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Electrically small antennas are characterized by large quality factors, which yield limited gain-

bandwidth products as a result of the Bode-Fano limit. This bound implies a trade-off between 

antenna footprint and radiation features, hindering wireless applications that require compact, 

broadband and efficient antennas. Here, building on a previous theoretical analysis of parametric 

matching networks [Phys. Rev. Lett. 123, 164102 (2019)], we demonstrate how parametric 

phenomena can overcome this trade-off, offering a pathway to realize stable non-Foster wideband 

antennas that go beyond the restrictions of passive systems. We demonstrate our approach in a 

planar small loop antenna loaded by a time-varying capacitor that oscillates around twice the 

radiation frequency, showing that it can result in wideband radiation enhancement exceeding the 

limitations of passive scenarios. 

 

Introduction—Electrically small antennas (ESAs) satisfy the 

relation ka<π/2, where k and a are respectively the free-space 

wavenumber and the radius of the smallest surrounding sphere 

[1],[2]. Although ESAs are critical components for compact 

wireless systems [3]-[7], they suffer a general trade-off between 

size and bandwidth. ESAs are characterized by a large ratio of 

the stored to radiated energy defining their quality factor 𝑄: the 

smaller the antenna size, the higher its quality factor and the 

narrower its fractional bandwidth. For passive, linear, time-

invariant ESAs, the Chu limit, QChu defines the minimum 

attainable Q [8], and it scales with the antenna volume as 

QChu≈1/(ka)3 [9]. Consequently, while all other elements of 

modern electronics have been scaling to smaller dimensions, 

the footprint of today’s wireless technology is dominated by the 

antenna size, which cannot be squeezed too much, given the 

ever-growing requirements on bandwidth. 

This trade-off can be explained by examining the response of 

ESAs upon excitation at its input port. Due to the large 

mismatch between the source and ESA impedance 

(characterized by a large imaginary part corresponding to the 

large Q), most of the input power is generally reflected without 

the presence of a proper matching network. The gain-bandwidth 

product (G-BW) is defined as the spectral ratio of the radiated 

power Prad(𝜔) normalized to the maximum input power 

Pin,max(𝜔), |T| = Prad(𝜔)/Pin,max(𝜔), integrated over the whole 

spectrum, G-BW = ∫|𝑇|𝑑ω. The G-BW that a passive matching 

network (PMN) can achieve is limited by the Bode-Fano bound 

[10], which scales with the antenna size consistent with Chu 

limit. To visualize this trade-off, Fig. 1a shows Q for a loop 

antenna with radius a and different ka (red dots). As predicted, 

when the loop antenna size decreases, its Q increases, lower 

bounded by QChu (blue line), resulting in a smaller fractional 

BW. In Fig. 1b, we plot |T| for the loop antenna ℵ excited with 

a 50Ω source through a PMN to be resonant at f0=kc/(2π), with 

c is the speed of light, and we compare it with an ideal antenna 

؏ with Q=QChu. Indeed, the G-BW of the ideal antenna is larger 

than the realistic loop, and its value represents the Bode-Fano 

bound given it is a high Q antenna [11],[12]. 

 

 
FIG. 1. (a) Small loop antenna (inset) and its quality factor, Real 

Q compared to QChu. (b) |T| of the loop antenna [point ℵ in (a)] 

matched with a PMN (blue), compared to the use of a 

parametric matching network modulated at 2𝜔0 (red), and to 

Chu limit [point ؏ in (a)] (black). 

 

Over the last decades several methods have been explored to 

achieve G-BW beyond the Chu limit. The most established 

approach is to employ active matching networks that violate 

Foster’s reactance theorem, offering a viable path to overcome 

Chu limit for ESAs [13]-[16]. These solutions are also 

applicable to extend the BW of small resonators forming 

metamaterials [17],[18], leading to practical designs of 

wideband cloaks beyond their fundamental limitations [19]-

[20]. However, this method is known to suffer from 

instabilities, parasitics, large noise figures, and it typically 

requires complex circuitry dedicated to either transmit or 

receive operation [15]-[21]. Alternative ways to enhance the 

bandwidth of ESAs are based on considering nonlinearities, 

e.g., using magnetized nonlinear inductors for wideband 



 

 

 

radiation and harvesting for microwaves [22]-[24] and 

millimeter waves [25], or wideband optical switching based on 

Kerr nonlinearities [26]. However, the requirements of special 

materials and high-power levels, in addition to inherent 

distortions stemming from the nonlinearity, are not compatible 

with most wireless applications [22]-[23]. Lastly, direct antenna 

modulation (DAM) techniques and antenna impedance 

modulation schemes have been explored to enhance the 

bandwidth of ESAs by breaking time-invariance [27]-[32]. In 

these schemes, the transient phenomena dominate the antenna 

performance [28], hence a direct comparison with Chu limit 

remains elusive, with the additional drawbacks of limited 

overall efficiency [30]. 

In this work, we explore the possibility of enabling wideband 

radiation enhancement beyond the Bode-Fano bound by using 

parametric gain enabled through periodic temporal 

modulations. Compared to non-Foster approaches involving 

amplifiers, this method is less prone to noise [33], and stability 

can be carefully controlled [11]. In addition, the antenna in the 

presented approach can operate in both transmit and receive 

modes [33].  

Parametric gain based on temporal variations has been explored 

in a variety of technological platforms [35]-[41], and it is 

widely used in quantum computing applications [42]-[43]. The 

gain and linewidth of this phenomenon can be carefully 

controlled through the modulation properties [11],[44]. In our 

work, we modulate the antenna load to impart gain and broaden 

the bandwidth of operation, e.g., for the small loop antenna ℵ, 

as shown by the red curve in Fig. 1b, while at the same time 

ensuring stability [11]. 

 

Theoretical analysis—We consider a small loop antenna, 

modeled by an inductance 𝐿 in series with a small radiation 

resistance 𝑅𝑙 [45]-[46] (as shown in shadowed orange box in 

Fig. 2a). In order to efficiently feed the antenna with input 

signal 𝑣𝑖𝑛(𝑡) = 𝑉𝑖𝑛,0 exp 𝑗𝜔𝑡 + 𝐶𝐶, centered around frequency 

𝑓0, from a generator with internal real impedance 𝑅𝑠 (as shown 

in shadowed blue box in Fig. 2a), we impedance match the 

antenna with a capacitor 𝐶0 such that 2𝜋𝑓0 = (𝐿𝐶0)−1/2. We 

then modulate the capacitance in time as 𝐶(𝑡) = 𝐶0 +
2𝑀𝐶0 cos(𝜔𝑚 𝑡 + 𝜙), where 𝑀 is the modulation index, 𝜔𝑚 =
2𝜔0, and 𝜙 is an arbitrary phase (as shown in the shadowed 

green box in Fig. 2a). Using Floquet theorem, the current 𝑖(𝑡) 

and voltage 𝑣(𝑡) across the capacitor are characterized by 

oscillations at frequencies Ω0 and Ω−1, where Ω𝑛 = 𝜔 + 𝑛𝜔𝑚, 

written as [47] 

 
𝑖(𝑡) ≈ 𝐼0 exp 𝑗Ω0𝑡 + 𝐼−1 exp 𝑗Ω−1𝑡 + 𝐶𝐶 

𝑣(𝑡) ≈ 𝑉0 exp 𝑗Ω0𝑡 + 𝑉−1 exp 𝑗Ω−1𝑡 + 𝐶𝐶 
(1) 

and 𝐶𝐶 is the complex conjugate. Using the relation 𝑖(𝑡) =
𝑑

𝑑𝑡
(𝐶(𝑡)𝑣(𝑡)), along with the circuit equations 

 

 
𝑉𝑖𝑛,0 = 𝑗Ω0𝐿𝐼0 + 𝑉0 + 𝐼0(𝑅𝑙 + 𝑅𝑠), 

0 = 𝑗Ω−1𝐿𝐼−1 + 𝑉−1 + 𝐼−1(𝑅𝑙 + 𝑅𝑠). 
(2) 

we can get an expression for the input impedance 𝑍𝑖𝑛 = 𝑉𝑖𝑛,0/𝐼0 

seen by the source. For 𝑀 ≪ 1, 𝑍𝑖𝑛 can be approximated as 

 

𝑍𝑖𝑛(𝑀) ≈ (𝑅𝑙 + 𝑅𝑠) − 𝑗𝑧𝑟𝑒𝑠 (1 −
𝜔2

𝜔𝑟𝑒𝑠
2

) − 𝑧𝑟𝑒𝑠

𝑀2𝜔𝑟𝑒𝑠
2

𝑗(𝜔2 − 𝜔𝑟𝑒𝑠
2 ) + 𝛾𝜔

 (3) 

 

where 𝜔𝑟𝑒𝑠
−2 = 𝐿𝐶𝑒𝑓𝑓 , 𝐶𝑒𝑓𝑓 = 𝐶0(1 − 𝑀2), 𝑧𝑟𝑒𝑠 = √𝐿/𝐶𝑒𝑓𝑓  

and 𝛾 =
𝑅𝑙+𝑅𝑠

𝑧𝑟𝑒𝑠
𝜔𝑟𝑒𝑠. Eq. (3) shows that 𝑍𝑖𝑛 has a Drude-Lorentz 

lineshape with resonance frequency 𝜔𝑟𝑒𝑠 and linewidth 2𝛾. 

 

 
FIG. 2. (a) Circuit model for our time-modulated ESA. (b) |S21|2 

and (c) normalized Bode-Fano integral in the parameter space 

(𝑀, 𝑅𝑠/𝑅𝑙). The contour lines in correspond to constant values. 

(d) Squared magnitudes of scattering parameters |𝑆21|2 and (e) 

|𝑆11|2, corresponding to the three solid square symbols in (b) or 

(c). The dashed green line corresponds to PMN.  

 

The effect of modulation of the input impedance is found 

evaluating: 

 Δ𝑍𝑖𝑛 = 𝑍𝑖𝑛(𝑀) − 𝑍𝑖𝑛(0) = −
𝑗

2
√

𝐿

𝐶0
𝑀2 (1 + (

𝜔

𝜔0
)

2

) − 𝑧𝑟𝑒𝑠
𝑀2𝜔0

2

𝑗(𝜔2−𝜔0
2)+𝛾𝜔

 

which has a negative real part (negative resistance) increasing 

with M, corresponding to the parametric gain provided by the 

modulation. Interestingly, for a given antenna with fixed size, 

i.e. fixed (L,Rl), the resonance linewidth 2γ can be 

independently controlled by C0, Rs and M, which are easy to 

control, overcoming the strict trade-off between ESA size and 

bandwidth. As seen in Eq. (3), the input impedance is 

independent of the relative phase φ between modulation and 

input signal [11], other than exactly at the input frequency ω = 

ω0. When ω = ω0, the harmonics oscillating at Ω0 and Ω−1 will 

be degenerate, i.e., oscillating at the same frequency. Therefore, 

in this case the relative phase between the pump and the input 

signal will be the prime factor in determining the gain, hence 

yielding a degenerate parametric amplifier, or phase sensitive 

parametric amplifier [48]. A small deviation for the signal 

frequency from ω0, reverts the gain to be independent of the 

input phase, of course after averaging over a sufficiently long 

time that takes into account of the mismatch between 

modulation phase and input phase. An extended analysis of 



 

 

 

these issues is provided in Appendix A. Unlike phase-sensitive 

parametric amplification processes [48], where the pump 

energy at a single frequency relies on phase matching resulting 

in inherently narrowband responses, here, on the contrary, we 

distribute the gain over a broader frequency range, as the 

portion of incoming energy located exactly at 𝜔 = 𝜔0, and 

therefore sensitive to 𝜙, is negligible. 

 

Scattering matrix formalism—We model the antenna as a two-

port network. At the first port we connect the excitation source, 

while the second port is the radiation channel (Rl), as shown in 

Fig. 2a. The corresponding scattering parameters for the 

fundamental harmonic Ω0 are [11], [12] 

 

 𝑆21 =
2√𝑅𝑙𝑅𝑠

𝑍𝑖𝑛

, 𝑆11 =
𝑍𝑖𝑛 − 2𝑅𝑠

𝑍𝑖𝑛

 (4) 

 

Notably, the scattering matrix is non-unitary, because of the 

presence of parametric gain, thus we have, 

 

 |𝑆21|2 + |𝑆11|2 = 1 −
4𝑅𝑠ℜ{Δ𝑍𝑖𝑛}

|𝑍𝑖𝑛|2
≥ 1, (5) 

 

suggesting that the gain can be evaluated through the 

measurement of |S11|. This property is useful for our 

experimental investigations of the antenna performance, since 

measuring reflections at the port is easier compared to a direct 

gain measurement in radiation. We stress that the spill-over of 

part of the incoming power into the input port is not desirable 

in conventional antenna operation, and it arises here because of 

symmetry. By including asymmetries in the modulation 

network, or generally choosing a more complex modulation 

strategy, the gain can be made directional and avoid spilling of 

energy into the reflection port. 

 

We can also evaluate the Floquet scattering parameters for other 

harmonics, i.e., Ω-1 [11]. While they indicate that there is 

radiated power spilled into frequencies other than the signal 

frequency Ω0, this undesired spill-over can be controlled with 

more complex modulation schemes [33]-[34].  

 

Stability—The system becomes unstable when a complex pole, 

𝜔̃𝑝, of the scattering parameters lies in the lower half of the 

complex plane under the time convention of 𝑒𝑗𝜔𝑡 used in this 

work. To determine the poles, we determine the complex zeros 

of the denominator in Eq. (4) corresponding to the complex 

zeros of Zin. Using Eq. (3) and analytic continuation (as we 

derived the equations assuming real frequency, so to extend it 

to the complex plane we employ the analytic continuation to get 

the complex zeros of Zin) we find the condition for stable 

operation for any input frequency to be 

 

 𝑀2𝑧𝑟𝑒𝑠
2 < (𝑅𝑙 + 𝑅𝑠)2, (6) 

which indicates that the maximum negative resistance provided 

by the modulation |-M 𝑍𝑟𝑒𝑠
2 /(Rl+Rs)| needs to be smaller than 

the overall loss (𝑅𝑠 + 𝑅𝑙) in the circuit [50]. Similarly, for the 

degenerate case ω = ω0 the same condition (6) should be 

satisfied to ensure a stable operation (see Appendix A).  

 

The physical significance of the instability when condition (6) 

is not satisfied is that the harmonic amplitudes will be no more 

bounded, instead they grow indefinitely with time even though 

the values of the scattering parameters in Eq. (4) are bounded. 

Therefore, to analyze the circuit response beyond the stability 

regime, a time domain analysis should be used, highlighting the 

unbounded nature of the signals (see Appendix A). 

 

Numerical results—In Fig. 2b we plot the peak of |𝑆21|2 as a 

function of the modulation index 𝑀 and the ratio 𝑟 =  𝑅𝑠/𝑅𝑙 

where we kept constant 𝑅𝑙 = 4.5Ω and 𝑄 = 55, which are close 

to the measured values in the parametric loop antenna 

experimentally studied below. In the far right of the plot, the 

modulation violates the inequality (6), leading to self-sustained 

oscillations violating stability. The contour lines correspond to 

different values of constant |𝑆21|2, here we highlight the 

contour |𝑆21|=1 when the matching network provides 

parametric gain to the signal to be radiated in the region to the 

right. By increasing the modulation for given ratio 𝑟 we 

increase the gain, until we hit a pole of the system and enter the 

unstable region.  

A fundamental figure of merit to determine the performance of 

our modulated antenna is the Bode-Fano inequality [10]  

 

 ∫ − ln √1 − |𝑆21(𝜔)|2
∞

0

𝑑𝜔 ≤
𝜋𝑅𝑙

𝐿
; |𝑆21| < 1 (7) 

 

which is satisfied by any passive antenna, in compliance with 

Chu limit. In Fig. 2c, we show the normalized value of this 

integral [the ratio of the left hand side to the right hand side of 

(7)] for the modulated antenna. Within the stable region, small 

modulation amplitudes correspond to Eq. (7) being satisfied, 

and the antenna is narrowband. As the modulation amplitude 

grows, we enter the region for which the Bode-Fano limit is 

surpassed. As M further grows, we enter the light blue region, 

for which the transducer gain exceeds 1, and therefore Eq. (7) 

can no longer be used. This region provides even larger 

transducer G-BW, still ensuring stability. Our aim in this work 

is to explore the regime going beyond the Bode-Fano bound 

through parametric modulation of an electrically small loop 

antenna. 

 

Fig. 2d,e show |𝑆21|2 and |𝑆11|2 for three representative data 

points in Fig. 2b or c, indicated by blue, black, and red dots. We 

compare these curves with the case of passive matching 

network (PMN) of the same antenna, i.e., for M=0 and r=1 

(dashed green curve). It is shown that, as we increase M, both 

|𝑆11| and |𝑆21| increase. Later in the experimental section, we 

exploit this symmetry to evaluate |𝑆21| by measuring the 

reflection |𝑆11| then substituting in Eq. (5) to get |𝑆21|. 
Additionally, it is evident that the G-BW of the modulated 



 

 

 

antenna is much larger than the passive case, which we target 

in the experimental results.  

 

Experimental results—To experimentally demonstrate our 

theoretical findings, we fabricated a small loop antenna and 

compared the measured |𝑆11| in the passive and parametric 

scenarios for different modulation indexes 𝑀. We start 

analyzing the passive scenarios in which the antenna is matched 

through a PMN. Then we parametrically modulate the PMN as 

described above to enhance the ESA radiation. Finally, we 

compare the retrieved |𝑆21| from both passive and modulated 

antennas. 

 
FIG. 3. 3D exploded view of the fabricated passive antenna and 

the experimental setup used for the passive antenna 

measurements with all dimensions in mm. The bottom panel 

shows the bottom surface of the substrate. 

 

Passive scenario: We fabricated a small loop antenna on a low-

loss 1.575 mm thick Rogers RT Duroid 5880 substrate of 𝜖𝑟 =
2.1 and tan 𝛿 = 0.0009. A 3D geometry of the fabricated 

antenna is shown in Fig. 3, where the inner radius of the loop is 

35mm and the trace width is 4.5mm. To match this antenna to 

the generator of the vector network analyzer (VNA) with 100Ω, 

we employed an L matching network consisting of a shunt 

inductance 𝐿𝑚, which is realized with on-chip thin line of 

thickness 1 mm, as shown in the dashed box of Fig. 3, and a 

series capacitor formed by a varactor diode SMV1233 from 

Skyworks, Inc, with its capacitance tunable from 5.08pF to 1pF 

upon DC biasing. The varactor diode is connected to a DC 

feeding line through an RF choke, as shown in the dashed box, 

in order to prevent leakage of RF to the DC lines. In turn, the 

DC feeding lines are connected to a DC power supply so that 

we can tune the capacitance and thus the resonance frequency 

of the antenna as required. The two terminals of the loop 

antenna are connected to a vector network analyzer under 

excitation with power level around -40dBm to avoid triggering 

the varactor nonlinearity. Finally, we measure the differential 

S-parameters.  

 

To illustrate the operation of the antenna in connection with an 

equivalent circuit model, we draw it again for consistency in the 

bounded box of Fig. 4 along with the half circuit model, 

numbering the ports. The antenna is first tuned using a PMN 

with equivalent circuit model (ℒ matching [12] and a lumped 

capacitor 𝐶(𝑉𝐷𝐶)), as shown in the box of Fig. 4. For this 

matching circuit, we use a variable capacitor 𝐶(𝑉𝐷𝐶), which 

will be modulated later in the parametric antenna experiment, 

with its static value controlled by a DC voltage source 𝑉𝐷𝐶. In 

Fig. 4, we define three ports, 𝒶, 𝒷, and 𝒸. Ports 𝒶 and 𝒷 are 

connected to the differential input of the VNA to excite the RF 

signal transmitted through the antenna, port 𝒸 is instead 

connected to a DC supply that controls the capacitance of the 

varactor. In this definition, ports 𝒶 and 𝒷 combined define a 

single differential port, port 1, and the measurement results 

denoted as |𝑆11| defines the differential-mode S-parameters, 

while port 2 defines the radiation channel |𝑆21| = √1 − |𝑆11|2 

when the system is lossless, which is a good assumption here 

because of the negligible loss introduced by the lumped 

elements. The differential excitation implies that ports 𝒶 and 𝒷 

are excited by harmonics with same amplitude out of phase by 

𝜋 [12]. It is worth mentioning that differential-mode S-

parameters are different from common-mode S-parameters. 

However, utilizing the circuity symmetry, we can derive 

differential-mode S-parameters from the common-mode S-

parameters. This is done by first deriving the equivalent half 

circuit model, as shown in the box of Fig. 4, which has a single 

input port that can be used as a common-mode excitation to 

evaluate the S-parameters. Figure 4a,b,c plot the measured 

reflection coefficient for different values of 𝑉𝐷𝐶, showing 

efficient tuning of the antenna resonance, with 𝑓0 =
230MHz, 290MHz, and 300MHz, as we vary 𝑉𝐷𝐶 =
0, 1.5, 2.5V, respectively. In addition to the measured response, 

we show full-wave electromagnetic co-simulations [51]-[52] 

with dashed black lines, which closely agree with the measured 

response, with small deviations at high frequency due to 

parasitics and a non-accurate model of the varactor diode at 

high frequencies. In general, the maximum error at the 

resonance frequency between the measurement and the 

simulation results does not exceed 5%, which justifies the use 

of the same varactor model in all the following studies. 

 

We performed the passive antenna measurement not only to 

facilitate a comparison with the parametric modulated antenna 

in the next section, but also to have a good estimation of the 

radiation resistance of the antenna, which is crucial for the 

Bode-Fano calculations [12]. Through the simulation model 

and measurement results, we can estimate the antenna radiation 

resistance to be Rl=0.72Ω at 230MHz and 1.2Ω at 330MHz, 

while the inductance of the loop L varies from 83nH at 230MHz 

to 120nH at 330MHz. These estimated values are based on 

characterizing our antenna via full-wave simulations in Fig. 3 

and comparing it to the measured results. Additionally, through 



 

 

 

this comparison we can get a good estimate for the losses in the 

antenna that arise from lumped components and other 

parasitics, so we can efficiently separate the radiation resistance 

from the resistive loss.  

 

  
FIG. 4. (Inset) Geometry of the small loop antenna and its 

equivalent circuit model with dimensions in mm. The upper 

plane shows the top surface of the antenna with the component 

names and the lower plane (not shown here) has a partial 

ground. (a), (b), (c) Measurement and simulation results of |𝑆11| 
for different values of 𝑉𝐷𝐶 = (0, 1.5,2.5)𝑉, respectively. 

 

To retrieve the input impedance of the loop antenna through 

full-wave simulations, we calculated 𝑍𝑙𝑜𝑜𝑝(𝑐𝑖𝑟𝑐𝑢𝑖𝑡)  as 

 

 
𝑍𝑙𝑜𝑜𝑝(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 𝑍0

1 + 𝑆11(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

1 − 𝑆11(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
= ℜ𝑍𝑙𝑜𝑜𝑝 + 𝑗ℑ𝑍𝑙𝑜𝑜𝑝 

(8) 

 

where 𝑍0 is the internal impedance of the Vector Network 

Analyzer (VNA), which is 100Ω for differential measurements. 

The real (ℜ𝑍𝑙𝑜𝑜𝑝) and imaginary (ℑ𝑍𝑙𝑜𝑜𝑝) parts of the input 

impedance of the antenna are shown in Fig. 5a. We can model 

the input impedance in the frequency range of interest, shown 

by the shadowed blue region in Fig. 5a far below the first 

resonance of the loop at 600 MHz, as a large inductor in series 

with a resistance. The values of the inductor and resistor are 

shown in the right panel of Fig. 5a, with the caveat that for the 

half-circuit model, as in Fig. 4, we should use half of the values 

of the inductor 𝐿ℎ𝑎𝑙𝑓  and radiation resistance 𝑅𝑙ℎ𝑎𝑙𝑓
, so they are 

𝐿 ≈ (83.3,96.5,120) nH and 𝑅𝑙 = (0.39,0.63,0.864) Ω for 

frequencies (240,290,330)MHz respectively, as indicated in the 

inset table in the right panel. Estimating the radiation resistance 

for the passive scenario is an important step to make a fair 

comparison with the modulated antenna. Therefore, to confirm 

the retrieved values of the antenna impedance, radiation 

resistance and inductance, we set up the equivalent circuit 

model in Fig. 4 and compare the quantity 1-|𝑆11|2 from circuit 

simulations and from measurements. In the circuit model, we 

used 𝐿𝑚=4.92 nH and (𝐿, 𝑅𝑙), with C varying based on the 

applied DC voltage. We compare the results for 

𝑉𝐷𝐶=0,1.5V,2.5V in Fig. 5b,c,d, respectively. Indeed, the 

quantity 1 − |𝑆11|2 from the measurement matches very well 

with the one obtained from the circuit model. In each case we 

added to the antenna radiation resistance in the table in Fig. 5a 

right panel, the value 0.336 Ω to provide best match between 

the circuit model and the measured result. This addition models 

the losses in the antenna that come from metal absorption and 

lumped component losses. When we estimate the loss for the 

modulated antenna (presented in the next section), we found 

that these parasitic losses are increased to around 3.3 Ω, due to 

the presence of 8 additional lumped components. 

 

 
FIG. 5. Estimation of the radiation resistance and inductance. 

(a) Full wave simulation of the antenna impedance. The 

shadowed region and the inset in the right panel show the 

equivalent inductance and resistance value of the loop antenna 

at the frequency range of the experiment. (b) Measured (dashed 

red line) transducer gain calculated using 1-|S11|2, and simulated 

(solid blue line) gain calculated using the equivalent circuit 

model in Fig. 4, where the antenna parameters (𝐿, 𝑅𝑙) are used 

from (a) and an amount of 0.336 Ω is added to the 𝑅𝑙 to account 

for the losses in the antenna structure. 

 

Modulated scenario: We fabricated the time-modulated 

antenna, with 3D view shown in Fig. 6. In the new setup, the 

small loop antenna is the same as the one in Fig. 3. However, 

different from the passive scenario, we have removed the thin 

strip that forms the matching inductor (ℒ matching in the 

dashed box in Fig. 3). Additionally, we added a modulation 

network for the varactor diodes to modulate its capacitance, 

keeping the DC bias that provides a reverse bias 𝑉𝐷𝐶, and hence 

controls the DC value of the capcitance. The modulation 

network consists of a filter formed by a series 𝐿𝐶 circuit at the 

modulation frequency 𝜔𝑚 [see the inset of Fig. 6], which is 



 

 

 

connected to the two ends of the varactor diodes, and from the 

other two ends to the modulation feeding line. In turn, the 

feeding line is connected to an arbitrary waveform generator 

providing the sinusoidal modulation of the capacitance 𝑉𝑠 =
𝑉𝑚/2 sin 𝜔𝑚𝑡. Therefore, the total modulation signal is 𝑉𝑠 =
𝑉𝐷𝐶 + 𝑉𝑚/2 sin 𝜔𝑚𝑡, where 𝑉𝐷𝐶 and 𝑉𝑚 control the value of 𝐶0 

and 𝑀, respectively. The AWG output is coupled to an 

adjustable RF amplifier (not shown) so that the amplitude of the 

modulation signal can be controlled. The filter at 𝜔𝑚 is used to 

prevent leakage of the RF signals provided by the VNA into the 

modulation network at the frequency of interest. The RF chokes 

for the DC bias intend to prevent leakage of both RF and 

modulation signals into the DC feeding lines. The top and 

bottom partial ground planes are connected through platted 

vias, as indicated by the arrows in Fig. 6, to constitute a 

common ground for the modulation and RF signals and to avoid 

grounding loops.  

 

A real photograph of the fabricated antenna in the measurement 

stage is shown in the left panel of Fig. 7, and the whole structure 

as described can be simply modeled with an effective half 

circuit as seen by the VNA source due to the differential 

excitations, as shown in the bottom panel of Fig. 7. Notice that 

this simplified circuit model does not include any lumped 

element parasitics or SMA connector effects. 

 

 
FIG. 6. 3D view of the fabricated modulated antenna and the 

experimental setup used for the modulated antenna. The 

dimensions of the antenna are the same in Fig. 3. The bottom 

panel of the antenna (not shown here) is similar to the botton 

panel of the antenna in Fig. 3. 

 

We describe the operation of the modulated antenna In Fig. 7 

as follows. We define five ports labeled 𝒶, 𝒷, 𝒸, 𝒹 and ℯ. The 

ports 𝒶, 𝒷, and 𝒸 are similar to the three ports 𝒶, 𝒷 and 𝒸 in Fig. 

4, with same functionalities. The additional ports 𝑑 and ℯ are 

added to drive the modulation signal of the capacitors on the 

different arms of the loop antenna. The equivalent circuit model 

is similar to the one in Fig. 2. Interestingly, here we completely 

removed the need for ℒ in the PMN (see dashed box of Fig. 3), 

and the antenna is directly connected to the generator through 

the modulated varactor. In fact, we leverage the mismatch 

between source and load resistances to distribute the parametric 

effect over a broad bandwidth [11]. First, we adjust 𝐶0 by 

setting the DC voltage to tune the antenna resonance to 

317 MHz, yielding 𝑘𝑎 = 0.265 and evaluating 𝑄𝐶ℎ𝑢 ≈ 53. 

Then, we set the modulation frequency 𝑓𝑚=650MHz and 

measured the reflection coefficient |𝑆11| for 𝑉𝑚 = 100mV, 

750mV, corresponding to 𝑀 = 0.05, 0.17 as shown in Fig. 

7a,b, respectively. When 𝑉𝑚 = 100mV, the modulation is too 

small to provide sufficient gain to the circuit, and we find a 

reflection dip at 305 MHz (consistent with the blue curve in Fig. 

2c). The circuit model including parasitics and full wave 

simulation (red line) shows good agreement with our 

measurements. The retrieved circuit parameters for the antenna 

are 𝑅𝑙 = (1.2 + 𝑅𝑙𝑜𝑠𝑠)Ω, 𝐿 = (120 + 𝐿1)nH, consistent with 

the PMN measurements, apart from additional parasitic loss 

(𝑅𝑙𝑜𝑠𝑠 =3.3Ω) and inductance (𝐿1 = 5 nH) induced by the 

additional lumped elements of the modulation network. By 

increasing the modulation amplitude to 750mV, we 

parametrically pump the system, and the absence of matching 

network controls the spreading of this gain over a broad 

bandwidth. This is shown as a measured reflection peak 

(|𝑆11| >1) in Fig. 7b, again in quite good agreement with the 

simulation model. 

 

 
FIG. 7. (left panel) Photograph of the modulated antenna with 

same dimensions as in Fig. 3, the bottom box shows the 

effective circuit model without including any parasitics. (a), (b) 

Measured reflection for modulation amplitude 𝑉𝑚 =
100, 750mV respectively. [𝑉𝐷𝐶 = 3.3V and 𝜔𝑚 = 2𝜋 ×
635MHz]. 

 

 

Based on the retrieved parameters from the measurement, we 

evaluate |𝑆21| for 𝑉𝑚 = 750mV, as shown in Fig. 8a (blue 



 

 

 

crosses), which surpasses the peak value in the passive case 

(solid red line) and provides an even broader bandwidth than 

what expected from an ideal antenna operating at the Bode-

Fano bound with Lorentzian curve (black solid line). To 

evaluate this curve, we have assumed a Lorentzian line shape 

𝜒(𝑓) such that 

 

 
|𝜒(𝑓)|2 = |𝑆21|2 =

1

1 + (
𝑓 − 𝑓0

𝜎
)

2, 
(9) 

 

where 𝑓0 = 317MHz. We choose 𝜎 such that Eq. (7) is satisfied 

with the equality sign using the same values of 𝐿 and 𝑅𝑙 of the 

modulated antenna, and we get 𝜎 ≈ 5.75MHz. The lineshape 

|𝜒|2 is the Bode-Fano transmission curve, corresponding to the 

best possible |𝑆21| achievable with an ideal PMN. 

Finally, to evaluate the actual radiated power, we performed 3D 

full wave multi-frequency simulations solving Maxwell’s 

equations for the entire modulated system (see Appendix B for 

coupled full wave simulation details). To ease our analysis, we 

considered ideal parameters, i.e., neglecting parasitic and metal 

losses, and 𝑉𝐷𝐶 = 0, which results in a resonance frequency 

around 200MHz assuming PMN. We then excite the antenna 

with a peak power of 21mW, then integrate the normal 

component of the Poynting vector over a sphere enclosing the 

antenna in both the passive and modulated scenarios with 

increased 𝑀, as shown in Fig. 8b. As predicted, the radiated 

power from the modulated antenna largely exceeds the one of a 

passive antenna over a larger bandwidth. We further confirm 

this enhancement by comparing the radiation patterns in Fig. 

8c, which show a conventional magnetic dipole response in all 

considered scenarios. In this panel, scale and color bar are the 

same for all antennas. 

 

FIG. 8. (a) Comparison between |𝑆21|2 for the parametric and 

passive antennas (retrieved from measurement), and the Bode-

Fano curve |𝜒|2. (b) Calculated total radiated power from 3D 

full wave simulations for both passive and modulated antenna 

with 0 DC bias, an increasing modulation strength 𝑀 where the 

maximum input power is 22mW, and (c) 3D radiation pattern 

of the different antennas labeled 1-4 in (b). 

 

It is worth mentioning that there is a fundamental trade-off on 

the operation of the proposed parametric antenna using a single 

tone modulation, between the gain and 3-dB bandwidth of the 

system, whose product is constant [44]. This implies that a 

smaller fractional bandwidth is required to achieve larger gain 

through increasing the modulation. However, for ESA antenna 

applications, especially those used for medical application or in 

small chips, it is preferred to have higher bandwidth and no 

excessive gain to be within approved acceptable power ranges 

[53]. This is in contrast to superconducting parametric 

amplifiers, where both high gain and large bandwidth are 

desirable, since the readout signal is typically weak and requires 

large signal-to-noise ratios through parametric amplification 

[54]. These issues, together with the presence of spurious 

harmonics and reflected signals as already mentioned, can be 

addressed by considering more complex modulation schemes, 

for instance implementing multiple tone modulations as in 

superconducting quantum circuits [55]. 

 

Conclusions: In this paper, we explored and experimentally 

implemented parametrically enhanced radiation from ESAs, for 

which efficiency and bandwidth enhancements are a direct 

consequence of the parametric gain provided by the 

modulation. Compared to non-Foster circuits including 

amplifiers, this technique allows a better control of stability 

through the modulation parameters. In our experiment, we 

considered a planar small loop patch antenna and showed that 

its bandwidth can be largely increased using only a time-

modulated capacitor as the matching network. We believe that 

this technique opens exciting opportunities for radiation 

enhancement through parametric phenomena for a wide range 

of technologies.      

  

Acknowledgments: This work was supported by the Air Force 

Office of Scientific Research MURI program, the National 

Science Foundation EFRI program, and the Simons 

Foundation.



 

 

 

APPENDIX A: Analysis for the degenerate scenario 𝝎 =
𝝎𝟎 

The analysis provided in the main text assumes that the input 

frequency 𝜔 ≠ 𝜔0, and it demonstrates that the response of the 

system is independent of the relative phase 𝜙 between the input 

and the modulation. However, for the case 𝜔 = 𝜔0, Eq. (2) in 

the main text shows that any component oscillating at (𝜔0 −
2𝜔0) is not distinguishable from the component oscillating at 

𝜔0, and thus a special treatment should be given. Since the 

Fourier transform 𝑋(𝜔) for any time domain real function 𝑥(𝑡) 

must satisfy the relation 𝑋(𝜔) = 𝑋∗(−𝜔), the components 𝐼0 

oscillating at 𝜔 and the component 𝐼−1 oscillating at −𝜔 must 

be a conjugate pair, i.e., 𝐼−1 = 𝐼0
∗. Similarly, for the voltage 

components, we have 𝑉−1 = 𝑉0
∗. So, one can rewrite Eq. (4) in 

the main text in the case of 𝜔 = 𝜔0 as 

 

 
𝑉𝑖𝑛,0 = 𝑗Ω0𝐿𝐼0 +

1

𝑗Ω0𝐶(1 − 𝑀2)
(𝐼0

+ 𝑀𝑒𝑗𝜙𝐼0
∗) + 𝐼0(𝑅𝑙 + 𝑅𝑠). 

(A1) 

 

 

Assuming 𝐼0 = 𝑎 + 𝑗𝑏, where 𝑎, 𝑏 ∈ ℝ and equating the real 

and the imaginary parts of the two sides in (A1), we can get 𝑎 

and 𝑏 as follows, 

 

 

𝑎 =
𝜔0𝐶𝑒𝑓𝑓𝑉𝑖𝑛,0(𝜔0𝜏 − 𝑀 sin 𝜙)

((1 − 𝜔0
2𝐿𝐶𝑒𝑓𝑓)

2
+ (𝜔0𝜏)2 − 𝑀2)

 

𝑏 =
𝜔0𝐶𝑒𝑓𝑓𝑉𝑖𝑛,0(1 + 𝑀 cos 𝜙 − 𝜔0

2𝐿𝐶𝑒𝑓𝑓)

((1 − 𝜔0
2𝐿𝐶𝑒𝑓𝑓)

2
+ (𝜔0𝜏)2 − 𝑀2)

 

(A2) 

 

 

where 𝐶𝑒𝑓𝑓 = 𝐶0(1 − 𝑀2) and 𝜏 = 𝐶𝑒𝑓𝑓(𝑅𝑙 + 𝑅𝑠). Employing 

𝜔0𝐿𝐶0 = 1, the current 𝐼0 can be simplified as,  

 

 

𝐼0

= 𝑉𝑖𝑛,0

𝜔𝐶𝑒𝑓𝑓((𝜔𝜏 − 𝑀 sin 𝜙) + 𝑗(𝑀2 + 𝑀 cos 𝜙))

𝑀4 + (𝜔0𝜏)2 − 𝑀2
 

(A3

) 

 

 

And the degenerate input impedance 𝑍𝑖𝑛,𝑑 = 𝑉𝑖𝑛,0/𝐼𝑖𝑛,0 is given 

as  

 

 

𝑍𝑖𝑛,𝑑

=
1

𝜔𝐶𝑒𝑓𝑓

(𝜔𝜏)2 − 𝑀2

(𝜔0𝜏 − 𝑀 sin 𝜙) + 𝑗(𝑀2 + 𝑀 cos 𝜙)

+ 𝒪(𝑀4). 

(A4) 

 

In fact, to evaluate the input impedance at the degenerate case, 

we cannot simply take the limiting case as 𝜔 → 𝜔0 in Eq. (3) to 

get 𝑍𝑖𝑛(𝜔 → 𝜔0) as illustrated before, this is confirmed from 

Eq. (A4), it is obvious that 𝑍𝑖𝑛(𝜔 → 𝜔0) ≠ 𝑍𝑖𝑛,𝑑. However 

there is a relation between the degenerate impedance when the 

relative phase 𝜙 =  90∘, 𝑍𝑖𝑛,𝑑(𝜙 = 90∘) and the degenerate 

impedance when the relative phase 𝜙 = 270∘, 𝑍𝑖𝑛,𝑑(𝜙 =
270∘), and the impedance calculated from Eq. (3) when we take 

the limiting case  𝜔 → 𝜔0, 𝑍𝑖𝑛(𝜔 → 𝜔0). First, we evaluate 

𝑍𝑖𝑛(𝜔 → 𝜔0), 

𝑍𝑖𝑛(𝜔 → 𝜔0) ≈ 𝑅𝑙 + 𝑅𝑠 −
𝑧𝑟𝑒𝑠

2 𝑀2

𝑅𝑙 + 𝑅𝑠

, 

then, for the degenerate case we calculate, 

𝑍𝑖𝑛,𝑑(𝜙 = 270∘) ≈ 𝑅𝑙 + 𝑅𝑠 − 𝑀𝑧𝑟𝑒𝑠 

and, 

𝑍𝑖𝑛,𝑑(𝜙 = 90∘) ≈ 𝑅𝑙 + 𝑅𝑠 + 𝑀𝑧𝑟𝑒𝑠 

So, the relation between the impedance at different phases and 

𝑍𝑖𝑛(𝜔 → 𝜔0) is, 

𝑍𝑖𝑛(𝜔 → 𝜔0) =
𝑧𝑖𝑛,𝑑(𝜙 = 270∘)𝑧𝑖𝑛,𝑑(𝜙 = 90∘)

𝑅𝑙 + 𝑅𝑠

. 

 

We can calculate the scattering parameters by substituting Eq. 

(A3) into Eq. (4) in the main text to get, 

 

 

|𝑆21|2

=
(2𝜔𝐶0√𝑅𝑙𝑅𝑠)

2
((𝜔𝜏)2 + 𝑀2 − 2𝜔𝜏𝑀 sin 𝜙)

((𝜔0𝜏)2 − 𝑀2)2
. 

(A5) 

 

This confirms that when 𝜔 = 𝜔0 the gain is phase sensitive, and 

it is not only a function of the modulation index 𝑀 but also is a 

function of the relative phase between the pump and the signal, 

𝜙. Interestingly we see from Eq. (A5) that stability requires,  

 𝑀 < 𝜔0𝜏, (A6) 

which is the same condition as given in the main text knowing 

that 𝜔0𝜏 =
1

𝑧𝑟𝑒𝑠
(𝑅𝑙 + 𝑅𝑠). This suggests that the circuit is 

always stable, given that the condition in Eq. (6) in the main 

text is satisfied. 

To confirm the above analysis Eqn. (A1)-(A6), we perform a 

circuit simulation using Advanced Design System (ADS) [52]. 

The setup of the circuit is shown in the top panel of Fig. A1b, 

with the circuit parameters displayed on the circuit schematic. 

The setup shows a modulated capacitance with a DC 

capacitance 𝐶0 and modulated with index 2M in the middle, 

connecting the complex load (𝐿,𝑅𝑙) on the right to the generator 

on the left. The DC capacitance 𝐶0 and the load inductance 𝐿 

from the resonance of the circuit, 𝜔0 = 1/√𝐿𝐶0. 

Let us assume a sinusoid input in the form of cos 𝜔𝑡 from the 

generator, where 𝜔 = 𝜔0 = 2𝜋 × 1 GHz while the modulation 



 

 

 

frequency is set to 2𝜔0 and has a relative phase to the input of 

𝜙, so the capacitance 𝑐(𝑡) = 𝐶0 + 2𝑀 cos 2𝜔0𝑡 + 𝜙. We run 

frequency and time domain simulations using ADS to confirm 

the phase dependent properties at this special degenerate case 

and the stability of the circuit.  

In Fig. A1a, we assume a small modulation index 𝑀 = 0.02 for 

which we show the frequency domain simulation results in the 

top and middle panels for varying phase 𝜙, while the time 

domain results is displayed in the bottom panel at constant 

phase 𝜙 = 90∘. The scattering parameter |𝑆21|2 and the input 

impedance 𝑍𝑖𝑛,0 are shown in dashed lines in the top and middle 

panels, additionally, we plot the analytical results using formula 

(A5), (A4) respectively in the top and middle panels, in solid 

lines. First, we notice that the numerical and analytical results 

match perfectly because of the small modulation index 

considered. Second, it is clearly seen that the scattering 

parameter is a function of the phase 𝜙 giving the maximum gain 

when 𝜙 = 270∘, and minimum gain when 𝜙 = 90∘. In 

addition, we performed time domain simulation and record the 

time domain signal at the radiation resistance for 𝜙 = 90∘, 270∘ 

as shown in the bottom panels of Fig. A1a, and b respectively 

that clearly manifests that the signal amplitude is higher when 

𝜙 = 270∘, confirming the phase sensitive parametric 

amplification.  

 

Fig. A1. (a) (top panel) Analytical and simulated results 

(numerical) for the scattering parameter when 𝑀 = 0.02, 

(middle panel) input impedance, (bottom panel) and the time 

domain output signal for 𝜙 = 90∘. (b) The schematic of the 

circuit used in the simulator. (c) Similar to (a) but for M=0.08.  

It is interesting to notice that the frequency domain results 

implied in the scattering parameters do not give information 

about the stability of the circuit. In fact, the scattering parameter 

|𝑆21| can be zero from the frequency domain solver, i.e., no 

transmitted signal, however the circuit may be unstable. To 

check the stability of the circuit in Fig. A1b, we consider a 

higher modulation index 𝑀 = 0.08 so it lies in the unstable 

region. We also plot similar results for the frequency domain 

solver in the top and middle panels of Fig. A1c showing good 

agreement with the analytical results with small shift attributed 

to increased modulation index. Although the scattering 

parameter is |𝑆21|2 = 0 when 𝜙 ≈ 90∘ as shown in Fig. A1c, 

the circuit is still unstable. To confirm this, we perform the time 

domain analysis and plot the voltage at the radiation resistance, 

as shown in the bottom panel of Fig. A1c which shows 

exponentially growing signal. Therefore, we stress that the 

stability of the system can be easily determined by driving it 

using a bounded input and observing the output. When the 

output is bounded, the circuit is stable, and vice versa. 

APPENDIX B: COMSOL Multiphysics for time-

modulated systems 

We developed a full wave simulation for the modulated antenna 

using the finite element 3D solver, COMSOL Multiphysics 

[56]. This is done by first writing the current equation for the 

modulated capacitor, then deriving two coupled linear 

equations that can be solved simultaneously in COMSOL using 

two linear frequency domain simulations coupled through the 

equations derived below. 

We know that the current in the capacitor oscillates with 

frequencies Ω0 and Ω−1. Therefore, we setup two 

electromagnetic wave frequency domain solvers (EMW). The 

first one is solved at Ω0, and the second one is solved at Ω−1. 

To determine the coupling between the two EMW’s, we know 

that, 𝑖 =
𝑑

𝑑𝑡
(𝑐𝑣) so we can write, 

𝐼0 = 𝑗Ω0𝐶0𝑉0 + 𝑗Ω0𝑀𝐶0𝑉−1 

𝐼−1 = 𝑗Ω−1𝐶0𝑉−1 + 𝑗𝜔𝑀𝐶0𝑉0 

where we have neglected the phase 𝜙. This means that the 

current in the capacitor at frequency Ω0 depends on the voltage 

𝑉0 through the conventional relation, i.e., without time 

modulation 𝐼0 = 𝑗Ω0𝐶0𝑉0, in addition to a voltage controlled 

current source, i.e., the current value is controlled by the voltage 

𝑉−1. Similar observations can be stated for the current 𝐼−1. So, 

the coupling is done through adding a current control voltage 

source to a static capacitor value of 𝐶0. Eventually, the circuit 

model for the capacitance for each emw solver will be as shown 

in Fig. B1a. This additional voltage controlled current source 

can be easily implemented in COMSOL by changing the 

equation of the capacitance. 

To evaluate the radiated power, we excite the antenna with a 

differential port and surround it with a perfectly matched layer 

to emulate the outgoing radiation boundary conditions, as 

shown in Fig. B1b. Then, we integrate the radiated power over 

the inner sphere surface of the PML, to get Fig. 8b. Notice that 

Fig. B1b shows the modulated antenna structure, the passive 

antenna is very similar except for adding an L matched network 

as described in Fig. 3. To get the far field radiation pattern in 

Fig. 8c, we used the built in Stratton-Chu formula for near field 

to far field transformation, where the calculated far-field 



 

 

 

electric 𝐸𝑓𝑎𝑟  and magnetic 𝐻𝑓𝑎𝑟  fields define the Poynting 

vector given by 𝑆 = 𝑅𝑒{𝐸𝑓𝑎𝑟 × 𝐻𝑓𝑎𝑟
∗ } where 𝑅𝑒 is the real part 

[56]. 

 

Fig. B1. (a) A periodically modulated capacitance can be solved 

using coupled multi-frequency simulations. In this case, we 

assume that only the n = 0 and n = -1 are non-negligible. 

Therefore, the two solvers at frequency Ω0 and Ω−1 are coupled 

together by adding a voltage controlled current source (blue 

circle) (b) 3D view of the simulated antenna, and description of 

the placement of the lumped elements and differential port. 
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