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Abstract

Ultrafast spectroscopy is an important tool for studying photoinduced dynamical processes in

atoms, molecules, and nanostructures. Typically, the time to perform these experiments ranges

from several minutes to hours depending on the choice of spectroscopic method. It is desirable to

reduce this time overhead to not only to shorten time and laboratory resources, but also to make it

possible to examine fragile specimens which quickly degrade during long experiments. In this arti-

cle, we motivate using compressive sensing to significantly shorten data acquisition time by reducing

the total number of measurements in ultrafast spectroscopy. We apply this technique to experi-

mental data from ultrafast transient absorption spectroscopy and ultrafast terahertz spectroscopy

and show that good estimates can be obtained with as low as 15% of the total measurements,

implying a 6-fold reduction in data acquisition time.

I. INTRODUCTION

Ultrafast spectroscopy has found a wide range of applications to study time-resolved ul-

trafast dynamical processes [1–5]. Many techniques have been developed spanning different

time and photon energy ranges, including ultrafast transient absorption spectroscopy, time-

resolved photoelectron spectroscopy, multidimensional spectroscopy, and terahertz spec-

troscopy [6, 7]. These techniques can be very time consuming with acquisition times varying

drastically depending on the method. Reducing the time overhead is important, not only

for efficiency, but also for making it possible to examine specimens which degrade quickly

due to prolonged exposure to a laser beam.

Here we show how to significantly shorten the duration of ultrafast spectroscopy with

compressive sensing. We apply compressive sensing to two important ultrafast techniques:

ultrafast transient absorption spectroscopy and ultrafast terahertz spectroscopy. The spec-

imen chosen for the transient absorption is a 50 nm diameter colloidal TiN nanoparticles in

water, which are of growing interest as refractory metal nanostructures resistant to heat or

optical damage for plasmonics applications [8]. This specimen was chosen due to its high

degree of optical scattering which makes it extremely challenging and very time consuming

to acquire data with reasonable signal to noise ratio. For our experiment, the data acqui-
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FIG. 1. Comparison between conventional and CS-accelerated experiments. (a) shows a conven-

tional experiment which requires N measurements for the fully resolved result. (b) shows the

CS-accelerated scheme with M << N measurements to yield an estimate of the fully resolved

result.

sition time was about four hours. For ultrafast terahertz spectroscopy, measurements were

performed on a methylammonium lead iodide (MAPbI3) thin film that was spin casted on

quartz. This material class is of interest for solar energy conversion and is believed to ex-

hibit long carrier lifetimes owing to low frequency lattice deformations that may help screen

charges. The data acquisition for full 2D time-resolved THz experiment took about seven

hours to complete, and could require more time for higher signal to noise ratio. These con-

ditions challenge the stability of both laser systems and many specimens. To overcome these

difficulties, we show that by taking sparse, random measurements in time, thereby taking

a fraction of the total measurements compared to conventional experiments, compressive

sensing can faithfully reconstruct the full experimental result.

II. COMPRESSIVE SENSING FOR ULTRAFAST SPECTROSCOPY EXPERI-

MENTS

Recently, there has been wide interest in using different techniques to speed up optical

experiments [9–13]. Compressive Sensing (CS) is one such technique for efficiently acquiring

and reconstructing signals [14–17]. It has successfully been applied in many fields, includ-

ing magnetic resonance imaging (MRI), fluorescence microscopy, multi-dimensional nuclear

3



magnetic resonance (NMR) spectroscopy, quantum imaging, and quantum tomography [18–

27]. CS has also been used in multidimensional spectroscopy for applications in chemistry

with impressive speed-ups shown [28–30]. We propose compressive sensing for material sci-

ence and condensed matter physics where a different set of ultrafast spectroscopic methods

are used, such as transient absorption and ultrafast terahertz spectroscopy. We hope that

our work helps bridge the gap between the CS community and the ultrafast spectroscopy

community where advanced algorithmic methods are not commonly used.

Figure 1 depicts the basic approach. Generally, the number of measurements, N , to

capture full information of a signal is determined by the Nyquist-Shannon sampling theorem:

the sampling rate should be at least twice the highest frequency of the signal, 2fmax [31].

If some maximum time T is required to observe the dynamics or infer a spectrum of a

given resolution, then N = T/∆t = 2fmaxT total measurements would be needed, with

∆t being the time between measurements (inverse sampling rate). (This latter analysis is

correct if one only has an upper limit for fmax and no other knowledge about the signal.)

In this sampling limit one achieves a response or spectrum that is what we term a “fully

resolved result.” CS overcomes this limit by invoking a sparsity assumption of the signal

in some known basis. When a signal is transformed to this basis, most of the coefficients

are negligibly small. The existence of such a basis can be used to significantly reduce the

total number of measurements required to reconstruct the full signal. Many natural signals

are sparse in the Fourier domain. Since time-domain signals are usually real, the discrete

cosine transform (DCT)[32] is widely used for compression and CS reconstruction. Other

transformations, such as Haar, total variation (TV) and Hadamard transformations are also

widely used [12, 33, 34].

CS reconstructs a signal by solving the convex optimization problem,

min
x̃
||x̃||1, subject to Ax̃ = y. (1)

Here, x̃ = ψx is the N × 1 sparse solution vector and ψ is the transformation matrix that

takes the signal x (e.g., transient absorption), to a sparse basis. We use the DCT, Haar

and Hadamard transformations as possible choices for ψ. ||.||1 is the l1 norm, i.e., the

sum of the absolute values of the components of x̃. The most sparse solution is given by

minimizing number of nonzero components of the solution vector x̃ or l0 norm. However,

l0 minimization is non-convex and falls under NP-hard computational complexity which is
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very difficult to solve. y is the M × 1 vector representing the small number (M � N) of

random measurements taken in the experiment. A = φψ−1 is a M × N matrix, with φ

representing an M × N random measurement matrix, which we take to be a submatrix of

the N × N identity matrix with M rows chosen randomly. For a K-sparse signal, having

K nonzero coefficients, the above optimization problem is able to faithfully reconstruct the

signal with O(K log
(
N
K

)
) with high probability. In essence, if K is much smaller than N this

means that on the order of logN measurements, as opposed to N measurements, suffice.

Remarkably, it has been shown that no reconstruction algorithm can reconstruct the signal

with substantially fewer measurements [16]. Additional details of this algorithm are specified

in the methods section.

To see why the CS is well suited to ultrafast spectroscopy, consider a pump-probe frame-

work, typical of many such experiments. A short pump pulse centered at time t0 excites a

specimen and a probe pulse at various later times t = t0 +τ is used to measure the evolution

of some material response, R (e.g., absorbance or transmittance) [7]:

R(τ) = R−∞ + ∆R(τ), (2)

where R−∞ is the material response prior to the pump. Many measurements are taken at

various probe time delays τ , giving information about the full dynamics. Such ultrafast

experiments can be time consuming due to the need of making repeated measurements

with small increments in ∆τ . CS is ideally suited for ultrafast optics because in a wide

variety of material systems, R(τ) is often dominated by a small number, or small range, of

frequencies, implying the existence of a sparse basis. For many systems, the total number of

measurements taken in conventional ultrafast experiments far outweigh the actual number

of measurements, ∼ K log
(
N
K

)
, required by CS theory. Here, we test the performance of

CS signal reconstruction for two protypical experiments: ultrafast transient absorption and

ultrafast terahertz spectroscopy.

III. RESULTS

A. Ultrafast Transient Absorption Spectroscopy.

An ultrafast transient absorption spectroscopy is a pump-probe experiment in which a

specimen is excited with a femtosecond pump pulse, followed by a probe pulse with a vari-
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able time delay. The change in transmittance or absorbance over various time delays are

measured giving information about the properties of the specimen. Transient absorption

spectroscopy has been used to characterize an extraordinarily large range of photoinduced

dynamical processes ranging from molecular excited states, electronic transitions in nanopar-

ticles, plasmonics, charge separation and transport phenomena, to name just a few [35–37].

A schematic of our ultrafast transient absorption spectroscopy experiment is shown in

Figure 2. The output of an amplified femtosecond laser system (Spectra Physics Tsunami

and Spitfire) operating at 5kHz and 800 nm pumps an optical parametric amplifier (OPA)

to create wavelength tunable 130 fs pulses. We select the pump pulses to have a central

wavelength of 900 nm, chosen to excite the lower energy side of the broad plasmon band of

the TiN nanoparticles centered at 650 nm, and outside the visible probe spectral region in

order to avoid additional pump scattering noise. The measured 650 nm plasmon resonance

center is consistent with the literature [8]. A small portion of the 800 nm amplified light

(5%) is focused into a thin (2mm) sapphire crystal to create a continuum probe. The pump

beam is chopped at half the repetition rate to create “pump-on” and “pump-off” such that

a transient absorption signal can be measured with each pump pair. With variable delay

of the probe relative to the pump, time-resolved transient absorption spectroscopy can be

acquired. The pump and probe beams are focused and spatially overlapped in the specimen

(TiN nanoparticles in water). the visible spectral range is measured simultaneously for each

delay. The probe light is then fiber-optically coupled to a multichannel spectrograph where

the full continuum in the visible spectral range is measured simultaneously for each delay.

(The spectrograph uses a 1024 channel CMOS detector with high-speed 16-bit digitizing

electronics which allows the entire spectrum to be read out at 5kHz.) For this data, each

delay required tens of thousands of transient absorption pump-pair measurements. The full

data acquisition took four hours due to the high scattering of the colloidal nanoparticle

specimen. Next, we show how CS can drastically shorten the duration of experiment.

Figure 2(b) is the full experimental data showing the change in absorbance (∆A) across

different wavelengths. It can be seen that ∆A varies with wavelength. The data indicate a

strong transient response of the TiN plasmon absorption following photoexcitation. Since

the transient absorption measurement is a difference measurement, it is possible to get

positive (an absorption with less light transmitted through the specimen) and negative

transient absorption signals (typically a bleach of the ground state absorption, with more
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FIG. 2. Ultrafast transient absorption spectroscopy. (a) is a schematic of the experimental setup.

(b) is the observed change in absorbance across different wavelengths. (c) demonstrates that the

full experiment data is very sparse in the DCT domain. frequency coefficients. This allows CS

to reconstruct signals with fraction of the measurements of a conventional experiment. (d) is the

NRMSE for DCT, Haar and Hadamard as a function of sampling percentage. (e), (f) and (g)

shows the CS reconstruction with 15%, 20% and 25% samples, respectively.

light transmitted through the specimen), particularly when there is a spectral shift in the

excited nanostructure. In Figure 2(b), the data indicate that the plasmon resonance of

the TiN nanoparticles, centered at 650 nm, is bleached upon photoexcitation. The blue

part of the spectral region, below 500 nm and lying at higher photon energy than the

plasmon resonance, begins to show weak transient absorption features, likely due to pump-

induced absorption of bound electronic transitions. Figure 2(c) shows the sparsity of the

full experimental data for each wavelength in DCT domain. We can clearly see that the

signal is sparse with almost all of components concentrated near zero frequency. (See the
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Supplemental Material[38], Fig. S1, for an expanded view of the low frequency regime.) In

fact, only about 5% of the frequency coefficients contain almost all the information about the

signal. This suggests that CS can reconstruct the signal with about 15% of the measurements

of a conventional experiment. Figure 2 (e-g) shows the CS reconstruction at 15%, 20% and

25% respectively. Qualitatively, all these CS reconstruction looks very similar to the full

result in Figure 2(b). This also corroborates our assumption that about 15% measurements

of a conventional experiment is sufficient to reconstruct the full experimental signal. To

quantify the overall signal reconstruction, we compare the normalized root-mean-square error

(NRMSE) for different sampling percentages in Figure 2(d). The NRMSE (see Methods,

Sec. V) in this case is defined to be the usual root mean square error (RMSE) of the CS fit to

the full set of experimental results over all probe pulse times and wavelengths divided by the

range of the signal, i.e. the overall maximum minus the overall minimum of the absorbance

change. The NRMSE (as opposed to the RMSE) can be a rough gauge for comparing

qualities of fits for different types of experimental results. We also compare the DCT with

Haar and Hadamard transforms. The DCT performs best among these transformations,

followed by Hadamard and Haar transforms. It is interesting to note that the NRMSE drops

quickly and does not change much from 15% to higher sampling percentage. This suggests

that the number of measurements as low as 15% of a conventional experiment is sufficient for

a fair reconstruction (i.e., one achieving 0.01-0.02 NRMSE or better) of the signal. At the

other extreme of 100% sampling, note that the NRMSE in Fig. 2(d), while quite small, does

not reach exactly zero. The reason for this is that the CS procedure represents a compromise

between fitting the data and keeping the signal sparse via an additional regularization term

(see Methods, Sec. V). This latter term can prevent perfect fitting at 100% sampling.

B. Ultrafast Terahertz Spectroscopy

Ultrafast Terahertz spectroscopy is another useful technique for investigating specimens

with short pulses of terahertz radiation. It is used for examining spectral responses of a

specimen in the far infrared and can exhibit sensitivity to pump-induced optical conductivity

as well as phonon dynamics in some cases [39, 40]. Measurement of the terahertz spectral

response is accomplished using electro-optical sampling wherein a time-delayed 800 nm laser

pulse is spatially overlapped with the terahertz pulse in a GaP or ZnTe crystal to evaluate
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FIG. 3. Ultrafast terahertz spectroscopy. (a) shows the schematic of the experimental setup.

(b) Change in transmitted THz probe intensity as a function of pump pulse application time

∆t1 and electro-optical sampling probe delay time, ∆t2. The inset here and in panels (e)-(g)

show a typical profile in ∆t2 for a fixed ∆t1 = 30 ps. (c) shows the sparsity of the signal in

DCT domain. Almost all the information is contained in about 7% of the frequency coefficients.

This allows CS to reconstruct the full signal with fraction of the measurements of a conventional

experiment. (d) is the comparison of normalized RMSE for DCT, Haar and Hadamard as a

function of sampling percentage. (e), (f) and (g) show the CS reconstruction with 15%, 20% and

25% samples, respectively.

the terahertz waveform by scanning temporal delay (∆t2). As such, ultrafast terahertz

spectroscopy can necessitate two dimensions of scanning that increases data acquisition

time.
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A schematic of ultrafast terahertz spectroscopy is shown in Figure 3(a). In our exper-

iment, we probe a methylammonium lead iodide (MAPbI3) thin film on quartz at 80 K

relative to a 500-nm pump pulse with time delay ∆t1. THz probe pulses were produced via

optical rectification in a 300-micron thick GaP 110 crystal. Absorption of 500 nm pump

photons produces electron-hole pairs in the MAPbI3 specimen that alter the conductivity of

the film and change transparency to the THz probe pulse. A recent literature report conveys

other physical phenomena in this material including altered optical access to Rydberg states

as well as phonon evolution [40].

Figure 3(b) shows the acquired experimental data. Here, the pump-induced change in

transmitted THz probe intensity is plotted following optical excitation, where photogener-

ated carriers alter the sample conductivity owing to the light-induced production of highly

polarizable charge carriers and phonon population evolution. In particular, the long car-

rier lifetimes and diffusion lengths in this material may result from lattice distortions and

low frequency vibrational modes, which can be interrogated via this method. Figure 3(c)

demonstrates the sparsity of the full experimental result in the DCT domain. As before,

the fact that the signal is sparse in the DCT domain is the key point which allows us to

use compressed sensing for reconstructing the full signal with about 18% measurements of

a conventional experiment. Figure 3 (e-f) shows the CS reconstruction with different per-

cent of measurements (15%, 20% and 25%). These CS reconstructions look very similar to

the full experimental result in Figure 3(b). Again, it verifies our assumption that about

18% measurements of a conventional experiment reconstructs the full signal. As before,

for quantitative assessment, Figure 3(d) shows the NRMSE for DCT, Hadamard and Haar

transforms. The definition we employed for the NRMSE in these ultrafast terahertz mea-

surements (see Methods, Sec. V) is similar to what we used for the transient absorption

measurements, i.e., we simply normalize the usual RMSE by the range of the entire 2D

signal. We find, from Fig. 3(d), that the corresponding NRMSE values for a good descrip-

tion of the experimental data is approximately 1 x 10−2, within about a factor of two of

the transient absorption case of Fig. 2(d) (2 x 10−2). We observe a similar trend as in the

case of ultrafast transient absorption spectroscopy. The DCT performs best among these

transformations. Also, the magnitude of the changes in NRMSE above 20% sampling are

small, i.e., less than 0.01, suggesting that a sampling range of 15% to 25% gives a good

estimate (NRMSE values of 0.01-0.02 or better) of the full signal.
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The sampling fraction sufficient for reconstruction is cK log(N/K)/N , where c is a pro-

portionality constant and problem dependent. We have estimated from the transforms of

the full data that K/N is approximately 0.04 in both the transient absorption and terahertz

experiments. If c were the same for both types of experiments, then one would expect the

same sampling percentages. We find that the required sampling percentage for the terahertz

case is just a little higher (18%) compared to the transient absorption case (15%) and, we

would argue, not particularly inconsistent with the expectation.

IV. DISCUSSION

We have provided here proof-of-principle that, for ultrafast spectroscopy experiments on

nanoscale materials, as little as 15% of the data typically acquired can be used to obtain

good reconstructions of the relevant responses using compressive sensing (CS). An important

proviso to note, however, is that early time responses that feature fine structure, such the

coherent non-resonant response noted in the Supplemental Material[38] (Fig. S2) cannot be

resolved with the present approach and a finer time scan early times would be required to see

it, with CS being more appropriate for describing the later times. Whether or not more or less

data is needed for other types of samples and/or experiments depends entirely on the nature

(sparsity) of the underlying signals. Furthermore, our analysis was based on knowledge of the

fully resolved system response. If our approach is to become useful in a practical context, it

must of course be implemented in scenarios wherein the fully resolved response is not known.

One approach would be to perform a real-time CS reconstruction for every experimental data

point, or set of experimental data points, that is sequentially acquired. For example, we can

have a CS reconstruction for n data points, then another CS reconstruction for n+1 data

points. We can then compare the two CS reconstructions using a distance metric, e.g. the l2

norm, and if it falls below a certain threshold, the experiment is stopped. Fully flushing out

this approach, e.g., determining suitable sampling and stopping criteria for this procedure

and demonstrated that it works in an experimental context represents an important next

step for our result here to be of practical significance. Furthermore, while our analysis of

actual experimental data suggests 15-20% sampling should suffice for signal reconstruction,

noisier data could compromise this conclusion and a detailed analysis of the effect of noise

represents another important future direction to explore.
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It should also be pointed out that numerous other procedures than the CS approach

presented here can be devised that can reduce the amount of data acquisition required

and some could yield equally good results. Collection of data as described above, with some

concentration on short times and less concentration on long times coupled with simple linear

or some other low-order interpolation is one approach. Fitting physical models based on the

known or expected physics and chemistry (e.g., sums of exponentials representing various

possible relaxation processes) could, if applicable, lead to even more substantial savings.

The CS approach discussed here has the advantage that it is well-founded with a substantial

amount of applied mathematics literature behind it, and it has numerous demonstrated

successes. It is also the case that as one goes beyond 1D and 2D imaging that the CS

approach may offer advantages (e.g., Ref. 41).

We envision this technique will be very beneficial in many ultrafast spectroscopy exper-

iments, where data acquisition is time consuming due to raster scanning. For example, in

many experiments, a raster scan along temperature or voltage is required. With tempera-

ture or voltage as one axis and, say, and probe delay time for a fixed wavelength (or possibly

a third dimension also involving wavelength) as another axis, the signal may still be sparse

and our approach valid and significantly reduce the number of required measurements. Of

course, measurements at these different temperature or voltage values are required. Our

method will also provide significant speedup for higher-dimensional ultrafast spectroscopy

by reducing the number of measurements in each dimension. Moreover, it should also make

it possible to measure fragile specimens which gets degraded on long exposure under the

laser.

V. METHODS

A. Compressive Sensing

One way of solving Eq. (1) is by formulating it as a “Lasso” functional or “Basis Pursuit

DeNoising” problem as [42, 43]:

min
x̃

1

2
||Ax̃− y||22 + λ||x̃||1. (3)
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As with Eq. (1), x̃ can be thought of as an N × 1 vector, and the sampled signal for

CS, y, is M × 1 with M � N . In general, lacking detailed knowledge of the sparsity of

x̃, and of course not knowing the true, fully, resolved signal, which will be case for most

applications, it is difficult to determine what M should be without some experimentation,

e.g., taking additional measurements (increasing M) and looking for reasonably converged

signal predictions. See also our Discussion section. For the ultrafast applications studied

here we find, empirically, that M/N in the 0.2-0.25 range, i.e., 20-25 % sampling can lead

to adequate CS reconstructions.

The above optimization problem can be seen as a trade-off between minimizing the

squared error (i.e making Ax̂ as close to y) and finding x̃ with a minimal l1-norm. Here, λ is

a regularization parameter that controls the trade-off between sparsity and reconstruction

fidelity. Cross-validation [44] is often recommended for determining this parameter and this

is the approach we take. We typically hold out about 20 % of the sampled M points and to

carry out CS on the remaining sampled points for various values of λ. As with choosing M ,

there is no simple rule for choosing the number of points to be held out in cross-validation.

The optimal λ is then the one that leads to the smallest mean square error between the

CS-predictions of the held-out points and their actual values. Note that in the transient

absorption CS analysis, we determine the optimal λ once for a mid-range wavelength and we

have found that this procedure suffices to give good CS reconstructions. In the case of the

terahertz measurements, since the data is fully 2D, only one determination of the optimal

λ is necessary. See also the Supplemental Material[38].

There are also other cross-validation approaches than the above very simple, single set

hold-out strategy that could be considered. For example, one could divide the data into K

subsets and carry out CS reconstructions for the K possible data sets corresponding to the

data with one of the subsets removed [44]. One would then compute the average error across

all these subset removal cases. Minimization of this error with respect to varying λ would

then yield the optimal λ for CS reconstruction. This latter procedure, while more balanced

and likely better in terms of achieving good reconstructions, is also more open ended (e.g.,

in choosing the size of K) and much more time consuming than the simple holdout one we

adopted. Some alternatives to cross-validation are also discussed in Ref. 45.
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B. Data preprocessing and NRMSE

Before applying CS on the experimental data we preprocess the full data, exluding some

regions for reasons to be explained and interpolating to lead to evenly spaced data sets of

convenient sizes for analysis. The interpolation is not necessary for CS reconstruction in

general, but we want to compare CS reconstructions with different transformations (DCT,

Hadamard, and Haar), and the Haar and Hadamard transformations require a input signal

length of power of two.

In the case of the transient absorption measurements, the initial data consists of the

transmittance as a function of 273 different wavelengths ranging from 421 nm to 743 nm and

255 pulse times collected from t = -5 ps to t = 2870 ps. The 421 nm to 431 nm data is very

noisy and we exclude it from analysis, leading to N1 = 263 wavelengths. This wavelength

range is excluded because of the very small amount of continuum photons generated by 800

nm light incident on the sapphire crystal. Very low levels of light in the probe beam cause

large digitization noise in the measured signal. We also observe a coherent non-resonant

response of the solvent at t = 0 and we exclude this region in subsequent analysis (see

Supplemental Material[38] for details). After excluding this anomalous region, we interpolate

the data such that each wavelength has N2 = 256 pulse times. In terms of experiments, this

would correspond to fewer measurements at these random times, whereas in a conventional

experiment, many more measurements are taken with a fine increment in time delays.

In the case of the ultrafast terahertz measurements, the initial data was comprised of 26

and 151 scans along ∆t1 and ∆t2 respectively, with ∆t1 ranging from -10 ps to 1000 ps and

∆t2 ranging from -8.7 ps to 4 ps. We interpolated this data to obtain N1 = 32 and N2 =

128 evenly spaced points in ∆t1 and ∆t2.

In both cases, we choose points randomly from the original experimental data sets (ex-

cluding some regions as discussed above) to define reduced data sets to perform CS recon-

structions on. Note that these experimental data sets tend to have finer time steps at shorter

times owing to the short times exhibiting some rapid variations and so the samplings are

therefore not even in time and reflect the increased importance of the shorter times. Note

that our study benefits from prior knowledge of the full signals, which allows us to perform a

variety of tests to establish guidelines for successful reconstructions. In actual experiments

where the method would be deployed in order to reduce experimental effort, the various
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random pulse times (both the single-probe and the two-probe cases) could be generated

in advance and programmed into the computer controlling the experiments. In order to

assess the accuracy of the CS reconstructions, for both the ultrafast transient absorption

and terahertz measurements, we use the normalized root-mean-square error (NRMSE),

NRMSE =
1

xmax − xmin

√∑
i,j(x̃i,j − xi,j)2

N1N2

. (4)

with x̃ being the CS reconstruction, x being an N1 × N2 sample of the experimental data,

and xmax and xmin being the maximum and minimimum values of the experimental data.

The NRMSE is averaged over 10 runs which corresponds to uniquely sampled data on each

run.
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