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Abstract 22 

Tunable synthetic spin-orbit coupling (s-SOC) is one of the key challenges in 23 
various quantum systems, such as ultracold atomic gases, topological superconductors, 24 
and semiconductor quantum dots. Here we experimentally demonstrate controlling the 25 
s-SOC by investigating the anisotropy of spin-valley resonance in a silicon quantum 26 
dot. As we rotate the applied magnetic field in-plane, we find a striking nonsinusoidal 27 
behavior of resonance amplitude that distinguishes s-SOC from the intrinsic spin-orbit 28 
coupling (i-SOC), and associate this behavior with the previously overlooked in-plane 29 
transverse magnetic field gradient. Moreover, by theoretically analyzing the 30 
experimentally measured s-SOC field, we predict the quality factor of the spin qubit 31 
could be optimized if the orientation of the in-plane magnetic field is rotated away from 32 
the traditional working point.  33 
  34 
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I. INTRODUCTION 35 

Electron spins in semiconductor quantum dots (QDs) are considered one of the 36 
most promising qubit designs for scalable quantum information processing [1-3]. By 37 
applying an alternating magnetic field, the electronic spin can be coherently controlled 38 
through electron spin resonance (ESR) [4]. Alternatively, such control can be 39 
implemented electrically via intrinsic or synthetic spin-orbit coupling (SOC), which is 40 
termed as electric-dipole spin resonance (EDSR) [5,6]. In combination with the long 41 
spin coherence time in natural silicon, which is further improved by zero-spin-isotope 42 
purification, the synthetic spin-orbit coupling (s-SOC) has enabled high-fidelity single-, 43 
two-, and multi-qubit operations, as well as strong spin-photon coupling and long-range 44 
qubit interactions in Si QDs [7-18].  45 

However, with time inversion asymmetry [19,20], s-SOC also exposes a spin qubit 46 
to electric noise and gives rise to fast spin relaxation [21,22] and pure dephasing 47 
[7,8,23-25]. Different from the intrinsic spin-orbit coupling (i-SOC) that comes from 48 
the underlying atoms and asymmetries in the material or structure, s-SOC in a quantum 49 
dot is introduced by a magnetic field gradient from an integrated micromagnet. 50 
Concerning the spin quantization axis, this field gradient can be separated into two parts: 51 
the transverse component that mediates fast electrical control of spins, and the 52 
longitudinal component that adds multi-qubit addressability. In combination with 53 
charge noise, the longitudinal field gradient can also cause fast spin dephasing, thus 54 
brings uncertainty to the reproducibility and homogeneity of the promised control 55 
fidelities [8,14,25]. Therefore, for s-SOC to enable scalable high-fidelity spin qubits in 56 
semiconductor QDs, it is crucial to better understand, characterize, and control 57 
magnetic field gradients of a micromagnet. 58 

Anisotropy spectroscopy has long been an effective means to probe the physical 59 
mechanism of SOC in semiconductor systems [26-34]. Predictably, this method can 60 
also be used to investigate s-SOC [31]. In the meantime, transport measurement of ESR 61 
or EDSR reveals various physical parameters, such as Larmor and Rabi frequencies, 62 
and even spin dephasing times [27,35-38]. Hence, an anisotropy study of transport 63 
measured ESR or EDSR should be an effective method to probe the properties of s-64 
SOC. In silicon QDs, there exist valley states that originate from the six-fold degenerate 65 
conduction band minimum. The spin and valley degrees of freedom are mixed by spin-66 
orbit coupling [39], whether i-SOC or s-SOC, so that an oscillating electric field can 67 
induce simultaneous flip of spin and valley states. This so-called spin-valley resonance 68 
[38,40] is different from a normal EDSR that induces transition between Zeeman-split 69 
states and offers a conveniently tunable energy gap between spin-valley states at higher 70 
magnetic fields for resonance spectroscopy. 71 

Here we report the detection of spin-valley resonance based on the transport 72 
measurement of the Pauli spin blockade (PSB) in a natural Si metal-oxide-73 
semiconductor (MOS) double quantum dot (DQD) [1,2]. By controlling the external 74 
magnetic field direction in-plane, we find a cosinusoidal modulation of the resonance 75 
position with a 180° period and an 8.7 ± 1.0°  phase shift. Moreover, a detailed 76 
measurement of the resonance peak unveils a strikingly nonsinusoidal modulation of 77 
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the resonance peak amplitude, which suggests a non-negligible contribution of the in-78 
plane transverse magnetic field gradient of the micromagnet that has long been 79 
overlooked in previous studies [9,12,41]. Supported by both the experimental and 80 
numerical results, we propose that the s-SOC in semiconductor QDs can be 81 
magnetically tuned by rotating the in-plane magnetic field direction, leading to a 82 
simultaneous improvement of control rates, dephasing times, and the addressability for 83 
spin qubits driven by s-SOC. 84 

 85 

II. RESULTS AND DISCUSSION 86 

A. Experimental setup 87 

The Si MOS DQD device [34] we study is shown in Fig. 1(a), which is located in 88 
a dilution refrigerator with a base temperature ~ 20 mK. Gates C1 and C2 create a 89 
channel for electrons to flow between reservoirs under gates L1 (source) and L2 (drain). 90 
By selectively tuning gates G1, G2 and G3, a DQD can be defined under gates G1 and 91 
G2. Moreover, a rectangular Ti/Co micromagnet of 10 µm by 0.93 µm in the active 92 
region (APPENDIX F), with length along the y-axis and width along the x-axis, as well 93 
as a thicknesses of 10/200 nm, is deposited next to the DQD to generate s-SOC with 94 
field components 𝑩+ parallel to 𝑩,-., 𝑩/ perpendicular to 𝑩,-. and in the x-y plane, 95 
and 𝑩0 perpendicular to both 𝑩,-. and the x-y plane. Similar to other metal gates, the 96 
voltages and the microwave (MW) can also be applied to the micromagnet. 97 

 98 

B. Pauli spin blockade 99 

Our measurement of spin-valley resonance is enabled by the PSB [1] in our DQD. 100 
A qualitative sketch of PSB is depicted in the inset of Fig. 1(b) with nominally two 101 
electrons. Using S and T to refer to the singlet and the triplet states, respectively, and 102 
(1, 1) and (0, 2) to refer to different charge configurations, PSB allows the transition 103 
from S(1, 1) to S(0, 2), but not from T(1, 1) to S(0, 2) while interdot detuning 𝜀 is not 104 
large enough to make T(0, 2) accessible. The signature of PSB is thus an asymmetric 105 
current suppression under bias. As illustrated in Fig. 1(b) in our case, when we measure 106 
the current flowing from drain to source, it just corresponds to the electron transiting 107 
from (m, n) to (m-1, n+1), where we use m and n to denote the uncertain total electron 108 
number in the DQD (see APPENDIX A for the stability diagram with charge sensing), 109 
and we find that the leakage current is suppressed in the trapezoidal blockade region 110 
inside the two triangles. This process can be intuitively understood using the PSB from 111 
(1, 1) to (0, 2) by assuming only valence electron configurations take place in the 112 
transport. Also, when we measure the current while varying the energy detuning 𝜀 113 
between (m, n) and (m-1, n+1) and the magnetic field strength, as shown in Fig. 1(c), 114 
we can observe the blockade region clearly and obtain a corresponding energy gap of 115 
𝐸34	~	1 meV. At low field (𝐵,-. ≤ 100 mT), PSB is partially lifted due to spin-flip 116 
cotunneling [42]; while at 𝐵,-. in the range of 844 to 896 mT, PSB is lifted due to 117 
spin-valley mixing in one of the QDs [38] (see discussion below). 118 
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 119 

C. Detection of EDSR. 120 

By setting 𝑉:;  and 𝑉:<  within the PSB region and applying continuous 121 
microwave (CW) to the micromagnet [13], we measure the transport current |𝐼3?| as 122 
a function of both the external magnetic field strength 𝑩,-.  and the microwave 123 
frequency	𝑓. When the spin-valley states are tuned into resonance with the microwave 124 
excitation, PSB could be lifted and result in an increased current. In Fig. 2(a), three 125 
lines of increased current are visible. The central vertical line corresponds to line V in 126 
Fig. 1(c), while two oblique lines A and B on both sides can be understood by the same 127 
spin-valley mixing mechanism [38]. As shown in the energy level spectrum of Fig. 2(a), 128 
with an increasing magnetic field, two lowest valley states with a valley splitting 𝐸A3 129 
are split by Zeeman energy 𝐸B, resulting in four spin-valley product states, namely 130 
|1⟩ = |𝑣G, ↓⟩ , |2⟩ = |𝑣G, ↑⟩ , |3⟩ = |𝑣L, ↓⟩  and |4⟩ = |𝑣L, ↑⟩ . In the presence of 131 
SOC in general, and s-SOC in particular, states |2⟩ and |3⟩ (or |1⟩ and |4⟩) would 132 
mix with each other, resulting in two hybridized spin-valley states (APPENDIX D) with 133 
an s-SOC strength ∆33O indicating the energy gap at the anticrossing of the two states 134 
(energy levels of states |1⟩ and |4⟩ never cross, thus their mixing is always relatively 135 
small). Therefore, with the oscillating electric field moving the electrons back and forth, 136 
the spin state of an electron could be flipped along with its valley state, lifting PSB and 137 
thus leading to the observed resonance lines A and B in Fig. 2(a) [38,40]. 138 

 139 

D. Anisotropy spectroscopy of spin-valley resonance. 140 

We now focus on the anisotropy of spin-valley resonance. As shown in Fig. 2(b) 141 
and (c), by rotating the in-plane magnetic field 𝑩,-. with an angle 𝜙 with respect to 142 
the x-axis and keeping the microwave frequency constant at 10.09 GHz, we scan the 143 
strength of the external magnetic field for resonances A and B and find they are 144 
modulated by the field orientation. Without loss of generality, we take resonance B as 145 
an example to perform a detailed study of the anisotropic resonance position and 146 
resonance amplitude 𝐼+, as shown in Fig. 3(a) and (b), with both quantities extracted 147 
by fitting the resonance peak with a Gaussian function [1] [inset of Fig. 3(a)].  148 

Fig. 3(a) shows a cosinusoidal modulation of resonance position with a 180° period 149 
and an 8.7 ± 1.0° phase shift. To make a comparison, we calculate the stray magnetic 150 
fields along different directions generated from the micromagnet. In particular, 𝑩+ 151 
(the solid dark blue curve), which is parallel to 𝑩,-. , shows nearly out-of-phase 152 
modulation compared to the resonance peak positions. This negative correlation can be 153 
understood by the fact that the direction of the total magnetic field is nearly along 𝑩,-. 154 
and thus 𝑩+  contributes most through ℎ𝑓~𝛾(𝑩,-. + 𝑩+), where ℎ  is the Planck 155 
constant, 𝑓 is the fixed microwave frequency we applied, and 𝛾 is the gyromagnetic 156 
ratio. Moreover, such a relationship between 𝑩,-. and 𝑩+ suggests s-SOC dominates 157 
the anisotropy over i-SOC in our device. Our numerical calculation also indicates that 158 
the small phase shift of the cosinusoidal curve is caused by the deviation of the electron 159 
position from the centerline along the length of the rectangular micromagnet. 160 
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In contrast, Fig. 3(b) shows a nonsinusoidal modulation of resonance amplitude 𝐼+, 161 
though with the same period and similar modulation phase as the resonance position. 162 
This behavior is radically different from the sinusoidal anisotropy due to i-SOC shown 163 
in previous work [38], and likely originates from s-SOC. To a first approximation, 𝐼+ 164 
is proportional to the square of Rabi oscillation rate 𝜔W  [27,35,36], and by deriving 165 
the equation for 𝜔W  in the limit of |𝐸A3 − 𝐸0| ≫ |Δ33O| (APPENDIX D), we get: 166 

 		𝐼𝑝 = 𝐶𝑏𝑡𝑟
2   (1) 167 

where 𝑏/`  is the transverse magnetic field gradient along the electron displacement 168 
direction and the origin of s-SOC strength Δ33O, while 𝐶 is a constant scaling factor. 169 
The total magnetic field direction 𝑩.a. = 𝑩,-. + 𝑩+ + 𝑩/ + 𝑩0 defines the exact spin 170 
quantization axis, and the electron displacement direction is along the y-axis. Thus the 171 
total transverse magnetic field gradient should be 𝑏/` = 𝑑𝑩.c.a. 𝑑𝑦⁄ . We have 172 
numerically calculated 𝐼+ = 𝐶 (𝑑𝑩.c.a. 𝑑𝑦⁄ )<, and it reproduces the basic features of the 173 
experimental results quite well [see the navy curve in Fig. 3(b)].  174 

The calculated 𝐼+ curve may be counterintuitive at the first sight. With an intuitive 175 
picture of the magnetic induction lines from the rectangular micromagnet, one would 176 
normally expect that the maximal 𝐼+ is along the length (𝜙 = 90° or 270°, 𝑦-axis) 177 
of the micromagnet and the minimal 𝐼+ along the width (𝜙 = 0° or 180°, 𝑥-axis). 178 
However, as shown in Fig. 3(b), though the angle of minimal 𝐼+ is as expected, the 179 
angles of maximal 𝐼+  deviate from the 𝑦-axis significantly, and 𝐼+  has two peak 180 
values in a single period. To explain this phenomenon, we calculate the resonance 181 
amplitudes induced by the in-plane (𝑑𝑩.chi 𝑑𝑦⁄ ) and out-of-plane (𝑑𝑩.caj. 𝑑𝑦⁄ ) transverse 182 
magnetic field gradients separately (see Fig. 4(a) for different magnetic field gradients). 183 
As shown in Fig. 3(b), 𝑑𝑩.caj. 𝑑𝑦⁄ , with the maximum value near the 𝑦-axis and a 184 
cosinusoidal curve of 180° period, is in good agreement with the intuitive expectation. 185 
However, 𝑑𝑩.chi 𝑑𝑦⁄ , though is usually neglected at the traditional working angle 186 
[9,12,41] (along the length of the micromagnet), contributes to the total 𝐼+ 187 
nonnegligibly for certain angles. The nonsinusoidal behavior of the resonance 188 
amplitude is a direct result of the competition of the out-of-plane and in-plane 189 
transverse magnetic field gradient contributions to the s-SOC. 190 
 191 

E. Optimization of spin control. 192 

In principle, in a resonance experiment dephasing times could be extracted directly 193 
from the peak width [37]. However, in our experiment, the microwave power is not low 194 
enough to avoid power broadening, and we cannot directly estimate the dephasing times. 195 
To circumvent this problem, we calculate the anisotropy of the longitudinal magnetic 196 

field gradient 𝑑𝑩kail 𝑑𝑦⁄  and 𝑑𝑩kail 𝑑𝑥⁄ , which, together with charge noise, should 197 

be the most important source for dephasing in our device (APPENDIX E) [8,25]. 198 
Interestingly, as shown in Fig. 4(b), we find that when 𝑑𝑩.c.a. 𝑑𝑦⁄  approaches its 199 

maximum away from the 𝑦-axis, 𝑑𝑩kail 𝑑𝑦⁄  decreases to nearly half of its peak value. 200 
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In other words, a finite angle away from the 𝑦-axis for the external field may result in 201 
a simultaneous optimization of the dephasing time and the operation rate of the spin-202 
valley qubit. Considering that the transverse and longitudinal gradients are responsible 203 
for Rabi oscillation and dephasing respectively and assuming that the charge noise is 204 
isotropic, we define a quality factor 𝑄 = (𝑑𝑩.c.a. 𝑑𝑦⁄ )/205 

o(𝑑𝑩kail 𝑑𝑦⁄ )< + (𝑑𝑩kail 𝑑𝑥⁄ )<. From this ratio we find that the best angle with the 206 

highest control fidelity is around 34° or 161° for our device. Along with these directions, 207 

the longitudinal gradient 𝑑𝑩kail 𝑑𝑦⁄  is severely suppressed while the transverse 208 

gradient 𝑑𝑩.c.a. 𝑑𝑦⁄  is kept relatively high so that the qubit quality factor is optimized. 209 

Moreover, the calculated 𝑑𝑩kail 𝑑𝑥⁄ , which could also be used for spin addressability 210 

in our device, shows that it is also enhanced at the angle with the highest 𝑄-factor. In 211 
short, by aligning the external field away from the electric field direction, we can 212 
simultaneously maximize the speed of EDSR for a qubit, minimize its dephasing, while 213 
maintaining its addressability. 214 

Compared with i-SOC, which could be strongly influenced by microscopic features 215 
of the interface that are difficult to control [33,34], s-SOC is mainly dependent on the 216 
micromagnet design whose properties can be reliably predicted by numerical 217 
calculations (APPENDIX F) [31]. Therefore, to optimize spin control, most studies 218 
focus on how to improve the micromagnet design [24,43,44]. Here, our results suggest 219 
that the external magnetic field orientation is another approach to optimize the control 220 
fidelity for a spin qubit. Furthermore, while the design of a micromagnet is fixed as 221 
soon as it is deposited, external field orientation is tunable in situ. The overall 222 
performance of a qubit array can be optimized by rotating the external magnetic field 223 
during calibration, making the design and control of a large array of qubits more flexible 224 
and effective [45-47]. 225 
 226 

III. CONCLUSION 227 

In summary, we have investigated the anisotropy of s-SOC by measuring the spin-228 
valley resonance under a rotating magnetic field. The distinctive nonsinusoidal 229 
anisotropy of resonance amplitudes compared to i-SOC shows the significance of the 230 
in-plane transverse magnetic field gradients in determining the anisotropy of s-SOC. 231 
The calculation of the longitudinal magnetic field gradients also suggests a way to 232 
simultaneously optimize the operation rate, the dephasing time, and the addressability 233 
of spin qubits by controlling the magnetic field direction. Moreover, our spectroscopy 234 
method that employs anisotropic spin resonance to probe s-SOC, with the advantage 235 
that can reflect different quantum properties through a single resonance peak, is 236 
generally applicable to other quantum systems and semiconductor nanostructures with 237 
i-SOC and/or s-SOC, such as one- and two-dimensional material [48,49], topological 238 
superconductors [50], etc. 239 
 240 
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 253 

APPENDIX A: CHARGE SENSING 254 

Fig. 5(a) shows the typical bias triangles we measured in the transport regime, of 255 
which the triangle in the white dashed rectangle area is the one we measured in the main 256 
text. To determine the exact electron number in this area, we use a single-electron 257 
transistor (SET) to measure the charge stability diagram under similar conditions. As 258 
shown in Fig. 5(b), the irregular resonance tunneling lines hinder an accurate estimate 259 
of the electron number under gates G1 and G2. However, we are confident that our 260 
experiment was done in the few-electron regime. While our DQD may not have been 261 
in the two-electron regime, it experiences the same asymmetric current suppression that 262 
is the signature of the two-electron Pauli Spin Blockade (PSB), which can be lifted by 263 
spin-flip transitions and has been used for spin measurement [51,52]. Thus we could 264 
measure spin-valley resonance, and explain our observation of resonances as the lift of 265 
PSB. Moreover, although the valley states in silicon may also complicate the scenario 266 
of PSB, the spin-valley blockade could be used similarly to PSB to explain the blockade 267 
phenomenon for spin and spin-valley resonance experiments [37,38]. For convenience, 268 
we use the same terminologies of the simple (1, 1)- (0, 2) PSB case in the main text. 269 

 270 

APPENDIX B: PSB MEASUREMENT DETAILS  271 

The dc gate voltages are supplied by a 16-channel voltage source, and the 272 
continuous microwave is generated by a vector source generator (Keysight E8267D) 273 
with -5 dBm power at the output. The microwave transmission line consists of a 13 dB 274 
attenuator at room temperature and a 10 dB attenuator at base temperature. The current 275 
through source and drain is amplified with a room temperature low-noise current 276 
preamplifier (Stanford Research Systems SR570) and measured by a multimeter 277 
(Keysight 34410A). 278 

The lever arm of a gate can be extracted from bias triangles. As shown in Fig. 6, 279 
since the bias voltage is set at 𝑉3? = −2  mV, the lever arm of each gate can be 280 
extracted as [53]: 281 
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𝛼; =
q|rst|
urvw

= 0.333	 eV/V 282 

				𝛼< =
q|rst|
urvx

= 0.449 eV/V 283 

Using these lever arms, we obtain 𝐸34 = 1.056	meV, and the tunability ~5.96 284 
ueV/meV of valley splitting as a function of 𝜀 in the main text. 285 
 286 

APPENDIX C: EDSR MEASUREMENT DETAILS 287 

In Fig. 2(a) in the main text, there are blank regions with data cleared for clarity. 288 
Here we show it completely and also include the intravelly spin resonance line (line I) 289 
in Fig. 7(a). In Fig. 7(a), the resonance lines are nearly invisible due to the high leakage 290 
current at some frequencies, especially the regions we cleared in Fig. 2(a), thus we 291 
reduced the maximum current of the colorbar and reproduced it in Fig. 7(b) to show the 292 
data more clearly. The high leakage current in those microwave frequencies should be 293 
caused by the excessive microwave power applied, which is due to the uneven 294 
microwave transmission to the device for different frequencies. The origin of this 295 
inhomogeneity may be the frequency-dependent power attenuation in the a.c. lines and 296 
bonding wires we used. 297 

For the intravelly spin resonance, as shown in Fig. 7(b) and (c), we have also 298 
measured its anisotropy by scanning the magnetic field strength while keeping the 299 
microwave frequency at 10.09 GHz. It can be seen that the intravalley spin resonance I 300 
is also cosinusoidally modulated with a phase similar to the spin-valley resonance line 301 
A and B, although the magnitude is even smaller. This can be understood that the same 302 
s-SOC should also dominate i-SOC for intravalley spin resonance anisotropy and the 303 
incomplete magnetization at low fields reduces the anisotropy magnitude. Given that 304 
the background leakage current at low magnetic fields is strong due to spin-flip 305 
cotunneling (see Fig. 1(c)) and the incomplete magnetization is hard to simulate, we 306 
did not explore it in detail to investigate s-SOC but used resonance line B as mentioned 307 
in the main text. 308 

In the Gauss fit of spin-valley resonance peaks in the main text, we also extracted 309 
the peak baseline (background leakage current) and peak width (full width at half 310 
maximum, FWHM) to estimate their anisotropy. As shown in Fig. 7(d), the anisotropy 311 
of the peak baseline resembles that of the resonance amplitude but with a much smaller 312 
variation magnitude, and the peak width is nearly isotropic, which should be caused by 313 
power broadening. 314 

Moreover, for the data acquisition in Fig. 2(b)-(c), Fig. 3(a)- (b), and Fig. 7(c), we 315 
have collected the data by rotating the external field up to 720 degrees and more (along 316 
the same clock direction), and we did not find any clear hysteresis related to the 317 
micromagnet. We think it can be explained by the nearly full magnetization of the 318 
micromagnet in the magnetic field range we applied. 319 
 320 
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APPENDIX D: THEORETICAL MODEL 321 

Here we propose a model to describe spin-valley resonance in a silicon quantum 322 
dot [38,39,54]. As shown in Fig. 2(b) in the main text, only states |2⟩ = |𝑣G, ↑⟩ and 323 
|3⟩ = |𝑣L, ↓⟩ are involved in spin-valley resonance. For s-SOC, the total Hamiltonian 324 
reads: 325 

 H = |
𝐸G +

;
<
𝐸0

;
<
Δ33O

;
<
Δ33O	∗ 𝐸L −

;
<
𝐸0
~  (1) 326 

Here, 𝐸G(L) refers to the eigenenergy of the corresponding valley state, and ± ;
<
𝐸0 327 

depicts their energy shift due to Zeeman splitting under the external magnetic field. The 328 
nondiagonal term Δ33O = 𝑔𝜇�𝑏/`𝑟GL  is the strength of s-SOC caused by the 329 
transverse magnetic field gradient from the micromagnet, with	𝑔 the electron g-factor, 330 
𝜇� the Bohr magneton, 𝑏/`  the transverse magnetic field gradient along the electron 331 
oscillation direction, and 𝑟GL the intervalley transition element.  332 

Diagonalizing the Hamiltonian, we obtain eigenenergies 333 

 𝐸<� =
;
<
𝐸A3 −

;
<
𝜀  (2) 334 

 𝐸�� =
;
<
𝐸A3 +

;
<
𝜀  (3) 335 

where 𝜀 = o(𝐸A3 − 𝐸0)< + Δ33O<, and the eigenstates  336 

 �2�� = cos �
<
� 2⟩ − sin �

<
|3⟩  (4) 337 

 �3�� = sin �
<
� 2⟩ + cos �

<
|3⟩  (5) 338 

where  339 

 sin �
<
= o;L�

<
  (6) 340 

 cos �
<
= o;G�

<
  (7) 341 

with 342 

 𝑎 = ��sG��

o(��sG��)xL�ss�x
  (8) 343 

Assuming the ac electric potential takes the form 𝑉(𝑡) = 2𝑒𝐸�� cos(2𝜋𝑓𝑡) 𝑟, where 𝑒 344 
is the electron charge, 𝐸��  the electric field amplitude, 𝑓 the oscillation rate, and 𝑟 345 
the position operator, the total Hamiltonian reads: 346 

 H.a. =
;
<
� −𝜀 𝑉(𝑡)
𝑉(𝑡) 𝜀 �  (9) 347 

Considering the rotating wave approximation under 𝑉(𝑡), H.a. can be wrriten as:  348 

 Hca. =
;
<
�−𝜀 + ℎ𝑓 ℏ𝜔W
ℏ𝜔W 𝜀 − ℎ𝑓�  (10) 349 
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with the Rabi frequency 350 

 𝜔W =
q���|�s�|| �̀�G`��|

ℏ
	 	 (11)	351 

where 352 

	 𝐹3A =
|�ss�|

<o(��sG��)xL�ss�x
  (12) 353 

Note that Eq. (11) only differs from the result for intravalley spin resonance [38] by 354 
replacing |𝑟GL| with |𝑟GG − 𝑟LL|. When |𝐸A3 − 𝐸0| ≫ |Δ33O|, which is the case of 355 
our experiment, we can obtain 356 

 𝐹3A ≈
|�ss�|

<	|��sG��|
  (13) 357 

Therefore, the Rabi frequency is proportional to the s-SOC strength and the transverse 358 
magnetic field gradient: 359 

 𝜔W ≈
q����ss�| �̀�G �̀�|

<	|��sG��|ℏ
= q���¡¢£| �̀�|| �̀�G �̀�|

	|��sG��|ℏ
𝑏/` 	 	 (14)	360 

Since 𝐼+  is proportional to 𝜔W< , we could obtain the relationship 𝐼+ = 𝐶𝑏/`<  in the 361 

main text. A comparison of 𝐹3A based on Eq. (12) and Eq. (13) are shown in Fig. 8. 362 
Assuming an s-SOC strength |∆33O| = 𝑔𝜇�𝑏/`|𝑟GL|	~	90	neV , where we use the 363 
largest simulated magnetic field gradient 𝑏/` = 0.4	mT/nm and an estimate of the 364 
dipole size |𝑟GL|= 2 nm [39], and using the experimental value 𝐸A3 = 102.66	µeV, we 365 
find the approximate solution is suitable to describe the data in Fig. 3 in the main text. 366 

For the derivation of the relationship between 𝐼+ and 𝜔W , it can be obtained by 367 
finding the steady-state solution of the master equation: 368 

 ¦§
¦/
= − ¨

ℏ
[Hca., 𝜌] + 𝐿(𝜌)  (15) 369 

where the Lindblad operator can be written as: 370 

 𝐿(𝜌) = � 𝛤;𝜌;; −𝛤<𝜌®;
−𝛤<𝜌;® −𝛤;𝜌;;

�  (16) 371 

with 𝛤;  the longitudinal relaxation rate and 𝛤<  the transverse relaxation rate. By 372 

solving the rate equations of ¦§
¦/
= 0, we can obtain: 373 

 𝜌;; =
;
<

¯°
x

¯°
xL±w±xL²

³w
³x
´(µG¶·)x

  (17) 374 

Here 𝜌;; represents the density of states with spin flipped by the microwave excitation, 375 
and it contributes to the resonance current by 𝐼+ = 𝑒𝛤𝜌;; , with 𝛤  referring to the 376 
interdot tunneling rate. Since the experiment in this work was performed within the 377 
PSB region and under continuous microwave excitation, the strong decoherence 378 

induced by tunneling events will cause 𝛤;𝛤< ≫ 𝜔W< . Therefore, 𝜌;;  and thus 𝐼+  is 379 

proportional to 𝜔W<  when the qubit is on resonance (𝜀 − ℎ𝑓 = 0). 380 
 381 
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APPENDIX E: EFFECTS OF MAGNETIC FIELD GRADIENTS 382 

The synthetic spin-orbit coupling consists of transverse and longitudinal 383 
components [8], with the transverse components mediating spin rotations driven by an 384 
electric field (EDSR), and the longitudinal components contributing to dephasing in 385 
combination with fluctuating electrical fields (charge noise). The transverse field 386 
gradient is defined by 𝑏.c = (𝑒𝐌𝐖ºººººººº⃗ ∙ 𝜵)𝐵¾¾¿ , where 𝑒𝐌𝐖ºººººººº⃗  is the unit vector along the 387 
in-plane oscillating electric field, 𝛻  is the gradient operator, and ⊥  denotes the 388 
direction perpendicular to 𝑩.a.. Similarly, the longitudinal field gradient is defined by 389 

𝑏kail = (𝑒𝐧𝐨Ä𝐬𝐞ºººººººººº⃗ ∙ 𝜵)𝐵¾¾
|| , where 𝑒𝐧𝐨Ä𝐬𝐞ºººººººººº⃗  is the unit vector along the in-plane fluctuating 390 

electric field from the noise, and || denotes the field component parallel to 𝑩.a.. In 391 
our experiment, the electrons are strongly confined in the 𝑥 − 𝑦 plane in the form of 392 
a two-dimensional electron gas (2DEG), while the applied continuous microwave 393 
pushes the electrons back and forth along the 𝑦  direction. The transverse and 394 

longitudinal field gradients are therefore defined by 𝑑𝑩.c 𝑑𝑦⁄ , 𝑑𝑩kail 𝑑𝑥⁄  and 395 

𝑑𝑩kail 𝑑𝑦⁄  respectively in the main text. Moreover, since the quantum dots line up 396 

along the 𝑥  direction, the longitudinal field gradient 𝑑𝑩kail 𝑑𝑥⁄  also provides 397 

addressability of qubits in different quantum dots. 398 
In the main text, we define a quality factor 𝑄 for spin qubit control by the ratio of 399 

the transverse and the longitudinal magnetic field gradients. A more common definition 400 
𝑄W�Ç¨  is the ratio of Rabi frequency and spin dephasing rate [8,20]. To estimate the 401 
advantage of rotating the magnetic field direction, we separate the spin dephasing rate 402 
into two parts [33]:  403 

 ;
Èx
= ;

ÈxÉs�Ê
+ ;

ÈxËÌÍÎÏ
  (18) 404 

where ;
ÈxÉs�Ê

 is due to s-SOC in combination with charge noise, while ;
ÈxËÌÍÎÏ

 comes 405 

from other noises such as magnetic noise from residual nuclear spins. From Fig. 4(b) 406 

in the main text, we know that when 𝑄 is optimized, ;
ÈxÉs�Ê

 is severely suppressed and 407 

Rabi frequency is kept almost unchanged. Therefore, the improvement of 𝑄W�Ç¨  408 

concerning the traditional working point can be approximated by the ratio of ( ;
ÈxÉs�Ê

+409 

;
ÈxËÌÍÎÏ

)/ ;
ÈxËÌÍÎÏ

. If we suppose 𝑇<Ñ3OÒ~20	µs  and 𝑇<a.Ó,c~100	µs  according to the 410 

previous results [8,25,55], then the improvement of quality factor by rotating the 411 
external magnetic field direction would be about 6 times.  412 
 413 
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APPENDIX F: SIMULATION DETAILS 414 

We use the Radia package of Mathematica to simulate the stray field of the 415 
micromagnet, assuming a uniform saturation magnetization [6] 𝑀 = 1.8	T .The 416 
geometry of the micromagnet and its positional relationship with the electron used for 417 
simulation are estimated based on the scanning electron microscopy (SEM) image of 418 
the device in use, which are summarized in Fig. 9. The micromagnet in the active region 419 
has a simple bar magnet geometry, with a width of 930 nm and a length of 10 µm, as 420 
shown in Fig. 9(a). Note that the vast majority part of the micromagnet that is beyond 421 
the active region and extends to the bonding area is not included, which has little effect 422 
on the simulation results and the related conclusions in the main text.  423 

We assume that the electron spin on resonance is underneath gate G2 and the depth 424 
is estimated to be equal to the total thickness of the Ti layer (10 nm) and the SiO2 layer 425 
(10 nm). 426 

As discussed in the main text, we also simulate magnetic field gradients of the 427 
micromagnets of other designs, which are summarized in Fig. 10. Inevitably, the 428 
gradients and anisotropy become more complicated for a complex micromagnet design. 429 
It is thus of great importance to calculate and check the anisotropy of the magnetic field 430 
gradient before performing real experiments and optimize it by controlling the magnetic 431 
field direction. 432 
  433 
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Figure Captions 434 

 435 

FIG. 1. (a) Schematic of the device layout. The aluminum electrodes and the bar 436 
micromagnet used in the experiment are in false colors. Inset: Cartesian coordinate and 437 
labels for different magnetic fields with the angle 𝜙  referring to the in-plane 438 
orientation of 𝑩,-.. (b) Transport current |𝐼3?| as a function of 𝑉:; and 𝑉:< with a 439 
bias voltage 𝑉3? = −2 mV and an external magnetic field 𝐵,-. = 200 mT along the 440 
𝑦-axis (i.e. 𝜙 = 𝜋/2). The PSB results in a current suppression in the bias triangles 441 
with a blockade region indicated by an energy gap 𝐸34 between the two dashed lines. 442 
Inset: schematic of the energy levels involved in the PSB, where the delocalized states 443 
S(1, 1) and T(1, 1) are only weakly split by exchange interaction and the localized states 444 
S(0, 2) and T(0, 2) are split by a much larger energy 𝐸34 involving an orbital excitation 445 
of the QD under gate G2. (c) Transport current |𝐼3?| as a function of detuning 𝜀 and 446 
external magnetic field 𝐵,-., with the detuning axis highlighted by a white arrow in (b). 447 
The blockade region with an energy gap 𝐸34 between the two dashed lines is also 448 
denoted. The leakage current due to spin-valley mixing is labeled by line V. Note line 449 
V has a slope ~5.96 ueV/meV of valley splitting with respect to 𝜀 (APPENDIX B), 450 
which may be caused by the strong dependence of valley splitting on the electric field 451 
under gate G1 or G2. 452 
  453 
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 454 
FIG. 2. (a) Transport current |𝐼3?| as a function of the external magnetic field 𝐵,-. 455 
and microwave frequency 𝑓. Red dashed lines denote the resonant lines where PSB is 456 
lifted by the driven spin-flip transition. Data with high leakage current background are 457 
cleared for clarity (blank regions) (APPENDIX C). The bottom diagram shows the 458 
calculated energy levels for spin-valley mixing. The spin and valley composition of the 459 

hybridized states |2�� and |3�� is indicated by the varied color of the corresponding 460 

lines near the anticrossing. Two double-headed arrows mark the corresponding spin-461 
valley transitions A and B. Panels (b) and (c) show the transport current |𝐼3?| as a 462 
function of the magnetic field strength 𝐵,-. and the magnetic field orientation 𝜙 for 463 
the resonance A and B, respectively. Notice the anisotropy magnitude of line A (112 464 
mT) is a little smaller than line B (134 mT), which may be attributed to the incomplete 465 
magnetization of the micromagnet under lower applied fields. 466 
  467 
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 468 

FIG. 3. (a) The measured peak position of resonance B (blue data points) and different 469 
stray field components as a function of the magnetic field direction 𝜙 . The 470 
experimental data are fitted using a cosinusoidal function (blue curve). Inset: example 471 
of the measured current |𝐼3?| (violet circle) and the fitted Gaussian function (red curve) 472 
as a function of the scanning magnetic field strength 𝐵,-., with the field direction at 473 
𝜙 = 325°. The nonzero background current of |𝐼3?| in the inset is most likely caused 474 
by high microwave power. (b) Plot of both the experimental (blue data points) and 475 
simulated (considering different transverse magnetic field gradients) resonance 476 
amplitude 𝐼+  of resonance B as a function of the magnetic field direction 𝜙. The 477 
scaling factor of 𝐶 = 1.9 is used in Eq. (1) for the calculation of all the simulated 478 
curves. 479 
  480 
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 481 

FIG. 4. (a) Illustration of different magnetic field gradients and their effects on the 482 
oscillating electron spin. The transverse magnetic field gradients 𝑑𝑩.chi 𝑑𝑦⁄  and 483 
𝑑𝑩.caj. 𝑑𝑦⁄  enable spin flips when the electron is driven by the oscillating microwave 484 

fields. The longitudinal field gradients 𝑑𝑩kail 𝑑𝑦⁄  and 𝑑𝑩kail 𝑑𝑥⁄  lead to spin 485 

dephasing and 𝑑𝑩kail 𝑑𝑥⁄  also introduces spin addressability in our device. (b) 486 

Numerically simulated magnetic field gradients and the calculated quality factor Q as a 487 
function of the external magnetic field direction 𝜙. 488 
  489 
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 490 
FIG. 5. (a) Transport current |𝐼3?| as a function of 𝑉:; and 𝑉:< with a bias voltage 491 
𝑉3? = −4  mV and an external magnetic field 𝐵,-. = 1  T along the 𝑦 -axis. (b) 492 
Stability diagram of the measured DQD with charge sensing.  493 
  494 
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 495 
FIG. 6. Illustration of the extraction of the lever arm based on Fig. 1(b) in the main text.  496 
  497 
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 498 
FIG. 7. (a) and (b) show full data of Fig. 2(a), with an additional resonance line I 499 
showing the intravalley spin-flip transition. (c) The transport current |𝐼3?|  as a 500 
function of the magnetic field strength 𝐵,-. and the magnetic field orientation 𝜙 for 501 
the intravelly spin resonance I. Notice the anisotropy magnitude of line I (91 mT) is 502 
much smaller than line A (112 mT) and line B (134 mT), which should be attributed to 503 
the incomplete magnetization of the micromagnet under lower applied fields. (d) 504 
Background leakage current (peak baseline) and measured peak width (full width at 505 
half maximum, FWHM) as a function of the in-plane angle 𝜙. 506 
  507 
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 508 

FIG. 8. Comparison of the exact solution (Eq. (12)) and the approximate solution (Eq. 509 
(13)) of 𝐹3A as a function of the magnetic field strength 𝐵,-..  510 
  511 
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 512 

FIG. 9. (a) and (b) are respectively the top view and the side view of the micromagnet 513 
with the estimated electron position (blue circle). The Cartesian axis is the same as that 514 
in the main text and the size parameters used for simulation are denoted in the table 515 
inside the figure. 516 
  517 
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 518 

FIG. 10. Diagram of different micromagnet designs (a-c) and the corresponding 519 

magnetic field gradients (mT/nm) 𝑑𝑩.c.a. 𝑑𝑦⁄  (d-f), 𝑑𝑩kail 𝑑𝑦⁄  (g-i), 𝑑𝑩kail 𝑑𝑥⁄  (j-520 

l) as a function of the in-plane magnetic field direction 𝜙 (degree). The yellow star 521 
shows the position of the electron in the 𝑥-𝑦 plane. 522 
  523 
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