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We present a method for the control of waves based on inverse multiple scattering theory. Con-
ceived as a generalization of the concept of metagrating, we call metaclusters to a finite set of
scatterers whose position and properties are obtained by inverse design once we have defined their
response to some external incident field. The particular focus is on designing passive metaclusters
that do not require an external source of energy. The method is applied to the propagation of
flexural waves in thin plates, and to the design of far field patterns, although its generalization
to acoustic or electromagnetic waves is straightforward. Numerical examples are presented to the
design of uni and bidirectional “anomalous scatterers”, which will bend the scattering energy along
a specific direction, “odd pole” scatterers, whose radiation pattern presents an odd number of poles
and to the generation of vortical patterns. Finally, some considerations about the optimal design of
these metaclusters are discussed.

I. INTRODUCTION

Active and passive control of the energy transfer in
electromagnetic and mechanical waves is a challeng-
ing problem with a large number of applications, such
as focusing, imaging, beam forming, cloaking and en-
ergy harvesting, among others.1 The advent of so-called
metamaterials2,3 provided a new perspective since these
artificial structures allow the design of materials with ex-
traordinary properties capable of manipulating the flow
of energy in ways that would be impossible with common
materials, enlarging in this manner the number of devices
for the control of electromagnetic and mechanical waves.

More recently, the concept of “metasurface”, conceived
as artificial planar metamaterials, has attracted an in-
creasing interest. Being thinner and less dissipative than
bulk metamaterials, these structures allow for more ef-
ficient ways of manipulating the wave energy, with the
additional simplification in fabrication that planar struc-
tures present in comparison with bulk structures.4–6

However, the major drawback of both metamateri-
als and metasurfaces is that their functionality is based
on the extraordinary refractive/reflective properties they
present, and most of the devices designed in this frame-
work require a large number of scattering elements in or-
der to form an “effective” material whose effective phys-
ical properties provide metamaterials of their extraordi-
nary properties. In the case of metasurfaces, the surface
has to be gradually structured so that the effective gradi-
ent in the surface impedance allows for the manipulation
of the energy flow. This large number of scattering ele-
ments is an important limitation in the efficiency of meta-
materials and metasurfaces, since in practice the number
of different scattering elements will be limited, especially
in the micro or nano-scale.

To overcome these difficulties, several approaches have
been explored recently to simplify the design of meta-
surfaces by means of diffraction gratings,7–12 in which

it has been possible to find a complex scatterer or unit
cell performing the same functionality as some metasur-
faces. However, the design process is still complex and
functionality is limited to the control of the propagation
direction of waves.13–15

In this work, we present a generalization of the concept
of a metagrating but for finite structures. The objective
is to show how, for a given incident field, we can obtain
a cluster of scatterers and their physical properties such
that the scattered field presents a pre-selected shape. If
a particular diffraction pattern is desired for a specific
type of incident wave, we provide a method to design
a cluster of scatterers capable of transferring the energy
along the desired directions. The inverse design method
presented is based on multiple scattering theory16 and
the general principle is applicable to any kind of classi-
cal wave, including acoustic and electromagnetic waves.
We use flexural waves in plates as the model medium,
due to its potential wide application, but the presented
framework is general and applicable to wave scattering
in other media. This work therefore provides a general
principle for the full control of mechanical and electro-
magnetic waves based on scattering elements.

The paper is organized as follows: After this introduc-
tion, section II develops the idea of the direct and inverse
multiple scattering problem. Section III explains how the
method can be applied to the design of far field patterns
and section IV shows numerical examples of specific pat-
terns. Finally, section V summarizes the work and some
mathematical results are given in Appendices A and B.

II. DIRECT AND INVERSE MULTIPLE
SCATTERING PROBLEM

When some incident field ψ0 impinges on a cluster of N
point-like scatterers the total field ψ(r) can be expressed
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as the sum of the incident plus the scattered fields,

ψ(r) = ψ0(r) + ψs(r). (1)

The scattered field is

ψs(r) =

N∑
β=1

BβG(r −Rβ), (2)

where G(r) = G(|r|) is the Green’s function and the
coefficients Bβ are obtained from the multiple scattering
equation17

N∑
β=1

[t−1
β δαβ −G(Rα −Rβ)]Bβ = ψ0(Rα). (3)

This provides a system of N equations with N unknowns.
The quantity tα is the strength of each point-like scat-
terer and it is the only quantity that contains information
about its physical properties. This describes the direct
multiple scattering problem, in which the number of scat-
terers, N , their strengths tα and locationsRβ are known,
from which we compute the Bα coefficients to finally de-
termine the field in all of space.

The inverse problem is as follows: assume that the
scattered field can be expressed as a linear combination
of basis functions φn such that

ψs(r) =

∞∑
n=−∞

Anφn(r), (4)

then we specify the inverse problem as determining a
finite number Np of An coefficients, for n = 1 . . . Np, so
that the scattered field will have a specified radiation
pattern in the far-field. In general there will be a matrix
S such that

An =

N∑
β=1

SnβBβ , (5)

therefore, if we select the number N of particles in the
cluster equal to the number Np of modes to design, equa-
tion (5) constitutes a determinate system of N equations
with N unknowns from which we can solve for the Bβ
coefficients. Once these are known, we can obtain the tα
elements from equation (4) as

t−1
α =

1

Bα

ψ0(Rα) +

N∑
β=1

G(Rα −Rβ)Bβ

 . (6)

Thus we can obtain the physical properties of each parti-
cle. The main challenge is to find a cluster configuration
giving physically acceptable particles.

For the case of flexural waves on thin elastic plates, ψ
is the plate deflection, G is the solution for a point force
per unit area applied in the positive ψ-direction, and

Bα = tαψ(Rα), (7)

is the point force per unit area of scatterer α, see
Appendix A. The parameter tα is an effective point
impedance which can be interpreted in terms of a sin-
gle degree of freedom system with mass, stiffness and
damping. Physically acceptable particles cannot supply
energy, i.e. they must be passive. Assuming time depen-
dence e−iωt, the passivity constraints require that one or
other of the following is met

N∑
α=1

(
Im t−1

α

)
|Bα|2 ≤ 0 , (8a)

Im t−1
α ≤ 0 . (8b)

Equation (8a) requires that the cluster be globally pas-
sive, meaning that some of the scatterers can provide
energy but there should be a negative energy balance
adding all the contributions of the scatterers. Equation
(8b), or equivalently Im tα ≥ 0, is a more restrictive con-
dition, since it requires that all scatterers be passive sys-
tems (see Appendix A for details). The equality holds
for zero dissipation in both equations. The goal of the
inverse multiple scattering problem is to obtain a set of
particles all simultaneously satisfying the first or both
constraints. For the first, global passivity, constraint we
assume that although some scatterers may require energy
supply, this energy can be transferred from other, locally
passive, ones (see Appendix A).

The specific problem addressed below is to engineer
the cluster of point scatterers to provide a close approx-
imation to a desired far field scattering response. In the
next section we outline the steps necessary to achieve this
in an optimal sense.

III. FAR FIELD ENGINEERING

A. Direct far field solution

The functions φn of (4) are chosen as the infinite set

φn(r) = G(r)einθ, n ∈ Z, (9)

where the position is expressed in polar coordinates r =
(r, θ) with respect to an origin at r = 0. This allows to
uniquely identify the coefficients An of (4) as far field
amplitudes of the scattered wave. In order to see this,
first note that the far-field for a source at Rβ = (Rβ , θβ)
is

G(r −Rβ) ≈ G(r)e−ikRβ cos(θ−θβ). (10)

This approximation holds whether the Green’s function
is for the Helmholtz equation or for the Kirchhoff plate
equation. In both cases, the far-field response depends

only on the large argument approximation of H
(1)
0 (x).

The scattered far-field of the cluster follows from (2) and
(10) as

ψs(r) ≈ G(r)f(θ), (11)
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with the far-field radiation function

f(θ) =

N∑
β=1

Bβe
−ikRβ cos(θ−θβ). (12)

Alternatively,

f(θ) =

∞∑
n=−∞

Ane
inθ, (13)

where the infinite set of coefficients {An} is related to
the N coefficients {Bβ} by (5) with

Snβ = (−i)ne−inθβJn(kRβ). (14)

For a unit amplitude incident plane wave propagating
in the direction θ = 0 the radiation pattern function sat-
isfies the optical theorem18

Im f(0) = σsca + σabs, (15)

where the scattering cross-section σsca and absorption
cross-section σabs are defined in Eq. (A6). Further details
can be found in Appendix A. The cross-sections can also
be expressed directly in terms of the coefficients {An}
and {Bβ}, see Eq. (A8), leading to the explicit form of
the optical theorem

Im f(0) =
1

8Dk2
A†A +

N∑
α=1

(
− Im t−1

α )|Bα|2. (16)

We define the energy efficiency of a cluster as the ratio
of scattered to total input energy, which can be calculated
from the scattering and absorption cross-sections of Eqs.
(A6) as

η =
σsca
σext

=
σsca

σsca + σabs
. (17)

B. Inverse problem

In the inverse source problem we are given f(θ) and
seek the cluster that optimally reproduces this scatter-
ing pattern. The radiation pattern, defined by the co-
efficients {An} in the form (13), is infinite dimensional,
whereas the cluster comprises a finite set of N sources.
We define the error

E =

∫ 2π

0

∣∣∣∣∣∣
∞∑

n=−∞

(
An −

N∑
β=1

SnβBβ
)
einθ

∣∣∣∣∣∣
2

= ||A− SB||2, (18)

where ||X||2 = X†X with X† the Hermitian transpose of
vector X. Minimizing E for given A and S yields the
solution

B =
(
S†S

)−1
S†A, (19)

where
(
S†S

)−1
S† may be identified as the Moore-Penrose

inverse of S.
The approximated radiation pattern is f (N)(θ)

f (N)(θ) =

∞∑
n=−∞

A(N)
n einθ, (20)

where A
(N)
n , n ∈ Z, are the elements of

A(N) = SB

= PA, (21)

and the non-negative definite Hermitian matrix P is

P = S
(
S†S

)−1
S†. (22)

It is shown in Appendix B that the matrix P is infinite
dimensional but finite rank with N non-zero eigenvalues
equal to +1, see Eq. (B5). It therefore acts as a projec-
tion from the infinite dimensional space of far-field pat-
tern functions to the N−dimensional set of approximate
pattern functions: f(θ)→ f (N)(θ).

The optimal solution (21) yields an error

E = A†
(
A−A(N)

)
= ||A||2 − ||QA||2, (23)

where

Q =
(
S†S

)− 1
2S†. (24)

In practice we will be interested in the relative error
Erel = E/||A||2, i.e.

Erel = 1− A†A(N)

||A||2
. (25)

1. Invisibility?

Can the cluster be invisible, in the sense that there is
no scattered wave? Setting A to zero implies

0 = SB ⇒ S†SB = 0. (26)

Hence Bα = 0, and therefore tα = 0, meaning there
are no scatterers, the null solution. We conclude that
the inverse scattering cluster scheme does not provide a
useful route to invisibility or cloaking.

C. Inverse design algorithm

Based on the above findings, the inverse scattering de-
sign can be formulated as follows.

1. The N scatterer positions Rα, α = 1, . . . , N are
defined.
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2. The desired far field pattern f(θ) is specified, or
equivalently the set of far field modal amplitudes
{An, n ∈ Z} are given (see (13)).

3. Frequency (equivalently wavenumber k) is given.

4. The matrices S and P are evaluated (see (14),
(22)).

5. The source strengths Bα, the optimal approxima-

tion to the far field pattern f (N)(θ), i.e. {A(N)
n , n ∈

Z}, and the relative error Erel are calculated (see
(13), (19), (25)).

6. An incident wave field ψ0(r) is defined, and the par-
ticle impedances tα, α = 1, . . . , N , are calculated
(see (6)).

The first two items are geometrical, independent of
frequency and the incident wave. Once the frequency is
defined, the approximation f (N)(θ) to the scattered far
field is optimal in the sense of an N -dimensional solution
according to the setup, and it is independent of the inci-
dent field. The form of the incident wave, combined with
the source amplitudes Bα, defines the required particle
impedances tα in Eq. (6).

The inverse algorithm defines the configuration me-
chanical properties, i.e. the tα, for a given incident wave
ψ0. If the incident wave changes, then the new scattering
coefficients Bα are defined by the system of equations (3)
with the predetermined {tα}. Regardless of the incident
wave direction, the process remains reciprocal under the
interchange of incident and scattering directions.

The question that must be addressed is whether or
not all of the scatterer impedances satisfy the passivity
constraints (8a) or (8b).

IV. APPLICATIONS

A. Far field patterns and the matrix P

Two groups of cluster patterns are considered, namely
regular polygons, where scatterers are uniformly dis-
tributed over a circle, and finite lattices, where scatterers
are regularly distributed in a 2D finite grid. We describe
how different arrangements of the scatterers influence the
matrix P of Eq. (22) which defines the optimal approxi-
mation to the desired scattering pattern.

1. Scatterers on a regular polygon

Let us assume that the N scatterers lie on the circle of
radius R at θβ = 2πβ/N . We consider A corresponding
to each of the modes eimθ, m ∈ Z, so that ||A||2 = 1 and
E ≤ 1 with E � 1 indicating the desired scattering mode
is well approximated. The results of numerical experi-
mentation are as follows. For small kR relative to N , E is

small for modes m = 0,±1, . . . , N−1
2 if N > 1 is odd, and

for modes m = 0,±1, . . . , N−2
2 if N is even, with E ≈ 0.5

for m = ±N2 . The accuracy diminishes as kR increases.
In other words, for small kR the N unit eigenvalues of
P correspond to modes m = 0,±1, . . . , N−1

2 if N > 1 is
odd, with analogous association for N even. Since the
modes are multiply degenerate (all of eigenvalue unity)
it follows that any linear combination of these modes is
an eigenvector.

2. Scatterers on a finite square lattice

We now assume that the scatterers are distributed in a
square but finite lattice. The lattice is M ×M ≡ N with
lattice spacing a. For instance, with M = 3 and ka = 1
we find that the 9 eigenvectors of P of eigenvalue +1 span
the space Ω4 ≡ {eimθ, m = 0,±1, . . . ,±4}. This result is
arrived at by inspecting the error E for each mode, and
noting that it is small, on the order of 1e − 4 typically,
while higher modes have error of approximately unity.

However, for the same ka = 1 but the larger lat-
tice with M = 4 (N = 16) we find that the nontrivial
eigenspace is Ω5

⋃
Ω6,10 where Ω6,10 is a five dimensional

subspace formed from {eimθ, m = ±6, . . . ,±10}.

3. General properties of the P matrix

Numerical experiments on matrix P for different spa-
tial configurations of the clusters show that for large and
moderate kR there are exactly N eigenvalues of P with
values close to 1. For large kR, the corresponding eigen-
vectors (i.e. patterns of scattering modes of the cluster)
are highly irregular and sensitive to both kR and scat-
terers positions (while the number of eigenvalues of value
1 equals N). For kRc ≈ 0.5 and smaller, where Rc is the
characteristic size of the cluster, the eigenvalues of P be-
gin to differ and assume values other than 1. For kRc � 1
the number of nonzero eigenvalues reduces and low order
scattering patterns are preferred.

Some general remarks on the number of scatterers (N)
and scattering properties of the cluster can be formulated
as follows. The larger N , the larger number of cluster
modes, thus more complex scattering patterns can be re-
produced accurately. Large number of scatterers in the
cluster, on the other hand, may result in overconstraining
the minimization problem and lack of locally or globally
passive solutions. For moderate kRc typically the num-
ber of regular patterns (eigenvectors of P) is similar to
N , while more degenerate patterns and/or smaller num-
ber of similar eigenvalues (≈ 1) are observed for large or
small kRc.
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B. Scattering patterns

The inverse design of metaclusters is illustrated with
the scatterers arranged on regular polygons or square lat-
tices, as outlined in Sec. IV A. Here we present the tar-
get scattering patterns that will be later reproduced by
proper selection of passive impedances.

1. Uni- and bi-directional scattering patterns

Uni-directional scattering in the direction θ = θ0 cor-
responds to

f(θ) = C0δ(θ − θ0) ⇔ An =
C0

2π
e−inθ0 . (27)

A bi-directional scattering pattern is of the form f(θ) =
C0δ(θ − θ0) + C1δ(θ − θ1). We consider patterns that
are symmetric or anti-symmetric about the x−direction
(θ = 0), corresponding to θ1 = −θ0 and C1 = ±C0. We
may choose C0 = 1 with no loss in generality, and define

f±(θ, θ0) ≡ δ(θ−θ0)±δ(θ+θ0) ⇔ An =

{
1
π cosnθ0,
−i
π sinnθ0.

(28)
Examples of the uni- and bi-directional scattering pat-
terns are shown in Figs. 1a and 1b. .

2. Odd-pole patterns

Odd-pole patterns have p̄ scattering lobes directing en-
ergy towards that preferential directions. The odd-pole
scattering pattern and the corresponding An coefficients
are given as

f(θ) = sin
( p̄

2
θ′
)
⇔ An =

p̄ sin2
(
p̄
2 + n

)
π
2

π
((

p̄
2

)2 − n2
) (29)

where θ′ = θmod 2π is used to ensure that f(θ) is a
2π−periodic function.
a. A tripole For a tripolar pattern, p̄ = 3, there are

three main lobes spaced every 2/3π. An example of a
tripolar pattern is shown in Fig. 1c.

b. A pentapole Similarly, for p̄ = 5, a pentapole
scattering pattern is obtained. Figure 1d illustrates this
type of pattern.

3. A vortex

A vortex generates uniform constant amplitude pat-
tern with angle-dependent linearly changing phase be-
havior. The corresponding formulas for the vortex of
order p̄ ∈ Z are

(a) Uni-directional at 3/4π (b) Bi-directional
symmetric at 3/4π

(c) Tripole (d) Pentapole

(e) Vortex

FIG. 1: Examples of the target patterns. Solid lines are
normalized amplitudes, dashed lines are normalized
phases of the pattern functions (finite number of 81

modes in Eq. (13) was assumed).

f(θ) = eip̄θ ⇔ An = δnp̄. (30)

Directional characteristics of amplitudes and phases
for the vortex pattern are shown in Fig. 1e.

C. Full metacluster designs

Designing a metacluster requires finding all tα for a
given cluster topology and the desired scattering pat-
tern. The procedure outlined in Sec. III C is employed
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here to find tα. We first present metacluster scatter-
ing patterns corresponding to the desired patterns from
Sec. IV B, obtained for different clusters configurations.
Since the inverse procedure frequently leads to active par-
ticles, we next impose the condition (8b) to find locally
passive optimal metaclusters and present their scattering
responses. For all presented examples we introduce the
incident wave - without loss of generality - assumed to
be a plane wave in the −x direction (θ = π).

1. Scattering patterns for optimal metaclusters

Scattering patterns obtained for selected cluster
topologies are shown in Fig. 2. Very good agreement be-
tween the desired patterns of Fig. 1 can be seen, proving
the effectiveness of the design procedure. However, some
of the corresponding impedances - computed using the
inverse approach of Sec. III C - are active, hence require
energy supply. We next analyze and adopt the inverse
procedure for seeking only locally passive solutions.

2. An optimization problem for passive metaclusters

Our design objective is the set of point impedances
{tα, α = 1, . . . , N}. We aim at fulfilling the local passiv-
ity condition, Eq. (8b). Define

uα = t−1
α ,

pα = B−1
α ψ0(Rα),

sα = B−1
α

N∑
β=1

G(Rα −Rβ)Bβ ,

(31)

then Eq. (6) becomes uα = pα + sα, α = 1, . . . , N . Con-
sider plane wave incidence ψ0(r) = p0e

ik·r, for some
wavenumber k. There is a further degree of freedom that
has not been used. This could be considered as the am-
plitude and phase of the incident wave, i.e. the complex
number p0. Alternatively, if we fix p0 = 1, then there is
a similar degree of freedom in how we normalize the far
field pattern function f(θ). This has the effect of scal-
ing A and hence B by a complex number. This scaling
redefines pα but has no effect on sα of (31).

Therefore, with no loss in generality we assume the
incident wave has unit amplitude,

ψ0(r) = eik·r, (32)

and rewrite Eq. (6), the solution of the inverse problem,
to incorporate this added degree of freedom, as

uα = zpα + sα, α = 1, . . . , N. (33)

Here the complex number z defines the scaling of the pat-
tern function, which goes as z−1. The important point
is that z can be chosen arbitrarily; in particular, we use

(a) Uni-directional at 3/4π (b) Bi-directional
symmetric at 3/4π

(c) Tripole (d) Pentapole

(e) Vortex (f)

FIG. 2: Examples of the optimal far field patterns for
square 3× 3 and 4× 4 arrays (lattice spacing a) and
circular arrangements with 8 and 10 particles (radius
a), for ka = 1 based on Eqs. (20) and (21). Incidence

angle θ = π (the −x direction). For the vortex, Fig. 2e,
circular shapes are amplitude profiles while the spirals
in the center are phases of the scattering pattern. All

patterns are normalized.

it as an optimization parameter. The fact that the pat-
tern function amplitude is inversely proportional to |z| for
unit amplitude incident wave suggests that smaller |z| is
preferred for maximizing efficiency of energy conversion.

The optimization problem is as follows: given the N
complex numbers pα associated with the incident wave
and the N complex numbers sα associated with the point
sources, find z of Eq. (33) that ensures Imuα ≤ 0 for all
α. If this can be achieved then the optimal solution is
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Rα t−1
α t−1

α

ka = 1.9 ka = 2.8

(−0.50,−0.50) 0.0662 - 0.0050i 0.0438 - 0.0000i

(−0.50, 0.50) -0.0243 - 0.0000i 0.0214 - 0.0618i

(0.50,−0.50) 0.1120 - 0.0000i -0.0651 - 0.1138i

(0.50, 0.50) -0.0413 - 0.0316i -0.0524 - 0.0009i

TABLE I: The admittances t−1
α for the 2× 2 array of

passive particles sending the wave incident at θ = π into
the θ = 3/4π direction at two frequencies, see Figure 3.

the one with minimum value of |z|, ensuring maximum
amplitude for the pattern function. It might not be pos-
sible using the single complex number z to obtain all
of the complex numbers uα in the negative imaginary
half-plane. If this is not achievable in practical examples
then the constraint may be relaxed, for instance, to min-
imize the maximum instance of positive Imuα. Then the
”nearest” passive configuration can be identified by set-
ting Imuα to zero for those particles with positive Imuα.
Another alternative could be based on condition (8a), i.e.
when the metacluster is globally passive - meaning that
the net energy supplied to the cluster non-positive.

In cases where the search procedure for tα failed to find
locally passive metaclusters, a rigid rotation was applied
to the cluster (equivalent to changing the incidence angle)
and the search was repeated.

3. Example: A passive optimal metacluster for uni- and
bi-directional patterns

Numerical experimentation shows there are metaclus-
ter configurations for which the inverse impedance so-
lutions are all passive. Examples of the uni- and bi-
directional scattering patterns for a square lattice meta-
cluster are shown in Figure 2. More detailed investiga-
tions show that - for instance - a square array with lattice
parameter a designed to direct a wave incident from the
θ = π direction into a scattered wave preferentially di-
rected toward θ = 3/4π has totally passive solutions for
1.9 ≤ ka ≤ 2.8. The optimal passive admittances t−1

α

are frequency dependent, with values at the end of the
passive interval shown in Table I. The associated optimal
scattering patterns are shown in Figure 3. In all examples
we take a = 1 and D = 1.

The examples in Figure 3 and Table I are based on the
value of z in (33) for which the largest value of Im t−1

α is
zero. This optimizes the passive array in terms of its ef-
ficiency in converting the incident energy into a directed
far field pattern. The metacluster dissipates wave energy
but in a way that is most efficient among all passive op-
tions. For the cluster shown in Fig. 3, the values of the
efficiency parameter η of Eq. (17) are ηka=1.9 = 0.60 and
ηka=2.8 = 0.35.

(a) (normalized) Red:
pattern at ka = 1.9, blue:
pattern at ka = 2.8, black:

target pattern

(b) Displacement
magnitude at ka = 1.9

FIG. 3: The optimal pattern functions for the passive
2× 2 metacluster at two frequencies bounding a

bandwidth of passive designs, ka ∈ {1.9, 2.8}, (a), and
the corresponding displacement field generated at
ka = 1.9, (b). Admittances of the cluster are give in

Table I. The efficiencies of energy conversion are
ηka=1.9 = 0.60 and ηka=2.8 = 0.35.

Similarly, Fig. 4 shows a passive optimal 2 × 2 meta-
cluster that converts the incident plane wave into a sym-
metric bi-directional pattern. Although the metacluster
scattering pattern roughly approximates the desired far
field function, all admittances are purely real indicating
no dissipation in the system. Consequently, the energy
efficiency for this cluster is optimal, η = 1.

(a) (normalized) Red:
pattern at ka = 3.1, black:

target pattern

(b) Displacement
magnitude at ka = 3.1

FIG. 4: The optimal pattern function for the passive
2× 2 metacluster, (a), and the corresponding
displacement field generated at ka = 3.1, (b).

Admittances of the cluster are give in Table II. Energy
effiviency for this setup η = 1.

Further experimentation shows that obtained optimal
solutions are very sensitive to the scatterers’ positions
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Rα t−1
α

ka = 3.1

(−0.50,−0.50) -0.0038

(−0.50, 0.50) -0.0038

(0.50,−0.50) -0.0111

(0.50, 0.50) -0.0111

TABLE II: The admittances t−1
α for the 2× 2 array of

passive particles transforming the incident wave into a
bi-directional symmetric pattern at θ = 3/4π, see

Figure 4.

and impedances. Also, requirements of symmetric clus-
ters are overconstrained, most often resulting in at least
one active particle, especially for large number of parti-
cles N .

4. Example: A passive optimal metacluster for odd-polar
patterns

Analogously to the previous search, we look for optimal
passive clusters capable of generating a scattering tripole.
Figure 5 shows the target and the actual scattering pat-
terns for the tripole obtained for a square 2×2 cluster of
scatterers. The optimal positions and admittances of the
scatterers are shown in Table III. The admittances have
nearly the same passive damping properties. The cor-
responding displacement field pattern generated by the
metacluster is shown in Fig. 5. The energy conversion
efficiency is η = 0.17.

(a) (normalized) Red:
pattern at ka = 5.4, black:

target pattern

(b) Displacement
magnitude at ka = 5.4.

FIG. 5: The optimal pattern function for the passive
2× 2 metacluster, (a), and the corresponding
displacement field generated at ka = 5.4, (b).

Admittances of the cluster are give in Table III. The
energy efficiency parameter is η = 0.17.

Rα t−1
α

ka = 5.4

(0.50,−0.50) -0.0078 - 0.0211i

(−0.50,−0.50) 0.0029 - 0.0215i

(0.50, 0.50) -0.0078 - 0.0211i

(−0.50, 0.50) 0.0029 - 0.0215i

TABLE III: The admittances t−1
α for the 2× 2 array of

passive particles sending the wave incident at θ = π for
ka = 5.4 into the tripole pattern, see Figure 5.

Figure 6 shows a metacluster designed for generating a
pentapole pattern. The cluster consists of a circular ar-
rangement of five scatterers with optimal positions and
impedances listed in Table IV. Clearly, the cluster is lo-
cally passive. It is important to note that this meta-
cluster setup, resulting in nearly perfect pentapole (red
dashed line in Fig. 6a), has been obtained accidentally
when looking for the vortex-type scattering pattern (dif-
ferent than the pentapole pattern, see black solid line in
Fig. 6a). The latter is a consequence of relaxing the re-
quirement of enforcing the target phase of the scattered
field and indicates that much more complex scattering
patterns that are still locally passive may be obtained for
desired amplitude-only rather than amplitude-and-phase
target fields. This cluster also displays high energy con-
version efficiency with η = 0.84.

(a) (normalized) Red:
pattern at ka = 5.3, black:

target pattern

(b) Displacement
magnitude at ka = 5.3.

FIG. 6: The optimal pattern function for the passive
circular metacluster of five particles, (a), and the

corresponding displacement field generated at ka = 5.3,
(b). Admittances of the cluster are give in Table IV.

η = 0.84 for this cluster configuration.
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Rα t−1
α

ka = 5.3

(0.95, 0.31) 0.0007 - 0.0020i

(0.00, 1.00) 0.0009 - 0.0021i

(−0.95, 0.31) 0.0011 - 0.0020i

(−0.59,−0.81) -0.0045 - 0.0002i

(0.59,−0.81) 0.0064 - 0.0003i

TABLE IV: The admittances t−1
α for the five-element

circular array of passive particles sending the wave
incident at θ = π for ka = 5.3 into the pentapole

pattern, see Figure 6.

Rα t−1
α

ka = 5.5

(0.28,−0.65) 0.0683 - 0.0160i

(−0.65,−0.28) -0.0658 - 0.0068i

(0.65, 0.28) 0.0536 - 0.0341i

(−0.28, 0.65) 0.0676 - 0.01952i

TABLE V: The admittances t−1
α for the 2× 2 square

array of passive particles sending the wave incident at
θ = π for ka = 5.5 into the vortex pattern, see Figure 7.

5. Example: A passive optimal metacluster for a vortex
pattern

Finally, we present a locally passive metacluster capa-
ble of transforming the incident wavefield into the first-
order vortex, p̄ = 1, as shown in Fig. 7. It can be seen
from Fig. 7a that despite the amplitude pattern is not
perfectly preserved, the phase behavior (Fig. 7b) recovers
the linearly-dependent angular characteristic of the vor-
tex. Figures 7c and 7d show displacements and phases of
the wavefields generated by the metacluster. It is worth
noting that this relatively complex scattering pattern is
obtained by only four passive impedances. The cluster
efficiency is η = 0.14 for this setup, being a consequence
of moderate damping in all scatterers.

V. SUMMARY

We have shown that an inverse multiple scattering
method can be applied for the design of the radiation
patterns of clusters of scatterers. While the design pro-
cess is complex and passive solutions are not easy to find,
the approach has still more degrees of freedom to explore.
The specific case of flexural waves in thin elastic plates
has been considered, with the target problem of design-
ing the far field patterns, although it is easy to show that
near field patterns can also be considered. Similarly, the
multiple scattering formulation is not unique to flexural

(a) Magnitude
(normalized). Red: pattern
at ka = 5.5, black: target

pattern

(b) Phase (normalized).
Red: pattern at ka = 5.5,

black: target pattern

(c) Displacement
magnitude at ka = 5.5.

(d) Displacement phase at
ka = 5.5.

FIG. 7: The optimal pattern function for the passive
2× 2 metacluster: amplitude - (a) and phase - (b), and

the corresponding displacement field generated at
ka = 5.5: displacement magnitude - (c) and phase - (d).

Admittances of the cluster are give in Table V. The
energy efficiency is η = 0.14.

waves, and the approach introduced here can be easily ex-
tended to other classical waves, like optical or acoustical.
Further analysis using clusters of finite-size scatterers is
important for physical realization of the directivity effect.
While the analysis of such attachments requires intro-
duction of scattering matrices for each object, the struc-
ture of the framework proposed here remains unchanged
but becomes more involved. However, some simplifica-
tions can be made for low frequency approximations of
finite-size scatterers, reducing the infinite scattering ma-
trix to only several terms describing monopoles, dipoles,
etc. These issues are under current investigation, and
we expect to report on the acoustic analog in the near
future.

The proposed metaclusters can be considered a gener-
alization of the notion of a metagrating, where the inverse
design is performed in the amplitude of the diffraction
orders and the structures are periodic gratings. How-
ever, in contrast with the infinite number of scattering
elements in a metagrating, the present results are based
on clusters of very few scatterers. In light of the small
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number of elements employed, the scattering directivity
is remarkable in our opinion. With the alternative pre-
sented here we could design not only finite gratings but
also flat lenses, beam splitters and even cloaking devices.
We consider therefore that this work contributes to a
direction towards the design of passive devices for the
control of mechanic and electromagnetic energy.
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Appendix A: Plate equations and energy balance

The plate has thickness h, bending stiffness D (=
EI/(1−ν2)) and density ρ. Time harmonic motion e−iωt

is assumed, so that the flexural wavenumber k is defined
by k4 = ω2ρh/D. We assume there are N point scatter-
ers located at Rα with impedances tα, α = 1, 2, . . . , N .
The total displacement ψ satisfies

D
(
∆2ψ(r)− k4ψ(r)

)
=

N∑
α=1

tαψ(Rα)δ(r−Rα). (A1)

A generic attachment impedance t may be modeled as
single degree of freedom with mass M , spring stiffness κ
and damping coefficient ν. Two possible configurations
are

t =

{(
1

Mω2 − 1
κ−iων

)−1
, (a),

Mω2 − κ+ iων, (b).
(A2)

In case (a) the mass is attached to the plate by a spring
and damper in parallel. Model (b) assumes the mass is
rigidly attached to the plate, and both are attached to a
rigid foundation by the spring and damper in parallel.19

An important limit is a plate pinned at Rα, ψ(Rα) = 0,
which corresponds to t→∞. The (a) and (b) oscillators
could also be attached in parallel. e.g. on either side of
the plate, to give t = ta + tb.

The Green’s function is the particular solution ψ = G
for a single source of the form δ(r) on the right hand side
of (A1),

G(r) =
i

8k2D

(
H

(1)
0 (kr)−H(1)

0 (ikr)
)
. (A3)

The following identity may be found starting from the
plate equation (A1) using the procedure of Norris and

Vemula18 for the analogous case without source terms,

ImD

∫
∂A

(
ψ∗(r)∇∆ψ(r)−∆ψ(r)∇ψ∗(r)

)
· nd s

=

N∑
α=1

(Im tα)|ψ(Rα)|2. (A4)

Taking the limit as the bounding surface ∂A tends to
infinity, and using Eqs. (1), (11) and (32) yields

Im f(0) =

∫ 2π

0
|f(θ)|2 d θ

16πDk2
+

N∑
α=1

(Im tα)|ψ(Rα)|2. (A5)

Define

σext = Im f(0),

σsca =
1

16πDk2

∫ 2π

0

|f(θ)|2 d θ, (A6)

σabs =

N∑
α=1

(Im tα)|ψ(Rα)|2,

then the energy balance becomes

σext = σsca + σabs. (A7)

Note that

σsca =
1

8Dk2
A(P )†A(P ),

σabs =

N∑
α=1

(− Im t−1
α )|B(P )

α |2,
(A8)

where the infinite vector A(P ) and N−vector B(P ) are
the solutions for the passive set of impedances.

A sort of equivalent reasoning can be derived from Eq.
(6) by rewriting it in the matrix form

N∑
α=1

t−1
α |Bα|2 = B†ψ0 + B†GB, (A9)

where G = {G (Rα −Rβ)} and ψ0 = {ψ0 (Rα)}. From
(A9) we are interested only in the imaginary part, as
it defines the passive or active character of the cluster.
Note that the imaginary part of the quadratic form in
(A9) is B† Im (G)B and Im (G) ∝ J0, hence Im (G) is
real-valued and symmetric. Finally, for a globally passive
cluster we require

N∑
α=1

(
Im t−1

α

)
|Bα|2 = B† Im (G)B +

1

2

(
B†ψ0 −BTψ∗0

)
≤ 0. (A10)

Satisfying Im t−1
α ≤ 0 for all individual particles α cor-

responds to a locally passive metacluster. From Eq. (A1)
and (7) it may be noted that Bα is a complex force am-
plitude that acts on the plate. The passivity of a single
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scatterer can be seen through the Poynting vector - char-
acteristic of the direction of energy flow. Time-averaged
energy flow through the point at which a scatterer is
placed is

Φ = −1

2
Re
(
Bαψ̇

†
α

)
=

1

2
ωψ†αψα Im tα, (A11)

where for Im tα ≥ 0 we have Φ ≥ 0, so energy flows
from the plate towards the scatterer, i.e. the scatterer is
passive. Φ can be seen as the power absorbed by the
scatterer.

Appendix B: Some matrix properties

It follows from the definition of S in (14) and Graf’s
addition theorem for Bessel functions, Eq. (9.1.79) of
Abramowitz and Stegun,20 that S†S simplifies to

(
S†S

)
αβ

=

∞∑
n=−∞

Jn(kRα)Jn(kRβ)ein(θα−θβ)

= J0(kRαβ) (B1)

where Rαβ = |Rα − Rβ |. Note that J0(kRαβ) ≈ 1 at
low frequency, indicating that S†S becomes singular in
this limit. Numerical examples shows this in terms of
the matrix condition number which becomes large at low
frequency.

The N × N matrix S†S is therefore real, symmetric
and non-negative definite, and can be expressed

S†S =

N∑
α=1

λαuαu
†
α (B2)

with positive eigenvalues λα > 0 and normalized eigen-
vectors of length N , u†αuβ = δαβ . Using (B2) in the
definition of P, Eq. (22), yields

P =

N∑
α=1

λ−1
α VαV

†
α (B3)

where the infinite dimensional vectors Vα are

Vα = Suα, α = 1, . . . , N. (B4)

These are orthogonal, V†αVβ = λαδαβ , but not orthonor-
mal. We define the orthonormal set

Uα = λ−1/2
α Suα, α = 1, . . . , N, (B5)

so that P is in canonical form,

P =

N∑
α=1

UαU
†
α. (B6)

Hence P is finite rank with N non-zero eigenvalues
equal to +1. Alternatively, P is a projection onto the
N−dimensional subspace span{Uα, α = 1, . . . , N}, and
satisfies the projector property

P2 = P. (B7)

We note some other properties of P and related ma-
trices. Multiplying (22) on the right by S and on the left
by S† gives

PS = S, S†P = S†. (B8)

The fundamental matrix S of (14) has an interesting form
in terms of the finite and infinite dimensional normalized
eigenvectors:

S =

N∑
α=1

λ1/2
α Uαu

†
α. (B9)

The Moore-Penrose inverse of S is

(
S†S

)−1
S† =

N∑
α=1

λ−1/2
α uαU

†
α. (B10)

Similarly, the matrix Q of (24) is

Q =

N∑
α=1

uαU
†
α. (B11)

It follows from this, or from its definition in (24), that
the matrix Q satisfies

Q†Q = P, QQ† = IN (B12)

where IN is the identity on span{Uα, α = 1, . . . , N}
Finally, the physical vectors for the far field pattern

function and source strengths of Eqs. (21) and (19) are,
respectively,

A(N) =

N∑
α=1

aαUα,

B =

N∑
α=1

bαuα,

(B13)

where

aα = U†αA, bα = λ−1/2
α aα. (B14)
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