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Density-Matrix Model for Photon-Driven Transport in Quantum Cascade Lasers

S. Soleimanikahnoj,1, ∗ M. L. King,1, † and I. Knezevic1, ‡

1Department of Electrical and Computer Engineering, University of Wisconsin-Madison,
1415 Engineering Dr., Madison, Wisconsin 53706, USA

We developed a time-dependent density-matrix model to study photon-assisted (PA) electron
transport in quantum cascade lasers. The Markovian equation of motion for the density matrix in
the presence of an optical field is solved for an arbitrary field amplitude. Level-broadening terms
emerge from microscopic Hamiltonians and supplant the need for empirical parameters that are
often employed in related approaches. We show that, in quantum cascade lasers with diagonal
design, photon resonances have a pronounced impact on electron dynamics around and above the
lasing threshold, an effect that stems from the large spatial separation between the upper and lower
lasing states. With the inclusion of PA tunneling, the calculated current density and output power
are in good agreement with experiment.

I. INTRODUCTION

Quantum cascade lasers (QCLs) are unipolar sources
of coherent radiation emitting in the terahertz and in-
frared portions of the electromagnetic spectrum [1, 2].
The gain medium of a QCL is a periodic stack of
compound-semiconductor heterostructures. The result-
ing multi-quantum-well electron band structure in the
growth direction has discrete energy levels, and the as-
sociated wave functions are quasibound. While lasing
stems from radiative electron transitions between specific
states, nonradiative processes mediated by various mech-
anisms also play important roles in device operation. In
particular, photon-assisted (PA) transport becomes sig-
nificant in terahertz and midinfrared QCLs at and above
the lasing threshold [3–5]. This effect of the optical field
also occurs in superconducting junctions [6], optical lat-
tices [7], superlattices [8–12], and other quantum-well
structures [13].

In QCLs, PA transport has been modeled using semi-
classical methods (rate equations and Monte Carlo [1,
3, 5, 14]) and quantum-mechanical methods (density
matrix and nonequilibrium Green’s function [4, 15–
25]). The modeling efforts reliant on the rate equa-
tions for level populations employed empirical or phe-
nomenological scattering rates to characterize PA trans-
port [3, 5, 14]. More recent density-matrix (DM) models
achieved quantitative agreement with experimental stud-
ies [4, 20], however, in these models, the PA scattering
rates were calculated using Fermi’s golden rule in which
the energy-conserving delta functions were replaced by
empirically modified Lorentzian terms. The nonequi-
librium Greens function (NEGF) technique allows for a
methodical treatment of scattering, but the theoretical
complexity and computational demands of NEGF make
it inconvenient for use by experimental researchers in-
terested in QCL design and optimization, who rely on
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Figure 1. Conduction-band edge and probability densities
for the eight eigenstates used in calculations (bold curves)
at an above-threshold electric field bias of 50 kV/cm.
The states that belong to neighboring periods are de-
noted by thin gray curves and the dashed box indicates
a single stage, starting with the injection barrier. The
states are numbered in the order of increasing energy,
starting with the ground state; the radiative transition
occurs from 8 to 7. The layer structure (in nanometers),
starting with the injector barrier (centered at the origin) is
4.0/1.8/0.8/5.3/1.0/4.8/1.1/4.3/1.4/3.6/1.7/3.3/2.4/3.1/
3.4/2.9, with the barriers denoted in bold. Underlined layers
are doped to 1.2 × 1017 cm−3, which results in an average
charge density of n3D = 1.74 × 1016 cm−3 per stage.

the concepts of quasibound states and their lifetimes as
the cornerstone of intuition building. Therefore, there is
a need for a computationally efficient quantum-transport
treatment of PA tunneling in QCLs that does not require
phenomenological parameters and that employs broadly
adopted intuitive concepts.

In this paper, we present a quantum-mechanical model
for photon-driven transport in QCLs that is computa-
tionally inexpensive, requires no phenomenological pa-
rameters, and is conducive to intuition building. The
model stems from a rigorous theoretical framework with
a positivity-preserving Markovian master equation of mo-
tion for the density matrix [26–29]. The equation of
motion is solved self-consistently and nonperturbatively.
The solution is used to compute the steady-state and fre-
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quency response of the midinfrared QCL from Ref. [20]
(Fig. 1). Our results show that the inclusion of PA tun-
neling leads to substantial changes in electron transport
around and above the lasing threshold, and explain why
those changes are quite pronounced in QCLs with a di-
agonal design. Specifically, a significant increase in the
current density is observed upon inclusion of PA tunnel-
ing, which leads to a better above-threshold agreement
between the computed and experimental current density
versus field curves than obtained from the models that
neglect PA phenomena. In addition, the model allows
for saturation of the optical gain and calculation of the
output power. The calculated output power is in close
agreement with experiment.

II. METHODOLOGY

The simulated structure is a midinfrared QCL from
Ref. [20], which emits at around 8.5µm. In this structure,
electron dynamics is described by a three-part Hamilto-
nian

H = H0 +Hi +H ′(t). (1)

Here, H0 is a three-band k · p Hamiltonian capturing
the electronic band structure in the growth direction (z)
and free motion in the x-y plane. This Hamiltonian has
been extensively used in numerical studies of midinfrared
QCLs [28, 30, 31]. The effect of a dc-bias electric field
Edc is incorporated in H0. Hi represents the nonradiative
interactions of electrons with longitudinal acoustic and
optical phonons, interface roughness, ionized impurities,
and random alloy disorder [26, 27]. H ′(t) stands for the
interaction between the optical field and electrons and is
defined as

H ′(t) = qEacz cos(ωt), (2)

where q is electron charge, Eac is the electric-field ampli-
tude, z is position in the growth direction, and ω is the
frequency of radiation. Figure 1 shows the energy lev-
els and probability densities of the eigenstates associated
with H0. For the central period, denoted by a dashed
rectangle, the eight states with non-negligible contribu-
tions to electron transport are shown in bold. The states
associated with adjacent periods are represented by thin
gray curves. The lasing transition is between the upper
(8) and lower lower (7) lasing levels, shown in red and
blue, respectively. In this QCL, the lasing transition is
diagonal: the upper and lower states are spatially well
separated.

Transport quantities of interest are calculated using
the density matrix ρ. For calculation purposes, we as-
sume that the device area in the x-y plane perpendicular
to the transport direction is macroscopic and that the
in-plane electron dynamics is that of a free particle in
a uniform and isotropic two-dimensional medium. The

basis used for transport calculations is |i, k〉 = |i〉 ⊗ |k〉.
|i〉 labels the eigenstates of H0 and the continuous pa-
rameter |k〉 represents the amplitude of the wave vector
k = (kx, ky) in the x-y plane. Owing to translational
invariance and isotropy for in-plane dynamics, the den-
sity matrix is diagonal in k. The density matrix elements
〈k, i|ρ|j, k〉 are shown as ρEk

i,j , with Ek = ~2k2/2m being
the in-plane energy; the constant in-plane inverse effec-
tive mass used here is a weighted average of the layer-
specific inverse effective masses [26, 27]. Here, we present

the key derivation steps of the equation of motion for ρEk
i,j ;

details are given in the appendix. The density matrix is
governed by the equation of motion

i~ρ̇Ek
i,j = ∆Ei,jρ

Ek
i,j +

∑
l,p

(
H ′i,lρ

Ek

l,j −H
′
p,jρ

Ek
i,p

)
+ i~ [Dρ]

Ek

i,j .

(3)
∆Ei,j is the energy spacing between states i and j. For

a given operator Ô, Oi,j is the short-hand notation for

〈i|Ô|j〉. Dρ, which will be referred to as the dissipator,
is a term that captures the effect of nonradiative inter-
actions in the Markovian limit. The map D should be
thought of as the quantum-mechanical generalization of
the scattering rate, supplanting the need for phenomeno-
logical dephasing times. The derivation of D for each
specific scattering mechanism is explained in detail in
Refs. [26, 27]. The matrix element of Dρ with in-
dices i and j can be written as a sum of the scatter-
ing terms proportional to the density matrix term with
the same indices, -γEk

i,j ρ
Ek
i,j (γEk

i,j > 0 have the meaning

of rates), and the reduced dissipator
[
D̄ρ
]Ek

i,j
that com-

prises terms proportional to other matrix elements of ρ,

i.e., [Dρ]
Ek

i,j = −γEk
i,j ρ

Ek
i,j +

[
D̄ρ
]Ek

i,j
. This separation makes

Eq. (3) a first-order differential equation for ρEk
i,j , in which

the other matrix elements of ρ play a role through D̄ρ
term and a polarization term that involves optical-field
amplitude Eac is present:

i~ρ̇Ek
i,j =

(
∆Ei,j − i~γEk

i,j + qEac (zi,i − zj,j) cos(ωt)
)
ρEk
i,j

+ qEac cos(ωt)
∑
l 6=i
p 6=j

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
+ i~

[
D̄ρ
]Ek

i,j
.

(4)

In order to address high optical-field amplitudes that
characterize above-threshold laser operation, we must
seek a solution that is nonperturbative in Eac. To that
end, we solve Eq. (4) iteratively: the last two terms
on the right-hand side will use a previous iteration of ρ,
denoted by ρ̆ here, whereby the equation is turned into
a first-order ordinary differential equation with a known
general solution (see appendix), which, after some alge-
braic manipulation, can be written as:
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ρEk
i,j (t) =

∑
n,m,q

Jn

(
Vi,j
~ω

)
Jm

(
Vi,j
~ω

){
−i~

[
D̄ρ̆q

]Ek

i,j

ei(n−m+q)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q)

+ [Aq]Ek

i,j

(
ei(n−m+q+1)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q + 1)

+
ei(n−m+q−1)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q − 1)

)}
.

(5)

Here, Jn is the nth-order Bessel function of the first
kind. Vi,j = qEac (zi,i − zj,j). ρ̆q is the qth har-
monic component of the previous iteration ρ̆(t) (ρ̆(t) =∑
q ρ̆qe

iqωt). [Aq]Ek

i,j , referred to as the polarization ma-

trix, is defined as

[Aq]Ek

i,j = −qEac
2

∑
l 6=i
p 6=j

(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

)
. (6)

Equations (4) and (5) describe a driven damped system
whose “steady state” (the long-time limit of the solution)
will be time-dependent. In Eq. (5), broadening of the
photon resonances is dictated by the nonradiative scat-
tering rates (γEk

i,j ) calculated directly from microscopic
interaction Hamiltonians. This is an improvement over
previously developed density-matrix models, where the
Lorentzian terms in Fermi’s golden rule were assigned an
empirical value for the broadening [4, 20]. In diagonal

QCLs, a sharp transition (small ~γEk
8,7) between the up-

per and lower lasing levels is expected, because the non-
radiative transition rates are low owing to the small spa-
tial overlap between these two states [16]. The modulat-
ing Bessel term in Eq. 5 [Jn(Vi,j/~ω)Jm(Vi,j/~ω)] often
appears in the calculation of PA transport in supercon-
ducting junctions [6], optical lattices [7], superlattices [8],
and other quantum-well structures [13]. This term de-
termines the severity of PA effects in electron transport.
Since Vi,j ∼ (zi,i − zj,j), a larger spatial separation be-
tween the upper and lower lasing levels leads to stronger
photon-assisted resonances. This is the case in QCLs
with diagonal design, where the small spatial overlap be-
tween the lasing levels means less parasitic transport be-
tween the two lasing levels, but it also leads to strong PA
tunneling [3, 19, 23, 32, 33].

The dc Fourier component of the solution to Eq. (5),
denoted ρ0, gives us information on the measured dc cur-
rent density under steady-state operation. ρ0 comprises
the terms in which the exponents are zero. Frequency-
dependent characteristics of the system can be found
from the first harmonic components (ρ±1) of the den-
sity matrix in Eq. (5). ρ+1 and ρ−1 comprise the terms in
which the exponents are +1 and−1, respectively. Closed-
form solutions of ρ0 and ρ±1 obtained from Eq. (5)
are interdependent, and also generally dependent on the
Fourier components of higher order ({ρq : |q| ≥ 2}). We
solve Eq. (5) for the Fourier components of ρ iteratively,
considering harmonic components up to and including
the second order because we found higher-order com-
ponents to be numerically insignificant. Convergence is
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Figure 2. Calculated dc current density as a function of the
applied bias electric field at 300 K, with (open squares) and
without (solid circles) the influence of photon-assisted tunnel-
ing. Experimental data (solid line) is from Fig. 2 in Ref. [20];
the bias electric field was calculated by dividing measured
voltage by the total length of the active region (number of
periods (50) times period length (44.9 nm)).

achieved when the ρs on the two sides of Eq. (5) become
numerically indistinguishable. A few tens of iterations
are typically needed if one starts from a zeroth-order
guess that is a simple diagonal density matrix with level
populations given by a Fermi distribution on the diagonal
(see details in the Appendix). At higher optical fields,
more Fourier components may have to be included in
the calculation in order to achieve convergence. Further-
more, in the case of terahertz QCLs (which have lower
lasing energies and wider wells than their midinfrared
counterparts, so the optical-field potential Vi,j may ex-
ceed the low lasing energy even at relatively low optical
fields), the resonances stemming from higher-order har-
monic components can have a significant effects on the
electronic transport and gain spectrum, [23], should be
included in the calculation.

III. RESULTS

Once the density matrix is calculated, the dc current
density can be written as [27]

Jdc = qn3D

∑
i,j

∫
dEk vi,j(ρ0)Ek

i,j , (7)

where vi,j = i
~∆Ei,jzi,j is the drift velocity matrix. n3D,

is the average three-dimensional (3D) electron density in
the device set to 1.74× 1016 m−3.
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The calculated current density Jdc vs. bias electric
field Edc is plotted in Fig. 2. Eac is set to zero for the
simulation without lasing. When lasing is included, Eac
is nonzero and its value is set to the operational field at a
given bias, which is true to experiment. (The operational
field is the optical field at which optical gain reaches las-
ing threshold, and we calculate it according to a scheme
explained in Fig. 5 below.) In short, Eac is set to the ac
field where optical gain and losses compensate i.e., the
operational field. As seen in Fig. 2, the current density
increases dramatically when lasing is included with re-
spect to the simulation without lasing. The increase is
more noticeable at higher bias fields, where light amplifi-
cation takes place. As explained below, this increase can
be attributed largely to PA electron transport between
the upper and lower lasing levels. The current density
with lasing included shows a close agreement with ex-
periment, which underscores the important role of PA
tunneling in electron transport. The increase in current
following the inclusion of the optical field was observed
in previous semiclassical [3] and quantum-mechanical [4]
studies of QCLs and was attributed to PA transport. The
same phenomenon was observed in other tunneling struc-
tures, as well [3–5].

According to Eq. (7), only off-diagonal elements of ρ0

contribute to the current density as vi,j = 0 for i = j.
Therefore, the PA increase of current density observed
in Fig. 2 should be reflected in the off-diagonal elements
of ρ0. Figure 3 shows the log-scale absolute value of the
static density matrix (ρ0) with (Eac = 27.5 kV/cm) and
without (Eac = 0 kV/cm) lasing. In both panels the
static components of the density matrices for the QCL
in Fig. 1 are calculated using Eq. (5) and the in-plane
energy (ρ̃ =

∫
dEkρ

Ek) is integrated in order to obtain a
square density matrix. As can be seen, some off-diagonal
terms (the so-called coherences) are higher when PA ef-
fects are included. Of particular note is the PA enhance-
ment of the coherence between the upper and lower las-
ing levels. Therefore, the PA increase in the current
density largely stems from tunneling between the upper
and lower lasing levels. Diagonal elements (population of
states) also change with the inclusion of the optical field,
but this change is small. This is in agreement with previ-
ous studies of diagonal QCLs, where population of lasing
states was kept approximately constant while lasing was
achieved [14, 20].

The induced current densities J−1(ω) and J+1(ω) are
defined in the same way as the static current density in
Eq. (7), only ρ0 is replaced by ρ−1 and ρ+1 respectively.
From there, we compute gain g(ω) as [23]

g(ω) = − 1

cε0
√
εr

J−1(ω) + J+1(ω)

Eac
, (8)

where c is the speed of light in vacuum, and εr is the
background relative permittivity set to the weighted av-
erage of the relative permittivities of the composing ma-
terials [26, 27].

Figure 4(a) shows unsaturated gain as a function of the
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Figure 3. The absolute value of static (dc) density matrices
at Eac = 0 kV/cm (a) and Eac = 27.5 (b), after integration
over the in-plane kinetic energy. The colorbar scale is loga-
rithmic. The bias electric field is 56 kV/cm (above thresh-
old) and the lattice temperature is 300 K. Upon inclusion of
photon-assisted tunneling the off-diagonal elements (so-called
coherences, which play a key role in current flow), increase in
magnitude. In particular, the coherence between the upper
and lower lasing levels (8 and 7) is enhanced in the presence
of the optical field.
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Figure 4. (a) Gain versus photon energy for three different
values of the bias electric field Edc. (b) Peak gain (circles)
and the photon energy corresponding to peak gain (squares)
as a function of the bias electric field. The solid line repre-
sents experimental data in Ref. [20] for the photon energy at
peak gain. In both panels, gain is calculated in the limit of
vanishing optical field (Eac = 0.02 kV/cm) and the lattice
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Figure 5. (a) Gain (solid lines) and current density (dotted
lines) vs. optical field for Edc = 50 kV/cm (blue) and Edc = 56
kV/cm (red). The horizontal dashed line marks the threshold
gain Gth ≈ 10 cm−1. At each bias, the intercept of the gain
vs. Eac curve with the threshold-gain line determines the ac
field where gain and losses compensate, i.e., the operational
field. (b) Measured and calculated output power as a function
of the current density. Data points are color-coded to indicate
the corresponding bias field in the legend (top). Experimental
data is from Ref. [20].

lasing frequency for three different values of the bias elec-
tric field Edc. At each bias, the photon energy ~ω corre-
sponding to peak gain is dictated by the energy difference
between the upper and lower lasing levels, i.e., E8,7 = ~ω.
The frequency of peak gain shifts toward higher values
as we increase Edc because of the stronger Stark effect
at higher bias fields. Figure 4(b) shows peak gain and
the photon energy corresponding to peak gain versus
the bias electric field. The energy of maximum gain is
somewhat higher than the experimentally observed pho-
ton energy, possibly owing to the Lamb shift [34] (the
slight interaction-induced change to energy levels), which
the calculation neglects. In experiment, the threshold
gain is estimated to be Gth ≈ 10 cm−1 at Edc,th = 48
kV/cm [20]. At this bias (Edc = 48 kV/cm), our results
show the same value for peak gain (≈ 10 cm−1).

Figure 5(a) shows gain (solid lines) and current density
(dotted lines) as a function of the ac field for Edc = 50
kV/cm (blue) and Edc = 56 kV/cm (red). The dashed
black line indicates the threshold gain. With increas-
ing ac field, current density increases and peak gain de-
creases. At each bias field, the intersection of peak gain
with the threshold gain determines the operational ac
field and current density [20, 35]. (The calculated current
density under operation was plotted in Fig. 2 above, and
it is in much better agreement with experiment than the
simulations without the laser field.) Figure 5(b) shows
the resulting output optical power as a function of the
current density. Data points are color-coded in order
to emphasize the corresponding bias field. Output opti-
cal power versus Eac for bias fields above threshold was
calculated by assuming the relation for a traveling wave
(Power = CE2

ac), where C is a proportionality constant
that depends on design parameters of the QCL waveg-

uide. For the device studied here, an output power of ≈
1 W was reported for Eac = 30 kV/cm [20], which im-
plies C ≈ 1.11−13 W.m/V. As can be seen, the calculated
power agrees well with the experimental data.

IV. CONCLUSION

In summary, we developed a theoretical model based
on the density matrix to study the effects of the optical
field on electron dynamics in QCLs. The model supplants
the need for empirical broadening values that character-
ized earlier density-matrix work. We solved the Marko-
vian equation of motion for the density matrix in the
presence of an optical field; the solution is nonperturba-
tive, i.e., holds for any field amplitude. Based on the
computed density matrix, we obtained the steady-state
and frequency-dependent characteristics of a QCL. We
showed that spatial separation between lasing levels is
a critical factor in the intensity of PA tunneling. The
PA effect on the current density in the simulated QCLs
with a diagonal design is quite pronounced. With PA
transport included, the agreement between calculation
and experiment is excellent.
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APPENDIX

Let H0 be the Hamiltonian capturing the three-band k · p electronic band structure in the growth direction (z)
of the QCL and the free-particle motion in the x-y plane. Let Hi represent nonradiative electron interactions (with
longitudinal acoustic and optical phonons, interface roughness, ionized impurities, and random alloy scattering).
Finally, let H ′(t) stand for the interaction between an electron and the optical field, given by

H ′(t) = qEacz cos(ωt), (9)

where q is electron charge, Eac is the field amplitude, z is position in the growth direction, and ω is the frequency of
radiation.

After the phonon degrees of freedom have been traced out and the Born and Markov approximations have been
employed [34, 36], we obtain the equation of motion (EoM) for the density matrix [26–29].

i~ρ̇ = [H0, ρ] + [H ′(t), ρ]− i

~

∫ ∞
0

ds
[
Hi,

[
e−

i
~H0sHie

+ i
~H0s, ρ(t)

]]
. (10)

The last term will be denoted as i~Dρ, where Dρ is the dissipator. The derivation of the dissipator for each specific
scattering mechanism is explained in detail in [26, 27]. Finally, the rotating-wave approximation is employed [26, 27]
and the final equation of motion is Markovian, of the Lindblad form that guarantees positivity (as shown explicitly
in Appendix D of [27]). This EoM with the dissipator is written compactly as

i~ρ̇ = [H0, ρ] + [H ′(t), ρ] + i~Dρ. (11)

Equation (11) can be written in the basis |i, k〉 = |i〉 ⊗ |k〉, where |i〉 labels the eigenstates of the 1D Hamiltonian in
the growth direction and the continuous parameter |k〉 is the amplitude of the wave vector in the x-y plane (in-plane
motion). In this basis,

i~ρ̇Ek
i,j = ∆Ei,jρ

Ek
i,j +

∑
l,p

(
H ′i,lρ

Ek

l,j −H
′
p,jρ

Ek
i,p

)
+ i~ [Dρ]

Ek

i,j . (12)

Here, the matrix elements 〈i|A|j〉 of operator A is denoted by Ai,j . ∆Ei,j = Ei − Ej is the energy spacing between
states i and j. Using Eq. (9), the EoM can be expanded as

i~ρ̇Ek
i,j = ∆Ei,jρ

Ek
i,j + qEac cos(ωt)

∑
l,p

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
+ i~ [Dρ]

Ek

i,j . (13)

The dissipator can be written as a sum of scattering terms proportional to ρEk
i,j (−γEk

i,j ρ
Ek
i,j ) and the reduced dissipator[

D̄ρ
]Ek

i,j
where all the matrix elements of ρ other than ρEk

i,j play a role ([Dρ]
Ek

i,j = −γEk
i,j ρ

Ek
i,j +

[
D̄ρ
]Ek

i,j
); with this sign

convention, γi,j are positive and have the meaning of simple scattering rates. Using this, Eq. (13) is written as

i~ρ̇Ek
i,j =

(
∆Ei,j − i~γEk

i,j

)
ρEk
i,j + qEac cos(ωt)

∑
l,p

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
+ i~

[
D̄ρ
]Ek

i,j
. (14)

The second term on the right can be broken into two parts as follows∑
l,p

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
=
∑
l 6=i
p 6=j

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
+ (zi,i − zj,j)ρEk

i,j . (15)

This separation can be employed to write Eq. (14) as

i~ρ̇Ek
i,j =

(
∆Ei,j − i~γEk

i,j + qEac (zi,i − zj,j) cos(ωt)
)
ρEk
i,j

+ qEac cos(ωt)
∑
l 6=i
p 6=j

(
zi,lρ

Ek

l,j − zp,jρ
Ek
i,p

)
+ i~

[
D̄ρ
]Ek

i,j
. (16)

Equation (16) is solved iteratively. The last two terms on the right-hand side will use the previous iteration of ρ,
denoted by ρ̆ here, whereby the equation is turned into a first-order ordinary differential equation with a general
solution
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ρEk
i,j =e

−i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,j cos(ωt)

)
×

{∫
dt
[
D̄ρ̆
]Ek

i,j
e
i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,j cos(ωt)

)

− i
~

qEac
∑
l 6=i
p 6=j

∫
dt
(
zi,lρ̆

Ek

l,j − zp,j ρ̆
Ek
i,p

)
cos(ωt) e

i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,j cos(ωt)

)}
.

(17)

Here, Vi,j = qEac (zi,i − zj,j). The first integral on the right-hand side of Eq. (17) can be simplified as

e
−i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,j cos(ωt)

)
= e
− i

~

(
∆Ei,jt−i~γ

Ek
i,j t+Vi,j/ω sin(ωt)

)

=
∑
n

Jn

(
Vi,j
~ω

)
e
− i

~

(
∆Ei,j−i~γ

Ek
i,j +~ωn

)
t
,

(18)

where we have used eixsin(θ) =
∑
n Jn(x)einθ.

The dissipator is linear, so its action can be represented in terms of its actions on the Fourier components of ρ̆:

[
D̄ρ̆(t)

]Ek

i,j
=

[
D̄
∑
q

ρ̆qe
iqωt

]Ek

i,j

=
∑
q

[
D̄ρ̆q

]Ek

i,j
eiqωt. (19)

This helps us simplify the second term in the first line of Eq. (17) in a manner similar to Eq. (18):∫
dt
[
D̄ρ̆(t)

]Ek

i,j
e
i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,j cos(ωt)

)
=

=− i~
∑
m,q

Jm

(
Vi,j
~ω

)[
D̄ρ̆q

]Ek

i,j
× e

i
~

(
∆Ei,j−i~γ

Ek
i,j +~ω(m+q)

)
t

∆Ei,j − i~γEk
i,j + ~ω(m+ q)

.

(20)

Using Eqs. (20) and (18), one can write the first line of Eq. (17) as

− i~
∑
n,m,q

Jn

(
Vi,j
~ω

)
Jm

(
Vi,j
~ω

)[
D̄ρ̆q

]Ek

i,j
× e−i(n−m−q)ωt

∆Ei,j − i~γEk
i,j + ~ω(m+ q)

. (21)

The second line in Eq. (17) can be rewritten as:

− i

~
qEac

∑
l 6=i
p 6=j

e
−i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,jcos(ωt)

)

×
∫
dt
(
zi,lρ̆

Ek

l,j − zp,j ρ̆
Ek
i,p

)
cos(ωt) e

i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,jcos(ωt)

)
.

(22)

Using cos(ωt) = 1
2 (eiωt + e−iωt) and writing the density matrices as a summation of their harmonics:

− i

2~
qEac

∑
n,q

∑
l 6=i
p 6=j

Jn

(
Vi,j
~ω

)
e
−i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,jcos(ωt)

)

×
∫
dt
(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

) (
eiω(1+q)t + e−iω(1−q)t

)
e

+ i
~

(
∆Ei,j−i~γ

Ek
i,j +~ωn

)
t
.

(23)

Combining the exponential terms,

− i

2~
qEac

∑
n,q

∑
l 6=i
p 6=j

(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

)
Jn

(
Vi,j
~ω

)
e
−i
∫

dt
~

(
∆Ei,j−i~γ

Ek
i,j +Vi,jcos(ωt)

)

×
∫
dt

(
e

+ i
~

(
∆Ei,j−i~γ

Ek
i,j +~ω(n+q+1)

)
t

+ e
+ i

~

(
∆Ei,j−i~γ

Ek
i,j +~ω(n+q−1)

)
t
)
.

(24)

After taking the integrals,
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− qEac
2

∑
n,m,q

∑
l 6=i
p 6=j

(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

)
Jn

(
Vi,j
~ω

)
Jm

(
Vi,j
~ω

)
e
− i

~

(
∆Ei,j−i~γ

Ek
i,j +~ωm

)
t

×

 e
+ i

~

(
∆Ei,j−i~γ

Ek
i,j +~ω(n+q+1)

)
t

∆Ei,j − i~γEk
i,j + ~ω(n+ q + 1)

+
e

+ i
~

(
∆Ei,j−i~γ

Ek
i,j +~ω(n+q−1)

)
t

∆Ei,j − i~γEk
i,j + ~ω(n+ q − 1)

 .

(25)

Upon combining the exponential terms,

− qEac
2

∑
n,m,q

∑
l 6=i
p 6=j

(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

)
Jn

(
Vi,j
~ω

)
Jm

(
Vi,j
~ω

)

×

(
e+ i

~~ω(n−m+q+1)t

∆Ei,j − i~γEk
i,j + ~ω(n+ q + 1)

+
e+ i

~~ω(n−m+q−1)t

∆Ei,j − i~γEk
i,j + ~ω(n+ q − 1)

)
.

(26)

For brevity, it is useful to define a polarization matrix element Aq,Ek

i,j as:

[Aq]Ek

i,j = −qEac
2

∑
l 6=i
p 6=j

(
zi,l[ρ̆q]

Ek

l,j − zp,j [ρ̆q]
Ek

i,p

)
. (27)

Overall, Eq. (17) can be written as:

ρEk
i,j (t) =

∑
n,m,q

Jn

(
Vi,j
~ω

)
Jm

(
Vi,j
~ω

){
−i~

[
D̄ρ̆q

]Ek

i,j

ei(n−m+q)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q)

+ [Aq]Ek

i,j

(
ei(n−m+q+1)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q + 1)

+
ei(n−m+q−1)ωt

∆Ei,j − i~γEk
i,j + ~ω(n+ q − 1)

)}
.

(28)

Equation (28) is the form we solve iteratively. The left-hand side is the updated ρ while everything on the right-
hand side depends on the previous iteration ρ̆. To start the iteration, a zeroth-order guess is needed. A simple,
intuitive choice is a diagonal density matrix with level occupations corresponding to the Fermi distribution, which
we successfully employed here. Alternatively, the steady-state solution without the optical field could be used as a
zeroth-order guess; this guess is more involved to compute, but it speeds up the iterative process. Note that the
solution (28) is nonperturbative in terms of Eac and is therefore applicable to high optical-field amplitudes.
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[3] A. Mátyás, P. Lugli, and C. Jirauschek, Photon-induced
carrier transport in high efficiency midinfrared quantum
cascade lasers, J. Appl. Phys. 110, 013108 (2011).

[4] M. Lindskog, J. Wolf, V. Trinite, V. Liverini, J. Faist,
G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and
A. Wacker, Comparative analysis of quantum cascade
laser modeling based on density matrices and non-
equilibrium green’s functions, Appl. Phys. Lett. 105,
103106 (2014).

[5] H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist,
F. Capasso, and T. B. Norris, Gain recovery dynamics

and photon-driven transport in quantum cascade lasers,
Phys. Rev. Lett. 100, 167401 (2008).

[6] P. Tien and J. Gordon, Multiphoton process observed in
the interaction of microwave fields with the tunneling be-
tween superconductor films, Phys. Rev. 129, 647 (1963).

[7] C. Sias, H. Lignier, Y. Singh, A. Zenesini, D. Ciampini,
O. Morsch, and E. Arimondo, Observation of photon-
assisted tunneling in optical lattices, Phys. Rev. Lett.
100, 040404 (2008).

[8] B. Keay, S. Allen Jr, J. Galán, J. Kaminski, K. Camp-
man, A. Gossard, U. Bhattacharya, and M. Rodwell,
Photon-assisted electric field domains and multiphoton-
assisted tunneling in semiconductor superlattices, Phys.
Rev. Lett. 75, 4098 (1995).

[9] A. Wacker, Semiconductor superlattices: a model system
for nonlinear transport, Physics Reports 357, 1 (2002).

[10] J. Feldmann, K. Leo, J. Shah, D. Miller, J. Cunningham,



9

T. Meier, G. Von Plessen, A. Schulze, P. Thomas, and
S. Schmitt-Rink, Optical investigation of bloch oscilla-
tions in a semiconductor superlattice, Physical Review B
46, 7252 (1992).

[11] A. Ignatov and Y. A. Romanov, Nonlinear electromag-
netic properties of semiconductors with a superlattice,
physica status solidi (b) 73, 327 (1976).

[12] S. Ktitorov, G. Simin, and S. VY, Bragg reflections and
high-frequency conductivity of an electronic solid-state
plasma, SOVIET PHYSICS SOLID STATE, USSR 13,
1872 (1972).

[13] M. Asada, Density-matrix modeling of terahertz photon-
assisted tunneling and optical gain in resonant tunneling
structures, Jap. J. Appl. Phys. 40, 5251 (2001).

[14] S. Blaser, L. Diehl, M. Beck, J. Faist, U. Oesterle, J. Xu,
S. Barbieri, and F. Beltram, Characterization and model-
ing of quantum cascade lasers based on a photon-assisted
tunneling transition, IEEE J. Quantum Electron. 37, 448
(2001).
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