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Photonic measurement-based quantum computation (MBQC) is a promising route towards fault-
tolerant universal quantum computing. A central challenge in this effort is the huge overhead in
the resources required for the construction of large photonic clusters using probabilistic linear-optics
gates. Although strong single-photon nonlinearity ideally enables deterministic construction of such
clusters, it is challenging to realise in a scalable way. Here we explore the prospects of using moderate
nonlinearity (with conditional phase shifts smaller than π) to boost photonic quantum computing
and significantly reduce its resources overhead. The key element in our scheme is a nonlinear
router that preferentially directs photonic wavepackets to different output ports depending on their
intensity. As a relevant example, we analyze the nonlinearity provided by Rydberg blockade in
atomic ensembles, in which the trade-off between the nonlinearity and the accompanying loss is
well understood. We present protocols for efficient Bell measurement and GHZ-state preparation –
both key elements in the construction of cluster states, as well as for the CNOT gate and quantum
factorization. Given the large number of entangling operations involved in fault-tolerant MBQC,
the increase in success probability provided by our protocols already at moderate nonlinearities can
result in a dramatic reduction in the required resources.

I. INTRODUCTION

Photonic quantum computation is a leading plat-
form in the effort towards fault-tolerant universal quan-
tum computers [1–4]. It combines the paradigm of
measurement-based quantum computation (MBQC) [5–
11], where the computation is carried out by apply-
ing a sequence of measurements to entangled clus-
ter states [12–14] with topological quantum error cor-
rection [15–20]. In particular, the promise of all-
optical photonic quantum computation with discrete
variables [21] lies in the ability to entangle single pho-
tons into graphs and clusters using only linear-optics
probabilistic operations [22–29]. The price, however,
is a huge overhead: constructing a cluster of 107 pho-
tons (corresponding to ∼ 1000 logical qubits, assuming
104× redundancy for error correction) with probabilis-
tic gates may require 1012 input single photons [30].

One approach to tackle this challenge is efficient and
strong interaction with single quantum emitters, such as
atoms, ions, or quantum dots. Such coupling ideally en-
ables deterministic construction of cluster states either
by generation of a stream of entangled photons [31–34],
or by entangling single photons via photon-atom quan-
tum gates [35–40]. However, achieving strong interac-
tion with single quantum emitters requires challenging
optical structures, which are not straightforwardly scal-
able. A number of theoretical works explored the pos-
sibility of enhancing weak Kerr-type nonlinearities by
classical driving fields to make them strong enough to
support photonic quantum computation [41–50]. To be

∗ adi.pick@weizmann.ac.il
† Deceased 5 June, 2020.

precise, we define nonlinearity as “strong” if it can pro-
vide a conditional phase shift ϕ = π; namely, a differ-
ence of π between twice the phase acquired by a single
photon in a mode, and the phase acquired by two pho-
tons in the same mode.

In contrast to previous studies, here we explore
whether there is an intermediate regime between the
linear optics and strong nonlinearity regimes in which
moderate nonlinearity can provide a practical advan-
tage. The motivation is that since fault-tolerant pho-
tonic quantum computation involves a large number of
probabilistic gates [30], even a small improvement in
the success probability per gate could amount to a dra-
matic reduction in the required resources. The reason
for focusing on moderate nonlinearity is that attaining
small phase shifts (e.g., π/10) typically requires signifi-
cantly less resources than attaining π, and, accordingly,
is accompanied by much lower costs, such as, in par-
ticular, photon loss, which is the dominant fault mech-
anism in photonic qubits. Although advanced proto-
cols for photonic quantum computing can tolerate up to
50% overall photon loss (being an inherently detectable
error in most cases) [4, 17, 51, 52], the large num-
ber of elements and operations involved makes reaching
this level challenging nonetheless. Given the progress
in photonic technologies, including large scale on-chip
single-photon detection capabilities with superconduct-
ing nanowires [53, 54], the additional loss induced by
the nonlinear medium itself will likely become the dom-
inant one. We therefore wish to quantify the trade-off
offered by introducing nonlinear elements to the task of
graph-states construction, namely increasing the suc-
cess probability of each operation at the price of signif-
icant additional loss.

In order to take loss into account as accurately as
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FIG. 1. Nonlinear router: (a) When a photon enters the
interferometer in mode a, it leaves in u. (b) The interferom-
eter contains a nonlinear medium (NL, gray) in both arms.
Photon pairs traveling through different arms acquire oppo-
site conditional phases ±ϕ [Eq. (2)]. When ϕ = π, a pair
that enters in mode a leaves in mode w. (c) Probabilities
for detection outcomes for an incoming pair in mode a when
ϕ ∈ [0, π]: both photons in u (brown), both in w (blue), and
one in each mode (green). Solid lines show a loss-free model
[Eq. (3)]. Dashed lines include nonlinear loss in Rydberg-
EIT systems [Eq. (6)]. We assume that the optical depth
of the blockaded volume is ODb = 30, which sets the loss
probability τ(ϕ) via Eq. (5), as shown in (d). The relation
between the attenuation coefficient, ε ≡ − ln(1 − τ), and ϕ
is a circle [58], plotted for ODb = 3.5 and 8 (red and black).

possible, we consider below the very relevant and well-
studied platform of electromagnetically-induced trans-
parency (EIT [55]) with Rydberg atoms (Rydberg-
EIT) [56, 57]. In these systems, the loss grows quadrat-
ically with the conditional phase shift ϕ (for small ϕ),
which is eventually limited by the physical parameters
of the Rydberg ensemble [58].

The key element in our protocols is a nonlinear
router [59–61], realized by a Mach–Zehnder inter-
ferometer (MZI) with a nonlinear medium in both
arms (Fig. 1). The conditional phase-shift acquired
by two-photon pulses (photon pairs) in the nonlinear
media causes the router to preferentially direct single
photon pulses to one port and photon pairs to another.
We use the router to obtain nonlinearity-enhanced
protocols for Bell-state measurement (BM) and for
Greenberger–Horne–Zeilinger (GHZ) state preparation
(Figs. 2 and 3), which are key building blocks in
MBQC [5]. As an application, we use these ele-
ments to construct protocols for a CNOT gate and
quantum factorization (Fig. 4). By adding nonlin-
earity, our protocols outperform the linear methods,
potentially reducing resource requirements for fault-
tolerant photonic quantum computing by up to two
orders of magnitude already at moderate nonlinearities.

II. NONLINEAR ROUTER

As shown in Fig. 1(a), when single photons enter the
MZI in mode a, they exit through port u, following the
transformation rule [62]:

a†
BS1−−→ 1/

√
2(f† + ig†)

BS2−−→ u†. (1)

The MZI contains a nonlinear atomic medium that in-
duces opposite conditional phase shifts ±ϕ for photon
pairs in each of its arms:

(f†)2 → eiϕ(f†)2 , (g†)2 → e−iϕ(g†)2. (2)

As a result, photon pairs undergo the transformation

(
a†
)2 BS1−−→ 1

2

(
ei
ϕ
2 f† + ie−i

ϕ
2 g†
)2

BS2−−→
(
w† sin ϕ

2 + u† cos ϕ2
)2
.

(3)

Consequently, the probability of routing pairs to the
second output mode w increases monotonously with ϕ
[Fig. 1(c)]. For ϕ = π, the nonlinear router determin-
istically separates pairs to a different port than single
photons [Fig. 1(b)].

The effect of photon loss

Our schemes can be implemented with any nonlin-
ear medium that provides moderate conditional phase
shifts, including tightly confined atomic ensembles (e.g.,
atom-cladded optical fibers [63–65], atom-filled hollow-
core fibers[66–68], or optical traps [69–71]) and nonlin-
ear fibers [72]. Here, we focus on Rydberg-EIT systems
to analyze effect of loss on our protocols. We choose
this platform since it enables achieving moderate (and
even large) conditional phase shifts [56, 57], since linear
losses under EIT conditions can be made negligible [55],
and since the phase-loss relation in this system is well
understood [58]. In such systems, once a photon gener-
ates a Rydberg excitation, the energy levels of the sur-
rounding atoms (within the Rydberg-blockade radius)
are shifted, violating the EIT conditions [73]. Conse-
quently, any subsequent photon in this volume acquires
a phase and suffers loss.

We model loss as the annihilation of a photon (in f or
g) and the creation of a photon in an undetected mode
(` or k). Denoting the absorption probability by τ , a
photon pair in the atomic medium follows the rule:

f†
2 →

√
1− τ eiϕf†2 +

√
τf†`† (4a)

g†
2 →

√
1− τ e−iϕg†2 +

√
τg†k†. (4b)

The conditional phase shift ϕ and absorption coefficient
ε ≡ − ln (1− τ) follow the phase-loss circle [58]:

ϕ2 + ( ε2 −
ODb

4 )2 = (ODb

4 )2, (5)
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FIG. 2. Nonlinear Bell measurement (BM): Two pho-
tons are sent through a beam splitter (BS) and nonlinear
routers before reaching polarizing beam splitters (PBS) fol-
lowed by detectors (1–8), which measure their joint polar-
ization state in the Bell basis. While |ψ±〉 produce distinct
final states, |φ±〉 can only be distinguished with nonlinear-
ity. (b) Success probability of a BM, PBM, as a function
of ϕ. Black solid curve neglects loss [Eq. (8) with τ = 0
and PDE = 1]. Blue solid curve includes only nonlinear
loss, assuming ODb = 30, while the cyan dashed (dotted)
curve includes also linear loss with PDE = 98% (90%). With
PDE = 98% and ϕ = π/3, PBM improves from 0.48 to 0.67.
(c) Success probability of the nonlinear enhancement of the
Ewert-van Loock protocol [78], PEVL [Eq. (9)] that includes
two ancillary qubits. Curves are labeled as in (b). With
PDE = 98% and ϕ = π/3, PEVL improves from 0.69 to 0.77.

where ODb is the optical depth of the blockade volume
– the core resource of nonlinearity in Rydberg-EIT sys-
tems [74]. As evident from Eq. (5) and Fig. 1(d), high
ODb enables large conditional phase shifts with low loss.
In particular, ODb > 4π is required for ϕ = π. The
value ODb = 13 has already been reached experimen-
tally [75], and higher values have been predicted [76, 77].
Additionally, high total OD can be utilized to generate
an effective cavity in the atomic medium with finesses
F ∼ (OD/2)0.4 [58], leading to a phase-loss circle whose
radius is F times larger, thereby enabling an effective
ODb of 100 or more. Using Eqs. (1, 4, 5), we obtain

a†
2 →

√
1−τ(ϕ)

2

[
cosϕ

(
w†

2− u†2
)
− 2 sinϕ(w†u†)

]
− 1

2

(
w†

2
+ u†

2
)

+

√
τ(ϕ)

2
√

2

[
(w† + iu†)`† − (u† + iw†)k†

]
. (6)

From Eq. (6), we calculate the probabilities for different
outcomes of the MZI when including loss [Fig. 1(c)].

Equations (5–6) assume that the photon wavelength
is tuned exactly on the EIT resonance, where the single-
photon phase shift and loss are ideally zero. In appendix
C, we analyze the possibility of detuning from the EIT
resonance to include the effect of single-photon phase
shift and loss in the atomic medium. We find that the
performance of our protocols is relatively unaffected by
these processes.

III. NONLINEAR BELL-STATE MEASUREMENT

As a first application, we use the nonlinear router
to improve linear BMs. We begin this section by re-
visiting the traditional linear BM protocol. Then, we
present our nonlinear protocol and discuss its key fea-
tures in the limit of strong nonlinearity and negligible
loss. Finally, we discuss moderate nonlinearity and non-
negligible loss.

A photonic qubit is defined as a single excitation in an
arbitrary coherent combination of two non-overlapping
optical modes. For convenience, here we use the linear
polarization basis, yet our analysis is generally applica-
ble to other choices of optical modes, including dual-rail
and time-bin qubits. In this basis, the photonic two-

qubit Bell states are |ψ±〉 = 1√
2
(a†Hb

†
V ± a†V b

†
H)|vac〉

and |φ±〉 = 1√
2
(a†Hb

†
H ± a

†
V b
†
V )|vac〉, where x†k denotes

the creation operator of a photon in mode x with po-
larization k operating on the vacuum state |vac〉. In a
linear-optics BM, photons are sent through a balanced
beam splitter (BS) [79]. Applying the BS transforma-

tion a†k →
1√
2
(d†k + ic†k) and b†k →

1√
2
(c†k + id†k), one

finds

|ψ−〉
BS−−→ 1√

2
(d†Hc

†
V − c

†
Hd
†
V )|vac〉 , (7a)

|ψ+〉
BS−−→ i√

2
(d†Hd

†
V + c†Hc

†
V )|vac〉 , (7b)

|φ±〉
BS−−→ i

2
√

2
[(d†H)2 + (c†H)2 ± ((d†V )2 + (c†V )2)]|vac〉 . (7c)

The states |ψ±〉 lead to distinguishable outcomes. While
|ψ−〉 produces one photon in ck and one in dk, the state
|ψ+〉 produces an orthogonal pair in either ck or dk. In
contrast, the states |φ±〉 produce a “bunched” pair in
one of the four detectors and are, therefore, indistin-
guishable. Hence, when detectors are placed at the exit
of the BS, the success probability of the BM is 50% [79].

By adding nonlinearity, one can improve the success
probability of the BM. To this end, we place nonlinear
routers that help distinguish between |φ±〉 at the out-
put of the BS [red boxes in Fig. 2(a)]. When exiting
the routers, the photon pass through polarizing beam
splitters (PBSs), which transmit horizontal and reflect
vertical polarization, before hitting single-photon detec-
tors (labeled 1-8). When the acquired conditional phase
shift in the MZIs is ϕ = π and when neglecting loss, all
four Bell states are distinguishable by this setup. That
is, each input Bell state produces a unique set of de-
tection clicks. For example, only the state |ψ+〉 can
produce clicks in 3 & 4 or 5 & 6 (see appendix A.1) [80].

Next, we consider the effect of photon loss on our
scheme, caused either by the nonlinear medium (NL
loss) or by the detectors. In appendix A.1, we compute
the success probability in the presence of loss and obtain

PBM = P 2
DE

[
1− 1

8

(√
1− τ(ϕ) cosϕ+ 1

)2

− τ(ϕ)
4

]
,

(8)



where PDE denotes the single-photon detection effi-
ciency. The formula is evaluated in Fig. 2(b). Our
scheme assumes multiple detectors or photon-number
resolving detectors are used [81–84] to distinguish be-
tween instances with two photons in the same detec-
tor from instances with a single detection due to a loss
event. Assuming moderate conditional phase shift of
ϕ = π/3 (achievable using available setups [85]) and
PDE = 98% improves the PBM from 0.48 to 0.67. Ev-
idently, in the presence of loss, the optimal operating
point is at an intermediate phase ϕopt < π, which tends

to π upon increasing ODb, scaling as π − ϕopt ∝ OD−1
b

at large ODb values (Fig. D1 in appendix D).
Figure 2(c) shows our nonlinear modification of the

linear Ewert-van Loock protocol, that attains higher
success probabilities at the cost of using two ancillary
qubits [78, 86]. As shown in appendix A.2, the success
probability of the protocol is

PEVL = P 4
DE

[
1− 1

16

(√
1− τ(ϕ) cosϕ+ 1

)2

− τ(ϕ)
4

]
.

(9)

Assuming π/3 and PDE = 98%, the success probability
PEVL improves from 0.69 to 0.77.

IV. NONLINEAR GHZ-STATE PREPARATION

Our protocol is shown in Fig. 3(a). We discuss its
key features here and provide the derivation details in
appendix B. Initially, two Bell states are prepared in
|φ+〉|φ+〉 and one photon from each Bell pair is sent
through a polarizing beam splitter (PBS1). Then, the
photons enter nonlinear routers. The photons may ei-

ther leave PBS1 from different ports (c†Hd
†
H and c†V d

†
V )

or through the same port (c†Hc
†
V and d†Hd

†
V ). In the

former case, the photons leave the routers in modes u
and p. Then, the photon in u undergoes a 45◦ rotation
and a subsequent measurement of the rotated photon in
the diagonal basis projects the surviving photons onto
a GHZ state. This process is called “fusion type I” [23].

Our nonlinear scheme aims to “save” also photons
that leave PBS1 through the same port. To this end,
we use nonlinear routers that have the property that

when ϕ = π, photons from c†Hc
†
V and d†Hd

†
V are routed

into modes w†Hw
†
V and q†Hq

†
V . By sending these photons

to PBS2, rotating the photon in mode f , and measuring
the rotated photon in the diagonal basis, a GHZ state
is produced. By adding the probabilities for successful
GHZ-state generation, either by “fusion type I” or by
successful nonlinear routing, we obtain (see appendix
B)

PGHZ = PDE

[
1

2
+ 1

8

(√
1− τ(ϕ) cosϕ− 1

)2
]
. (10)

PGHZ as a function of ϕ is shown in Fig. 3(b). The op-
timal operating point is attained at ϕopt < π and scales
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FIG. 3. Nonlinear GHZ state generation: (a) Two Bell
pairs are prepared, and one photon from each pair is sent
through PBS1. Two scenarios can produce a GHZ state:
1. When photons leave PBS1 through different ports and
exit the routers in ports u and p. 2. When photons leave
PBS1 through the same port and also exit the routers in
w or q. When none of the photons are lost, zero or two
clicks in detectors 1–4 or a click in 5 herald failure. The
switch selects one of the output modes, g or p, that together
with modes r and s contain a three-photon GHZ state when
our protocol succeeds; during its operation, photons travel in
delay lines (coils). (b) Success probability, PGHZ, as function
of ϕ. Black solid curve neglects loss [Eq. (10) with τ = 0
and PDE = 1]. Blue solid curve includes only nonlinear
loss, assuming ODb = 30, while cyan dashed (dotted) curve
includes also detector loss with PDE = 98% (90%). With
PDE = 98% and ϕ = π/3, PGHZ improves from 0.49 to 0.52.

as π − ϕopt ∝ OD
−1/3
b with increasing ODb (Fig. D1).

With PDE = 98% and ϕ = π
3 , PGHZ improves from 0.49

to 0.52.
Our protocol accepts four input photons and (when

successfully operated) produces three output photons
in a GHZ state. The goal of the switch is to select the
modes that contain the GHZ state in order to prepare
the input for a quantum computation protocol or for a
subsequent stage in a cluster-state-generation protocol.
Specifically, the switch selects to output mode g and
measure p if there was a click in detectors 3 or 4, and
vice versa if a click occurred in detectors 1 or 2. Dur-
ing the switch operation, the photons travel in delay
lines. Success of this scheme is heralded only if exactly
one photon is detected - by detectors 1-4. Failure is
heralded by detection of two photons in detectors 1-5
(indicating that the output is empty), or by the lack
of any detection events in detectors 1-4 (whether cause
by imperfect routing, detection inefficiency or loss). All



these cases are accordingly disregarded. If two photons
are routed to detectors 1-5 but only one is detected due
to loss (e.g. in the delay lines or the switch) or imper-
fect detection efficiency, this leads to a ”false positive”
indication of success. However, the result in this case
is again the lack of photon at the output channel, and
therefore is equivalent to any other loss event, and is
accordingly tolerated as long as the overall loss is below
the required threshold.

V. CNOT AND FACTORIZATION

In Ref. [5], Gottesman and Chuang (GC) present an
optical-circuit implementation of the CNOT gate, which
requires two GHZ states and three BMs [Fig. 4(a)]. Ac-
cordingly, the success probability of this protocol scales
like (PGHZ)2 × (PBM)3, being 1/25 in the linear-optics
case. When using our nonlinear elements, the success
probability for ϕ = π/3 becomes 0.723 ∗ 0.532 = 0.105,
which is 3.32 larger than 1/25, as shown in Fig. 4(c) [88].
As CNOT is an elementary building block in most quan-
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FIG. 4. Nonlinear CNOT and quantum factorization:
(a) The Gottesman-Chuang linear CNOT gate [5]. The gate
requires three BMs, two GHZ states and single-qubit Pauli
(X,Z) and Hadamard (H) rotations. (b) Success probability
(log10 scale) of the CNOT gate, using our nonlinear protocol
(with BMs and GHZs from Figs. 2-3). Black solid curve
neglects loss [Eq. (10) with τ = 0 and PDE = 1]. Blue
solid curve includes only nonlinear loss, assuming ODb =
30, while cyan dashed (dotted) curve includes also detector
loss with PDE = 98% (90%). (c) Success probability (log10

scale) of quantum factorization of the number 15, using a
protocol that requires two CNOT gates [87], with the same
building blocks and curve labels as in (b). For ϕ = π/3 and
PDE = 98%, the success probabilities of CNOT and quantum
factorization increase by factors of 3.32 and 11 respectively.

tum protocols, this enhancement is a dramatic result.
For example, the algorithm for quantum factorization
of the number 15 from Ref. [87] requires two CNOT
gates. Accordingly, our nonlinear protocols lead to an
order-of-magnitude (11-fold) improvement in its success
probability at ϕ = π/3 [Fig. 4(d)].

VI. DISCUSSION

We examined photonic quantum computation proto-
cols in the intermediate regime between linear optics
and strong nonlinearity at the single photon level, and
presented efficient protocols for key elementary oper-
ations, including BM, GHZ-state generation, CNOT
gate, and quantum factorization. Our results demon-
strate the potential of moderate nonlinearity, which is
achievable in a variety of platforms, using Rydberg-
EIT systems [57, 89] as a relevant example. As pho-
tonic quantum computation, and fault-tolerant MBQC
in particular, require a large number of elementary op-
erations [30], any modest increase in the success prob-
ability of each operation is translated to a dramatic re-
duction in the required resources. For example, a con-
ditional phase shift of ϕ = π/3, which in our scheme
increases the success probability of ancilla-assisted BM
with detection efficiency of 98% from 0.69 to 0.77, and
of GHZ-state preparation from 0.49 to 0.52, can be
translated into two orders of magnitude reduction in
resources after 35 operations. With the recent develop-
ments in interacting atomic ensembles with integrated
photonics [63–65, 69–71, 90, 91], few-photon nonlinearty
on chip-scale devices is becoming feasible, making pro-
tocols that rely on moderate nonlinearities a promising
platform for photonic quantum information processing.
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APPENDIX

A: Derivation details for the nonlinear
Bell-measurement protocol

1. Protocol without ancillas

In this section, we provide calculation details for the
success probability of a nonlinear Bell measurement
[Eq. (8) in the main text]. For convenience, we present
Fig. 2(a) from the main text in Fig. A.1, and introduce
additional labeling of the modes involved in the proto-
col. First, we rewrite Eq. (7) in the diagonal basis

|ψ+〉
BS−−→ i

2
√

2
[(c†+)2 − (c†−)2 + (d†+)2 − (d†−)2]|vac〉

|φ+〉
BS−−→ i

2
√

2
[(c†+)2 + (c†−)2 + (d†+)2 + (d†−)2]|vac〉

|φ−〉
BS−−→ i√

2
[c†+c

†
− + d†+d

†
−]|vac〉. (A.1)

To trace the evolution upon entering and leaving the
MZI, we invoke the beam-splitter (BS) transformation

c† → 1√
2
(f† + ig†)

f† → 1√
2
(w† + iu†)

g† → 1√
2
(u† + iw†). (A.2)

Due to self-phase modulation in the atomic medium, an
identical photon pair that enters modes f or g undergoes
the transformation

(f†±)2 →
√

1− τ eiϕ(f†±)2 +
√
τf†±`

†
± (A.3)

(g†±)2 →
√

1− τ eiϕ(g†±)2 +
√
τg†±k

†
±, (A.4)

where the first term on the right hand side accounts
for phase acquisition and the second for loss. By using
Eqs. (A.1–A.4), we find

(c†±)2 →
√

1−τ cosϕ−1
2 (w†±)2 −

√
1−τ cosϕ+1

2 (u†±)2−
√

1− τ sinϕw†±u
†
± +

√
τ

2
√

2

[
(w†± + iu†±)l†± − (u†± + iw†±)k†±

]
,

(A.5)

generalizing Eq. (6) in the main text. A similar trans-
formation rule applies for the d+d− component of the
wavefunction.

Both the states |φ+〉 and |ψ+〉 are affected by the
nonlinearity, since both contain identical photon pairs
[see Eq. (A.1)]. However, whenever two photons are de-
tected, |φ+〉 is distinguishable from the remaining states
because it is the only state that produces a pair of or-
thogonal photons either in the upper detectors (1–4)
or in the lower detectors (5–8). Therefore, when both
photons reach the detectors, only the cases where both

photons from |ψ+〉 are routed into u†+u
†
− lead to failure.

Therefore, the failure probability is found by collecting

the terms proportional to u†+u
†
−. Photon loss also leads
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FIG. A.1. For convenience, we present Fig. 2(a) from the
main text, introducing labeling of the modes inside the in-
terferometer (modes f , g, u and w).

to failure of the BM. Both |φ+〉 and |ψ+〉 can experience
loss, and the final states in that case are indistinguish-
able. Given that the initial state is |ψ+〉 or |φ+〉, the
probability for loss is τ/2. Therefore, the overall success
probability becomes

PBM = P 2
DE

[
1− 1

8

(√
1− τ(ϕ) cosϕ+ 1

)2

− τ(ϕ)
4

]
,

(A.6)

where the last term corresponds to nonlinear-loss events
and PDE accounts for finite detection efficiency.

2. Protocol with ancillas

In the main text, we present a Bell measurement
(BM) that uses conditional phase shifts to improve a
linear method whose success probability is 50%. How-
ever, linear protocols that use ancillary photons may
have higher success rates, with probability approach-
ing 100%; the failure rate drops exponentially with the
number of ancillary photons [86]. Fig. 2(c) depicts the
success rate of a refined nonlinear protocol, which is
based on a linear method with two ancillary qubits and
success probability of 75% [78]. The linear protocol and
its nonlinear improvement are shown in Fig. A.2(a) and
(b) respectively.

The linear method, proposed independently by Grice
and Ewert and van-Loock [78, 86], utilizes additional

photons prepared in |Ai〉 = 1
2 [(a†i,H)2 + (a†i,V )2]|vac〉 ,

where the index i = 1, 2 enumerates the ancillas and
|vac〉 is the vacuum of the acillary modes. The proto-
col is shown inFig. A.2(a). we briefly revise the linear
method before introducing our nonlinear modification.
By using 8 detectors, the Bell state can be determined
with success probability of 75%. The states ψ± and φ±
differ in the parity of H and V polarized photons, since



the parity is unaltered by the device. The states ψ±
can be distinguished since they differ in the number of
photons that reach the upper detectors (D1, . . . , D4).
Finally, the states φ± can only be distinguished with
probability 50% (instances where all detected photons
have the same polarization can occur for both φ+ and
φ− and lead to failure).

By introducing two nonlinear routers, one in each out-
put of the first beam splitter, we increase the probabil-
ity to distinguish between the φ± states. The setup is
shown in Fig. A.2(b). The success probability of our
nonlinear protocol (when neglecting loss) is

PEVL = P 4
DE

[
1− 1

16

(√
1− τ(ϕ) cosϕ+ 1

)2

− τ(ϕ)
4

]
.

(A.7)

With a conditional phase shift of π, the BM becomes
deterministic. Note, however, that the nonlinear setup
requires four ancillary qubits and eight detectors (while
the linear counterpart required only two ancilla qubits).

B: Derivation details for the nonlinear
GHZ-state preparation protocol

In the main text, we describe a nonlinear protocol for
GHZ-state generation. In this section, we provide the
details of the derivation. For the the notation we refer
to Fig. B.1. The protocol uses a resource of two Bell
pairs,

|ψ〉 = 1
2 (r†Ha

†
H + r†V a

†
V )(s†Hb

†
H + s†V b

†
V )|vac〉 . (B.1)
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FIG. A.2. (a) Bell-state measurement using four ancillary

qubits prepared in 1
2
[(a†H)2 + (a†V )2]|vac〉. A Bell state is

sent through the device, and the final measurement can de-
termine the input state with success probability of 75%. (b)
By introducing nonlinear routers (and additional ancillas
and detectors), the success probability increases, and reaches
100% for π conditional phase shifts, as shown by the green
line in Fig. 2(b) in the main text.

Then, one photon from each pair is sent through a polar-
izing beam splitter (PBS) (which transmits H-polarized
photons and reflects V photons) and the state becomes

|ψ〉 PBS1−−−→ 1
2 (r†Hd

†
H + ir†V c

†
V )(s†Hc

†
H + is†V d

†
V )|vac〉 .

(B.2)

This wavefunction contains two types of components:
ones with single photons in each output arm of the

PBS (c†Hd
†
H and c†V d

†
V ) and others with both photons

in the same arm (c†Hc
†
V and d†Hd

†
V ). The former type

of terms lead to successful GHZ-state generation. For
these states, our protocol reproduces the linear proto-
col “fission I.” For these terms, the photons leave the
routers through ports u or p. Then, the photon in u
undergoes a 45◦ rotation, resulting in

1
2 (r†Hs

†
Hc
†
Hd
†
H − r

†
V s
†
V c
†
V d
†
V )

MZI−−−→ 1
2 (r†Hs

†
Hp
†
Hu
†
H − r

†
V s
†
V p
†
V u
†
V )

45◦

−−→ 1
2
√

2
[u†+(r†Hs

†
Hp
†
H − r

†
V s
†
V p
†
V ) + u†−(r†Hs

†
Hp
†
H + r†V s

†
V p
†
V )].

(B.3)

Therefore, a click in either u+ or u− projects the sur-
viving photons onto a GHZ state.

On the other hand, our protocol can save also the lat-
ter type of terms. The wavefunction components with

both photons in the same arm (containing c†Hc
†
V and

d†Hd
†
V ) are routed into modes u, p or w, q with proba-

bilities shown in Fig. 1(c). For these terms, the cases
where both photons are also routed into w or q lead to
successful GHZ generation. This is because the latter
transform as

1
2 (r†V s

†
Hw
†
Hw
†
V + r†Hs

†
V q
†
Hq
†
V )

PBS2−−−→ i
2 (r†V s

†
Hg
†
Hf
†
V + r†Hs

†
V f
†
Hg
†
V )

45◦

−−→ i
2
√

2
[f†+(r†V s

†
Hg
†
H + r†Hs

†
V g
†
V ) + f†−(r†V s

†
Hg
†
H − r

†
Hs
†
V g
†
V )].

(B.4)

By scrutinizing the terms in the second line of Eq. (B.4),
one can see that a measurement of the photon in mode
f in the diagonal basis projects the surviving photons
onto a GHZ state.
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C: Introducing single-photon phase shifts

1. A nonlinear router with linear phase shifts

In this appendix, we introduce single-photon phase
shifts in order to achieve conditional (two-photon) phase
shifts with reduced nonlinear loss. In the applications
that we study in this paper, we find that this trade-off
between single-photon phase shifts and loss leads to a
minor improvement in the performance. The results of
our analysis are shown in Fig. C.1.

In order to reduce the nonlinear loss, we choose
photon frequencies that are detuned from the EIT
resonance, such that a photon traveling through the
medium acquires a phase shift ϕ1 and experiences loss,
described by the absorption coefficient ε1. Once a pho-
ton generates a Rydberg excitation, a subsequent pho-
ton inside the blockade radius effectively experiences an
ensemble of two-level atoms and acquires a phase shift
ϕ2 and loss with absorption coefficient ε2. When ne-
glecting loss, this model produces the following trans-
formation rules for the creation operators in the MZI
[Fig. 1(a) in the main text]:

f† → eiϕ1f† , f†
2 → ei(ϕ1+ϕ2)f†

2
(C.1)

g† → e−iϕ1g† , g†
2 → e−i(ϕ1+ϕ2)g†

2
. (C.2)

Our motivation is that by introducing small negative
ϕ1, one needs a smaller ϕ2 to achieve the same condi-
tional phase shift,

ϕ ≡ ϕ2 − ϕ1. (C.3)

Since the phase shifts and loss coefficients satisfy the
circle relations [Eq. (C.12) below], we expect to reduce
the total loss

ε ≡ ε1 + ε2. (C.4)

Once introducing ϕ1 6= 0, one must balance the MZI
(by adding a linear phase shift to one of its arm) in or-
der for single photons to exit deterministically through
one port. Revisiting Eq. (1) from the main text and in-
troducing single-photon phase shifts, e±ϕ1 , and an ad-
ditional phase shift of ei∆ for mode f , we obtain

a†
BS1−−→ 1√

2
(ei(ϕ1+∆)f† + ie−iϕ1g†)

∆=−2ϕ1−−−−−−→
e−iϕ1√

2
(f† + ig†)

BS2−−→ e−iϕ1u†. (C.5)

With this choice of ∆, the MZI is balanced. Next, let
us trace the propagation of a photon pair in the MZI.
Revisiting Eq. (3), we find

(
a†
)2 BS1−−→ 1

2

(
ei
ϕ1+ϕ2+∆

2 f† + ie−i
ϕ1+ϕ2

2 g†
)2

∆=−2ϕ1−−−−−−→

e−2iϕ1

2

(
ei
ϕ
2 f† + ie−i

ϕ
2 g†
)2

BS2−−→ e−2iϕ1
(
w† sin ϕ

2 + u† cos ϕ2
)2
.

(C.6)

In the second line, we used the definition of ϕ
[Eq. (C.3)].

Next, we account for the effect of loss on the proba-
bility amplitude of the surviving terms. For brevity, we
do not keep track of the loss channels and denote them
symbolically by the word “loss” in Eqs. (C7-11) below.
The transformation rule [Eq. (C.2)] is modified:

f† →
√

1− τ1eiϕ1f† + loss, (C.7)

g† →
√

1− τ1e−iϕ1g† + loss, (C.8)

f†
2 →

√
(1− τ1)(1− τ2)ei(ϕ1+ϕ2)f†

2
+ loss, (C.9)

g†
2 →

√
(1− τ1)(1− τ2)e−i(ϕ1+ϕ2)g†

2
+ loss. (C.10)

Tracing the propagation of photon pairs through the
MZI, we find [generalizing Eq. (5) in the main text]

a†
2 →

√
(1−τ1)(1−τ2)

2 e−2iϕ1

[
cosϕ

(
w†

2− u†2
)
− 2 sinϕ(w†u†)

]
− (1−τ1)

2 e−2iϕ1

(
w†

2
+ u†

2
)

+ loss. (C.11)

The acquired phase shifts and loss coefficients satisfy
the circle relation:

ϕ2
i +

(
OD
4 −

εi
2

)2
=
(

OD
4

)2
, (C.12)

for i = 1, 2, where e−εi = 1− τi.
Equation (C.11) is used in Fig. 1(a) in the main text

to compute the probability for a photon pair to exit
in modes w, u or both when ϕ1 6= 0 (dotted curves).
The probabilities can be expressed in terms of ϕ1, ϕ, ε1,
and ε. We choose ϕ1 and ϕ and express ε1(ϕ1) using
Eq. (C.12) and the overall loss, using

ε(ϕ,ϕ1) = ε1(ϕ1) + OD
2 ±

√(
OD
2

)2 − 4(ϕ+ ϕ1)2.

(C.13)

2. Nonlinear Bell-measurement protocol
including a linear phase shift

Introducing conditional phase shifts for identical pho-
ton pairs, the transformation rule for creation operators
becomes

f†±
2
→
√

(1− τ1)(1− τ2)ei(ϕ1+ϕ2)f†±
2

+ loss, (C.14)

f†+f
†
− → (1− τ1)e2iϕ1f†+f

†
− + loss. (C.15)

Recall that the states |ψ−〉 and |φ−〉 do not contain
identical photon pairs in the diagonal basis after the first
BS [see Eq. (A.1)]. Therefore, these states can only en-
counter single-photon loss and the survival probability
for each of these states is (1−τ1)2. Conversely, the states
|ψ+〉 and |φ+〉 contain identical photon pairs. By sum-
ming the probability of the no-loss terms in Eq. (C.11),
one finds that the survival probability for each of these
states is 1

2 [(1−τ1)2+(1−τ1)(1−τ2)]. The interpretation
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dashed curve). (b) Nonlinear router: Probabilities for detection outcomes, Poutput, for an incoming photon pair. Same as in
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, evaluated using Eq. (C.11) (dotted curves here and in all of the following

subplots in this figure). This value of ϕ1 is chosen to optimize the success probability and is used in all remaining subplots.
(c–f) Success probabilities of a nonlinear BM (PBM), GHZ-states generation (PGHZ), CNOT gate (PCNOT), and quantum
factorization (Pfactorization) as a function of ϕ. Same as Figs. 2(c), 3(b), 4(b,c), with the addition of the case ϕ1 < 0.

of the last result is that either the photons survive two
single-photon loss events (in an EIT medium) or they
survive a single photon and a second-photon loss (in an
effective two-level medium) event. The overall survival
probability is

Psurvive = (1−τ1)2

2 + (1−τ1)(2−τ1−τ2)
4 . (C.16)

Therefore, the success probability of a BM is

PBM = Psurvive − 1
8

(√
(1− τ1)(1− τ2) cosϕ+ (1− τ1)

)2

.

(C.17)

To account for finite detection efficiency, one needs to
multiply this result by P 2

DE.

3. Nonlinear GHZ-state generation with linear
phase shifts

To compute the success probability of our protocol in
the presence of ϕ1 6= 0, recall that there are two sce-
narios that produce a GHZ state: (i) When the photon
pair leaves PBS1 through different ports and both pho-
tons reach the final detectors (avoiding absorption due
to linear loss in the MZI), and (ii) When the photons
leave PBS1 through the same port and, later, also leave
the MZI in modes w or q. Adding the probabilities for

these scenarios, we obtain

PGHZ = 1
2 (1− τ1)2 − 1

8

(√
(1− τ1)(1− τ2) cosϕ+ (1− τ1)

)2

.

(C.18)

D: Selecting optimal nonlinear phase shifts

When examining the plots in the main text that show
of the success probability versus ϕ, a surprising fea-
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ture emerges: While one would naively expect that π
phase shifts yield optimal results, it turns out that in
all studied applications, the optimal phase is smaller
than π. In Fig. D.1(a), we compute the optimal phase
shift, ϕopt, as a function of the blockaded optical depth,
ODb, for or BM and GHZ-state generation protocols.
Figure D.1(b) shows the corresponding success proba-

bilities at the optimal phase shifts from (a). The insets
show the same data as the main plots on a log10 scale.
One can see that at large optical depths (ODb > 50), all
curves in the insets are linear. We find that the optimal
phases scale as ϕopt − π ∝ ODα, where α = −1 for the
GHZ-state preparation protocol and α = −0.3 for BMs.
The infidelity of our protocols scales as 1−Popt ∝ ODα,
where α ≈ −0.9 for both protocols.
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M. Żukowski, “Three-particle entanglements from two
entangled pairs,” Phys. Rev. Lett. 78, 3031 (1997).

[23] D. E. Browne and T. Rudolph, “Resource-efficient lin-
ear optical quantum computation,” Phys. Rev. Lett. 95,
010501 (2005).

[24] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang,
Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan,
“Experimental entanglement of six photons in graph
states,” Nat. Phys. 3, 91–95 (2007).

[25] K. Kieling, T. Rudolph, and J. Eisert, “Percolation,
renormalization, and quantum computing with nonde-
terministic gates,” Phys. Rev. Lett. 99, 130501 (2007).

[26] M. M. Wilde, F. Spedalieri, J. P. Dowling, and H. Lee,
“Alternate scheme for optical cluster-state generation
without number-resolving photon detectors,” Int. J.
Quantum Inf. 5, 617–626 (2007).

[27] P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi,
A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thomp-
son, and J. L. O’Brien, “Generating, manipulating
and measuring entanglement and mixture with a re-
configurable photonic circuit,” Nat. Photonics 6, 45–49
(2012).

[28] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu,
C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu,
Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y. A.
Chen, C. Y. Lu, and J.-W. Pan, “Experimental ten-
photon entanglement,” Phys. Rev. Lett. 117, 210502
(2016).

[29] D. Istrati, Y. Pilnyak, J. C. Loredo, C. Antón, N. So-
maschi, P. Hilaire, H. Ollivier, M. Esmann, L. Cohen,



L. Vidro, C. Millet, A. Lemâıtre, I. Sagnes, A. Harouri,
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