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CNRS, Sorbonne Université, College de France, 75005 Paris, France

†, ‡ These authors contributed equally to this work.

Many developments in science and engineering depend on tackling complex optimizations on
large scales. The challenge motivates intense search for specific computing hardware that takes
advantage from quantum features, nonlinear dynamics, or photonics. A paradigmatic optimization
problem is finding low-energy states in classical spin systems with fully-random interactions. To
date no alternative computing platform can address such spin-glass problems on a large scale. Here
we propose and realize an optical scalable spin-glass simulator based on spatial light modulation
and multiple light scattering. By tailoring optical transmission through a disordered medium, we
optically accelerate the computation of the ground state of large spin networks with all-to-all random
couplings. Scaling of the operation time with the problem size demonstrates optical advantage over
conventional computing. Our results point out optical vector-matrix multiplication as a tool for
spin-glass problems and provide a general route towards large-scale computing that exploits speed,
parallelism and coherence of light.

INTRODUCTION

Non-deterministic polynomial-time (NP) problems
are crucial from biochemistry to quantum physics.
Their solution using polynomial resources requires non-
deterministic Turing machines, which are unconventional
computing models where a defined state can result in
different outcomes [1]. Alternative computing architec-
tures exploit quantum annealing [2, 3], stochastic ele-
ments [4], nonlinear dynamics with gain and losses [5–
10], in-memory operations [11, 12], or photon’s speed
and coherence [13–23]. Among them, Ising machines are
special-purpose processors designed for finding a ground
state of a Ising spin model. They are currently attracting
broad attention, since tasks such as partitioning, rout-
ing, and encrypting can be mapped on Ising Hamiltoni-
ans [24]. Devices based on various physical mechanisms
have been recently realized using superconducting net-
works [25, 26], optical parametric oscillators [6–8], polari-
ton condensates [27, 28], coupled laser cavities [29, 30],
nanophotonic circuits [14, 31] and spatial light modula-
tors (SLM) [13, 32–35]. Scalability with respect to the
problem size is the main factor hampering their near-
term application. In fact, several Ising machines, such
as the D-Wave quantum annealer [26], rely on local in-
teractions between their elementary units, a fact that
strongly limits long-range connectivity and imposes re-
dundant schemes difficult to scale in practice [36]. Other
platforms, such as coherent Ising machines (CIMs) [6–9],
provide all-to-all connectivity and can host dense spin
networks made of thousands of elements, but with cou-
plings that are not fully programmable and assume only
a few possible values. For these reasons, the relevant NP
problems that can be implemented and solved heuristi-

cally on Ising machines on large scale are still not ex-
haustive.

In this Article, we report a pivotal step toward “Ising
computing” by realizing a scalable photonic device that
can simulate large-scale spin problems with continuous
random couplings. We demonstrate use of optical ran-
dom vector-matrix multiplications to implement the en-
ergy function of a spin-glass system. Since the optical
setting enables simultaneous processing of all spin in-
teractions in parallel, our approach exhibits an optical
advantage at large scale over digital computing. The
photonic hardware accelerates the solution of the spin-
glass problem independently of the used algorithm, which
suggests that our setup may potentially speed-up any
minimization approach. We apply the optical simula-
tor to the number-partitioning problem, thus proving it
can be useful for a vast class of practical combinatorial
optimization tasks. Although we program only the cou-
pling distribution, our scheme may develop into a fully-
programmable special-purpose optical processor using re-
configurable transmissive elements [37–39].

RESULTS

Model of the optical spin-glass simulator

Finding the minimum energy configuration of a spin
glass (SG) is a benchmark NP-hard problem [40, 41], and
its computer intractability continuously inspires novel
heuristic algoritms [42, 43]. The system can be illus-
trated as in Fig. 1(a), where a set of N unitary Ising
spins σi ∈ {+1,−1} occupies the sites of a disordered
lattice. Due to strong lattice distortions, the effective in-
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FIG. 1. Scheme of the optical spin-glass simulator. (a) Sketch of Ising spins on a disordered lattice. (b) Graph
representation of a SG problem for various sizes. Each spin is a node of a fully-connected network where the coupling matrix
Jij is represented by color-coded links. (c) Optical scheme mapping the SG model. A spatial light modulator (SLM) inscribes
Ising spins in separated spatial points of the optical field Ei. The spin network is encoded in a disordered medium that mixes
all the incoming modes according to its scattering matrix. Any i-th and j-th two spins contribute to the m-th output mode by
a coupling coefficient Jm

ij . The computation works by optimizing the total intensity transmitted on a set of output modes.

teraction Jij between the i-th and j-th spin takes a broad
spectrum of values. The quadratic SG Hamiltonian has
the form

H(σ) = −1

2

N∑
i,j=1

Jijσiσj (1)

where the Jij elements come from a Gaussian distribu-
tion function P (Jij). The model is a cornerstone of sta-
tistical mechanics also known as Sherrington-Kirkpatrick
(SK) model [40]. Each problem instance corresponds to
a graph of N all-to-all connected nodes with a set of ran-
domly weighted links [Fig. 1(b)].

The operating principle of our optical SG simulator
is shown in Fig. 1(c). The basic idea is to encode the
spins on a coherent wavefront by spatial light modula-
tion [13] and their interaction on the optical transmis-
sion matrix (TM) of a disordered medium [38, 44]. A
similar approach has been recently investigated as an in-
struments to access spin-glass dynamics and its complex-
ity [46]. Specifically, we consider the optical field trans-
mitted via multiple scattering Em =

∑
i t

m
i Ei, where

1 < i < N and tmi is the complex TM element con-
necting the i-th input mode (spin) generated by an SLM
to the m-th output mode detected by a camera [44]. The
total intensity transmitted over M output modes is thus
IT =

∑
m |Em|2 =

∑
m

∑
i,j t̄

m
i t

m
j ĒiEj . Defining the

spin variables via the optical phase delays φi ∈ {0, π}, so
that σi = exp(iφi) = Ei, we obtain (see Methods)

IT = −H(σ); Jij =

M∑
m=1

Jm
ij =

M∑
m=1

Re(t̄mi t
m
j ). (2)

Equation (2) establishes a direct relation between the
scattered intensity and the SG energy. Since the TM of
a disordered medium is a random full-rank matrix [44],
when M = N we find that Jij has uncorrelated random
elements with Gaussian distribution P (Jij), as for the
SG model in Eq. (1). Shaping the binary input phase
distribution to maximize the transmitted intensity corre-
sponds to looking for the SG ground state. Energy min-
imization can be performed with any iterative method
while the spin system is optically emulated.

The scheme is numerically validated in Fig. 2, where
we model a large-scale device with N = M =1024. Lin-
ear optical propagation through the scattering medium
is simulated by the randomly generated TM in Fig. 2(a).
According to Eq. (2), the TM gives a Jij set following a
Gaussian probability density with zero mean and devia-
tion J̄ = 1/4N (Fig. 2(b) and Supplementary Material
[45]). In Fig. 2(c) we show the total intensity, normal-
ized to the initial transmission, that is transmitted on the
output modes during the optimization procedure. While
IT increases and saturates to a final speckle distribution
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FIG. 2. Design and validation of the optical spin-glass scheme. (a) TM modeling multiple light scattering between
N = 1024 optical spins and M = N detector modes. (b) Coupling’s probability distribution with Gaussian fit (line). (c) Total
transmitted intensity during the computation for different initial conditions and (d) energy of the corresponding SG. Insets in
(c-d) show a ground-state phase configuration and its problem graph. (e) Final intensity with transmission maximized on the
dashed region. (f) Energy histograms of ground states found using the optical SG model and zero-temperature SA.

[Fig. 2(e)], the binary phases on the SLM converge to-
wards a state minimizing the corresponding spin energy
[Fig. 2(d)]. The final intensity corresponds to the ground-
state energy [Eq. (2)], apart from a constant factor. To
demonstrate that the method solves the spin problem,
we benchmark the ground-state energies with simulated
annealing [47] (SA) at zero temperature on the same
random graph. Results on 100 independent runs are in
Fig. 2(f) and indicate that our model operates with an
accuracy comparable with a standard robust optimiza-
tion algorithm. States with lower energy can be found
by refining the iterative method by introducing effective
temperature variations both in SA and the optical model
(Supplementary Fig. 2 [45]). Simulations on various in-
stances (Supplementary Fig. 1 [45]) further indicate the
effectiveness of our approach in finding heuristic SG so-
lutions. We find that the low-energy states obtained for
different Jij realizations overlaps with the solutions found
varying only the initial condition. Therefore, the SG low-
energy space can be sampled by replicating either over
the initial spin configuration or realization of the random
couplings.

Experimental implementation

We realize the optical SG simulator according to the
experimental setup in Fig. 3(a). Ising spins are encoded
on a laser wavefront by a phase-only SLM, a volumetric
diffuser provides multiple scattering, and camera pixels
are the output modes. The optical device works in a
measurement and feedback scheme. At each machine it-
eration, we measure the intensity IT on M = N fixed
camera pixels and update the spins in order to maximize
the transmission (see Methods). The setup can make
use of any optimization scheme in this operation, i.e.,
it is algorithm-agnostic. After a few thousands of iter-
ations, we get a transmission enhancement (normalized
transmitted intensity) close to the expected value, with
variations depending on the the random input condition
[inset in Fig. 3(a), N =256]. In analogy with the numer-
ical findings, from the measured final intensity we get the
ground-state energy for each realization (see Methods).

Using the optical setting, we performed sets of compu-
tations for random SG problems of different sizes, up to
more than 104 spins and 108 connections. We quantify
the solutions found by analyzing their SG energy in com-
parison with numerical models. Main results are sum-
marized in Fig. 3(b-c). For N=256, the Ising machine
finds an approximate solution to the NP-hard problem
with an accuracy comparable with the optical SG model



4

(a)

SLM

CCD

re
c
u

rr
e

n
t 
fe

e
d

b
a

c
k

OBJ2

OBJ1

DIFF

(b)

(c) (e)

Optical device (mean) -140

Optical device (best) -153

Computer model (mean) -159

SA (mean) -164

N= 256

N= 1024

Optical device (mean) -501

Optical device (best) -607

Computer model (mean) -647

SA (mean) -689

optical model

optical device

N= 1024

(d)

FIG. 3. SG computing device. (a) Experimental setup (see Methods), where recurrent feedback from the measured
intensity updates the spin configuration on the SLM. Insets show a measured TM and corresponding transmitted intensity
during computation for several runs. (b-c) SG ground-state energy histogram for N =256 and N =1024. Inset table indicates
values for solutions computed optically and with computer algorithms. Vertical lines are average solutions from numerical
simulations of the optical SG model. (d) Accuracy of the ground-state energy varying the spin number. Experimental results
are compared to the scaling behavior of the ideal device. (e) Modelling of the experimental device: ground-state accuracy as a
function of optical noise at the detection (SNR, signal to noise ratio) for intensity detectors with different finite precision. The
shaded area indicates the parameter region in which the realized device (8-bit precision) is expected to be operating.

and SA. Optical computing was successful also for large-
scale graphs with 1024 nodes, although with lower per-
formance. For a fixed number of machine iterations (see
Methods), we find the ground-state accuracy decreases as
a function of the system size [Fig. 3(d)]. On the contrary,
numerical results indicate that the optical SG simulator
as modelled in Fig. 2 is able to perform independently of
the system size. The observed behavior is thus a direct
consequence of the experimental conditions, i.e., practi-
cal non-idealities of the device. It is important to remark
that a similar scaling effect occurs in any other quantum
and classical optimizers built in practice, even at much
smaller sizes [26].

To understand how to improve the computational abil-
ity of our proof-of-principle device when the number of
spins increases, we consider the effect of various exper-
imental factors on the optical SG model. Specifically,
we analyze the dependence of the ground-state accuracy
on the detection noise level and the impact of the finite-
precision of the camera at various sizes (see Methods).
Figure 3(e) shows the results when varying the signal to
noise ratio (SNR) for a N=1024. A rapid decrease of
the solution accuracy is observed as the noise level ex-
ceeds 10−2, which indicates that optical noise partially

explains the experimental performance. A key role is
also played by the finite-precision of the camera. The
accuracy improves considerably as we increase the detec-
tor bit precision, even in presence of noise [Fig. 3(e)].
The effect of the components precision on the computa-
tion is even more crucial as the problem size increases
(see Supplementary Fig. 4 [45]). Additional evidences
in Supplementary Material [45] further indicate that the
performance scaling in the realized simulator [Fig. 3(d)] is
successfully modelled. The overall analysis suggest that,
by concomitantly reducing noise and increasing the pre-
cision of the optical readout, the optical simulator can be
effective also on large scales.

From the statistical physics point of view, the oper-
ation of the optical SG simulator is limited by a finite
effective temperature T ∗. We estimate it numerically by
using an inverse numerical approach. Exploiting SA, we
anneal the SG up to the measured ground-state energy,
we let it equilibrate and extract its temperature. For
N=4096 we obtain β∗ = 1/T ∗ ≈ 0.9. Cooling to lower
temperatures can be achieved improving the device con-
struction to make it more sensitive and noise tolerant.

A crucial parameter of our spin-glass simulator is the
number of output modes. In fact, according to Eq. (2),
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FIG. 4. Optical advantage. Time for updating the SG
configuration (iteration time) versus its size. Values refer to
our scheme implemented on our optical setup (green dots)
and on a standard digital computer (blue dots). Lines are fit
functions showing linear and quadratic scaling of optical and
electronic computing. Inset highlights the setup-dependent
crossing point (N∗ = 1460) between the scaling behaviors,
which delineate an optical advantage region for large scales
(green-shaded area). The vertical dotted line, referred as
noise limit, is an hypothetical border to indicate the maxi-
mum size solvable with an optical SG simulator given a finite
optical noise level.

the transmitted intensity, and thus spin Hamiltonian, de-
pends on the output mode number M . It determines the
rank of the interaction matrix and, consequently, the cor-
relations and the distribution of its values. As reported
in Supplementary Fig. 3 [45], by increasing M the cou-
plings Jij evolves from sharp peaked distribution to the
Gaussian probability density P (Jij). Ising problems in
which M 6= N , although differ from the considered SK
model, can also be particularly interesting for applica-
tions. For instance, the M = 1 case directly maps to the
number-partitioning problem [52], which is the combina-
torial optimization problem in which a set of real number
must be divided into two subsets differing as little as pos-
sible in their weight. The problem is NP-complete and
represents a typical task encountered in resource alloca-
tion [24]. For example, in cases where we have to divide
a set of assets fairly between two people. Application
of the experimental SG simulator to number partition-
ing is demonstrated in Supplementary Fig. 5 [45]. The
partition solution is optically found with good accuracy.
Remarkably, in this case the performance does not de-
grade with the problem size [34], and the efficiency is
maintained for sets exceeding 104 random numbers. This
underlines that our optical device can be directly applied
to specific computing tasks, and can be beneficial in a
broad range of applications. Among these, we mention
finding cliques in networks, which is central for under-

standing social dynamics.

Optical advantage

The key advantage of our optical SG simulator is its
possible scalability to sizes intractable with conventional
hardware. In fact, common algorithms require to evalu-
ate Eq. (1) at each iteration, an operation which time and
memory consumption grows quadratically with the spin
number. The optical part of our scheme executes such
matrix multiplication fully in parallel, independently of
the problem size and feedback algorithm. The scaling
advantage is demonstrated in Fig. 4 by measuring the
iteration time versus the problem size. In contrast to
the quadratic scaling of the SG model on a conventional
computer (see Methods), the optical computation time
scales only linearly, with a mild slope depending only on
the limited communication bandwidth of the electronic
feedback. Therefore, independently of the machine oper-
ation frequency, scaling laws ensure the existence of an
optical advantage region at large scales. The sensitivity
of light modulators and detectors, and more generally,
optical noise, rules the maximum size that can be effi-
ciently solved on optical platforms.

CONCLUSION

In conclusion, we have reported a scalable optical de-
vice able to solve random spin problems. Exploiting spa-
tial light modulation and coherent optical propagation of
light, our scheme allows parallel information processing
for arbitrary problem sizes and without any fabrication
constraints. Our setup can be exploited as an optical
accelerator for the solution of spin glasses with any opti-
mization algorithm [35]. Given the 8-bit precision of the
intensity detector and the effect of experimental noise,
the analog spin simulator finds ground states with ener-
gies higher than those obtained with simulated annealing
on a 64-bit digital processors. However, in principle, the
same accuracy can be reached by tuning further the op-
tical setup and the optimization procedure.

The use of a physical medium to encode spin interac-
tions also opens interesting perspectives for programming
arbitrary Ising problems, which could be done by select-
ing various subset of input and output modes [37, 38],
or by directly tailoring the transmission matrix using ei-
ther microfabrication, or a second spatial light modulator
[39]. Our approach points out a parameters region where
optical computing presents a favourable scaling with re-
spect to electronic hardware. Developments in photonic
technology would allow to optically address many NP-
hard combinatorial optimizations deep into this region,
where neuromorphic computing can also find its natural
application [20, 21, 23].
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MATERIALS AND METHODS

Spin-glass Hamiltonian in the TM framework

The TM models monochromatic transmission through
a linear optical system at the mesoscopic level. Its com-
plex coefficients tmi connect amplitude and phase of the
optical field between the m-th output mode and the i-
th input element, Em =

∑N
i tmi Ei, where we adopt su-

perscripted indices only for clarity. As shown in Ref.
[44], the elements tmi are uncorrelated random complex
numbers when a thick disordered medium is placed be-
tween a SLM and a camera, and they can be measured
experimentally. We first consider the intensity on a sin-
gle output mode, which reads as Im = |

∑
i t

m
i Ei|2 =∑

t̄mj t
m
i ĒiEj . Defining the spins via the binary phase

delays φi ∈ {0, π}, so that Ei = exp(iφi) = σi up
to a global phase factor, we get the Ising Hamiltonian
Im = −Hm =

∑
ij J

m
ij σiσj with Jm

ij = Re(t̄mj t
m
i ), apart

from constant factors. Pairs of spins with positive (nega-
tive) interaction correspond to points of the optical field
resulting in constructive (destructive) interference. In
this case, the couplings are correlated, i.e., rank(Jm

ij ) = 1
(the interaction is specified by only N degrees of free-
dom). This case corresponds to a class of Ising prob-
lems, known as Mattis SG, that have an exact ground-
state solution [49]. In optics such solution corresponds
to the optimal wavefront shaping for focusing on a sin-
gle output mode, which, in conditions of negligible noise,
gives an enhanced trasmission proportional to N [48]. In
combinatorial optimization, such configuration directly
maps to number partitioning problem [34]. Application
of the optical SG simulator for finding specific partitions
in a set of random numbers is detailed in Supplementary
Material [45].

The interaction matrix and its probability distribution
varies considerably when increasing the number of out-
put channels (Supplementary Fig. 3 [45]). For M modes,

we have IT =
∑

m Im =
∑

m

[
(
∑

j t̄
m
j σj)(

∑
i t

m
i σi)

]
=∑

m

∑
i,j t̄

m
i t

m
j EiEj , which gives the equivalence in

Eq. (2): IT = −
∑

ij Jijσiσj with Jij =
∑M

m=1Re(t̄
m
i t

m
j ).

The coupling matrix rank is now rank(Jij) = M . When
M = N , we get a full-rank matrix (N2 variables specify
the couplings) describing random uncorrelated spin inter-
actions. The Jij are distributed with a Gaussian density
P (Jij) (zero mean and deviation 1/4N), as verified in
Supplementay Material [45] for both numerical and ex-
perimental data (Supplementary Fig. 1). Simultaneous
maximization of IT over N output modes is equivalent to
minimizing the energy of a SG, with interactions encoded
in the TM.

Numerical models and computer simulations

The optical SG is numerically simulated by forming N
pixel blocks from a square mesh (SLM plane). The initial
optical field EI has constant amplitude and its phase is
a random configuration of N binary phases, φi = 0, π. A
unitary TM matrix W with random complex numbers is
generated. At each iteration, a single spin (phase value
φi) is randomly selected and flipped; the optical field lin-
early propagates, ET = W · EI , and the input phase is
updated only if the output total intensity IT increases.
Numerical evaluation of IT corresponds to a measure-
ment with a 64-bit sensitivity detector in a noiseless sys-
tem (Fig. 2). In general, within this scheme, ∼ 10N iter-
ations are sufficient for a good convergence. We normal-
ize the transmitted intensity to the initial transmission,
which allows us to compare the result with experiments
at any input optical power. During the optimization,
the SG energy is evaluated by applying Eq. (2) on the
optical phase distribution. At the ground state, such en-
ergy is related to the optimized transmitted intensity by
a constant factor. This factor depends only on the spin
number. We exploit this property in experiments, where
the factor extracted from a set of measured TMs at a
given size is used also on optical computing runs in which
the TM is varied in each realization. To characterize the
device in experimental conditions, we introduce various
ingredients in the model. Finite-precision of the camera
is obtained by discretizing the output intensity in 2n lev-
els, n being the number of bits. We introduce optical
noise at the readout, by adding uncorrelated Gaussian
fluctuations to the intensity IT , with the SNR that de-
termines the fluctuations amplitude (noise level).

All codes are implemented in MATLAB on an Intel
processor with 6 cores running at 4.1 GHz and supported
by 16 GB ram. In Fig.4, iteration times for standard
computing refer to this specific CPU. We note that high-
performance computing on dedicated systems can sub-
stantially reduce these iteration times; however, their
quadratic scaling will remain unaltered. As for simulated
annealing (SA), a custom optimized version has been im-
plemented following Ref. [50]. The code exploits various
methods including sequential updating, forward energy
computation and fast pre-computed random numbers.
It has been benchmarked on standard graphs, including
K2000, with results analogous to Ref. [42] in terms of
ground-state energies.

Experimental setup and feedback method

The experimental device follows the setup illustrated
in Fig. 3(a). A continuous-wave laser beam at λ = 532
nm is expanded, polarization controlled, and impinges
on a reflective liquid-crystal SLM (Meadowlark Optics
HSP192-532, 1920 × 1152 pixels) performing phase-only
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light modulation. The SLM area is divided into N ad-
dressable optical spins by grouping several pixels. Bi-
nary modulated light is projected on the objective back-
focal plane (OBJ1, 10x, NA = 0.1) and it is focused on
a strongly scattering medium (a thick diffuser made of
teflon, DIFF) with 0.5mm thickness. Scattered light is
collected by a second objective (OBJ2, 20x, NA = 0.4)
and the transmitted intensity speckle pattern is detected
by a CCD camera (Basler acA2040-55um, 2048 × 1536
pixels) with 8-bit (256 gray-levels) intensity sensitivity
on each pixel. Each camera pixel has a size compara-
ble with the spatial extent of a speckle grain and thus
corresponds to an output spatial mode. The SLM and
CCD have communication bandwidths of 4000MB/s and
600MB/s, respectively.

The ground-state search is conducted sequentially by
means of the digital recurrent feedback. Computation
starts from a random configuration of N binary phase
blocks (spins) on the SLM. The measured intensity dis-
tribution determines the feedback signal. The SNR is
approximatively 50, with the main noise sources that
are associated to flickering effects of the phase modu-
lator, power laser fluctuations, and tiny mechanical ef-
fects on the scattering medium. At each machine cycle
a batch of spins is randomly selected and flipped; the in-
tensity transmitted on M camera pixels is detected and
the spin state is updated if the change increases IT . The
batch size is selected as 2.5% of the spin number, which
ensures that a single change on the SLM is detected
over camera noise. This values determines the maxi-
mum achievable accuracy for the experimental ground
state. The ground-state accuracy in Fig. 3 is defined as
1 − [(G − Gmin)/((G + Gmin))], where G and Gmin are
the mean SG energy measured on the device (numerical
implementation) and its computer model (SA), respec-
tively for purple (green) dots. Error bars indicate one
standard deviation over 20 realizations.

Each SG graph corresponds to a measured TM with
size N2 [44]. The TM is experimentally reconstructed
using Non-negative Matrix Factorization and a phase re-
trieval algorithm [51]. Slight translations/rotations of
the disordered medium result in a different TM. The op-
tical stability of the scattering medium (approximatively
one hour) fixes the physical time for which the interac-
tion matrix remains unaltered. This factor limits the
optimization effectivness over long times. We thus kept
the number of iterations in each run constant to 16000
and collect tens of computation varying only the initial
condition. However, faster optical elements can consid-
erably lower the total computation time of our optical
SG simulator. The optical setup operates at 150Hz and,
according to the employed SLM technology, the iteration
time can be reduced up to 1.4 milliseconds, maintaining
its linear dependence on the problem size.
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Englund and M. Soljačić, Deep learning with coherent
nanophotonic circuits, Nat. Photon. 11, 441 (2017).

[19] N. Mohammadi Estakhri, B. Edwards, and N. Engheta,
Inverse-designed metastructures that solve equations,
Science 363, 1333 (2019)

[20] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot,
L. Larger, and D. Brunner, Reinforcement learning in a
large-scale photonic recurrent neural network, Optica 5,
756 (2018).

[21] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and
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