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Abstract 

In this paper we investigate an elastically-linked, nonlinear, in-plane rotator system and 

experimentally study its non-reciprocal impulse response. The nonlinearity of the system arises 

from the angled elastic linkage in rotational motion. A chain of rotators coupled with such linkages 

reaches an acoustic vacuum when the pretension of the elastic links vanish, leading to large 

nonlinearity tunable via small pretension. Using an analytical model and experimental exploration, 

we observe a broadband non-reciprocity in a weakly pre-tensioned, asymmetric, three-rotator 

system. In addition, we use a nonlinear normal mode (NNM) analysis, capturing the main 

qualitative dynamics of the response, to explain the observed non-reciprocity mechanism. The 

analysis shows that equal applied impulses, combined with energy-dependent frequency/mode 

shapes, result in robust non-reciprocity features, contrary to the reciprocal response present in the 

linear counterpart of this system. 

 

1 Introduction 

Reciprocity, a fundamental property of linear time-invariant systems, ensures an identical response 

when a source and receiver interchange position [1-3]. Breaking reciprocity, due to its large 

potential in applications such as targeted energy transfer [4-8], wave transmission control [9-17], 
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and signal filtering/protection [18-20], has attracted increased recent attention. In acoustic and 

elastic media, active means to break reciprocity have adopted odd-symmetry field/circulation 

[12,15,21], time modulated materials [13,18,22-26] and external control [27-29], as reviewed in 

[30]. However, these active methods, due to their complexity and external dependencies, raise 

concerns about instability and energy consumption for practical implementation [27].  

 

An alternative for achieving non-reciprocity relies on nonlinear mechanisms and system 

asymmetry, which can be realized in a passive manner and thus avoid the aforementioned 

shortcomings of active systems. In general, a nonlinear system may not break reciprocity or behave 

in a non-reciprocal fashion, particularly when the system’s symmetry is maintained. Li et al. 

leveraged nonlinearity-induced higher harmonics to bypass the bandgap of a superlattice in one 

direction [10,11]. Other researchers utilized nonlinear bifurcations in a variety of systems to break 

reciprocity [5,28,31,32]. In phononic structures, nonlinear propagation zones in both weakly and 

strongly nonlinear lattices exhibit direction dependency due to asymmetry, leading to tunable non-

reciprocity [19,33-36]. In low degree of freedom nonlinear systems, a new non-reciprocity 

mechanism has been identified which occurs due to nonlinear resonance and targeted energy 

transfer [6]. However, this mechanism requires symmetry breaking by a boundary nonlinear 

energy sink, which needs to be ungrounded and free to oscillate from one end of the lattice, 

restricting its generality.  

 

Inspired by [6,37,38], in this paper we propose an asymmetric, lightly pre-tensioned, three-rotator 

system exhibiting passive non-reciprocity due to strong geometric nonlinearity. We show that the 

geometric nonlinearity in the system is tunable to the pretension of the elastic couplings, whose 
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absence leads to an acoustic vacuum [37,39].  Using this system, we uncover a new, broadly-

applicable passive mechanism that passively breaks acoustic reciprocity. The simple three-rotator 

system exhibits broadband non-reciprocity in experimental tests, which agrees well with results 

from direct numerical simulation of an associated analytical model. Unlike non-reciprocity 

mechanisms featuring nonlinear resonance or bifurcation, we show that the observed non-

reciprocal response arises from energy-dependent nonlinear normal modes (NNMs) intrinsic to the 

unit cell. Further, interpreting nonlinear non-reciprocity using NNM analysis suggests a new tool 

for exploring non-reciprocity in nonlinear media, which can be extrapolated to a class of nonlinear 

non-reciprocal problems where excitations induce distinct energies.  

 

2 System Description 

Figure 1a depicts three in-plane rotators linked by linear springs at their arms. Each rotator, with 

identical arm length, is pinned at its center and allows only rotational motion. The massless spring 

deforms only in its axial direction. The system is scaled by a moment of inertia hierarchy

. In this paper, we only consider small-angle oscillations around the equilibrium under 1 2 3 I I I< <

Figure 1: System Description. (a) Depiction of three in-plane rotators at the equilibrium position 
with system parameters marked. (b) Depiction at arbitrary angular displacement indicating the 
angular measures and spring stretch.  
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the condition  (i.e., each spring is either pre-tensioned or un-stretched at the position shown 

in Fig. 1a). Further, we define the angular displacement for these rotators counter-clockwise 

positive, as shown in Fig. 1b. 

 

We next present the rotators’ equations of motion. Each rotator is subject to a restoring and 

dissipation torque,  

  (1) 

  (2) 

  (3) 

where  describes the restoring torque on the rotator resulting from the elastic linkage between 

the  and  rotators, and  denotes the equivalent dissipation torque on the rotator. Due to 

the rotation, the rotator arm stretches the elastic linkage along an angle, and the restoring torque 

becomes non-proportional to the elastic linkage deformation. We derive the restoring torque from 

the rotation geometry,  

  (4) 

  (5) 

  (6) 
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  (8) 

where  denotes the indices of two adjacent rotators, and  is used to describe the 

parameters associated with the linkage between the  and  rotator. Vectors  and  then 

represent the angular positon of the rotator and stretch of the linkage, respectively. Guided by 

experimental observations, we model the dissipation torque as a combination of linear viscous 

damping and Coulomb friction with viscous coefficient  and frictional torque , 

  (9) 

Since we are interested in small-angle oscillations, we introduce a small parameter  to scale 

the angular displacements,  and express the governing equations in a Taylor series with 

respect to ,  
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where the linear stiffness , , and nonlinear stiffness ,  and  are functions of the 

system parameters – the Appendix provides complete expressions for each. Note that the linear 

stiffnesses  and  are both proportional to the pretension of the springs ( .  

 

Eqs. (10)-(12) document that (i) the system only contains odd (hardening) nonlinearities, and (ii) 

its linear stiffness can be modified or eliminated by adjusting or removing the pretensions of the 

springs. In both linear and cubic terms, the restoring torque depends on the sum of angular 

displacement,  unlike rectilinear counterparts which depend on displacement differences. 

In fact, this subtle difference results in a qualitative difference in the wave propagation problem in 

a periodic structure composed of such rotator structures. Please See Supplementary Material [40] 

for an extended discussion.  

 

3 Experimental Results 

Figure 3a depicts three 3D-printed rotators, each with radius 28.5mm, attached to low friction 

bearings affixed to a vibration isolation table. By varying the quantity of nuts and bolts attached 

to each rotator, an asymmetrical moment of inertia distribution can be introduced. In the designed 

experiment, from left to right, the rotators have inertia, , and , 

respectively. As illustrated in Fig. 3b, the elastic linkage between two adjacent rotators consists of 

a weakly pre-tensioned short spring and two metal rings, which allows for axial extension and 

prevents spring bending. These elements have negligible mass compared to the three rotators and 

are all sufficiently lubricated. We perform a system identification study utilizing the patternsearch 

function in MATLAB, (detailed in Supplementary Material [40]) to accurately match the physical 

gik ijk ijg
+  ijg

-  gig

 gik ijk )i iD L-

 ,i jq q+

6 5 3.45 10 ,1 .28 10- -´ ´ 5 2 3.16 10  kgm-´
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experiment to our analytical model, which employs MATLAB’s ODE45 function to numerically 

integrate the governing equations. We present the identified experimental parameters below.  

 Rotator 1 Rotator 2 Rotator 3 
Moment of Inertia  

( ) 
      

Dissipation 
Coefficients  

( ) 

      

Dissipation 
Coefficients  

( ) 

      

 Linkage 1 Linkage 2 
Stiffness  ( ) 870 670 
Un-deformed Length 

 ( ) 
11.44 11.48 

Gap distance  
( ) 

11.74 11.84 

 

We use an impact hammer to strike a rotator arm at either end of the chain using the same impulse 

level. The impacts are carefully applied at roughly the same distance from the center of the rotator 

such that the angular impulses are equal. We then use a laser Doppler vibrometer to capture the 

response at the other end of the chain. As such, we present the experimental non-reciprocal 

response in Figs. 2c-f, at an impulse level , obtained from direct integration 

of experimental force responses, as depicted in the inscribed figures. Noteworthy, though the two 

impact excitations are not precisely the same (as shown in the inset figures), the impulse levels of 

two excitations are sufficiently close such that the contribution to reciprocity breaking from non-

identical excitations is negligible compared to the nonlinear effects we present, as substantiated in 

Supplementary Note [40].  

 

iI
2 kgm

63.45 10-´ 51.28 10-´ 53.16 10-´

ic
Nms

51.31 10-´ 68.7 10-´ 69.8 10-´

i fT
Nm

76.0 10-´ 63.18 10-´ 61.2 10-´

ik /N m

iL mm

iD
mm

 3.85 0.15  P Nms» ±

Table 1. System parameter identification results. 
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In Figs. 2c-d, the experimental responses show a high-degree of agreement with the superimposed 

numerical simulation results. We observe a large response at the left rotator when the impact 

excites the right rotator, compared to a smaller response at the right rotator when exciting the left 

Figure 2: Experimental/numerical non-reciprocity results. (a) Experimental setup used in 
testing, (b) detailed view of the spring connection, (c) time response (numerical and 
experimental) of the small (left) rotator when excitation is applied on the right. The impact 
(force in N. vs. time in ms.) is documented in the top right corner, (d) time response (numerical 
and experimental) of the large (right) rotator, when the excitation is applied on the left. The 
impact is again plotted in the top right corner, (e) and (f) wavelet transformation (shaded) of 
the time responses shown in (c) and (d), superimposed by the nonlinear normal modes (solid 
lines) of the system.  
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rotator. A roughly 2:1 amplitude ratio appears in both experimental and numerical results. Results 

from a wavelet transformation performed on the experimental and numerical responses are 

displayed in Figs. 2e-f, respectively. The wavelet results clarify the strong non-reciprocity in the 

frequency domain. Three dominant harmonics in the left rotator response show considerable 

amplitude when the right rotator is excited, yet only two such harmonics appear in the right rotator 

response when the impulse is applied on the left.  

 

4 Nonlinear Normal Mode (NNM) Analysis  

In order to better illustrate the dynamics of the system and interpret the non-reciprocal 

phenomenon, we apply a nonlinear normal mode (NNM) analysis to the three degree-of-freedom 

geometrically nonlinear system. Similar to linear normal modes (LNM), NNMs depict periodic 

solutions of the nonlinear ODEs, yet in an energy-dependent framework. As defined by Shaw and 

Pierre in [41,42], a NNM is a two-dimensional invariant manifold in phase space, where an orbit 

starting on the manifold stays on the manifold for all time. At low energy limits, the NNM manifold 

is tangent to the corresponding LNM, which is represented by a plane in the phase space. Different 

from the displacement ratio in the linear mode shape concept, each NNM prescribes specific 

displacements for each degree of freedom, and hence a specific energy level for the entire system. 

We use the Newmark method and a continuation algorithm to numerically compute the NNMs, as 

detailed in [43-45], keeping only terms up to  in Eqs. (10)-(12). The energy-sensitive NNM 

can then be well illustrated in a frequency-energy plot accompanied with specific nonlinear mode 

shapes, which are the major focus of the following analysis.  

 

( )5O Ú
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In Fig. 3a, three NNM branches emerge, each of them exhibiting increasing frequency with 

increasing modal energy. To verify with experimental/numerical results, we compute the 

instantaneous energy of the system at each time, and then replace the energy axis of Figure 3a with 

time. The resultant plot is then superimposed on Figs. 2e-f, where we find a high degree of 

agreement between the frequency evolution and NNM trajectories. Note that the 

Figure 3: (a) Computed nonlinear normal modes (NNMs) of the system. Two vertical dashed 
lines indicate the energy level of the system when one rotator is excited. (b)-(g) Nonlinear mode 
shapes corresponding to the markers in (a). Rotator 1, 2 and 3 represents the small, medium 
and large rotator, respectively.  
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experimental/numerical frequency branches are expected to be lower than the NNM results, since 

the dynamics composed of multiple NNMs (in our case, three) must have a total energy no less 

than the energy of each composed NNM. Conversely, the energy of each NNM in the presented 

dynamics must be lower than the total energy of the system as captured in simulations/experiments.  

In a hardening nonlinear system, a lower energy leads to a lower frequency, as also illustrated in 

Fig. 3a.  

 

The energy-dependent dynamics uncovered by the NNM analysis is key to understanding the non-

reciprocal dynamics. In the studied system, due to the moment of inertia difference of the excited 

rotator, the same level of inputted impulse results in distinct initial energy ( ) inputted 

to the system. As indicated by the dashed lines in Fig. 3a, the excitation on the left rotator (small 

moment of inertia) results in a larger initial energy (green dashed line) than the energy (purple 

dashed line) resulting from excitation on the right rotator (large moment of inertia). From these 

starting energies, dissipation then drives the response frequency leftwards to the low energy regime 

in Fig. 3a. As such, the responses are associated with non-identical oscillation frequencies, which 

breaks reciprocity in the frequency domain, and matches the observations in Figs. 2e-f.  

 

Moreover, the nonlinearity not only generates the aforementioned frequency variation, but also 

leads to different nonlinear mode shapes for each excitation event. Figures 3b-g illustrate the 

nonlinear normal mode shapes for each mode at two different energy levels (purple and green). 

Despite the difference in the amplitude of modal displacement (nonlinear normal modes are energy 

dependent, and cannot be normalized), the modes are fundamentally dissimilar at the given two 

energy levels. In the second mode (Figs. 3c and f), the modal displacement of the large rotator 

2 / 2 iE P I=
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(Rotator 3) is out-of-phase with respect to the small rotator (Rotator 1) at low energy, yet becomes 

in-phase with the small rotator at high energy. Similarly, in the third mode, the modal displacement 

of the medium rotator (Rotator 2) changes its sign at two energy levels as indicated in Figs. 3d, g. 

 

In Fig. 4 we present the modal participation of these NNMs as predicted by the numerical model. 

We superimpose the NNMs on the wavelet results for each rotator under different excitation, 

whose horizontal axes are replaced by the instantaneous energy of the system (unlike Fig. 2 which 

uses time). The color of each frequency branch reveals the modal participation at this rotator. Note 

that the intensity of the frequencies vary from rotator to rotator, and thus the range of the color 

Figure 4: The wavelet response of the impulse excitation superimposed with NNM results. (a)-
(c) The wavelet response for each rotator when the impulse applies on the large rotator. (d)-(f) 
The wavelet response for each rotator when the impulse applies on the small rotator. Each 
column represents corresponding rotator, e.g. the first column describes the response of the 
small rotator as indicated by the schematics on the top. The hammer symbol in (c) and (d) 
indicates the impulse excitation applies at this rotator.  
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bars are not chosen to be identical. Similar to LNMs, the participation of each NNM reacts to the 

initial conditions. When the impulse is applied to the large rotator, we observe in Fig. 4c that most 

of this rotator’s response is dominated by the first NNM. As documented in Figs. 4a-b, the other 

two rotators exhibit response from all three NNMs, albeit it at lower amplitudes that observed in 

Fig. 4c. When the impulse is applied to the small inertia rotator, however, we observe in Fig. 4d a 

very large modal participation in the third NNM for this rotator, while the large inertia shows a 

correspondingly small participation in this NNM as shown in Fig. 4f. These results qualitatively 

match the mode shapes in Figs. 3b-g. In such a qualitative view, we have shown that, upon the 

same impulse excitation, as required by the reciprocity theorem, the response dynamics are distinct 

in both frequency and amplitude (mode shape). 

 

Further, we show next that non-reciprocity still holds even if we seek an approximate solution of 

the system as a linear combination of the obtained NNMs, similar in spirit to the harmonic balance 

method. To this end, consider a combination of NNMs at the excitation energy level, with the 

energy-dependent frequency  and mode shapes provided in Table 2.  

 

We seek an approximate solution in the modal form,  

  (13) 

w  v

( ) ( ) ( )1 1 1 1 2 2 2 2 3 3 3 3sin sin sin , x C t C t C tw f w f w f= + + + + +v v v

  (Hz)  (Hz)  (Hz)       
Large 
Inertia 
Excitation 

3.88 9.50 19.00 
      

Small 
Inertia 
Excitation 

5.22 12.84 27.86 
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Table 2. Frequency and mode shapes for each nonlinear normal mode at the excited energy  
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where  and  denote constants determined by the initial conditions, 

  

  (14) 

  

  (15) 

In Eqs. (13)-(15) we have converted the impulse excitation  to into an equivalent initial velocity, 

, with  being the distance between the excitation point to the center of the rotator, and 

subscripts  denotes the large inertia excitation and  on the small inertia excitation. Recall that 

the former initial condition results in a lower energy  while the latter results in a higher energy 

. After computing  and , we update Eq. (13) and present the receiving signal as 

  (16) 

  (17) 

where  represents the response of the small rotator at large inertia excitation, and  the 

response of the large rotator under small inertia excitation. Clearly, reciprocity is broken, as these 
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two responses exhibit significantly different modal amplitudes and frequencies, unlike that 

recovered by a similar procedure for a linear system where the responses would be identical. We 

also observe that the response in Eq. (16) has larger modal amplitudes for each mode, and lower 

oscillating frequencies, as compared to the response in Eq. (17), which qualitatively matches the 

experimental results in Figs. 2c-f.  

 

5 Concluding Remarks 

In conclusion, we experimentally and numerically demonstrate non-reciprocal impulse response 

in an asymmetric in-plane rotator system, where tunable nonlinearity arises from pre-stretch of 

elastic linkages. We use a nonlinear normal mode analysis to capture the major dynamics of the 

system and find a high degree of agreement between theory and experiment. A further analysis 

reveals that the same level of impulses applied on rotators with differing moments of inertia induce 

differing initial energy, which contributes to non-identical oscillation frequency and dissimilar 

mode shapes, ultimately yielding non-reciprocal response.  

 

The analysis of reciprocity-breaking, informed by a NNM analysis, should be applicable to a large 

class of nonlinear, non-reciprocal systems where identical impulses induce asymmetrical energy 

input. Because of the simplicity of the proposed mechanical system, the structure can be easily 

modified as a nonlinear attachment to control waves in a linear wave guide, or tuned as a shock 

isolator which protects targets from high energy impacts while maintaining the energy 

transmission in the opposite direction. Future work aims to extend the structure to 1D and 2D 

periodic lattices and study its dynamical response subject to harmonic excitations.  
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Appendix  

Stiffness Expressions 

The functional dependence of stiffness parameters appearing in Eqs. (10)-(12) are provided in 

Table A1. 

Table A1. Stiffness expressions.  
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