beam current in this
case is below the starting current of oscillation of the
hot SWS of 11 uni cells, which is estimated to be 1215
A, therefore, one can model each unit-cell in the struc-
ture using a transfer matrix as discussed in Appendix
B. The dispersion diagram of the four modes in the hot
EM-electron beam system is shown in Fig. 11(a) (solid
curves) using 27 frequency points (27 PIC simulations).
The dashed red line represents the space-charge wave
(i.e., the beam line) of the isolated electron beam. The
figure show a degeneracy of both the real and imaginary
parts of the wavenumbers of two hybrid modes (the red
and blue curves) at a frequency near f = 9.87 GHz which
is very close to the oscillation frequency. As a further
proof, we also verify that the EPD is obtained when the
beam dc current is set to a specific value, by observ-
ing the wavenumber-beam current dispersion describing
the hybrid eigenmodes at f = 9.87 GHz, which is the
frequency at which we expect to find the EPD. This is
shown in Fig. 11(b) where two dispersion curves of the
four interactive modes intersect (in their real and imagi-
nary parts) when sweeping the beam current (the red and
blue curves). The figure show that the EPD occurs when
the beam current is close to 260 A, which is consistent
with result in Fig. 6.

VI. CONCLUSION

The physical mechanism of an EPD in a hybrid system
where a linear electron beam interacts with an electro-
magnetic mode has been demonstrated in a BWO made
of a circular corrugated waveguide with distributed power
extraction. The EPD demonstration is based on using
PIC simulations modeling realistic interactions between
an electron beam and the EM modes in the waveguide;
therefore this paper expands the previous EPD obser-
vation in [5] that was made using an approximate an-
alytical method based on the simplistic Pierce model.
The manifestation of such EPD is useful to conceive a
degenerate synchronous regime for BWOs that have a
starting-oscillation current law that decreases quadrati-
cally to a given fixed value for long waveguide interaction
lengths; as a consequence PIC simulations show higher
efficiency and much higher output power than a stan-
dard BWO. The unique quadratic threshold scaling law
for long waveguide interaction lengths observed in the re-
alistic EPD-BWO setting studied here demonstrates the
EPD-based synchronization phenomenon, compared to
that in a standard BWO that has a starting-oscillation
current law that vanishes cubically. As a further confir-
mation beyond the observed quadratic scaling law of the
threshold current, in this paper we have also shown the
complex-valued wavenumber degeneracy in the realistic
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(a)

(b)

FIG. 11. Dispersion of complex-valued wavenumbers of the
four hybrid modes in the hot SWS of 11 unit-cells, estimated
from data extracted from PIC simulation : (a) varying fre-
quency when the electron beam dc current is I0 = 260A and
(b) varying the beam dc current, at f = 9.87 GHz. All the
considered beam dc currents used to generate the results in
(a) and (b) are lower than the starting current of oscillation,
estimated to be 1215 A. The plots show a modal degeneracy
(in the real and imaginary parts) when the the beam dc cur-
rent is I0 = 260A and the operating frequency is f = 9.87
GHz

hot SWS with distributed power extraction, elaborating
data extracted from PIC simulations. The distributed
power extraction concept is useful to generate the EPD
and we have shown that the propose degenerate BWO
regime leads to higher power extraction and higher power
efficiency when compared to a standard BWO. The phys-
ical mechanism of why more power can be extracted is
also explained in terms of observations made on the dis-
tribution of the electrons kinetic energy revealing that
the synchronous behavior of the EPD-BWO is mantained
for longer SWS lengths and at higher power levels than
what observed in a standard BWO
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Appendix A: Electron beam dc current that satisfies
the EPD condition

The electron beam current that satisfies the EPD con-
dition is determined by rearranging (2) as

I0 = I0e ≡
2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3

. (A1)

To satisfy the above condition, since the e-beam dc
current I0 is real valued, the imaginary part of the right
hand side should vanish, i.e.,

arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3
 = 2nπ, n = {0,±1, ..}.

(A2)

The propagation constant and characteristic
impedance of the backward EM mode are complex,
and the imaginary part βpi > 0 of the cold propagation
constant accounts for distributed power extraction.
Under the assumption that 0 < βpi � βpr and
|Zci| � |Zcr| and considering a backward propagating
mode so that Re (Zcβp) < 0, it can be easily shown that
|Re (Zcβp)| > |Im (Zcβp)|.

By assuming that the EPD point at (ω, k) = (ωe, ke) is
close to the synchronization point of the non interactive
diagrams (that is (ω, βp) ≈ (ω, β0)) , i.e., we impose that
at ω = ωe one has βp = β0(1 + δ), where δ = δr + iδi,
and δi > 0 (because of losses and DPE in the cold SWS
supporting the backward mode). Because we assume that
both |δr| � 1 and δi � 1, the argument of the complex
value in (A2) is dominated by the latter term, i.e.,

arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3


≈ π + 3arg

((
βp
β0

)2/3

− 1

)
.

(A3)

The cubic root in (A3) has three solutions:

(
βp
β0

)2/3

≈
(

1 +
2

3
δ

)
ei2mπ/3, m = {0, 1, 2}. (A4)

Considering the cubic root solution with m = 0, the
argument in (A3) is simplified to
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arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3


≈ π + 3arg

(
2

3
δ

)
= π + 3 tan−1

(
δi
δr

)
.

(A5)

By enforcing angle condition in (A2) to (A5) we obtain

π + 3 tan−1
(
δi
δr

)
= 2nπ, n = 0,±1, ... (A6)

A relation between δr and δi is determined by solving
(A6) which finally yields three possible solutions

δi =


0√
3δr

−
√

3δr

. (A7)

We neglect the solution δi = 0 in (A7) because the
regime we are considering has DPE which implies that
δi > 0. Using the solution δi = ±

√
3δr in (A1) will finally

find the EPD current to be

I0e ≈
2V0
Zcr

(
2

3

(
δr ± i

√
3δr

))3

=
128

81
√

3

V0δ
3
i

(−Zcr)
(A8)

Therefore, the EPD condition is met by just tuning
the e-beam dc current I0 to a specific value which we call
EPD e-beam current I0e:

I0 = I0e ≈
128

81
√

3

V0
(−Zcr)

β3
pi

β3
0

∣∣∣∣
βpr=β0

. (A9)

The other two solutions of the cubic root in (A4) with
m = 1 and m = 2 are discarded because they provide
solutions for a purely real right hand side of Eq. (A1) for
|δi| > 1 and |δr| > 1, that contradict the initial assump-
tion of |δr| � 1 and δi � 1. In summary, the EPD occurs
when the e-beam current I0 takes the value in (A9).

Appendix B: Method used to find the
complex-valued wavenumber dispersion of the

hybrid hot modes using PIC simulations

We provide the basic steps used to generate dispersion
relation of the complex-valued hybrid modes in the hot
SWS, and the reader is addressed to [21] for more details.
We also provide the details pertaining to the calculations
of the equivalent EM voltages and currents in a circular
periodic waveguide since this was not discussed in [21].

We define a state vector that describes the EM and
space-charge waves at discrete periodic locations z =
zn = zref + nd as

Ψn = [ Vn, In, Vbn, Ibn ]T , (B1)

where zref = (d+w)/2 is located as shown in Fig.10, Vn
and In are equivalent voltages and currents representing
the EM mode in the SWS [22–24], and Vbn and Ibn are
equivalent voltages and currents representing the charge
wave modulating the electron beam. We define the volt-
age and current representing the EM field in the SWS as
Vn = aEzn|ρ=0 and In = aHφn|ρ=a, respectively, where
Ezn and Hφn are field components calculated at discrete
periodic locations z = zn, where zn are z-locations at
the beginning of the unit-cells illustrated in Fig. 10.
The field in the structure is dominated by theTM10 mode
which has azimuthal symmetry, i.e., the field component
Ezn and Hφnare functions of the radial coordinate only,
and a = (Ro + Ri)/2 is the circular waveguide radius at
z = zref . It is important to mention that the locations
where the field components are sampled, z = zn, are not
located where the ports along the waveguides are, i.e., the
waveguide cross-sections at z = zn are circular, therefore,
the field mainly preserves its azimuthal symmetry.

Although a PIC solver calculates the speeds of the dis-
crete large number of charged particles, we represent the
longitudinal speed of all electron-beam charges as one di-
mensional. The beam total equivalent kinetic voltage at
the entrance of the nth unit-cell is defined in time domain
as vtotbn (t) =

√
2ηutotbn (t), where utotbn (t) is the average of

all the speeds of the charges at each z -cross section (see
[5] for more details). The ac modulation is then calcu-
lated as vbn(t) = vtotbn (t)− V0, which is then converted to
the phasor domain to construct the system’s state vector.
The term Ibn is calculated as the phasor domain trans-
formation of the ac part of the current of the electron
beam, at discrete locations z = zn = nd (see [5] for more
details).

In the phasor-domain, we model each unit cell of the
interacting SWS as a 4-port network circuit as shown in
Fig. 10, and we need to determine its associated transfer
matrix. Under the assumption of small signal modulation
of the beam’s electron velocity and charge density, all
the 4-port networks modeling the interaction between the
EM and the charge wave in each unit-cell of the hot SWS
are assumed identical. Therefore, the single 4×4 transfer
matrix Tu of the interaction unit-cell should satisfy

Ψ2 = TuΨ1, (B2.1)
Ψ3 = TuΨ2, (B2.2)

...
ΨN+1 = TuΨN , (B2.N)

(B2)

where Ψn+1 and Ψn are the input and output state
vectors of the nth unit-cell, respectively, with n = 1,
2,.. N. Since the state vectors are calculated using data
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from PIC simulations, the relations in (B2) represent
4N linear equations in 16 unknowns, which are the un-
known elements of the transfer matrix Tu. The sys-
tem in (B2) is mathematically referred to as overde-
termined because the number of linear equations (4N
equations) is greater than the number of unknowns
(16 unknowns). We rewrite (B2) in matrix form as
[W2]4×N = [Tu ]4×4 [W1]4×N . The column of the ma-
trices W1 and W2 are the state vectors at input and
output, respectively, of each unit-cell and they are
written in the form W1 =

[
Ψ1, Ψ2, . . . ΨN

]
and

W2 =
[

Ψ2, Ψ3, . . . ΨN+1

]
.. An approximate so-

lution that best satisfies all the given equations in Eq.
(B2), i.e., minimizes the sums of the squared residu-

als, ||W2 −TuW1||2 is determined similarly to what was
shown in [25–27] and is given by

Tu =
(

[W2]4×N [W1]
T
4×N

)(
[W1]4×N [W1]

T
4×N

)−1
.

(B3)

The hybrid eigenmodes are determined by assuming a
state vector has the form of Ψn ∝ e−jknd, where k is the
complex-valued Bloch wavenumber that has to be deter-
mined and d is the SWS period. Inserting the assumed
sate vector z -dependency in (B2), the four Floquet-Bloch
modes wavenumbers are determined from the eigenvalue
problem

e−jkd = eig(Tu). (B4)
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