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Quantum networks require robust quantum channels for fast and reliable entanglement distribu-
tion over long distances.As quantum communication technology matures, it moves towards utilizing
actual fibers and free space optical channels, hence there is a growing need for physical models
describing decoherence. The primary challenge is to concisely account for numerous elements dis-
tributed along a lengthy optical path. We approach this by starting with an analytical model of
a channel with just two lumped elements, one representing decoherence and the other representing
mode filtering. Interestingly, we find that while the order and relative orientation of the two ele-
ments produce a wealth of different bi-photon states, the amount of entanglement in all those states
is exactly the same. Then, we conduct experiments that implement this channel and verify our
analytical findings. Finally, we expand our analysis to the most general fiber polarization channel,
comprising a statistically significant number of arbitrarily oriented elements. We show that over
an ample range of parameters, our two-element analytical model is quite accurate in describing the
fiber channel, which makes it an effective tool for gaining insights into channel decoherence.

I. INTRODUCTION

The booming field of quantum information science
calls for new approaches to storing, handling, comput-
ing, and communicating information. What began as a
purely theoretical quest a few decades ago has recently
expanded into the realm of lab and field demonstra-
tions of a number of applications. For one, both clas-
sical and quantum secret sharing were realized in an
untrusted node scenario with the use of 5-qubit graph
states [1], in multi-dimensional spaces by using vectori-
ally structured photons that enabled encoding in both
polarization and their optical orbital momentum [2], and
between the cores of a multi-core fiber [3]. A proof-
of-principle concept of measurement-device-independent
quantum digital signatures was implemented in a three
node network [4]. Wang et al. experimentally probed
the efficacy of entanglement-assisted quantum metrol-
ogy against amplitude-damping, depolarizing, and gen-
eral Pauli channels [5]. Finally, recent studies produced
the theoretical groundwork for entanglement-assisted
sensing in the radio- and microwave spectral ranges
[6] and a delineation of quantum advantages of high-
dimensional quantum illumination [7]. The common mo-
tif of the above-mentioned results is distributed entangle-
ment. That is, each protocol relies on an entangled state
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being pre-shared between distant parties by transmission
over quantum channels.

Quantum channels themselves received ample atten-
tion in the recent literature from both theoretical and
experimental flanks. The advances from the two sides
are drastically different though and are somewhat dis-
joint. On one hand, information theory targets channel
capacity bounds for conventional Pauli-channel models.
Advances in approximating physically unavailable chan-
nels by combinations of Pauli channels [8] are compli-
mented by simulations of Pauli-damping channels [9]; a
lower bound to the Holevo capacity was calculated for
higher-dimensional Pauli, dephasing, and depolarizing
channels [10]; and entanglement cost expressions were ob-
tained for a number of cases such as dephasing, erasure,
three-dimensional Werner-Holevo channels, and bosonic
Gaussian channels [11]. On the other hand, we see exper-
iments aiming at building exotic channels for quantum-
information transfer. Bidirectional quantum links were
constructed from paired polarization-maintaining fibers
[12]; chiral waveguides were predicted to be able to reli-
ably transfer Bell states, high-dimensional W-states, and
Dicke states all in the presence of noise [13]; special air-
core fibers were exploited to transfer quantum informa-
tion encoded in a photon’s orbital angular momentum
(OAM) [14]; and some combination of OAM and polar-
ization encoding was proven effective over short distances
in 850-nm single-mode fibers [15].

In addition to these remarkable achievements, suc-
cessful deployment of quantum systems over either con-
ventional telecom fibers or free-space ground-to-satellite
channels was demonstrated by several groups. For
time-bin photon encoding, a three-user star-topology
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metropolitan network was constructed for measurement-
device-independent (MDI) quantum key distribution
(QKD) over 30 km of fiber in Hefei [16]. In parallel,
Calgary’s fiber network was used for quantum telepor-
tation by performing a Bell state measurement at the
central node [17]. A truly record-breaking 421 km QKD
link length was achieved by improving rate and detector
efficiencies [18], only to be soon surpassed by a 502 km
transmission using phase-matched QKD [19]. Finally, po-
larization encoding enabled two more major recent devel-
opments. First, an uplink ground-to-satellite teleporta-
tion was demonstrated despite challenges of turbulence-
induced beam broadening and wandering [20]. Second,
one photon of an EPR pair was sent over a 96 km [21]
and 192 km [22] submarine fiber while preserving its en-
tanglement with the other photon.

Naturally, there is a growing body of work aimed at
developing the understanding of real-life quantum chan-
nels. This includes channel characterization techniques
leveraging classical light [23, 24] and methods for assess-
ing non-entanglement-breaking channel properties. Ex-
amples are the recently proposed application of signal-
ing games to the certification of noise-added channels
[25], as well as MDI verification for channels impaired
by depolarizing and dephasing noise [26]. Further stud-
ies aim at uncovering pertinent decoherence mechanisms
for real-life channels, such as dynamical dephasing due
to refractive-index fluctuations [27, 28]. Entanglement
could also be affected by the geometry of the optical
beam. For instance, atmospheric turbulence may cause
beam wandering and broadening, as well as beam-shape
deformation [29–32]. On the other hand, in fiber-optic
networks, decoherence presents itself in the form of Polar-
ization Mode Dispersion (PMD) and Polarization Depen-
dent Loss (PDL), which are individually known to affect
entanglement distribution in quantum communication
experiments [33–35] and [36–38], respectively. The inter-
play of those two phenomena, that are usually present si-
multaneously in fiber quantum channels, is tremendously
complex and is not fully understood. Therefore, there
exists a need for intuitive models that provide experi-
mentalists with handy tools to characterize and emulate
fiber channels while reliably capturing the essence of this
interplay.

In this paper, we provide a comprehensive model de-
scribing the joint effect of decoherence and mode filter-
ing on a travelling EPR pair. For polarization-entangled
photons transmitted in quantum fiber channels, both ef-
fects are generally distributed along the photon path in
the form of PMD and PDL. Here, however, we start
by considering the simple case of just two lumped ele-
ments in one channel, one causing decoherence and an-
other causing partial mode filtering. Since environmental
changes affect the relative orientation of the correspond-
ing eigenstates on the Bloch sphere, we explore the effect
of the elements’ orientation. We also examine the impact
of the order in which they affect the travelling photon to
account for opposite propagation direction. We provide

experimental verification of our model in the most illus-
trative cases and establish peculiar symmetries of the
propagated bi-photon states. We then expand our an-
alytical results to model a general fiber-optic channel,
where the effect of a multitude of small decoherence and
mode-filtering elements accumulates along the route in
a random fashion. We numerically investigate the ef-
fect of such a general channel and determine boundaries
within which it can be reasonably approximated by the
much simpler and physically intuitive channel consisting
of just two lumped elements.

The paper is organized as follows. In Section II, we
introduce our model for the joint effect of lumped deco-
herence and mode-filtering elements in the optical path of
one of two polarization-entangled photons on the quan-
tum properties of the received two-photon state. In Sec-
tion III, we present experimental results pertaining to
the main implications of the model and explore the con-
cept of nonlocal compensation of mode-filtering. In Sec-
tion IV, we discuss how a quantum channel formed by a
filtering element and a decohering element is representa-
tive of a general fiber-optic channel operated in the linear
propagation regime. Finally, we draw our conclusions in
Section V.

II. EFFECT OF CASCADED DECOHERENCE
AND FILTERING ON

POLARIZATION-ENTANGLED PHOTONS

While photons can be entangled in various physical
dimensions, in this work we focus on polarization as the
most ubiquitous degree of freedom. We consider a pair of
polarization-entangled photons, where one photon, which
we refer to as photon A, propagates through a fiber chan-
nel, and the second photon stays in the proximity of the
source and experiences no propagation effects. Here we
study the most general channel resulting from the con-
catenation of two elements - a decoherence element and
a mode-filtering one. Our main goal is to characterize
the dependence of the propagated state’s quantum prop-
erties on the details of the channel implementation, that
is the order in which decoherence and modal filtering act
on the transmitted photon and their relative orientation.
The order of the two elements is representative of how the
two effects occur along the photon propagation path, as
well as of the bidirectionality of a channel. The relative
orientation of the elements captures the changes of the
eigenstates of each of the two polarization effects. These
are ever-present in fiber routes due to changing ambient
conditions [39, 40].

We start by expressing the state of the polarization-
entangled photon pair in the frequency domain, which
facilitates a comparison with the experimental setup used
in this work. Consistent with our setup, we assume a
pulsed-pump source based on a χ(3) medium, for which
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the generated two-photon state is

|ψin〉 = |f̃(ωA, ωB)〉 ⊗ |hAhB〉+ |h′Ah′B〉√
2

, (1)

where (hA,h
′
A) and (hB ,h

′
B) denote two bases of or-

thogonal polarization states for photons A and B, re-
spectively, and where

|f̃(ωA, ωB)〉 =

∫ ∫
dωAdωB f̃(ωA, ωB) |ωA, ωB〉 , (2)

with

f̃(ωA, ωB) = HA(ωA)HB(ωB)

×
∫
dω′Ẽp(ω

′)Ẽp(ωA + ωB − ω′). (3)

Here, Ẽp(ω) denotes the Fourier transform of the pump
waveform Ep(t), and HA(ωA) and HB(ωB) denote the
transfer functions of the filters applied to the two photons
prior to transmission. The time-domain equivalent of Eq.
(1) is

|ψin〉 = |f(tA, tB)〉 ⊗ |hAhB〉+ |h′Ah′B〉√
2

, (4)

where

|f(tA, tB)〉 =

∫ ∫
dtAdtBf(tA, tB)|tA, tB〉, (5)

with f(tA, tB) being the inverse Fourier transform of

f̃(ωA, ωB).
We now denote by γ the Stokes vector associated with

the mode-filtering element, whose effect is described by
the operator T0 = exp(γ · σ/2), where σ is a vector
whose elements are the three Pauli matrices, so that γ ·
σ = γ1σ1 + γ2σ2 + γ3σ3. With no loss of generality, we
assume that the z axis in Stokes space corresponds to
the polarization state hA and that γ is aligned with it,
in which case the mode-filtering operator simplifies to the
following diagonal form:

T0 =

(
eγ/2 0

0 e−γ/2

)
(6)

in the (hA,h
′
A) basis, where γ = |γ|. On the other hand,

the effect of the birefringent decohering element charac-
terized by the Stokes vector τ is described by the op-
erator U(ω) = exp(−iωτ · σ/2) [41], where pA and p′A
denote its orthogonal eigenstates, and ω is the offset from
the carrier frequency. Note that while the unit of vector
τ is that of time, vector γ is unitless. The polarization
basis (pA,p

′
A) can be used to re-express the input state

as

|ψin〉 = |f(tA, tB)〉 ⊗ |pApB〉+ |p′Ap′B〉√
2

, (7)

where by (pB ,p
′
B) we denote an auxiliary orthogonal ba-

sis for the polarization of photon B given by |pB〉 =

〈pA|hA〉 |hB〉+〈pA|h′A〉 |h′B〉 and |p′B〉 = 〈p′A|hA〉 |hB〉+
〈p′A|h′A〉 |h′B〉 [35]. In the basis (pA,p

′
A), the effect of de-

coherence simplifies to a relative delay τ = |τ | between
the polarization states pA and p′A.

The first channel configuration that we consider is the
one in which the modal filtering element precedes the
decohering element (in what follows we refer to this con-
figuration as filtering-first). In this case, the output state
is obtained by first applying the filtering operator to Eq.
(1) and then expressing the resulting state in the (pA,p

′
A)

basis prior to applying the decohering operator. This re-
sults in the output state

|ψout〉=
η√
2
|f(tA − τ/2, tB)〉 ⊗

(e
γ
2 〈pA|hA〉|pAhB〉+ e−

γ
2 〈pA|h′A〉|pAh′B〉)

+
η√
2
|f(tA + τ/2, tB)〉 ⊗

(e
γ
2 〈p′A|hA〉|p′AhB〉+ e−

γ
2 〈p′A|h′A〉|p′Ah′B〉), (8)

where the normalization coefficient η accounts for the
fact that the state is post-selected by coincidence mea-
surement.

In the second channel configuration that we consider,
decoherence precedes mode-filtering (in what follows we
refer to this configuration as decoherence-first). In this
case, the output state is obtained by first applying the
decohering operator to Eq. (7) and then expressing the
resulting state in the (hA,h

′
A) basis prior to applying the

filtering operator. This results in the state

|ψout〉=
η√
2
|f(tA − τ/2, tB)〉 ⊗

(e
γ
2 〈hA|pA〉|hApB〉+ e−

γ
2 〈h′A|pA〉|h′ApB〉)

+
η√
2
|f(tA + τ/2, tB)〉 ⊗

(e
γ
2 〈hA|p′A〉|hAp′B〉+ e−

γ
2 〈h′A|p′A〉|h′Ap′B〉). (9)

The density matrix ρ characterizing the polarization
properties of the received state is then obtained in both
cases by tracing the full density matrix |ψout〉〈ψout| over
the time modes. To this end, it is convenient to introduce
the function R(τ), defined as

R(τ) =

∫ ∫
dωAdωB |f̃(ωA, ωB)|2eiωAτ . (10)

When expressed in the time domain, this function de-
scribes the overlap integral between the original wave-
form and its delayed replica. Note that once the time
modes have been traced out, all the system parameters
that affect the time/frequency-dependent part of the re-
ceived two-photon state (primarily the pump and filter
characteristics and the magnitude of the decohering el-
ement) only enter the resulting density matrix through

this function. Specifically, assuming that f̃ is normalized
so that R(0) = 1, the elements of the resulting density
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matrix for the filtering-first case are

ρ11 = eγ |〈pA|hA〉|2η2/2, ρ22 = e−γ |〈pA|h′A〉|2η2/2
ρ33 = eγ |〈p′A|hA〉|2η2/2, ρ44 = e−γ |〈p′A|h′A〉|2η2/2
ρ12 = 〈pA|hA〉〈pA|h′A〉∗η2/2
ρ13 = eγR∗(τ)〈pA|hA〉〈p′A|hA〉∗η2/2
ρ14 = R∗(τ)〈pA|hA〉〈p′A|h′A〉∗η2/2
ρ23 = R∗(τ)〈pA|h′A〉〈p′A|hA〉∗η2/2
ρ24 = e−γR∗(τ)〈pA|h′A〉〈p′A|h′A〉∗η2/2
ρ34 = 〈p′A|hA〉〈p′A|h′A〉∗η2/2. (11)

Similarly, for the decoherence-first case, they are

ρ11 = eγ |〈hA|pA〉|2η2/2, ρ22 = eγ |〈hA|p′A〉|2η2/2
ρ33 = e−γ |〈h′A|pA〉|2η2/2, ρ44 = e−γ |〈h′A|p′A〉|2η2/2
ρ12 = eγR∗(τ)〈hA|pA〉〈hA|p′A〉∗η2/2
ρ13 = 〈hA|pA〉〈h′A|pA〉∗η2/2
ρ14 = R∗(τ)〈hA|pA〉〈h′A|p′A〉∗η2/2
ρ23 = R(τ)〈hA|p′A〉〈h′A|pA〉∗η2/2
ρ24 = 〈hA|p′A〉〈h′A|p′A〉∗η2/2
ρ34 = e−γR∗(τ)〈h′A|pA〉〈h′A|p′A〉∗η2/2. (12)

Note that in the first case, the density matrix is repre-
sented in the basis |pAhB〉, |pAh′B〉, |p′AhB〉, |p′Ah′B〉,
while in the second case it is expressed in the basis
|hApB〉, |hAp′B〉, |h′ApB〉, |h′Ap′B〉. Imposing Tr(ρ) = 1
yields in both cases η2 = 1/ cosh(γ). As is evident from
Eqs. (11) and (12), the final state exhibits strong depen-
dence on the order of the two elements and orientation
of the corresponding eigenstates.

To quantify the degree of entanglement of the received
state, we use concurrence as a figure of merit [42]. This
can be extracted from the corresponding density matrices
in the filtering-first and decoherence-first configurations,
and the result, which follows after some cumbersome al-
gebra, is in both cases

C =
|R(τ)|

cosh(γ)
. (13)

Remarkably, unlike the shape of the state itself, the resid-
ual concurrence is not affected by any channel detail such
as the relative orientation of the eigenstates of the two
operators, or the order in which the two elements are
concatenated. Instead it only depends on the channel’s
amount of filtering and magnitude of the birefringence
vector. Our general result encompasses several previous
findings. When decoherence acts alone (γ = 0), con-
currence reduces to C = |R(τ)|, which is the expres-
sion demonstrated in [35]. On the other hand, when
decoherence is absent (τ = 0), concurrence is given by
C = 1/ cosh(γ), as found in [36]. Finally, our result is
consistent with the expression for concurrence found in
[37], where the effect of mode-filtering on a Bell-diagonal
state was studied. In what follows, we will provide a
physical interpretation for the independence of concur-
rence on the order and relative orientation of the deco-
herence and filtering elements.

Filtering preceding decoherence. The way in which
modal filtering in the A-optical path affects entangle-
ment is through the probabilities of detecting specific
two-photon polarization states (in the post-selected en-
semble). If, prior to detection, the analyzer for photon A
splits hA and h′A, simultaneous clicks will be produced
by the two states |hAhB〉 and |h′Ah′B〉 only. However, if
the analyzer splits a different pair of polarization states,
say pA and p′A, simultaneous clicks will be produced by
the four states, |pAhB〉, |p′AhB〉, |pAh′B〉, and |p′Ah′B〉,
which emerge when expressing photon A in the basis
(pA,p

′
A). If pA and p′A happen to be aligned with the

vector τ defining a decoherence element concatenated to
the mode-filtering element, then the temporal waveform
associated with each of these four states does not suf-
fer any distortion from decoherence (which simply intro-
duces some delay in each of them); therefore, the cor-
responding probabilities of simultaneous clicks are not
affected. This simple argument shows that the orienta-
tion of τ does not interfere with the mechanism through
which the preceding mode-filtering element affects the
two-photon polarization entanglement.

Decoherence preceding filtering. The way in which de-
coherence in the A-optical path reduces entanglement is
by correlating photon’s A time of arrival with its polar-
ization, so that in principle, one would be able to trace
back the two photons’ polarization based on their rela-
tive times of arrival. This ability is not affected by the
presence of a mode-filtering element after decoherence in
the path of photon A, as filtering does not distort the de-
layed replicas of the two-photon state waveform, but only
the corresponding polarization contents, therefore leav-
ing the arrival times of the two photons unchanged. This
clarifies why the orientation of a decoherence element τ
preceding a mode-filtering element has no impact on con-
currence.

The two arguments illustrated above also imply that
the order in which the decohering and mode-filtering el-
ements are concatenated cannot affect the two-photon
polarization entanglement. In fact, as all possible rel-
ative orientations yield the same concurrence, all cases
are equivalent to the one in which the vectors τ and γ
are aligned, and in this special case, the two effects com-
mute with each other. Note that while concurrence is
insensitive to the details of the two-element channel, the
density matrices of the propagated state are not. The
consequences of this on the design of a quantum net-
work, such as choosing a direction in which the channel
is to be used, are discussed in Sec. III.

III. EXPERIMENTAL VERIFICATION

In order to provide experimental evidence of the
findings discussed in the previous section, we consider
two different settings for both the filtering-first and
decoherence-first configurations; one in which τ and γ
are aligned, and another in which they are orthogonal



5

FIG. 1: Schematics of the experimental apparatus. τ : deco-
hering element. γ: filtering element. γC : compensating filter-
ing element. EPS: entangled photon source. DSF: dispersion-
shifted fiber. PDL: PDL emulator. PMD: PMD emulator
which applies a differential group delay τ = 6.6 ps. PC: po-
larization controller. DS: detector station. PA: polarization
analyzer consisting of several waveplates (red) and a polarizer
(blue). SPD: single photon detector. The order of the deco-
hering and filtering elements in channel A can be changed to

investigate the decoherence-first and filtering-first cases.

to each other in Stokes space (or equivalently they form
an angle of 45 degrees in Jones space). Our experimen-
tal setup consists of an entangled–photon source (EPS),
telecom optical fibers, and two separate detector sta-
tions [43] that include polarization analyzers (PA) and
InGaAs single photon detectors, which are used to per-
form state tomography [44]. In order to introduce con-
trollable decoherence and modal filtering in the channel,
we use polarization-mode dispersion (PMD) [40, 41] and
polarization-dependent loss (PDL) [45, 46] emulators, re-
spectively. The PDL emulators, which are fully config-
urable both in magnitude (within the 0 dB - 7 dB range)
and orientation, can be inserted in the paths of the two
photons. All of the PDL emulators are PMD-free, except
for one that has a fixed differential group delay (DGD);
we use the latter to reproduce the effect of lumped deco-
herence.

The entangled photons are generated inside the EPS by
pumping a dispersion-shifted fiber (DSF) with a 50 MHz
pulsed fiber laser that operates at 193.1 THz and creates
signal and idler photons via four-wave mixing [47]. The
average number of generated photon pairs per pulse can
be tuned in the 0.001 – 0.1 range [48, 49]. The generated
photons are spectrally separated and routed to channels
on the 100 GHz-spaced ITU grid [50]. For this specific ex-
periment, we use channels 28 (192.8 THz) and 34 (193.4
THz). The resulting photon temporal wavefunctions are
of a sinc-like shape with temporal FWHM of about 15 ps.
A relevant value of the fixed DGD of 6.6 ps was chosen to
introduce a non-negligible entanglement reduction, cor-
responding to a concurrence of C = 0.66 in the absence
of PDL [51]. A schematic of the experimental setup is
shown in Fig. 1. The order of decoherence and modal
filtering, as well as the relative orientation of τ and γ,
can be varied to cover all of the possible configurations
by adjusting the PMD and PDL emulators.

First, we experimentally confirm Eqs. (11, 12) in four
specific cases. We introduce both a PDL and a PMD
emulator in the channel of photon A and vary the emula-

FIG. 2: Theoretical (left) and experimental (right) represen-
tation of Eqs.(11)-(12), for the case where the eigenvectors
of the filtering and decoherence elements are aligned ((a)-(e)
and (c)-(g)) and orthogonal ((b)-(f) and (d)-(h)) in Stokes
space. The matrices in the top two rows ((a)-(b)-(e)-(f)) re-
fer to the filtering-first scenario and are expressed in the ba-
sis |pAhB〉, |pAh

′
B〉, |p′AhB〉, |p′Ah′B〉. The matrices in the

bottom two rows ((c)-(g)-(d)-(h)) refer to the decoherence-
first scenario and are expressed in the basis |hApB〉, |hAp

′
B〉,

|h′ApB〉, |h′Ap′B〉. γ = 0.46 for all matrices.

tors’ order and orientation. That is, by using polarization
controllers, we can either align vectors τ and γ or make
them orthogonal. The left column of Fig. 2 shows the
matrices expressed by Eqs. (11, 12). The right column
presents experimentally measured matrices in the same
four scenarios. The two columns show striking similar-
ities, thus verifying our theoretical calculations. Minor
variations due to experimental noise are slightly notice-
able in the zero-valued elements of the experimental ma-
trices. The matrices in the top two rows, expressed in
the basis |pAhB〉, |pAh′B〉, |p′AhB〉, |p′Ah′B〉, correspond
to the filtering-first scenario. Similarly, the bottom two
rows of matrices refer to the decoherence-first configu-
ration and are expressed in the basis |hApB〉, |hAp′B〉,
|h′ApB〉, |h′Ap′B〉. The vectors τ and γ are aligned for
(a,c,e,g) and are orthogonal for (b,d,f,h). The four spe-
cific cases are color-coded in Fig. 2, and the same color
coding is adopted throughout the rest of the paper. The
figure clearly shows that the orientation and ordering
of the decohering and filtering elements affect the final
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FIG. 3: Concurrence as a function of the amount of filtering
γ in the channel. The dashed line represents the theoretical
result Eq. (13). All of the markers are experimental points:
squares refer to the filtering-first scenario, while circles refer
to the decoherence-first scenario. In both cases, the empty
markers correspond to the case in which the γ is aligned with
τ , and the filled ones to the case in which they are orthogonal.

quantum state as seen in the different density matrices.

Next, we validate the theoretical expression Eq. (13),
that is plotted in Fig. 3 with a dashed line. The sym-
bols show the experimental concurrence as a function of
the amount of filtering γ in the channel. The squares
refer to the filtering-first configuration, and the circles
refer to the decoherence-first scenario; empty and filled
markers are used for the aligned and orthogonal config-
uration, respectively. All the data points are in excellent
agreement with the theoretical curve. The plot confirms
that the amount of entanglement is determined only by
the magnitude of decoherence and the strength of the
modal filtering and, contrary to the states themselves, is
independent of either order or relative orientation.

Now we turn our attention to the ordering of the deco-
hering and filtering elements, which is important in fiber
channels for various reasons. A particularly illustrative
case is the one with the decohering and filtering elements
τ and γ being orthogonal in Stokes space. Indeed in this
case, if photon A is expressed in the basis (hA,h

′
A), and

photon B in the basis (hB ,h
′
B), the density matrix sim-

plifies to

ρi =
1

4 cosh (γ)


eγ(1 +R(τ)) 0 0 1 +R(τ)

0 eξiγ(1−R(τ)) 1−R(τ) 0
0 1−R∗(τ) e−ξiγ (1−R(τ)) 0

1 +R∗(τ) 0 0 e−γ(1 +R(τ))

 , (14)

where i = 1 and i = 2 correspond to the filtering-
first and decoherence-first scenarios, respectively, and
ξ1 = −ξ2 = 1. In this particularly illustrative situation,
the two expressions can be obtained from each other by
simply permutating the elements ρ22 and ρ33. An exper-
imental verification of this formula is presented in Fig.
4. The left panel shows experimental density matrices
related to the two scenarios for γ = 0.41, 0.66, 0.77; the
right panel shows a plot of the experimentally obtained
coincidence probabilities given by the diagonal elements
of ρi versus γ, with the four curves showing the corre-
sponding theoretical expressions from Eq. (14). Consis-
tent with the theory, one can see that as modal filter-
ing in the channel is increased, ρi,11 increases and ρi,44
decreases, both in the filtering-first case (cyan markers),
and in the decoherence-first scenario (green markers). On
the other hand, in the filtering-first case, ρi,22 decreases
with γ, and ρi,33 increases with it, whereas the opposite
behaviour is observed in the decoherence-first scenario.

Our analysis shows that this simple difference between
the two cases provides a powerful tool to gain information
about the channel in which the photon is propagating
when vector τ and γ are orthogonal in Stokes space. By

simply measuring ρ22 and ρ33, that is by recording only
coincidence counts along (hA,h

′
B) and (h′A,hB) instead

of reconstructing the whole density matrix, one can in
fact tell whether modal loss or decoherence comes first.
Note that ρ22 and ρ33 are indicative of the quantum bit
error ratio (QBER), and nearly all quantum protocols
monitor QBER on a regular basis.

The knowledge of whether filtering is concentrated to-
ward the beginning or the end of a long optical route is
very important for Procrustean entanglement distillation
[52–54], as we illustrate with our two-element model of
Eqs. (11, 12) below. It has been shown that a judicially
selected pair of filters could distill entanglement from cer-
tain mixed states [55–58]. More recently, our group inves-
tigated how a filter applied to photon B of an entangled
pair could partially or fully restore entanglement dimin-
ished by inadvertent filtering inherent to channel A. We
previously found that when the filtering is concentrated
towards the end of the route, a situation that corresponds
to the decoherence-first case of our model, the entangle-
ment could be restored fully or partially depending on
the type of noise encountered by photon A [36–38].

For the opposite case of the filtering-first scenario in
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FIG. 4: Experimental results of the setup reproducing Eq. (14) for the decoherence-first (green) and filtering-first (cyan)
cases when τ and γ are orthogonal in Stokes space. Left panel: experimental density matrices expressed in the basis |hAhB〉,
|hAh

′
B〉, |h′AhB〉, |h′Ah′B〉, for γ = 0.41 (a, d), 0.66 (b, e), and 0.77 (c, f). Right panel: coincidence probabilities, measured

via the diagonal elements of the density matrix, as a function of γ. Comparison of ρi,11, ρi,22, ρi,33, and ρi,44, where i = 1, 2
for the filtering-first and decoherence-first cases, respectively. ρi,11 and ρi,44 are independent of the ordering of the two effects;

however, ρ1,22 is equivalent to ρ2,33, and vice-versa.

channel A, distillation with the help of an additional fil-
ter in channel B is rather straightforward [59], and we
demonstrate it below for the sake of completeness. Fig-
ure 5 plots concurrence as a function of increasing γ for
the filtering-first case. A fixed decoherence element fol-
lows the filter in channel A and is responsible for the de-
creased concurrence of C = 0.66 for γ = 0. Color-coded
filled and empty symbols correspond to aligned and or-
thogonal τ and γ, respectively. The dashed curve is a
plot of Eq. (13). The upper set of data points demon-
strates entanglement restoration when an extra filter is
added to channel B. The solid curve shows the restored
concurrence value, also given by the same equation with
γ = 0, that is, the value that would be observed if only
the decohering element were present in the optical path
of photon A [35]. The data points show that full compen-
sation can be achieved for all filtering levels regardless of
the relative orientation of τ and γ.

To conclude this section, we note that the greater
effectiveness of nonlocal compensation in the filtering-
first configuration relative to the decoherence-first con-
figuration demonstrated above has important implica-
tions in the design of optical networks for polarization-
entanglement distribution. Indeed, the same channel
could in general be used for photon distribution in two
opposite directions, as could be the case for a specific
graph edge of a quantum network, or when two parties
take turns in exchanging messages using a point-to-point
connection. Either way, the resulting channel will cause
different impairments depending on the photon’s propa-
gation direction [60].

FIG. 5: Concurrence versus the filtering magnitude γ in the
filtering-first scenario. Empty and filled markers correspond
to the cases in which the vectors γ and τ are aligned and
orthogonal, respectively. The upper set of data points refer
to the case in which nonlocal compensation of modal filtering
is implemented by passing photon B through and additional
filtering element. The dashed curve is the analytical result
Eq. (13) and the solid curve shows the restored concurrence

level, also given by the same equation with γ = 0.
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IV. RELATION TO A GENERAL FIBER-OPTIC
CHANNEL

In this section, we expand our treatment of a bi-photon
quantum state, one photon of which is distributed over
an optical fiber, to include a more general channel model.
In Sections II and III, the channel was represented by
two lumped elements, the order and relative orientation
of which we had carefully examined. Installed fibers and
free space channels are naturally more complex because
the optical path is long and perturbations that cause
decoherence and mode filtering are local in nature, nu-
merous, and occur throughout the length of the route
[40, 46, 61–64]. PMD serves as a major source of de-
coherence for polarization entanglement [33–35], while
filtering arises from PDL [36–38]. Since PMD and PDL
originate from spatially distributed sources, their effect is
not simply that of two lumped sources; instead, they add
in a rather complex fashion. However, their joint effect
on a sufficiently narrow-band signal can be described by
the following frequency-dependent transfer matrix [65]:

T(ω) = exp

(
− i

2
ωτ̃ · σ

)
T0, (15)

where T0 is the transfer matrix at ω = 0 and can be as-
sumed to be in the diagonal form of Eq. (6) with no loss
of generality. The symbol τ̃ denotes a three-dimensional
vector. By letting the components of τ̃ be complex-
valued, Eq. (15) describes the most general channel in-
stantiation. In this case, the imaginary component of τ̃ is
responsible for the presence of frequency-dependent PDL,
which has non-trivial implications in terms of waveform
distortion [65].

If photon A of the polarization-entangled state in Eq.
(4) propagates in a fiber link described by Eq. (15), and
photon B does not suffer any propagation effects, the
received two-photon state can be expressed as

|ψout〉 = η

∫ ∫
dωAdωB f̃(ωA, ωB)|ωA, ωB〉

⊗ |T(ωA)hA,hB〉+ |T(ωA)h′A,h
′
B〉√

2
, (16)

where the coefficient η ensures that the output state is
correctly normalized after post-selection. The density
matrix ρ characterizing the polarization properties of the
received state is then obtained by tracing the full density
matrix |ψout〉〈ψout| over the frequency modes:

ρij =
η2

2

∫ ∫
dωAdωB |f(ωA, ωB)|2Tni,mi(ωA)T ∗nj ,mj (ωA),

(17)
where Tni,mj denotes the element (ni,mj) of T, with
n1 = n2 = 1, n3 = n4 = 2, m1 = m3 = 1, and m2 =
m4 = 2, whose computation is more convenient using the
following expansion:

exp

(
i

2
ωτ̃ · σ

)
= cos

(
ωτ̃

2

)
I− i τ̃ · σ

τ̃
sin

(
ωτ̃

2

)
, (18)

where τ̃ is either one of the square roots of τ̃ · τ̃ .
Since the simple analytical two-element model of Eqs.

(11, 12) must be a particular case of the general channel
description of Eq. (17), we begin by finding the con-
straints that reduce the latter to the former. Clearly, a
real-valued vector τ̃ , such that τ̃ = τ , reduces the gen-
eral channel to the filtering-first configuration. On the
other hand, the constraints for the decoherence-first con-
figuration are a bit more involved. This configuration is
characterized by the transfer matrix

T(ω) = T0 exp

(
− i

2
ωτ · σ

)
= exp

(
− i

2
ωτ̃ · σ

)
T0,

(19)
where the second equality implies the identity τ̃ · σ =
T0τ · σT−10 , which yields

τ̃1 = τ1 (20)

τ̃2 = cosh(γ)τ2 − i sinh(γ)τ3 (21)

τ̃3 = cosh(γ)τ3 + i sinh(γ)τ2. (22)

Inspection of Eqs. (20–22) shows that the real and imag-
inary components of the complex vector τ̃ , which we
denote by τ̃R and τ̃I , respectively, are orthogonal to
each other. This constitutes the most relevant feature
of the manifold of complex vectors τ̃ spanned by the
decoherence-first configuration.

Another, less restrictive, implication of Eqs. (20–22) is
that the square length of the real component of τ̃ exceeds
that of its imaginary component by the square length of
τ , namely by the square differential group delay of the
corresponding PDL-free link (|τ̃R|2 − |τ̃I |2 = τ2). Both
of these relations emerge on average in all fiber-optic
links [65], including space-division multiplexed transmis-
sion links based on multi-core and multi-mode fibers [66],
where the complex vector τ̃ is a random quantity. In par-
ticular, denoting by E ensemble averaging, the analogue
of the first relation is E[τ̃R · τ̃I ] = 0, while the analogue
of the second is E[|τ̃R|2]−E[|τ̃I |2] = E[τ2], where E[τ2] is
intended to be the mean-square DGD that would accu-
mulate in the link if PDL were absent. The latter relation
does not ensure that the inequality |τ̃R| ≥ |τ̃I | is always
fulfilled, but it does imply that its violation occurs with
low probability. This primarily occurs for unrealistically
large PDL values [65], which makes it of little relevance.
Finally, it is worth noting that even if |τR| ≥ |τI |, Eqs.
(20–22) do not ensure that any arbitrary value of |τR|
and |τI | can be matched. Indeed, for a given instance of
|τR| and |τI |, the values of τ1, τ2, and τ3 must satisfy the
relation

τ22 + τ23
τ21 + τ22 + τ23

=
1

(|τ̃R|2/|τ̃I |2 − 1) sinh2(γ)
≤ 1, (23)

where τ21 + τ22 + τ23 = τ2 = |τ̃R|2 − |τ̃I |2, and where γ is
dictated by T0. Clearly, specific combinations of values
of |τR|, |τI |, and γ can violate the inequality in Eq. (23).
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FIG. 6: Concurrence as a function of the angle formed by
the real and imaginary parts of the complex-valued vector
τ̃ = τ̃R + iτ̃I . The larger black dots refer to the decoherence-
first configuration, where the vector τ̃ is given by Eqs. (20–
22), while the smaller dots were obtained by randomly varying
the orientation of the real and imaginary parts of the same

vector.

As an aside, this limitation disappears in a lumped
element channel with an additional PDL element, so
that the three-element channel is T1 exp(iωτ ·σ/2)T2 =
exp(iωτ̃ · σ/2)T1T2, with T1T2 = T0. Here, the coeffi-
cient γ1 of T1 provides an additional degree of freedom
in Eq. (23), which decouples the problem of matching
|τR| and |τI | from that of matching T0.

In what follows, we compare the simple two-element
channel model we proposed in Sec. II to the most gen-
eral polarization channel. We argue that while the latter
precisely reproduces the real channel, the former cap-
tures its main characteristics over a pertinent range of
the channel parameters with sufficient accuracy. To this
end, we investigate the effect of the relative orientation
of τ̃R and τ̃I on the degree of entanglement of the re-
ceived two-photon state. For a meaningful comparison,
we start from the decoherence-first configuration of Eq.
(19), with some fixed value of γ and τ (as discussed in
Sect. II, the orientation of the decoherence vector τ is
immaterial in this context). We then evaluate the cor-
responding complex vector τ̃ according to Eqs. (20–22)
and randomly vary the orientation of its real and imag-
inary components while keeping their lengths fixed. For
each instance of τ̃ , we evaluate the reduced density ma-
trix ρ of the propagated two-photon state and extract the
corresponding concurrence C [42].

The results are shown in Fig. 6, where concurrence is
plotted as a function of the angle formed by the real and
imaginary components of τ̃ . The data points in the left
panel were obtained for the displayed values of the DGD
τ and for γ = 0.23, which corresponds to a PDL value
in decibel [67] of PDLdB = 2 dB. The data points in the
right panel were obtained for values of γ corresponding
to the displayed values of PDLdB and for a DGD of 3 ps.
In this example, we assume a super-Gaussian profile of
third order for both the pump power spectrum |Ẽp(ω)|2

and the filters’ transmittivities |HA,B(ω)|2 (Eq. (3)). For
the former, we use a 3-dB bandwidth of 50 GHz, while
for the latter, we use a 3-dB bandwidth of 100 GHz. The
figure shows that varying the orientation of τ̃R and τ̃I
produces some scattering of the measured concurrence
below the decoherence-first configuration value, which is
shown with the bigger dot. Extensive simulations show
that this scattering is mostly affected by the magnitude of
PDL, but it remains almost negligible for PDL and DGD
values of practical relevance. Therefore, the decoherence-
first case serves as a reliable tool for assessing entangle-
ment degradation over a general channel.

As a final remark, we note the symmetry between the
decoherence-first and filtering-first scenarios. Indeed, Eq.
(15) could be easily rearranged in the following form:

T(ω) = exp

(
− i

2
ωτ̃ · σ

)
T0 = T0 exp

(
− i

2
ωτ̃ ′ · σ

)
,

(24)
where the complex-valued vector τ̃ ′ is defined through
the relation τ̃ ′ · σ = T−10 τ̃ ′ · σT0. For the general chan-
nel, the constraints on the complex-valued vector τ̃ will
reverse between the filtering-first and decoherence-first
configurations. Correspondingly, our modelling results
then reflect the filtering-first scenario. Hence, the two
configurations are equally capable of emulating a general
fiber-optic channel.

V. CONCLUSION

To gain insights into fiber-optic quantum channels, we
studied a quantum channel with decoherence and mode
filtering acting on one photon of a travelling EPR pair.
First, we devised an analytical channel model for the
case of two lumped elements, one causing decoherence
and another causing partial mode filtering, and we de-
rived analytical expressions for the density matrices of
the propagated bi-photon states, as well as for their con-
currence. The model permits us to examine the effect
of the relative Bloch sphere orientation and the order
in which a photon encounters the two elements, a re-
ality in fiber-optic channels, where changes in ambient
conditions dynamically reorient various polarization el-
ements along the light-path. We verified these findings
in four specific experimental scenarios and proposed a
method of channel characterization via QBER measure-
ments. Interestingly, while the output quantum states
depend on these channel characteristics, the amount of
entanglement quantified by concurrence does not. We
further checked the ability of our two-element model to
describe the most general fiber-optic channel, where the
effect of a multitude of small arbitrarily oriented deco-
herence and mode-filtering elements accumulates along
the optical path. This corresponds to the most relevant
case of polarization entanglement distribution in fiber-
optic networks. By numerically investigating the effect of
such a general channel, we established a wide parameter
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range where our analytical two-element model serves as
an accurate approximation of the general channel. These
results offer an elegant tool to develop an intuition into
fiber quantum channels and, hence, pave the way for fu-
ture quantum telecommunication.
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