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Detecting traveling photons is an essential primitive for many quantum information processing
tasks. We introduce a single-photon detector design operating in the microwave domain, based on a
weakly nonlinear metamaterial where the nonlinearity is provided by a large number of Josephson
junctions. The combination of weak nonlinearity and large spatial extent circumvents well-known
obstacles limiting approaches based on a localized Kerr medium. Using numerical many-body simu-
lations we show that the single-photon detection fidelity increases with the length of the metamaterial
to approach one at experimentally realistic lengths. A remarkable feature of the detector is that the
metamaterial approach allows for a large detection bandwidth. The detector is non-destructive and
the photon population wavepacket is minimally disturbed by the detection. This detector design
offers promising possibilities for quantum information processing, quantum optics and metrology in
the microwave frequency domain.

I. INTRODUCTION

In contrast to infrared, optical and ultraviolet frequen-
cies where single-photon detectors are a cornerstone of
experimental quantum optics, the realization of a detec-
tor with similar performance at microwave frequencies
is far more challenging [1–13]. Due to the small ener-
gies of microwave photons, subtle quantum effects such
as measurement back-action play a prominent role. A
first challenge for single-photon detection is linked to the
quantum Zeno-effect: continuously and strongly moni-
toring an absorber will prevent the incoming photon from
being absorbed [1, 12]. A second difficulty concerns the
tradeoff between detector efficiency and bandwidth. A
large detector response to a single photon requires a suf-
ficiently long interaction time with the photon. As the
absorber linewidth is typically inversely proportional to
the photon interaction time, this imposes a serious con-
straint on the detector bandwidth.

The interest in realizing a single photon detector in
the microwave domain is intimately linked to the emer-
gence of engineered quantum systems whose natural do-
main of operations is in the microwaves, including su-
perconducting quantum circuits [14, 15], semiconductor
quantum dots [16], spin ensembles [17], and mechani-
cal quantum oscillators [18]. The continuing improve-
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ment in coherence and control over these quantum sys-
tems offers a wide range of applications for microwave
single-photon detection, such as photon-based quantum
computing [19], modular quantum computing architec-
tures [20], high-precision sensing [21], and the detection
of dark matter axions [22].

A number of theoretical proposals and experimen-
tal demonstrations of microwave single-photon detectors
have emerged recently. These schemes can broadly be
divided into two categories: Time-gated schemes where
accurate information about the photon’s arrival time is
needed a priori [2, 6, 7, 10, 11, 13], and detectors that
operate continuously in time and attempt to accurately
record the photon arrival time [1, 3–5, 8, 9, 12, 13]. In this
work, we are concerned with the latter category, which is
simultaneously the most challenging to realize and finds
the widest range of applications.

Depending on the intended application, there are sev-
eral metrics characterizing the usefulness of single-photon
detectors. Not only is high single-photon detection fi-
delity required for many quantum information applica-
tions, but large bandwidth, fast detection and short dead
times are also desirable [23]. Moreover, nondestructive
photon counting is of fundamental interest and offers
possibilities for quantum measurement and control not
achievable with destructive detectors. In this article,
we introduce the Josephson Traveling-Wave Photodetec-
tor (JTWPD), a non-destructive single-photon detector
which we predict to have remarkably high performance
across the mentioned metrics. We numerically estimate
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detection fidelities approaching unity for realistic param-
eters, without sacrificing detector bandwidth or requiring
long detection or reset times.

II. JTWPD DESIGN AND WORKING
PRINCIPLE

The JTWPD exploits a weakly nonlinear, one-
dimensional metamaterial, designed to respond to the
presence of a single photon. The nonlinearity is provided
by a large number of Josephson junctions, inspired by the
Josephson traveling wave parametric amplifier [24]. Be-
cause the detector response does not rely on any resonant
interaction, the detector bandwidth can be designed to
range from tens of MHz to the GHz range. The signal-
to-noise ratio (SNR) grows linearly with the length of the
metamaterial which can be made large, leading to single-
photon detection fidelities approaching unity. By interro-
gating the nonlinear medium with a “giant probe” [25]—
a probe system that couples to the medium over a spatial
extent that is non-negligible compared to the length of
the signal photons—this approach bypasses previous no-
go results for photon counting based on localized cross-
Kerr interactions [26–29].

The JTWPD is illustrated schematically in Fig. 1: In
place of a localized absorber as used in previous propos-
als [1, 3–5, 12, 13], we use a long and weakly nonlinear
metamaterial. Backscattering is avoided by using a non-
linearity that is locally weak, yet a large response is made
possible by having a long photon time-of-flight through
the metamaterial. Since the photon is never localized, the
backaction on the photon wavevector is minimized. This
approach allows us to overcome the limitations on detec-
tor fidelity and bandwith present in previous schemes.

The presence of a photon is recorded using a continu-
ously monitored probe mode that is coupled to the meta-
material along the full extent of its length. Thanks to a
nonlinear cross-Kerr coupling, in the presence of the mea-
surement tone âin(t), a single photon in the metamaterial
induces a displacement of the output field âout(t) relative
to its idle state. While the interaction between the meta-
material and the probe mode is locally too weak to cause
any noticeable change in âout(t), the displacement accu-
mulates as the photon travels through the metamaterial
leading to a large enough signal to be recorded using ho-
modyne detection.

As illustrated in Fig. 2, the backbone of the metama-
terial is a waveguide of length z (orange) realized as a
linear chain of coupled LC oscillators, in a configuration
known as composite right/left handed (CRLH) metama-
terial [30]. The LC oscillators are coupled via an ar-
ray of nonlinear couplers to a readout resonator acting
as a giant probe (blue). The couplers (inset) are based
on a superconducting loop with a single small junction
and a number of larger junctions, operated at a point
where the nonlinear potential of the couplers is given by
ÛQ(ϕ̂) = EQϕ̂

4/24 + . . . , with ϕ̂ the superconducting

FIG. 1. (a) Sketch of the JTWPD. Standard transmission
lines (black) are coupled to both ends of a one-dimensional
metamaterial (orange) of length z and linear dispersion rela-
tion, ω = vk. A cross-Kerr interaction χ between the meta-
material and the giant probe mode (blue) leads to a phase
shift in the strong measurement tone (yellow) while the sig-
nal photon (red) travels through the metamaterial. (b) Phase
space picture of the probe mode. With respect to the idle co-
herent state |α〉, the presence of a signal photon displaces the
states by gz/v, with g = χα.

phase difference across the coupler, EQ > 0 quantifies
the nonlinearity, and the ellipses refer to higher order
terms. See Appendix A for further details. This circuit
has been dubbed the “quarton” due to the purely non-
linear quartic potential [31].

With the metamaterial coupled at x = ±z/2 to
impedance matched linear transmission lines, the inter-
action time between the photon and the giant probe is
τ = z/v where v is the speed of light in the meta-
material. As an alternative to this transmission mode,
the interaction time can be doubled by terminating the
metamaterial at x = +z/2 with an open where the pho-
ton wavepacket is reflected. To simplify the analysis,
we consider the transmission mode in most of the treat-
ment below, but return to a discussion of reflection mode
when discussing potential experimental implementation
and parameters.

The full detector Hamiltonian can be expressed as Ĥ =
Ĥ0 + Ĥr + Ĥint, where Ĥ0 contains the linear part of the
waveguide including the metamaterial as well as the input
and output linear waveguides, Ĥr is the probe resonator
Hamiltonian and Ĥint describes the nonlinear coupling
between the probe and the metamaterial. As shown in
the Supplemental Materials [32], in the continuum limit
where the size a of a unit cell of the metamaterial is small
with respect to the extent of the photon wavepacket, Ĥ0

takes the form

Ĥ0 =
∑
ν=±

∫
Ω

dω~ωb̂†νω b̂νω. (1)

In this expression, b̂†±ω creates a delocalized right/left-
moving photon with energy ~ω and satisfies the canoni-

cal commutation relation [b̂νω, b̂
†
µω′ ] = δνµδ(ω−ω′). The

subscript Ω in Eq. (1) is used to indicate that we only
consider a band of frequencies around which the metama-
terial’s dispersion relation is approximately linear. The
probe resonator Hamiltonian Ĥr can be written in a dis-
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FIG. 2. Schematic representation of the JTWPD. The probe resonator with ground plane on top and the center conductor
below (blue), as well as a readout port on the right, acts as a giant probe. The light blue arrows illustrate the fundamental mode
function of a λ/2 resonator. The probe resonator is coupled via a position dependent cross-Kerr interaction χ(x), mediated by
an array nonlinear quarton couplers (inset), to a metamaterial waveguide (orange). The metamaterial is coupled to impedance
matched input/output transmission lines at x = −z/2 and x = z/2 (grey). An incoming photon of Gaussian shape ξ(x, t) is
illustrated (red).

placed and rotating frame with respect to the coherent
drive field as (see Appendix B)

Ĥ ′r =
~K
2
â†2â2, (2)

where we for simplicity only include a single resonator
mode, described by a creation (annihilation) operator â†

(â), and K is a self-Kerr nonlinearity induced by the
nonlinear couplers.

The nonlinear coupling elements also lead to cross-Kerr
interaction between the array of oscillators and the probe
mode. As mentioned above, this coupling is chosen to be
locally weak such that the nonlinearity is only activated
by the presence of a strong coherent drive âin(t) on the
probe. In this limit, the nonlinear interaction Hamilto-
nian Ĥint is in the same rotating and displaced frame
given by (see Appendix C)

Ĥ ′int = ~
∑
νµ

∫ z/2

−z/2
dxχ(x)b̂†ν(x)b̂µ(x)

(
â†â+ α2

)
+ ~

∑
νµ

∫ z/2

−z/2
dxg(x)b̂†ν(x)b̂µ(x)

(
â† + â

)
,

(3)

where we have defined the x-dependent photon annihila-
tion operators

b̂ν(x) =

√
ω̄

2πv

∫
Ω

dω√
ω
b̂νωe

νiωx/v, (4)

with ω̄ a nominal center frequency for the incoming pho-
ton which is introduced here for later convenience. The
parameter χ(x) is a dispersive shift per unit length given
in Eq. (C2), while g(x) = αχ(x) with α the displacement
of the probe resonator field under the strong drive âin.
The expression for α, which we take to be real without
loss of generality, is given in Eq. (B6).

As can be seen from the second term of Eq. (3) which
dominates for small χ(x) and large α, the combined ef-
fect of the cross-Kerr coupling and the strong drive re-
sults in a longitudinal-like interaction between the meta-
material and the probe mode [33]. This corresponds to
a photon-number dependent displacement of the probe
field relative to the idle state displacement α, which ac-
cumulates when a photon travels along the metamaterial.
By continuously monitoring the output field of the probe
mode, a photon is registered when the integrated ho-
modyne signal exceeds a predetermined threshold. This
approach shares similarities with the photodetector de-
sign introduced in Ref. [12], with the important distinc-
tion that here the photon is probed in-flight as it travels
through the metamaterial rather than after interaction
with a localized absorber mode. This distinction is the
key to achieving large detection fidelities without sacri-
ficing bandwidth.

An important feature of this detector design is that
although the detection bandwidth is large, the CRLH
metamaterial can be engineered such as to have frequency
cutoffs [30]. The low-frequency cutoff avoids the detec-
tor from being overwhelmed by low-frequency thermal
photons. Moreover, hybridization of the meatamaterial
waveguide and the probe resonator can happen due to im-
perfect quarton couplers. Although the quarton is nom-
inally a purely nonlinear element, deviations from the
ideal operation point due to flux variation, junction dis-
order, as well as stray capacitive couplings, all contribute
to linear coupling between the metamaterial and probe
resonator. The JTWPD can be designed to be robust
to such stray linear couplings by placing the probe mode
resonance frequency to be outside of the metamaterial
frequency band. In this situation, the metameterial effec-
tively acts as a Purcell filter for the probe mode, thereby
avoiding degradation of the probe mode quality factor.
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III. BACKACTION AND DETECTOR NOISE

In the JTWPD, backaction on the incoming photon’s
wavevector, and therefore photon backscattering, is min-
imized by working with a giant probe which minimizes
information about the photon’s position. Focusing first
on the ideal case where the probe mode self-Kerr nonlin-
earity K and the dispersive shift χ(x) can be neglected
compared to g(x) = αχ(x), we clarify the dominant noise
process for the probe resonator and the associated back-
action on the photon by deriving a perturbative master
equation. In the subsequent section, we turn to full nu-
merical analysis including the effect of the nonlinearities
K and χ.

Considering the ideal case for the moment and ignoring
the spatial dependence of g(x), the interaction Hamilto-
nian takes the simple longitudinal-coupling form [33]

Ĥideal = ~g
∑
νµ

∫ z/2

−z/2
dxb̂†ν(x)b̂µ(x)

(
â† + â

)
. (5)

We model the incoming photon by an emitter system
with annihilation operator ĉ, [ĉ, ĉ†] = 1, located at
x0 < −z/2 and initialized in Fock state |1〉. The decay
rate κc(t) of the emitter to the transmission line is cho-
sen such as to have a Gaussian wavepacket with center
frequency ω̄ and full width at half maximum (FWHM)
γ propagating towards the detector [see Eq. (D1)]. Us-
ing Keldysh path integrals, we trace out the waveguide to
find a perturbative master equation for the joint emitter-
probe system. As discussed in Appendix D, to second
order in the interaction, this master equation takes a re-
markably simple form

˙̂ρ = − i
[
gndet(t)(â+ â†), ρ̂c

]
+ Γ(t)D[â+ â†]ρ̂c

+ κc(t)D[ĉ]ρ̂+ κaD[â]ρ̂.
(6)

In this expression, D[ô]• = ô•ô†−1/2{ô†ô, •} is the usual
Lindblad-form dissipator and we have defined ρ̂c(t) =
ĉρ̂(t)ĉ†/〈ĉ†ĉ〉(t),

ndet(t) =
1

v

∫ z/2

−z/2
dx |ξ (x, t)|2 , (7)

Γ(t) =
4g2

κav

∫ z/2

−z/2
dx
[
1− e−κa2v (x+ z

2 )
]
|ξ (x, t)|2 , (8)

with ξ(x, t) = ξ(t−x/v) the incoming photon envelop and
ndet(t) the fraction of the photon that is in the metama-
terial at time t. A term of order g/ω̄ describing back-
scattering of the photon into the left-moving field has
been dropped from Eq. (6). With ω̄ the carrier frequency
of the incoming photon, this contribution is negligible.

In Eq. (6), ρ̂c is the state of the system conditioned on
a photon having been emitted. The first term of Eq. (6)
consequently has an intuitive interpretation: The probe
resonator is conditionally displaced by a drive equal to
the longitudinal coupling amplitude times the photon

0 100 200 300 400 500 600

MPS site

FIG. 3. The top panel shows snapshots of the photon num-
ber population along the Matrix Product State (MPS) sites
at three different times t1 (red) < t2 (green) < t3 (blue). The
white region corresponds to the linear waveguide and the or-
ange region to the metamaterial with its coupling to the probe
resonator. The bottom three panels show the Wigner function
W (x, y) of the intracavity probe field at the three respective
times. When the photon is only partially inside the meta-
material, the probe is in a superposition of displaced states
(middle panel). Parameters are κa = χ(x) = K = 0, gτ = 2
and γτ = 2.

fraction in the metamaterial, g × ndet(t). Indeed, while

the x-quadrature of the probe, x̂ = (â† + â)/
√

2, is
a constant of motion under Eq. (6), the y-quadrature,

ŷ = i(â† − â)/
√

2, is displaced.

The second term of Eq. (6), proportional to the rate
Γ(t), is the dominant process contributing to noise also
along the y-quadrature. The origin of the noise term can
be understood as follows. When the photon first enters
the detector and is only partially inside the metamate-
rial, the probe mode field evolves to a superposition of
being displaced to different average values of ŷ, leading to
enhanced fluctuations in this quadrature. This effect can
be seen clearly in the numerical results of Fig. 3, which
are described in more detail below. Finally, the last line
of Eq. (6) describes the usual decay of the emitter and
probe at respective rates κc(t) and κa.

As the increased fluctuations in the y-quadrature arise
due to uncertainty in the photon’s position, a spatially
longer photon is expected to lead to larger fluctuations.
A measurement of the probe’s y-quadrature will collapse
the superposition of displaced states and thus lead to a
backaction effect localizing the photon and randomizing
its wavevector. This effect can be minimized by decreas-
ing the interaction strength g while keeping gz/v con-
stant by increasing z. In other words, backaction can be
minimized by increasing the detector length relative to
the spatial extent of the photon. This intuitive reason-
ing is confirmed by numerical results in the next section.
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IV. NUMERICAL MATRIX PRODUCT STATE
SIMULATIONS

We now turn to numerical simulations of the JTWPD
including the self- and cross-Kerr nonlinearities K and χ
that were dropped in the preceding section. To go be-
yond the perturbative results of Eq. (6), it is no longer
possible to integrate out the waveguide degrees of free-
dom. A brute-force numerical integration of the dy-
namics is, however, impractical, as the JTWPD is an
open quantum many-body system with a large number of
modes. We overcome this obstacle by using a numerical
approach where the systems is represented as a stochasti-
cally evolving Matrix Product State (MPS) conditioned
on the homodyne measurement record of the probe out-
put field.

Our approach is based on trotterizing the time evo-
lution and discretizing the photon waveguide, including
the nonlinear metamaterial, along the x axis. Building
upon and extending recent developments of MPS in the
context of waveguide QED [34, 35], this leads to a pic-
ture where the waveguide is represented by a “conveyor
belt” of harmonic oscillators (referred to as MPS sites
below) interacting with the probe resonator. Measure-
ment backaction under continuous homodyne detection
of the probe resonator is included by representing the
state as a quantum trajectory conditioned on the mea-
surement record [36]. With our approach this is sim-
ulated using a stochastic MPS algorithm. Further de-
tails on this numerical technique can be found in the
Supplemental Materials [32].

As in the previous section, we consider a Gaussian pho-
ton wavepacket with FWHM γ propagating towards the
detector by an emitter initialized in the state |1〉 local-
ized to the left of the detector. The interaction strength
is quantified by the dimensionless quantity gτ where
τ = z/v is the interaction time as before, and the photon
width by the dimensionless quantity γτ . Example snap-
shots of the photon number distribution along the MPS
sites at three different times t1 < t2 < t3 are shown
in Fig. 3, along with the corresponding Wigner func-
tions of the probe mode field. Because of the impedance
match and negligible backaction, the photon population
wavepacket travels without any deformation along the
waveguide.

We start by comparing numerical results from MPS
simulations to the perturbative master equation obtained
in Eq. (6). To help in directly comparing the simulation
results, we first consider the idealized situation where
χ(x) = K = 0, g(x) = g > 0. In Fig. 4, we show the av-
erage probe resonator displacement 〈ŷ〉 whose integrated
value is linked to the detector signal and the noise 〈∆ŷ2〉
as a function of time. To verify the prediction that fluctu-
ations in ŷ increase for spatially longer photons, we com-
pare Gaussian wavepackets of different spectral widths
γ. Recall that a smaller γτ implies a longer photon rel-
ative to the detector length. The solid lines in Fig. 4 are
obtained using MPS simulations with γτ = 2 (blue), 4
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FIG. 4. Time evolution of the intra-cavity probe displace-
ment 〈ŷ〉 [(a, c, e)] and fluctuations 〈∆ŷ2〉 [(b, d, f)], in the
idealized case χ(x) = K = 0. Top row: κa = 0 and gτ = 2.
Middle row: κa = 0 and spatially varying g(x) with average
value ḡτ = 2. Bottom row: κaτ = 1.0 and gτ = 2. The solid
lines correspond to MPS simulations with different photon
widths γτ = 2 (blue), 4 (orange), 6 (green) and 10 (bright
purple), while the dotted lines are from integrating Eq. (6).

(orange), 6 (green) and 10 (bright purple). The dotted
lines are obtained from Eq. (6) for the same parame-
ters. The agreement between the approximate analytical
results and the full non-perturbative MPS results is re-
markable.

An important question is how robust the detector is to
spatial variations in the non-linearity g(x) = αχ(x). In a
physical realization, spatial variations can arise, e.g., due
to disorder in the quarton junction critical currents and
variations in the flux through the quarton loops. More-
over, there is naturally a spatial dependence in χ(x) due
to the spatial dependence of the probe resonator mode
function (illustrated by blue arrows in Fig. 2). In panels
(c, d) of Fig. 4 we use a spatially varying g(x), and we
consequently only show MPS results in these panels. To
confirm the robustness of the detector to this variation,
Fig. 4 (b, c) shows 〈ŷ〉 and 〈∆ŷ2〉 versus time as obtained
from MPS simulations for g(x) = 2ḡ cos2(2πx/z) + µ(x).
The cosine models the dependence on the mode func-
tion of a λ/2 resonator while µ(x) is added to take
into account potential random variations in the coupling
strength which we take here to be as large as 10%. More-
over, to show the effect of a non-uniform g(x) more
clearly, we use γτ = 10 corresponding to spatially shorter
photons than in the other panels. Although additional
structures can now be seen, the long-time average dis-
placement remains unchanged confirming that the detec-
tor is remarkably robust against spatial variations of the
metamaterial-probe coupling.

Panels (e, f) of Fig. 4 show results fo κa > 0. In
this situation the MPS evolves stochastically with each
trajectory resulting in a measured current Jhom(t) =
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√
κa〈ŷ〉traj + ξ(t), where ξ(t) = dWt/dt with dWt a

Wiener process representing white noise [36]. We com-
pare 〈ŷ〉 and 〈∆ŷ2〉 averaged over one thousand stochas-
tic trajectories to the results obtained by integrating the
Keldysh master equation Eq. (6). The agreement is excel-
lent for large γτ , but small deviations are observed when
this parameter is decreased. We attribute this to terms of
higher than second order in the interaction Hamiltonian,
which are neglected in Eq. (6). The exponential decay of
〈ŷ〉 at long time observed in panel (e) simply results from
the finite damping rate κa. Indeed, the photon-induced
displacement stops once the photon has travelled past
the metamaterial at which point the probe mode relaxes
back to its idle state.

For a given trajectory, we infer that a photon is de-
tected if the homodyne current convolved with a filter [4]

J̄hom(t) =

∫ τm

0

dt′Jhom(t′)f(t′ − t). (9)

is larger than a threshold ythr, i.e. maxt J̄hom(t) > ythr.
The filter f(t) ∝ 〈ŷ(t)〉 is obtained from averaging over
a large number of trajectories and is chosen such as to
give more weight to times where the signal is on average
larger. We maximize t over the time window [−τm, τm]
and chose the threshold to optimize between quantum ef-
ficiency and dark counts. The quantum efficiency η is de-
fined as the probability of detecting a photon given that
one was present. From the above procedure, it can be es-
timated as η = Nclick|1/Ntraj|1, with Nclick|1 the number
of reported “clicks” and Ntraj|1 the number of simulated
trajectories with a photon. On the other hand, the dark
count probability is estimated similarly as the fraction of
reported clicks pD = Nclick|0/Ntraj|0 in a simulation with
no incoming photon. In these simulations, the dark count
rate is set by the threshold and the vacuum fluctuations
of the probe resonator. A number that incorporates both
η and pD, and is thus a good measure of the performance
of a photodetector, is the assignment fidelity [4]

F =
1

2
(η + 1− pD) . (10)

In practice, if the arrival time of the photon is known
to lie within some time window, one can optimize t
in Eq. (9) over this window in a post-processing step [12].
In our numerical simulations, the arrival time is known
such that this optimization is not necessary and we can
therefore simply evaluate J̄hom(t) at t = 0.

Fig. 5 shows 75 typical filtered output records,
J̄hom(t = 0), as a function of the measurement window
τm. These results are obtained from stochastic MPS sim-
ulations with γτ = 6, gτ = 3, κaτ = 1.0, and include
self- and cross-Kerr couplings with |K|/κa = 10−2 and
g/χ = 5. The red traces correspond to simulations where
a photon was present, while the blue traces are for incom-
ing vacuum. The horizontal gray line is the threshold
chosen to optimize the assignment fidelity. At τm/τ & 3,
most traces are correctly identified. Panel (b) shows the
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FIG. 5. (a) 75 filtered homodyne currents (arbitrary units)
for gτ = 3, κaτ = 1.0, |K|/κa = 10−2 and g/χ = 5. Red
traces are obtained with an incoming Gaussian photon of unit-
less width γτ = 6, and blue traces for vacuum. The horizontal
gray line is the threshold chosen to maximize the assignment
fidelity. (b) Infidelity versus gτ for γτ = 2 (blue), 4 (orange),
and 6 (green), found by averaging over Ntraj = 2000 trajecto-
ries. Other parameters as in (a). The shaded regions indicate

the standard error defined as ±
√
F(1−F)/Ntraj.

assignment fidelity for γτ = 2 (blue), 4 (orange) and 6
(green) as as function of gτ but fixed g/χ = 5. The mea-
surement time τm is chosen sufficiently large to maximize
F . As expected from Fig. 4, the fidelity is reduced for
smaller γτ because spatially longer photons (smaller γτ)
lead to more noise in the measurement.

A remarkable feature of Fig. 5 is the clear trend of the
assignment fidelity approaching unity with increasing gτ .
This number can be increased at fixed τ by increasing g,
or at fixed interaction strength g by increasing the detec-
tor length. (Note that the results in Fig. 5 are at fixed
κaτ , so that to match these simulations κa would have to
be reduced for increasing τ . The reduction is, however,
modest.) In the next section we show that values of gτ in
the range 1–3 used in Fig. 5 are within reach for experi-
mentally realistic parameters and metamaterial lengths.

V. TOWARDS EXPERIMENTAL REALIZATION

The JTWPD shares similarities with the Josephson
Traveling Wave Parametric Amplifier (JTWPA) [24, 37,
38]. State of the art JTWPAs consists of a metamaterial
with up to tens of thousands of unit cells, each comprised
of a large Josephson junction and a shunt capacitance to
ground. In addition, LC oscillators used to engineer the
dispersion relation are placed every few unit cells. We
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envision a JTWPD with a similar number of unit cells,
albeit with an increase in complexity for each unit cell.
A significant design difference is that in the JTWPD ev-
ery unit cell is coupled to the same probe resonator. In
practice, this resonator can be a coplanar waveguide res-
onator or a 3D cavity.

As shown in the Supplemental Materials [32], the num-
ber of unit cells necessary to reach a given value of gτ
can be approximated by

Ncells '
1

2

(
gτ

α

RK
8πZtml

)2
ω̄2

KQEQ/~
. (11)

where we neglect spatial dependence of the parameters
for simplicity. In contrast to the simulation results pre-
sented above, we assume here that the detector is oper-
ated in reflection mode, effectively halving the number
of unit cells needed for a given value of τ . In this ex-
pression, α is the displacement of the probe resonator as
before, RK = h/e2 is the quantum of resistance, Ztml

the characteristic impedance of the metamaterial at the
center frequency ω̄, and EQ the nonlinear energy of the
coupling elements (see Appendix A).

The parameter KQ appearing in Eq. (11) is the self-
Kerr nonlinearity of the resonator [see Eq. (A3)] due to
the nonlinear couplers in Fig. 2. An interesting feature of
the quarton coupling element is that the self-Kerr is al-
ways positive KQ > 0 [31], in contrast to a more conven-
tional Josephson junction element [39]. The total Kerr
non-linearity of the resonator can be adjusted by intro-
ducing another nonlinear element such as one or more
Josephson junctions galvanically or capacitively coupled
to the resonator. We can then write the total Kerr non-
linearity as K = KQ +KJ , where KQ > 0 is the contri-
bution from the couplers in Fig. 2, and KJ < 0 comes
from one or more Josephson junctions. The latter ele-
ments can be made tunable, allowing an in-situ tuning of
KJ < 0. Following this approach, we can allow for a de-
tector with a larger KQ contributing to reducing Ncells,
yet still have a total Kerr nonlinearity K ' 0 to avoid
nonlinear response of the probe mode. Similar ideas have
recently been used to cancel unwanted cross-Kerr nonlin-
earities [40].

Fig. 6 shows Ncells as a function of the self-Kerr KQ to
reach gτ in the range 1–3, for a photon center frequency
of ω̄/(2π) = 5 GHz. In these plots we use a nonlin-
earity Is = EQ/ϕ0 = 1.1µA for the coupling element,
c.f. Appendix A, and the other parameters are α = 5
and Ztml = 50 Ω. For a quarton with ns = 3 large junc-
tions this corresponds to a critical current of Ic = 3.7µA
for each large junction and 1.2µA for the smaller junc-
tion. Crucially, it is possible to reach gτ in the range
1–3, as in our numerical simulations above, using a few
thousand unit cells without an excessively large KQ. Al-
ternatively, the same value of gτ can be reached for a
smaller KQ by increasing the transmission line character-
istic impedance, Ztml, as is clear from Eq. (11). As dis-
cussed in more detail in the Supplemental Materials [32],

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.
0

2000

4000

00

FIG. 6. Number of unit cells needed to reach gτ in the range
1–3 as a function of self-Kerr non-linearity KQ, for α = 5,
ω̄/(2π) = 5 GHz, Is = EQ/ϕ0 = 1.1µA and Ztml = 50 Ω. The
total Kerr non-linearity of the resonator K = KQ + KJ can
be tuned close to zero by introducing another non-linearity
with KJ < 0.

KQ can be tuned by varying the coupling capacitance be-
tween the junctions and the probe resonator, or by tuning
the characteristic impedance of the coupler mode.

The CRLH metamaterial has a frequency-independent
characteristic impdeance Ztml =

√
Ln/Cg given that√

Ln/Cg =
√
Lg/Cn, referred to as a balanced

CRLH [30]. Close to the center of the CLRH fre-
quency band, the dispersion relation is approximately
linear, with a speed of light given by v = 1/

√
4LnCg.

For typical parameters, discussed in more detail in the
Supplemental Materials [32], we expect detection times
in the range τ = 1–10µs. To have κaτ = 1 as in the sim-
ulations above, this then suggests a probe decay rate in
the range κa/2π ' 0.015–0.15 MHz. Larger values of κaτ
might be preferable in practice, but we found this regime
too demanding for numerical simulations due to the pro-
hibitively small time steps needed. A larger κa relaxes
the constraint on reducing the total self-Kerr nonlinear-
ity |K| = |KQ +KJ |, and might lead to faster detection
and reset times.

Based on the numerical results in the previous section,
the detection time is of the order τm ' 3τ , and thus
expected to be in the µs to tens of µs range for the above
mentioned value of τ . The detector reset time is naturally
of the order 1/κa, but can likely be made faster using
active reset protocols. To avoid significant backaction
effects, the photon’s spectral width must not be too small
as we have shown in the preceding sections. A value for
the dimensionless photon width of γτ = 2 corresponds
to a FWHM of γ/(2π) = 0.25 MHz, for the value τ =
1µs. We emphasize that the detection fidelity increases
with increasing γ, and from our numerical results we thus
expect photons of spectral width in the MHz range or
larger to be detectable with very high fidelity.

The bandwidth of the detector is set by appropri-
ately choosing the parameters of the CRLH metamate-
rial. In the Supplemental Materials [32] we show exam-
ple parameter sets with bandwidths ranging from several
GHz to 100s of MHz. For some applications that re-
quire very low dark count rates, lowering the bandwidth
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might be desirable. In principle the CLRH bandwidth
can be made arbitrarily small, but the circuit param-
eters required may become challenging to realize. An-
other option is to replace the coupling element shown in
the inset of Fig. 2 by a floating coupler, such that the
bandwidth is controlled by a coupling capacitance. All
of these various options are discussed in more detail in
the Supplemental Materials [32].

A. Potential obstacles and limiting factors

We here briefly summarize the JTWPD design’s ro-
bustness to various imperfections and key experimental
challenges.

Imperfect quarton coupling elements: The JTWPD is
designed to be robust to imperfections in the nonlinear
quarton coupling elements. As discussed in Sec. IV, the
JTWPD is highly robust to spatial variation in the non-
linear coupling g(x), which can arise due to variation in
critical current or flux in the quarton coupling elements.

Realistically, the quarton couplers also lead to some
stray capacitive and linear inductive coupling between
the probe mode and the metamaterial. Degradation of
the probe mode quality factor can be minimized by plac-
ing the probe mode frequency outside the metamaterial
band. In the Supplemental Materials [32], we study the
effect of stray linear coupling in more detail for exam-
ple parameter sets. The main conclusion of this study is
that stray linear coupling leads to a small reduction in
the cross-Kerr coupling χ(x), and opens a small bandgap
in the center of the JTWPD frequency band. The latter
will reduce the effective bandwidth of the JTWPD, as the
detector can not operate in, or close to, this bandgap.

Metamaterial loss: The numerical results presented
above neglects loss in the metamaterial. In practice,
we expect that loss will limit the detection fidelity
in a realistic device. Including loss in MPS simula-
tions is challenging, and will be the subject of future
work. In the Supplemental Materials [32] we introduce
loss in the Keldysh path integral approach leading
to a generalization of Eq. (6). The second-order
Keldysh master equation retains the same form, but
the integrands in Eqs. (7) and (8) are both reduced
by a factor exp[−αdet(x + z/2)], where αdet is the
loss per unit length. Numerical solutions to the
Keldysh master equation including loss shows that
the displacement-to-fluctuation ratio |〈ŷphoton(t) −
ŷno-photon(t)〉|/

√
〈∆ŷ2

photon(t)〉+ 〈∆ŷ2
no-photon(t)〉 only

suffers a small reduction for a realistic value of loss. As
a point of comparison, for the parameters used in Fig. 4,
the reduction due to a realistic value of 1 dB distributed
loss is much smaller than the corresponding reduction if
the coupling strength is lowered from gτ = 2 to gτ = 1.
These preliminary results suggest that realistic values
of loss is not an obstacle to reaching detection fidelities
well over 90%.

VI. DISCUSSION

Previous work have questioned whether cross-Kerr in-
teraction can be used for high-fidelity, broadband single
photon counting [29], seemingly in contradiction with our
results. There is, however, a fundamental difference be-
tween our proposal and the approach in Ref. [29]. There,
a number of nonlinear absorbers independently couple to
a traveling control field. This is similar to an alterna-
tive version of our proposal where each unit cell of the
metematerial couples to an independent probe resonator.
More generally, we can consider a situation where we par-
tition the Ncells unit cells of the detector into M blocks,
with each block coupled to an independent readout probe
resonator. With M = Ncells we have a setup similar to
Ref. [29], while M = 1 corresponds to the JTWPD. How-

ever, as shown in Appendix E, such a setup gives a
√
M

reduction in the probe resonator’s displacement. Our
proposal thus has an

√
Ncells improvement in the SNR

scaling. This improvement comes from using what we
referred to in the introduction as a giant probe, i.e. a
probe resonator that has a significant length compared
to the photon. This contrasts with conventional circuit
QED-based photodectors relying on point-like probe sys-
tems. Such a setup does not have any obvious analog in
the optical domain, demonstrating the potential of using
metamaterials based on superconducting quantum cir-
cuits to explore new domains of quantum optics.

In summary, we have introduced the JTWPD, a mi-
crowave single-photon detector based on a weakly nonlin-
ear metamaterial coupled to a giant probe. This detector
is unconditional in the sense that no apriori information
about the photon arrival time or detailed knowledge of
the photon shape is needed for its operation. Detection fi-
delities approaching unity are predicted for metamaterial
length that are compatible with state-of-the-art experi-
ments. Moreover, because the JTWPD does not rely on
absorption into a resonant mode, large detection band-
widths are possible.

A remarkable feature of the JTWPD, which distin-
guishes this detector from photodetectors operating in
the optical regime, is the nondestructive nature of the
interaction. Our numerical simulations clearly show that
the shape of the photon population wavepacket is min-
imally disturbed by the detection. Together with the
large bandwith and high detection fidelity, this opens
possibilities for single-photon measurement and control,
including feedback of photons after measurement, weak
single-photon measurement, and cascading photon detec-
tion with other measurement schemes or coherent inter-
actions.
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Appendix A: Nonlinear coupling element

We make use of a circuit identical to a flux qubit, or
equivalently the SNAIL element introduced in Ref. [41],
but used at a different operating point where it has been
dubbed a “quarton” [31]. The coupler consists of a loop
of ns large junctions with Josephson energy EJ and a
single smaller junction with energy βEJ , leading to a
nonlinear potential

ÛQ(ϕ̂) = −βEJ cos(ϕ̂− ϕx)− nsEJ cos

(
ϕ̂

ns

)
, (A1)

where ϕx is the dimensionless flux encircled by the loop.
The coupler is operated at the point ϕx = π and β =
1/ns where the potential becomes

ÛQ(ϕ̂) =
EQ
24

ϕ̂4 + . . . , (A2)

and we have introduced EQ = EJ(n2
s − 1)/n3

s. Here we
have expanded the nonlinear potential around ϕ̂ ' 0,
which is valid based on the fact that each end of the ele-
ment is coupled to harmonic modes with small zero-point
flux fluctuations. The crucial property of this coupler is
that it provides a purely nonlinear quartic potential while
the quadratic contribution cancels out. This minimizes
hybridization between the metamaterial and the probe
resonator in the JTWPD, and is an interesting opera-
tion point for non-linear interaction in general [42]. In
practice there will be deviations from the ideal opera-
tion point φx = π, β = 1/ns, but as we shown in the
Supplemental Materials [32], the JTWPD is robust to
such imperfections.

The grounded LC oscillator shown in the inset of Fig. 2
is used to control the frequency and impedance of the
coupler mode, and thus the detuning from the probe
resonator and the strength of the nonlinearity. By gal-
vanically coupling the quarton to the metamaterial and
capacitively to the probe resonator, we can optimize
the tradeoff between a large cross-Kerr coupling and a
smaller self-Kerr for the probe mode. Example parame-
ter sets and a detailed study of the dressed mode struc-
ture of the full probe-metamaterial system can be found
in Supplemental Materials [32].

The positive quartic potential in Eq. (A2) leads
to positive self- and cross-Kerr nonlinearities for the

probe-metamaterial system, in contrast to more con-
ventional Josephson junction nonlinearities. In the
Supplemental Materials [32] we use a black-box quantiza-
tion approach [39] to estimate the Kerr nonlinearities. In
particular, the self-Kerr nonlinearity of the probe mode
induced by Ncells coupler elements takes the form

~KQ =

Ncells−1∑
n=0

EQ,n|ϕr(xn)|4, (A3)

with EQ,n the energy of the nth nonlinear coupler and
ϕr(xn) the dimensionless zero-point flux fluctuations of
the probe mode biasing the nth coupling element.

Appendix B: Dynamics of the probe resonator

The probe resonator Hamiltonian can be written as

Ĥr = ~ωrâ†â+
~K
2
â†2â2 + ~

(
iεe−iωdtâ† + H.c.

)
, (B1)

with â the annihilation operator for the probe mode sat-
isfying [â, â†] = 1. The resonator frequency ωr includes
significant frequency shifts due to the nonlinear couplers.
Moreover, the Kerr-nonlinearity K = KQ +KJ includes
both a contribution KQ > 0 coming from the Ncells cou-
pler elements and a contribution KJ < 0 which can be
used to cancel out K ' 0, as discussed in the main text.
The last term of Ĥr describes a resonator drive with am-
plitude ε and frequency ωd. Taking damping of the probe
resonator into account, the dynamics of the system is de-
scribed by the master equation

ρ̇ = − i
~

[Ĥ, ρ] + κaD[â]ρ. (B2)

Moving to a frame rotating at the drive frequency and
then displacing the field such that â → â + α, Ĥr takes
the form

Ĥ ′r/~ = (δ + 2K|α|2)â†â+
K

2
â†2â2, (B3)

where δ = ωr − ωd and with α chosen such as to satisfy
the steady-state equation

(δ +K|α|2)α− iκa
2
α+ iε = 0. (B4)

To drive the probe mode on resonance despite the Kerr
nonlinearity, we chose ωd such that δ = −2K|α|2. With
this choice, the transformed probe Hamiltonian reduces
to

Ĥ ′r =
~K
2
â†2â2 (B5)

while the nonlinear equation for α becomes

K|α|2α+
iκa
2
α = iε. (B6)
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ForK|α|2 � κa, the solution is approximately α = 2ε/κa
and the steady-state of the resonator is to a good approx-
imation the coherent state |α〉. As discussed further in
the Supplemental Materials [32], in the opposite limit,
the steady-state becomes non-Gaussian something which
can reduce the signal-to-noise ratio of the detector. To
remain in the linear regime for sizeable α, we require
|K|/κa to be small. Note that the solution for α is in
general complex, while we took α to be real in the main
text, to simplify notation. This can, however, be done
without loss of generality, since we can simply perform
a canonical transformation â → âe−iθ with θ = argα to
eliminate the phase of α.

Appendix C: Metamaterial-probe cross-Kerr
coupling

In the laboratory frame, the cross-Kerr interaction be-
tween the probe resonator and the waveguide takes the
form

Ĥint = ~
∑
νµ

∫ z/2

−z/2
dxχ(x)b̂†ν(x)b̂µ(x)â†â, (C1)

to fourth order in the Josephson nonlinear poten-
tials Eq. (A2) and where ν = ± refers to the direction of
propagation of the photon. In this expression, we have
defined the dispersive shift per unit length

~χ(xn) =
vEQ,n
a

4πZtml

RK ω̄
|ϕr(xn)|2 (C2)

with ω̄ the photon center frequency, Ztml the character-
istic impedance of the transmission line at frequency ω̄,
and we recall that a is the unit cell length. Because we are
only interested in small photon number in the waveguide,
we have safely dropped fast-rotating terms and higher-

order terms in b̂νω from Eq. (C1). Moving to the rotating
and displaced frame introduced for the probe resonator
above, Eq. (C1) leads to Eq. (3) where g(x) = αχ(x)
with α given by Eq. (B6) and where we take α to be real
to simplify notation.

The integral in Ĥint should be interpreted as a Rie-
mann sum, and the continuum limit is valid as long as all
relevant wavelengths are much longer than a. Moreover,

the expression for b̂ν(x) in Eq. (4) and χ(x) in Eq. (C2)
are derived under the assumption that dispersion is neg-
ligible over a relevant frequency band around ω̄, where
the photon number is non-zero. In other words, we are
working under the assumption that the incoming pho-
ton is sufficiently narrow. Nevertheless, we expect that
photons with large spread of frequency components com-
pared to previous proposals can be detected.

Appendix D: Effective Keldysh master equation

We describe the main steps of the derivation
leading to Eq. (6) and refer the reader to the

Supplemental Materials [32] for more details. We model
the incoming photon using an emitter located at position
x0 to the left of the metamaterial with annihilation op-
erator ĉ. After initializing the emitter in the state |1〉,
the emitter decay rate, κc(t), is chosen such as to model
the desired single-photon wavepacket. Here, we choose a
Gaussian wavepacket ξ(t) of variance σ2

ξ(t) =

(
2σ2

π

)1/4

e−iω̄te−σ
2(t+x0/v)2

, (D1)

by using [43]

κc(t) =

√
8σ2

π

e−2σ2t2

1− erf[
√

2σt]
, (D2)

with erf(x) the error function. The FWHM γ used in the

main text is related to the variance as γ = 2
√

2 ln 2σ.
The ideal [setting K = χ = 0 and ignoring spatial

variation in g(x)] Hamiltonian for the detector, emitter,
and waveguide is given by

Ĥ = Ĥ0 + Ĥideal + Ĥc,

Ĥ0 =
∑
ν

∫
Ω

dω ~ωb̂†ν,ω b̂ν,ω,

Ĥideal = ~g
∑
νµ

∫ z/2

−z/2
dx b̂†ν(x)b̂µ(x)(â† + â),

Ĥc = ω̄ĉ†ĉ+
√
κc(t)v

[
b̂†+(x0)ĉ+ H.c.

]
.

(D3)

Using this Hamiltonian and adding decay of the
probe resonator, we write the corresponding Keldysh
action following Ref. [44]. As explained in the
Supplemental Materials [32], to do this we take advan-
tage of the fact that the action is quadratic in the fields

b̂±(x) and integrate out the waveguide degrees of free-
dom. The result is then expanded in a Taylor series in the
interaction strength, which yields an effective Keldysh
action for the emitter-resonator system. Finally, from
that effective action, we find the equivalent master equa-
tion Eq. (6).

Appendix E: Detector response neglecting
backaction

To help build intuition for the detector’s response to
a single photon, it is useful to neglect backaction effects
and any correlations between the emitter and detector.
Under these approximations, upon tracing out the emit-
ter from Eq. (6), we can replace the term trC

[
ĉρ̂ĉ†

]
by

the approximate expression 〈ĉ†ĉ〉 ⊗ ρ̂A, where trC• is a
partial trace over the emitter and ρ̂A is the reduced state
of the probe resonator. In this way, the reduced master
equation for the probe resonator takes the form

˙̂ρA ' −i
[
gndet(t)(â+ â†), ρ̂A

]
+ κaD[â]ρ̂A. (E1)
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The associated quantum Langevin equation is

˙̂a ' −igndet(t)−
κa
2
â+
√
κaâin(t), (E2)

with âin(t) the input field which is in the vacuum state
in the displaced frame, i.e. 〈âin(t)〉 = 0. The solution for
the expectation value 〈â(t)〉 is then given by

〈â(t)〉 ' −ig
∫ t

t0

dt′e−κa(t−t′)/2ndet(t). (E3)

As expected, the number of photon in the metamaterial,
ndet(t), leads to a displacement of the probe field. We
have confirmed that for the parameters used in Fig. 4, the
above approximate expression is indistinguishable from
the solution found from the full Keldysh master equation
[dotted lines in Fig. 4 (a, e)].

1. Detectors in series

We can generalize the above discussion to a situation
where the metamaterial is divided into M equal subsec-
tions, individually coupled to a set of M independent and
identical probe resonators. The interaction Hamiltonian
then takes the form

Ĥideal = ~g
M−1∑
m=0

∑
νµ

∫ xm+∆x/2

xm−∆x/2

dx

× b̂†ν(x)b̂µ(x)
(
â†m + âm

)
,

(E4)

with xm = −z/2 +
(
m+ 1

2

)
∆x, ∆x = z/M , and

[âm, â
†
n] = δmn. Defining the collective mode

âΣ =
1√
M

M−1∑
m=0

âm, (E5)

satisfying [âΣ, â
†
Σ] = 1, and assuming that each probe

resonator labeled by m couples identically with rate κ to
a common input-output waveguide, leads to the quantum
Langevin equation for the collective mode

˙̂aΣ =
i

~
[Ĥideal, âΣ]− κΣ

2
âΣ +

√
κΣâin(t), (E6)

where κΣ = Mκ and where we have taken the resonator
frequencies to be identical. Under a similar set of ap-
proximations as above, we find

˙̂aΣ ' −
ig√
M
ndet(t)−

κΣ

2
âΣ +

√
κΣâin(t), (E7)

Comparing to Eq. (E2) which was obtained for M = 1,

we find a
√
M reduction in the displacement. To com-

pensate one could increase g → g
√
M , but this leads to

a breakdown of the assumption of negligible backaction.
In summary the JTWPD limit M = 1 is ideal.
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