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Pardis Sahafi,1, 2 Andrew Jordan,1, 2 Philip J. Poole,4 Dan Dalacu,4 and Raffi Budakian1, 2, 5, ∗

1Department of Physics, University of Waterloo, Waterloo, ON, Canada, N2L3G1
2Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L3G1

3Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4National Research Council of Canada, Ottawa, Ontario, Canada, K1A 0R6
5Canadian Institute for Advanced Research, Toronto, ON, Canada, M5G1Z8

(Dated: April 5, 2021)

Adiabatic operations are powerful tools for robust quantum control in numerous fields of physics,
chemistry and quantum information science. The inherent robustness due to adiabaticity can, how-
ever, be impaired in applications requiring short evolution times. We present a single versatile
gradient-based optimization protocol that combines adiabatic control with effective Hamiltonian
engineering in order to design adiabatic operations tailored to the specific imperfections and re-
sources of an experimental setup. The practicality of the protocol is demonstrated by engineering
a fast, 2.3 Rabi cycle-long adiabatic inversion pulse for magnetic resonance with built-in robustness
to Rabi field inhomogeneities and resonance offsets. The performance and robustness of the pulse
is validated in a nanoscale force-detected magnetic resonance experiment on a solid-state sample,
indicating an ensemble-averaged inversion accuracy of 99.997%. We further showcase the utility of
our protocol by providing examples of adiabatic pulses robust to spin-spin interactions, parameter-
selective operations and operations connecting arbitrary states, each motivated by experiments.

I. INTRODUCTION

Since its inception by Born and Fock [1], the concept of
adiabatic evolution has had a profound impact on quan-
tum science and technology. The adiabatic theorem es-
tablishes that under any sufficiently slow excitation, en-
ergy eigenstates of a quantum system remain eigenstates
at all times [2]. The theorem has lent itself as an indis-
pensable design principle for engineering quantum con-
trol sequences [3–15] which, especially in the case of state-
to-state transfers, exhibit remarkable robustness to a va-
riety of experimental imperfections such as unitary con-
trol errors and decoherence [16–18]. Control sequences
based on the principle of adiabaticity are widely used
for quantum computation [19, 20] as well as in quantum
sensing, spectroscopy and imaging [21–23] with applica-
tions ranging from the early population transfers in mag-
netic resonance (MR) [3, 24] to recent implementations
of quantum gates [25, 26].
True adiabaticity only occurs in the infinite duration

limit, typically for closed quantum systems [27]. In real-
world applications that demand fast operations, the ro-
bustness of the control sequence often degrades, because
the evolution necessarily deviates from true adiabatic
evolution. Robustness may be further compromised due
to unaccounted perturbation Hamiltonians and decoher-
ence introduced by the coupling of the quantum system
to external degrees of freedom. Furthermore, shorter du-
ration control sequences occupy a wider bandwidth, and
are therefore more susceptible to distortions arising from
bandwidth limitations of the control electronics.
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The loss of robustness due to imperfect adiabaticity
has evoked a need for better control engineering meth-
ods, which has led to various optimization schemes for
adiabatic control [4, 14, 28–30], as well as shortcuts to
adiabaticity [31] such as superadiabatic operations [5, 11]
and counter-diabatic driving [32–34]. In parallel to the
development of more robust adiabatic controls, recent
advances in Hamiltonian engineering techniques [35–39]
provide a highly versatile means of designing high-fidelity
quantum control sequences, tailored to specific applica-
tions. Some of these approaches are based on numerical
optimization methods that provide a systematic means
of incorporating robustness to a variety of imperfections
such as dominant decoherence sources [37, 40–42]. Nu-
merical control engineering [43] may also be adapted to
include ensemble effects such as inhomogeneities and pa-
rameter uncertainties [44–48], as well as control resource
limitations and distortions [49–52] in a particular exper-
imental setup.

While several numerical schemes exist for either op-
timizing various adiabaticity metrics [4, 14, 28–30], or
for minimizing the effect of perturbation Hamiltonians
[37, 40–42], a single versatile numerical optimization
protocol that combines adiabatic control with effective
Hamiltonian engineering would be highly valuable across
quantum information science. With this work, we present
a unified protocol for engineering adiabatic operations
that are robust to various perturbations, including cer-
tain decoherence pathways that may arise in cases where
the system evolution deviates from perfect adiabatic-
ity, in particular applications that require short control
times. Our work relies on extending the Van Loan for-
malism [42] to allow for efficient optimization of adia-
baticity and various perturbation terms on an equal foot-
ing. The Van Loan formalism utilizes auxiliary block
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matrices [53–58] for efficiently evaluating a broad family
of integrals involving the time evolution operator, while
also allowing for gradient-based optimization for quickly
convergent control searches.
In this paper, we focus on adiabatic control engineer-

ing for two-level quantum systems, i.e. qubits, which we
refer to as “spins” in the context of our MR experiments.
Our protocol can, however, be easily extended to multi-
level systems in which the energy eigenstates are analyt-
ically known as a function of the controls. An example
of this is given in Ref. [59] for s > 1/2 nuclear spins
in MR. In the following, we will first outline the adia-
batic control problem and the details of the optimization
scheme. We then demonstrate the utility and practical-
ity of the protocol by designing adiabatic passages for
MR and conducting an experimental study of a fast, 2.3
Rabi cycle-long adiabatic inversion pulse engineered to
be robust to both large Rabi field variations and reso-
nance offsets. The measurements are carried out on an
interacting solid-state nanoensemble of nuclear spins us-
ing a force-detected MR setup with an intrinsically high
degree of Rabi field variations. The ensemble of spins
experiences a continuous range of Rabi fields that varies
in amplitude by 2×. We find that the z−magnetization
decays to e−1 of its initial value after ∼ 34, 000 succes-
sive applications of the inversion pulse, corresponding to
an ensemble-averaged single-pulse inversion accuracy of
99.997%. We further characterize the pulse performance
as a function of Rabi field and resonance offset, and com-
pare these measurements with the ideal calculated per-
formance for this pulse.
The potential utility of our protocol is further demon-

strated with three self-contained examples in the appen-
dices. We describe an adiabatic inversion pulse designed
to be robust against strong dipole-dipole interactions in a
dense network of electron spins. We provide numerical re-
sults that demonstrate that by including effective Hamil-
tonian terms that minimize dipolar interactions into the
optimization protocol, the pulse fidelity can be signifi-
cantly improved. We further show that our protocol can
be used to design adiabatic pulses that are selective to a
particular set of Hamiltonian parameters – an important
feature for sensing and spectroscopy applications [60, 61].
We conclude by discussing the application of our protocol
to connect arbitrary states.

II. ADIABATIC CONTROL PROBLEM

Consider the dynamics of a spin over an interval [0, T ]
governed by a Hamiltonian H which depends on a set of
control parameters x = (x1, ..., xN ) ∈ R

N . The control
parameters indicate the experimenter’s ability to con-
trol the spin, and here, we regard them as a particu-
lar parametrization of an electromagnetic waveform that
couples to the spin. The x vector could, for example, be a
set of the waveform’s piecewise constant amplitudes (e.g.
to be implemented on an arbitrary waveform generator).

Any such Hamiltonian can be expanded as

H
(
b(x, t)

)
= −b(x, t) · σ/2, (1)

where σ ≡ (σx, σy, σz) denotes a vector of Pauli matri-
ces, and the function b : RN × [0, T ] → R

3 is assumed
to be differentiable, as required for gradient-based opti-
mization. The exact form of b(x, t) varies for different ex-
perimental settings; here, we will assume that this func-
tional relationship is known. In Section IV we provide a
concrete example of a b(x, t) when discussing adiabatic
MR pulses. The dynamics of the spin is thus completely
determined by the trajectory of b(x, t), which borrow-
ing from MR terminology, we refer to as the effective

field throughout this paper. The eigenvalues of Eq.(1)
are given by ±|b(x, t)|

/
2, with the corresponding eigen-

states pointing along the ±b(x, t) direction on the Bloch
sphere.
The basic form of the adiabatic control problem is to

find a set of control parameters x̄ such that given some
initial state |ψ0〉 and target state |ψT 〉,

A. |ψ0〉 evolves to |ψT 〉 at t = T , up to a phase.

B. The state follows a specific instantaneous eigen-
state of H

(
b(x̄, t)

)
, as closely as possible, for all

t ∈ [0, T ].

Condition B. implies that b(x̄, 0) and b(x̄, T ) are con-
strained such that they point along the |ψ0〉 and |ψT 〉
directions on the Bloch sphere, respectively.
In addition to the above criteria for adiabatic evo-

lution, we generally require the operation to be robust
to various experimental imperfections and uncertainties.
For example, protection against a single-body perturba-
tion Hamiltonian δH(t) amounts to minimizing the vari-
ation of the final state |δψ(x)〉 due to the perturbation,
which can be computed using the Dyson series [62]:

|δψ(x)〉 =
∞∑

n=1

DU (δH, ..., δH
︸ ︷︷ ︸

n times

;T )|ψ0〉, (2)

where we use a shorthand

DU (A1, ..., An; t) ≡ (−i)nU(t)

×
∫ t

0

dt1· · ·
∫ tn−1

0

dtn

n∏

k=1

(

U−1(tk)Ak(tk)U(tk)
)

, (3)

for the various Dyson terms, along with U(x, t) =

Texp
[
− i

∫ t

0 dt
′H

(
b(x, t′)

)]
for the unperturbed propa-

gator, with Texp denoting the time-ordered exponential.
In practice, one truncates the infinite series in Eq.(2) at
some finite order and minimizes the final state correction
up to that order.
In this paper, we will restrict our attention to single-

body perturbations at first order in the Dyson series,
which is commonly referred to as the zeroth order aver-
age Hamiltonian in MR literature [63]. Nevertheless, the
Van Loan formalism [42] employed here allows for the
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inclusion of many-body perturbations up to arbitrary or-
der.
When assessing the suitability of a particular set of

control parameters x we use three metrics that quantify
the final state fidelity, adiabaticity of the control trajec-
tory and its sensitivity to perturbations. We quantify
the final state fidelity by calculating the overlap function
ϕ0(x) ≡ |〈ψT |U(x, T )|ψ0〉|2. We evaluate adiabaticity
using the time-averaged overlap between U(x, t)|ψ0〉 and
the instantaneous energy eigenstate |E±(b)〉,

ϕad(x) ≡
1

T

∫ T

0

dt
∣
∣
∣

〈
E±

(
b(x, t)

)∣
∣U(x, t)

∣
∣ψ0

〉
∣
∣
∣

2

=
1

T
〈ψ0|U †(x, T )DU (iP ;T )|ψ0〉, (4)

where P (b) = (1±b ·σ/|b|)/2 is the projection operator
onto the ±|b| eigenspace of H(b). The ± sign here is
chosen such that |ψ0〉 coincides with the corresponding
eigenstate at t = 0. Here, we have assumed that |b| 6= 0
for all t. In general, 0 ≤ ϕ0(x) ≤ 1 and 0 ≤ ϕad(x) ≤ 1,
whereas ϕ0(x) = ϕad(x) = 1 if and only if conditions
A. and B. are perfectly satisfied. Lastly, we quantify
robustness to perturbation Hamiltonians using Eq.(2) by
defining ϕper(x) ≡ 1 − ‖δψ(x)‖2/N 2, or to first order in
δH :

ϕper(x) ≡ 1− 1

N 2
〈ψ0|DU (δH, T )

†DU (δH, T )|ψ0〉, (5)

with N =
∫ T

0
dt ‖δH(t)‖op being a normalization

ensuring 0 ≤ ϕper(x) ≤ 1, given
∥
∥δH(t)

∥
∥
op

≡
sup|v〉6=0

(∥
∥δH(t)|v〉

∥
∥/‖v‖

)

.

Another important consideration for practical con-
trol design are ensemble effects that manifest them-
selves as variations in the parameters of the system, e.g.,
non-uniform static/control fields, parameter uncertain-
ties and ensembles in time, i.e. different conditions in
distinct experimental realizations. These can be dealt
with by considering a collection of quantum systems Λ,
with each member λ ∈ Λ evolving under a different value
for the parameters in question. Robustness to such en-
semble effects translates to finding the optimum control
parameters that result in an evolution satisfying condi-
tions A. and B. for all λ ∈ Λ.

III. CONTROL ENGINEERING

For simplicity, we first discuss our adiabatic control
protocol for a single spin, without accounting for inho-
mogeneities or uncertainties in the system. The full pro-
tocol is then discussed accordingly. A solution x̄ to the
single-spin adiabatic control problem can be found by set-
ting up and numerically maximizing a combined target
function:

ϕ ≡ p0ϕ0 + padϕad + pperϕper, (6)

where the relative weights p0, pad, pper are non-negative
and add up to 1. To efficiently compute the integral
terms arising in ϕ0, ϕad and ϕper as well as the gradients
of the integral terms with respect to x, we utilize the
Van Loan relations for the time-ordered exponential of
upper-triangular block matrices [42, 53–55]. We use a
Van Loan generator

L(b, t) ≡ −i







H(b) iP (b) 0

0 H(b) δH(t)

0 0 H(b)






, (7)

to construct the Van Loan propagator,

Vt[b]≡ Texp
[ ∫ t

0

dt′L
(
b(x, t′), t′

)]

=








U(x, t) DU (iP ; t) DU

(
iP, δH ; t

)

0 U(x, t) DU (δH ; t)

0 0 U(x, t)








(8)

[42]. It is clear from Eq.(8) that the Van Loan formal-
ism allows for the simultaneous evaluation of all quan-
tities needed for the computation of Eq.(6), which are
contained in the different blocks of VT [b].

A schematic of our full adiabatic control engineering
protocol is depicted in Fig. 1. We consider a finite
collection of spins Γ ⊆ Λ, called the optimization set,
with size |Γ|, that serves as a representative subset of
spins in the experiment, which experience the ensemble
effects we wish to address. The protocol starts with a
seed x0 for the control parameters that is chosen from a
pseudorandom distribution, and is then used to calculate
the Van Loan generator L

(
b
(λ)(x0, t)

)
for each member

λ ∈ Γ. A numerical differential equation (DE) solver,
such as a Runge-Kutta algorithm [64], is then used to
calculate the Van Loan propagators {Vt[b(λ)]}, which are
then used to evaluate the single-member target functions
ϕ(λ)(x), given by Eq.(6), for every λ ∈ Γ. The set of
target functions {ϕ(λ)(x)} are combined to form a to-
tal target function Φ ≡ ∑

λ∈Γ w
(λ)ϕ(λ), to be maximized

by an optimization algorithm. The relative weights w(λ)

prioritize different members of the optimization set, and
satisfy 0 ≤ w(λ) ≤ 1, with

∑

λ∈Γ w
(λ) = 1.

For efficient control engineering we also need to evalu-
ate the target function gradient ∇Φ(x), which together
with Φ(x), is supplied to a gradient ascent optimizer
to search the control landscape for the optimum adi-
abatic operation. Since {ϕ(λ)} are simple functions of
{VT [b(λ)]}, their partial derivatives with respect to the
control parameters can be evaluated through the chain
rule by noticing that

∂VT [b]

∂x
=

∫ T

0

dt
δVT [b]

δb(x, t)
· ∂b(x, t)

∂x
, (9)
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where δ/δb ≡ (δ/δbx, δ/δby, δ/δbz),

δVT [b]

δbα(x, t)
= VT [b] V

−1
t [b]

∂L(b, t)

∂bα
Vt[b] (10)

and ∂b(x, t)/∂x is the 3 ×N Jacobian matrix of the ef-
fective field. The matrix inverses appearing in the ex-
pression for the functional derivatives δVT [b]/δbα(x, t),
α ∈ {x, y, z}, can be evaluated analytically [65]. Eq.(9)
and Eq.(10), along with the assumption that the func-
tional form of b(x, t) is known, imply that ∇Φ(x) can
be computed using the values of Vt[b], which are already
available from the output of the DE solver. In practice,
we approximate the integral in Eq.(9) by a finite sum for
computational speedup.

FIG. 1. General overview of the adiabatic control protocol.
In each iteration of the optimization algorithm, the control
parameters x are used to calculate the effective field trajec-
tory, and subsequently the Hamiltonian, for each member of
the optimization set. We then utilize the Van Loan auxiliary
matrix formalism to evaluate the various control performance
metrics, along with their gradients, and provide them to the
gradient ascent optimizer.

IV. ADIABATIC PULSE DESIGN FOR

MAGNETIC RESONANCE

We now discuss the application of the proposed con-
trol protocol to the design of adiabatic passages for MR.
Consider a spin 1/2 particle with gyromagnetic ratio γ
in a static magnetic field B0 = B0ẑ, and an orthogonal
radio-frequency (RF) field BRF(t) = 2B1I(t) cosφ(t) +
2B1Q(t) sinφ(t), where B1I(t) and B1Q(t) are the in-
phase and quadrature envelope functions, and the instan-
taneous angular frequency is φ̇(t). Measuring energy in
units of angular frequency, the Hamiltonian of the spin in

a reference frame rotating around ẑ at the instantaneous
RF frequency is known to be [4]

H(t) = −ω1I(t)
σx
2

− ω1Q(t)
σy
2

−∆ω(t)
σz
2
, (11)

where ω1I(t) ≡ γB1I(t), ω1Q(t) ≡ γB1Q(t) and

∆ω(t) ≡ γB0 − φ̇(t) is the instantaneous resonance off-
set. Comparing Eq.(1) and Eq.(11) reveals that b(t) ≡
(
ω1I(t), ω1Q(t),∆ω(t)

)
is the effective field in this prob-

lem. The adiabatic control problem here amounts to find-
ing the optimal envelope and resonance offset waveforms
that maximize the target function discussed in Section
III. We will now focus on engineering adiabatic full pas-
sages (AFPs), that adiabatically evolve spins between the
states |↑〉 and |↓〉.
In order to formulate the protocol in terms of a

finite set of optimization parameters x ∈ R
N , we

need to parametrize the three waveforms that rep-
resent b(t) using an ansatz suitable for the desired
operation. An appropriate choice of parametrization
should accommodate the initial and target states, and
be flexible enough to handle the imperfections in ques-
tion, while involving a minimal number of unknowns
in the optimization, and hence more efficient pulse
searches. Accordingly, we parametrize the waveforms as
bx(x, t) = ω1max tanh[ax(x, t)], by(x, t) = 0 and bz(x, t) =
∆ωmax tanh[az(x, t)], where







ax(x, t) ≡
N/2
∑

n=1

xn

[

1−
(
1− 2

t

T

)2n
]

az(x, t) ≡
N∑

n=N/2+1

xn

(

1− 2
t

T

)2(n−N/2)−1

, (12)

are even and odd polynomials around t = T/2, respec-
tively. The parameters ω1max and ∆ωmax are the max-
imum Rabi strength and resonance offset realizable in
the experimental setup. The hyperbolic tangent func-
tions act as soft clipping functions that restrict the wave-
forms according to the chosen maximum values, while
∆ωmax serves as a handle on the bandwidth of the
frequency-modulated pulse, which is roughly on the or-
der of 2∆ωmax. We briefly discuss a more general ansatz
for operations connecting arbitrary states in App. C.
We now provide an example AFP engineered for a

spin ensemble experiencing a broad range of maximum
Rabi strengths ω1max ∈ [Ω1, 2Ω1], for some Ω1. Ana-
lytically derived AFPs with similar properties [4] have
been used as part of a detection protocol in recent force-
detected nanoscale magnetic resonance experiments [66].
We normalize frequency and time variables in units of
the smallest Rabi frequency Ω1, and its associated Rabi
cycle 2π/Ω1, respectively. The normalized duration of
the pulse is set to TΩ1/(2π) = 2.3. Optimization is
done on a 5-element optimization set, with the maxi-
mum resonance offset ∆ωmax/Ω1 = 5, as an approxi-
mate bandwidth constraint, and an additional pertur-
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bation metric [δH(t) = σz ] for robustness against Lar-
mor inhomogeneities. |Γ| = 5 is chosen empirically by
monitoring the Rabi-frequency-dependence of the vari-
ous pulse metrics in trial optimizations, adding more ele-
ments if the pulse performance is not satisfactory over
the whole [Ω1, 2Ω1] Rabi range. The waveforms are
parametrized with N = 50 coefficients, using the poly-
nomial ansatz of Eq.(12). The relative weights in Eq.(6)

are set to p
(λ)
0 = 0.2, p

(λ)
ad = 0.6 and p

(λ)
per = 0.2 for all

λ ∈ Γ. The values of p0, pad and pper are also cho-
sen empirically to ensure the simultaneous convergence
of each individual metric ϕ0, ϕad and ϕper when op-

timizing ϕ [42], while slightly emphasizing p
(λ)
ad to in-

crease the control robustness arising from adiabaticity.
The weights for optimization-set members are chosen as
w(λ) = 1/|Γ| = 1/5. For the gradient ascent optimizer
and DE solver, we use the FindMaximum function and
the explicit Runge-Kutta algorithm of the Parametric-
NDSolve function in Mathematica [67], respectively. Ini-
tialization of the optimizer is done by drawing a seed from
a uniform pseudorandom distribution on [−1, 1]50, reset-
ting the optimizer with a new seed if the target function
value does not exceed 0.99 after 50 steps. The compu-
tations for different optimization-set members are paral-
lelized on a multi-core processor for additional speedup.
To benchmark the performance of the pulse, we use

the same target function and 5-element optimization set,
with identical amplitude and resonance offset constraints
to optimize two reference AFPs of the same duration,
using two standardized waveforms in the literature: the
WURST [68, 69] pulse, used for fast, broadband spin
inversions, and the Sech/Tanh [70, 71] pulse, which is
known for its insensitivity to RF field variations above
its cutoff Rabi frequency [4] (see Ref. [59] for the opti-
mization details). The optimized polynomial AFP, along
with the two reference pulses are depicted in Fig. 2(a,b).
In the same figure, we also examine the Rabi-dependence
of various control metrics. The (logarithmic) infidelities
associated with the target state and σz perturbation met-
rics are plotted as a function of maximum Rabi strength
in Fig. 2(c-d); indicating that the polynomial AFP infi-
delities are approximately two orders of magnitude lower
than the ones for the two reference pulses, over the rele-
vant Rabi range. The polynomial AFP also exhibits a sig-
nificantly higher degree of adiabaticity than the WURST
and Sech/Tanh pulses, as can be seen in Fig. 2(e). Fig.
2(f) shows another, more intuitive measure of adiabatic-
ity – the maximum angle between the magnetization and
effective field vectors

αmax = max
t∈[0,T ]

cos−1

(
b(x̄, t) ·m(x̄, t)
∣
∣b(x̄, t)

∣
∣
∣
∣m(x̄, t)

∣
∣

)

, (13)

where x̄ is the set of optimal control parameters, and
m(x̄, t) = 〈↑|U †(x̄, t)σU(x̄, t) |↑〉 /2 is the magnetiza-
tion. In the design ω1max range, the plot indicates
an αmax ≤ 11◦ for the polynomial AFP, whereas the
WURST and Sech/Tanh pulses reach αmax = 22◦ and
αmax = 30◦, respectively. Note that even though the

polynomial AFP shows far better adiabaticity than the
reference pulses, it still clearly deviates from perfect adi-
abatic evolution due to its very short duration. Never-
theless, as will be shown experimentally in Section V, the
pulse still possesses the desired robustness in a practical
setting.
Motivated by quantum sensing experiments on nitro-

gen vacancy centers [72], we provide another example
that demonstrates the utility of our perturbative treat-
ment in App. A, where we engineer AFPs for densely-
packed electrons, and specifically minimize the perturba-
tions due to spin-spin dipolar interactions. Numerically
comparing the results with an AFP optimized without
the perturbation metric shows an order of magnitude im-
provement in the target state infidelity for a system of 7
interacting electron spins.
The applicability of our adiabatic control protocol is

not only limited to finding fast robust adiabatic opera-
tions, but also can be used to engineer control sequences
that are selective in a particular Hamiltonian parame-
ter; a common demand in sensing, imaging and spec-
troscopy applications [60, 61]. For instance, adiabatic in-
versions that are selective to Larmor frequency are used
for the spatially localized excitation of spins in some
implementations of nanometer-scale magnetic resonance
imaging (MRI) measurements [73–75]. Engineering adi-
abatic pulses that exhibit well-defined, narrow inversion
bands in Larmor frequency, with sharp band edges is
an essential ingredient for achieving the highest resolu-
tion imaging in these nano-MRI approaches. In App. B
we demonstrate the application of our protocol to engi-
neer adiabatic inversions that act over some chosen Lar-
mor frequency range, with a specifically tailored inversion
profile.

V. EXPERIMENTAL VERIFICATION

In this section, we present an experimental study of the
2.3 Rabi cycle AFP discussed in Section IV, using the
force-detected nano-MRI setup discussed in [66]. The
measurements are made on 31P nuclear spins in an in-
dium phosphide (InP) nanowire sample [76], grown with
a Wurtzite structure, inside a static field B0 = 3 T
applied along the growth axis (z−direction) at 6 K.
At this field, the Larmor frequency of 31P-spins, with
gyromagnetic ratio γ/(2π) = 17.235 MHz/T, equals
ω0/(2π) = 51.8 MHz. The sample is a solid-state spin
system with both homonuclear (P↔P) and heteronu-
clear (P↔In) dipolar and J couplings [24]. We calculate
the nearest-neighbor dipolar coefficients to be 132 Hz for
P↔P couplings, and 619 Hz for P↔In couplings. Based
on previous measurements of InP with zinc-blende crystal
structure [77, 78], we expect the P↔In and P↔P J cou-
pling coefficients to be less than, or on the order of 1 kHz
and 20 Hz, respectively. Consistent with these expecta-
tions, Ramsey and Hahn echo experiments on our sample
indicate relaxation times of T ∗

2 = 70 µs and T2 = 364 µs,
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FIG. 2. (a) Amplitude and (b) resonance offset waveforms
of the numerically optimized fast AFP using the polynomial
ansatz, along with the WURST and Sech/Tanh reference
pulses. (c) Target state, (d) σz perturbation and (e) adia-
baticity metrics for the various AFPs as a function of maxi-
mum Rabi frequency, measured as their (logarithmic) devia-
tion from unity. (f) The maximum angle between the effective
field and the magnetization vectors throughout the evolution,
along with Bloch sphere trajectories at the start, middle and
end of the design Rabi range. The black dots in (c-f) indi-
cate the five Rabi frequency values and control metrics for the
optimization-set elements {λ}.

respectively.

Here, we omit the details of the experimental setup and
spin detection protocol, which are given in [66]. The 31P
spins are controlled by RF magnetic fields near ω0 us-
ing a current-driven nanometer scale field source, which
generates a highly non-uniform field profile. The spins
within our roughly (100-nm)3 detection volume experi-
ence a continuous range of Rabi frequencies from 172 kHz
to 862 kHz. Our measurements are done using the MAG-
GIC spin detection protocol [66], which measures the in-

tegrated z-magnetization of the spin ensemble

Mz ∝
∫ ∞

0

dω1 p(ω1)Tr [ρ(ω1)σz ] =

∫ ∞

0

dω1 p(ω1)ζ(ω1),

(14)
where ρ(ω1) is the effective density operator of the spin
at ω1, and p(ω1) is an effective Rabi-frequency-dependent
density of spins, which is determined by the device and
sample geometry, as well as the parameters of the detec-
tion protocol [79]. ζ(ω1) is the response function that
characterizes the Rabi-frequency dependent performance
of the sequence of AFPs under study. The Rabi range
in which p(ω1) is non-zero can be tuned by adjusting
the detection protocol, which allows us to measure only
those spins that experience a specific range of Rabi fre-
quencies. To determine the Rabi frequency distribution
of Mz, we use the Fourier encoding method described in
[66]. The distributions p1(ω1) and p2(ω1) [Fig. 3(c,d)]
used in the characterization of the 2.3 Rabi cycle AFP
were measured separately.
We characterize a numerically engineered 2.3 Rabi cy-

cle AFP that is 4.8 µs long with a lower cutoff Rabi fre-
quency set to Ω1/(2π) = 479 kHz and the maximum res-
onance offset set to ∆ωmax = 5Ω1/(2π) = 2.4 MHz. By
Fourier transforming the pulse waveform, we determine
the bandwidth of the pulse to be 5.4 MHz – roughly equal
to 2∆ωmax. We test the AFP in three different aspects:
overall fidelity, as well as robustness to resonance off-
sets and Rabi frequency inhomogeneities. The σz metric
used in the optimization assists the pulse performance in
the presence of small static-field inhomogeneities, chem-
ical shifts and heteronuclear couplings. Because of the
relatively weak dipole-dipole interactions in InP, we did
not include a perturbation metric for homonuclear dipo-
lar interactions into the pulse optimization. Multi-spin
simulations confirmed that dipolar interactions produced
minimal degradation in the pulse fidelity. While dipo-
lar interactions are not a significant perturbation for the
InP system, there are instances where dipolar interac-
tions can significantly affect the pulse performance. As
an example, in App. A we consider numerically adiabatic
inversions for a dense network of electron spins.
To examine the fidelity, we confine the measured Rabi

range [Ω1, 2Ω1] to match the design Rabi range of the 2.3
Rabi cycle AFP. The corresponding measured distribu-
tion p1(ω1) is shown in Fig. 3(c). We apply n consecutive
AFPs and measure the decay in Mz as a function of n,
where n ∈ [1, 30016]. When performing the experiment,
we insert tw = 52 µs delays between the applied AFPs,
which act as effective dephasing maps [80] that minimize
the propagation of compounding pulse errors [81]. Note
that because ensemble spin inversions commute with the
dipolar Hamiltonian, a sequence of AFPs cannot refocus
the dephasing caused by homonuclear dipolar interac-
tions. Therefore, the single-spin transverse magnetiza-
tion in between AFP applications decays with the corre-
sponding time constant T2. For a discussion of how the
measured signal depends on the delay time (tw) along
with supporting experimental data, see Ref. [59]. We
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also add an additional free evolution time (30016− n)tw
after each n-pulse train, to make sure that Mz(n) for all
pulse numbers experience identical T1-decays. Although
T1 was longer than we could determine with our mea-
surements, we did confirm that it was longer than 5 s.
Fig. 3(a) shows the resulting normalized Mz(n) signal.
From this data, we wish to extract the ensemble-averaged
single-AFP inversion accuracy

A =
∣
∣
∣

∫ ∞

0

dω1 p1(ω1)ζ1(ω1)
∣
∣
∣, (15)

where ζ1 is the single-AFP response function. We show
in Ref. [59] that under certain reasonable assumptions,
the signal from our measurement sequence is expected
to satisfy |Mz(n)| ≤ An. Consequently, from the ex-
ponential fit to Mz(n), we expect that a single AFP
inverts spins with an ensemble-averaged accuracy of at
least 99.997(3)% over our Rabi distribution. To com-
pare the measured fidelity with that of the WURST and
Sech/Tanh reference pulses of Sec. IV, we conducted sim-
ulations based on the Lindblad equation that accounts for
the T2 dephasing during the wait times (see Ref. [59] for
details). The inhomogeneous broadening that gives rise
to the observed T ∗

2 is accounted for by averaging over
a set of Lorentzian-distributed resonance offsets. We do
not model any non-unitary decay process during the AFP
itself. Additionally, our model approximates the effect
of all coherent many-body interactions during the wait
times with single-spin Lindblad equations. Hence, the
simulations only provide an upper bound on the pulse
performance. A comparison with the calculated ideal fi-
delity for the optimized reference pulses [inset in Fig.
3(a)] indicates a significant enhancement in performance
for the optimized polynomial AFP.
We investigate the robustness of the pulse to resonance

offsets using a train of 5000 AFPs, each separated by
tw = 52 µs, and measuring Mz(δω) as we offset the car-
rier frequency by δω/(2π) ∈ [−200 kHz, 200 kHz] from
the center frequency ω0. In the detection protocol, we
target the same Rabi frequency range [p1(ω1)]. The
data, presented in Fig. 3(b), indicates that after 5000
AFPs, the integrated spin signal within the design range
ω1 ∈ [Ω1, 2Ω1] decays to half its peak value in a ±120 kHz
band around the center frequency. As shown in Fig. 3(b),
our measurements closely track the expectation from sim-
ulations.
To characterize the pulse performance as a function

of Rabi frequency, we use the same 5000 AFP pulse
train, and adjust the Rabi range of the detection protocol
[p2(ω1) in Fig. 3(d)] to be wider than the design range of
the AFP. As before, we add enough free evolution time
in the p2(ω1) measurement to compensate for the ex-
tra T1 decay in the ∼ 280 ms-long 5000 AFP measure-
ment sequence. The resulting p2(ω1) and p2(ω1)ζm(ω1)
are shown in Fig. 3(d). We note that ζm(ω1) and
ζc(ω1) correspond to the measured and calculated AFP
response functions, respectively. The calculated response
ζc(ω1) = Tr[ρ(ω1)σz ] is plotted as the dashed curve in

Fig. 3(d). The figure clearly indicates that the AFP
has the expected performance in the [Ω1, 2Ω1] design
range, and that the overall Rabi dependence is in excel-
lent agreement with the simulation. The measured mag-
netization in this range experiences an average drop by
∼ 15% over the 5000 AFPs, which is consistent with the
estimate of 1− e−5000/34111 = 13.6% calculated from the
ensemble magnetization decay experiment. Nevertheless,
the calculated ζc(ω1) shows an average reduction of ∼ 7%
over the same [Ω1, 2Ω1] Rabi frequency range. While we
do not know the source of the discrepancy, it could arise
from small unaccounted perturbations not included in
the simulation, such as pulse waveform distortions, com-
ing from the RF electronics, phase noise from the arbi-
trary waveform generator, or residual spin couplings. We
note that in our case, addressing the transfer function of
the electronics in the control searches was not necessary
for satisfactory pulse performance. The Van Loan for-
malism does, however, allow for the efficient inclusion of
transfer function distortions in the optimizations [42].
We conclude the section by comparing our work to

some existing experimental results. The performance
and robustness of adiabatic control sequences and control
sequences derived using shortcuts to adiabaticity tech-
niques have been explored experimentally in the context
of nuclear magnetic resonance [82], Bose-Einstein con-
densates [83] and nitrogen-vacancy centres in diamond
[84]. In [82] the authors study the performance of two an-
alytically derived ‘Tanh/Tan’ AFPs, optimized to yield
fast broadband inversions, as a function of resonance off-
set (δω) and Rabi strength (ω1). The AFPs, when scaled
to our target ω1 values, are 3.7 µs and 5.5 µs-long, with
maximum resonance offsets of 7.3 MHz and 10 MHz,
respectively. Single-spin simulations, identical in pro-
tocol to the ones displayed in Fig. 3(a), show that the
‘Tanh/Tan’ AFPs with durations 3.7 µs and 5.5 µs would
yield Mz(n = 5000) = 0.11 and Mz(n = 5000) = 0.23,
respectively. Thus, even though these pulses have maxi-
mum resonance offsets that are considerably higher than
the 2.3 Rabi cycle pulse [∆ωmax/(2π) = 2.5 MHz], their
performance is significantly worse. Ref. [83] character-
izes the robustness of a high-fidelity superadiabatic tan-
gent sequence, whose duration, when scaled to our target
ω1 values, is ∼ 7 µs. The authors quote the simulated
fidelity of the sequence over the range of [Ω1, 2Ω1] as
> 0.999 while the experimental fidelity is confirmed to
be & 0.99 over the same range.

VI. CONCLUSION & OUTLOOK

We have developed a numerical control engineering
protocol that combines gradient-based optimization with
the Van Loan auxiliary matrix formalism [42] to provide
an efficient and systematic means of designing adiabatic
pulses that are robust to a variety of parameter varia-
tions and perturbation Hamiltonians. Using the proto-
col, we engineered a rapid, 2.3 Rabi cycle-long AFP that
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FIG. 3. Experimental study of the 2.3 Rabi cycle-long polynomial AFP. (a) Spin signal after n AFP applications, an exponential
fit to the data and simulations of the optimized polynomial, WURST and Sech/Tanh pulses. (b) Spin signal after 5000 AFPs,
measured as a function of resonance offset. The frequency resolution in the measurement is 20 kHz. (c) Measured effective spin
density p1(ω1) used in the fidelity and resonance offset measurements. (d) Distributions p2(ω1)ζm(ω1), p2(ω1) and p2(ω1)ζc(ω1)
(left axis), where ζc(ω1) is the calculated response function for a train of 5000 AFPs (right axis). The frequency resolution of
the Rabi frequency spectra shown in (c) and (d) is 50 kHz, with the shaded areas indicating Rabi frequencies outside the AFP
design range. All error bars correspond to one standard deviation.

addresses the broad Rabi field distribution in our exper-
iments. The pulse exhibited an infidelity improvement
of roughly two orders of magnitude over analytically-
derived WURST and Sech/Tanh waveforms of the same
duration, by optimizing the Bloch sphere trajectory, and
taking advantage of the flexibility of the polynomial
ansatz [Eq.(12)] for waveform parametrization.

Although the spin evolution clearly diverged from per-
fect adiabaticity for this short pulse duration, the AFP
yielded an experimental inversion accuracy of 99.997%
for the spin ensemble using our broadband RF control
electronics. The engineered AFP exemplifies how the
protocol provides a means of addressing the precise de-
mands of a quantum control application, while complying
with the constraints and fully utilizing the resources of
a particular experimental setup to engineer high-fidelity
operations.

With the appendices we provide 3 additional exam-
ples, each motivated by particular experiments, further
illustrating the flexibility and utility of the protocol for a
range of applications. We believe that the selective adia-
batic control engineering, which we demonstrate with the

example in App. B, is a particularly powerful capabil-
ity as it provides a way of designing robust state-to-state
transfers that are conditional on a specific Hamiltonian
parameter. Such operations provide both a way for se-
lectively addressing specific members of an ensemble that
is controlled globally – a common challenge for sensing
and spectroscopy – as well as a means for characterizing
Hamiltonian parameters in the presence of challenging
experimental conditions.

Because our protocol builds directly on existing
Van Loan auxiliary matrix methods, it inherits all of
the demonstrated capabilities of the former. This in-
cludes the ability to engineer robustness with respect to
stochastic operators characterized by their power spec-
tral density functions, as well as the use of different basis
functions for waveform parametrization, e.g., piece-wise
constant functions [42]. While our protocol enables the
optimization of perturbation expressions using waveform
parametrizations that have previously been considered
by analytical schemes [85], it is not limited to a specific
Hilbert space dimension, nor to particular Hamiltonian
generators [11]. Furthermore, the protocol enables direct
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implementation of arbitrary control waveform amplitude
and bandwidth constraints; such schemes have been de-
veloped for engineering unitary pulses using Van Loan
methods in [42], and experimentally demonstrated in
[66]. The ability to directly include the effect of stochas-
tic operators into adiabatic control optimizations could
also prove valuable, as analytical techniques for assessing
the effect of particular stochastic operators on various
shortcuts to adiabaticity control schemes have been de-
veloped in [86]. Moreover, unlike analytical methods, our
protocol enables the use of noise power spectral densities
specific to the experimental setup and quantum system
at hand.
Because adiabaticity is a frame-dependent measure,

the success of our control engineering protocol for the
examples shown relied on choosing a favorable reference
frame for expressing the spin Hamiltonian in Eq.(11).
The reference frame and the waveform parametrization
that we used were inspired by analytical work on adia-
batic control [4]. We found that for the control problems
considered here the polynomial ansatz yielded much bet-
ter convergence to solutions than waveform parametriza-
tions involving smooth time-localized basis functions,
such as Gaussians. We expect that similar reasoning can
guide the use of our protocol for quantum systems with
different Hilbert space dimensions and system/control
Hamiltonians in a variety of quantum control applica-
tions requiring high-fidelity state preparations, includ-
ing quantum computing, simulation, sensing and spec-
troscopy.
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Appendix A: AFP Pulses Robust Against Dipolar

Couplings

We now discuss the design of AFPs for densely-packed
electrons that are engineered for robustness against spin-
spin dipolar interactions. Such considerations can be-
come relevant for quantum sensing applications; for ex-
ample with nitrogen vacancy centers, where phase shifts
for adiabatic pulses have been used to reduce the effect of
nonadiabatic couplings [72]. We optimize two AFPs, one

that utilizes an additional perturbation metric to pro-
vide built-in robustness against dipolar couplings, and a
second AFP that does not include this robustness condi-
tion. The performance of the two pulses are compared in
a multi-spin simulation to investigate the effectiveness of
the perturbative treatment.

Following the approach of Sec. IV, the two-body secu-
lar dipolar Hamiltonian δH = 2σz⊗σz−σx⊗σx−σy⊗σy
[3] is used to minimize the leading order correction to
the final state DU⊗U (δH ;T )(|ψ0〉 ⊗ |ψ0〉), which is done
by defining a perturbation metric similar to Eq.(5), to
be evaluated using a suitable Van Loan generator (see
Ref. [59] for details). The pulse searches are done on
an optimization set of 7 electron spins [γe/(2π) = 28.024
GHz/T], with their maximum Rabi frequency ranging
between 7.57 MHz and 12.05 MHz. The maximum reso-
nance offset of the pulses is set to ∆ωmax/(2π) = 50 MHz,
and the duration is chosen to be T = 1 µs. Both pulses
were parametrized using Eq.(12) withN = 40. For one of
the pulses, which we call the reference pulse, we only use

final state and adiabaticity metrics with p
(λ)
0 = 0.2 and

p
(λ)
ad = 0.8. For the dipolar pulse, the metric coefficients

are chosen as p
(λ)
0 = 0.2, p

(λ)
ad = 0.5 and p

(λ)
per = 0.3. The

weights between different set members are w(λ) = 1/7
for both pulses, and the rest of the optimization is per-
formed in the same way as before. The resulting pulses
and their associated control metrics are shown in Fig. 4.

To examine the effect of dipolar couplings, we simulate
a system of 7 interacting electrons experiencing a partic-
ular Rabi frequency for 9 different Rabi frequency values.
The spatial coordinates of the 7 electrons were chosen by
taking a 4 nm-sided cube, arranging spins on its center
and the centers of its faces, and then displacing each spin
by a random vector drawn from a uniform distribution
on [−0.5 nm, 0.5 nm]3. For reference, the largest dipo-
lar coefficient for the spatial arrangement is 6.5 MHz.
Starting from the state |↑〉 for each spin, we compute the

mean fidelity ϕ =
∑7

j=1 Tr[ρj(T ) |↓〉 〈↓|]/7 for the 9 dif-

ferent Rabi frequencies, where ρj(T ) is the final reduced
density matrix of the jth spin. The results for both the
dipolar and reference pulses, along with the fidelity met-
ric ϕ0, which is calculated for a single non-interacting
spin, are shown in Fig. 4(c). The plots show that de-
spite the reference AFP exhibiting slightly better target
state and adiabaticity metrics for a single spin, the mean
infidelity of the dipolar AFP computed for the coupled
7-spin system is approximately an order of magnitude
smaller, in the AFP design range.

Finally, the performance of the reference pulse im-
proves as the Rabi frequency is increased to ∼ 14 MHz,
which is consistent with the Rabi frequency dependence
of its dipolar metric [Fig. 4(d)]. This implies that the
main contributor to its inferior performance is the ab-
sence of the dipolar metric in the pulse search. We there-
fore expect the ability to minimize arbitrary perturbation
terms to be a powerful tool for engineering fast adiabatic
pulses robust to interactions.
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FIG. 4. (a) Amplitude and (b) resonance offset waveforms
of the dipolar and reference AFPs. (c) Target state infidelity
of the dipolar and reference pulses (curves) calculated for a
single non-interacting spin, along with the mean infidelities
from the 7-spin simulation with non-zero dipolar couplings
(points). (d) Dipolar perturbation metrics for the two pulses.
The dipolar metric of the reference pulse is plotted for ref-
erence only and was not included in the optimization. (e)
Adiabaticity metrics for the two pulses. (f) The maximum
angle between the effective field and magnetization vectors
throughout the evolution as a function of Rabi frequency.

Appendix B: Larmor-Selective AFP Pulses

Quantum control operations conditional on some
Hamiltonian parameter for a globally controlled ensemble
of quantum systems underpin all spectroscopy and most
imaging applications [74], and are often a key ingredi-
ent for quantum sensing [60, 61]. Here, we demonstrate
the use of our control protocol for engineering adiabatic
operations that are conditional on a single Hamiltonian
parameter. Motivated by the nano-MRI experiments in
[74], we demonstrate optimizing controls that adiabati-
cally invert spins experiencing a certain adjustable range
of Larmor frequencies, called the inversion band, while

not inverting spins outside of that range. We use the
same experimental parameters as in [74].
Using the polynomial ansatz of Eq.(12) with N = 10,

we design a 300 µs-long AFP for proton spins with gyro-
magnetic ratio γ/(2π) = 42.577 MHz/T, under a maxi-
mum Rabi frequency of ω1max/(2π) = 225.7 kHz, and a
maximum resonance offset of ∆ωmax/(2π) = 75 kHz. We
search for Larmor-selective pulses by considering an op-
timization set of spins (Γ) at different resonance offsets,
and assigning different single-member target functions
depending on whether the the optimization set member
(λ ∈ Γ) is inside or outside the inversion band. Tak-
ing the initial state to be |↑〉, for λ inside the inver-

sion band, we assign the metric coefficients p
(λ)
0 = 0.2

and p
(λ)
ad = 0.8, with the target state being set to |↓〉;

whereas the λ outside the inversion band have p
(λ)
0 = 1

and p
(λ)
ad = 0, with a target state equal to the initial state.

Within the inversion band range of [−47 kHz, 47 kHz], we
use 11 distinct λ ∈ Γ, with additional 2 members of the
optimization set outside the band at ±72.5 kHz. We rein-
force the sharpness of the band edges in the optimization
by choosing w(λ) = 2/17 for the ±47 kHz and ±72.5 kHz
members, and w(λ) = 1/17 for the others.
The optimized pulse shape is given in Fig. 5(a). Just

like [74], we look at the fidelity metric (ϕ0)
M as a func-

tion of detuning δω/(2π), where M = 140 is the number
of adiabatic inversions applied in the experiment. Fig.
5(b) shows the profile of ϕM

0 , for which the total band
width, defined by the region in which ϕM

0 ≥ 0.1, equals
107.8 kHz. For a static field gradient of G = 2×106 T/m
utilized in [74], this translates to a near-nanometer spa-
tial band width of δz = δω/(γG) = 1.25 nm. The band
edge width is determined to be ∼ 13 kHz or 0.15 nm. The
pulse also generates the expected adiabatic behavior, as
the maximum angle between the effective field and mag-
netization vectors in the [−47 kHz, 47 kHz] range is 4◦,
while the angle at the edges (± 47 kHz) reaches ∼ 15◦.
We have thus demonstrated an example for systemat-

ically engineering adiabatic operations conditional on a
Hamiltonian parameter suitable for nanometer-scale MRI
experiments. We note that if required, robustness to
Rabi field variations can also be directly addressed in
the optimization by considering a perturbation Hamilto-
nian δH(x, t) = bx(x, t)σx, and minimizing the associ-
ated metric.

Appendix C: Adiabatic Operation Connecting

Arbitrary States

Eq.(12) restricts the initial and final effective fields to
the z axis. For arbitrary adiabatic spin 1/2 state-to-
state transfers – a useful capability for experiments [87,
89] – a more general parametrization is needed [4, 88,
89]. To this end, we first look for a polynomial function
that connects the arbitrary points (0, ξ) and (T, ξ′). One
solution is to use the line connecting these two points,
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FIG. 5. (a) Amplitude and resonance offset waveforms for the
optimized Larmor-selective AFP. (b) Adiabaticity metric ϕad

and target state fidelity of the pulse ϕM
0 after M = 140 spin

inversions, as a function of detuning. The z = δω/(γG) axis
was determined using a static field gradient of G = 2 × 106

T/m. The arrows indicate the width and edges of the inver-
sion band. The markers in subfigure (b) represent the mem-
bers of the optimization set λ ∈ Γ, with the circles (diamonds)
being inside (outside) the inversion band.

and add it to the most general polynomial with roots at
t ∈ {0, T }. We thus define the function

f ξξ′

mm′(x, t) ≡ t

T
(1− t

T
)

m′

∑

n=m+1

xn
(
1− 2

t

T

)n−m−1

+
t

T
(ξ′ − ξ) + ξ, (C1)

where ξ = f ξξ′

mm′(x, 0) and ξ′ = f ξξ′

mm′(x, T ). One can now
use polynomials of this form to parametrize the three
effective field components. To also incorporate amplitude
and bandwidth limitations, we utilize tangent hyperbolic
soft clipping functions, which leads to the ansatz







bx(x, t) =
ω1max√

2
tanh

[
fαα′

0,N/3(x, t)
]

by(x, t) =
ω1max√

2
tanh

[
fββ′

N/3,2N/3(x, t)
]

bz(x, t) = ∆ωmax tanh
[
fγγ′

2N/3,N(x, t)
]

, (C2)

where N is the number of optimization parameters. The
(α, β, γ) and (α′, β′, γ′) indices in Eq.(C2) are chosen as

α = tanh−1 nx, α′ = tanh−1 n′
x,

β = tanh−1 ny, β′ = tanh−1 n′
y,

γ = tanh−1
( ω1max√

2∆ωmax

nz

)
, γ′ = tanh−1

( ω1max√
2∆ωmax

n′
z

)
,

such that for the design Rabi frequency, b(x, 0) ∝ n̂

and b(x, T ) ∝ n̂
′, where n̂ = (nx, ny, nz) and n̂

′ =

(n′
x, n

′
y, n

′
z) are unit vectors along the initial and final

states on the Bloch sphere, respectively.
We now give a brief example of an operation that trans-

fers an arbitrary state on the Bloch sphere to another
arbitrary state. For this we design a T = 13 µs pulse for
spins with N = 30 control parameters. We enforce the
bandwidth and amplitude constraints ∆ωmax/(2π) = 7.4
MHz and ω1max/(2π) = 448 kHz on a single-member op-
timization set, with target function coefficients p0 = 0.2
and pad = 0.8, and no perturbation metric in mind. The
initial and final states for the pulse design are set to
(ϑi, ψi) = (π/3, 0) and (ϑf , ψf ) = (2π/3, π/2), respec-
tively, where ϑ and ψ denote the polar and azimuthal an-
gles of the states on the Bloch sphere, respectively. The
resulting pulse, along with its associated performance
metrics and calculated Bloch sphere trajectory are pre-
sented in Fig. 6. The results show that the spin follows
the effective field with an angle α(t) ≤ 5◦, and reaches
the target state with a fidelity higher than 0.99999. The
target state infidelity [Fig. 6(b)] exhibits a single min-
imum near ω1max/(2π) = 448 kHz, as deviations from
the design Rabi frequency will necessarily cause misalign-
ment between the initial state and effective field. The
small shift between the minimum and the design Rabi
frequency is due to coherent effects arising from the slight
non-adiabaticity of the evolution.
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FIG. 6. (a) Adiabatic pulse designed for evolving the
(ϑi, ψi) = (π/3, 0) point to (ϑf , ψf ) = (2π/3, π/2) on the
Bloch sphere. The field values correspond to the spin in the
optimization set. (b) The target state and adiabaticity metric
infidelities as a function of Rabi strength. The dot indicates
the spin used in the optimization. (c) The maximum angle
between the effective field and magnetization vectors for the
optimized ω1max/(2π) = 448 kHz spin as a function of time,
and (d) the corresponding Bloch sphere trajectory of the mag-
netization and effective field.
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