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We study frequency fluctuations in self-sustained oscillators based on nonlinear underdamped
resonators. An important type of such resonators are nano- and micro-electro-mechanical systems.
Various noise sources are considered, with the emphasis on the fundamentally unavoidable noise that
comes along with dissipation from the coupling to a thermal reservoir. The formulation in terms of
the action-angle variables of the resonator allows us to analyze a deeply nonlinear regime. In this
regime the vibration frequency as a function of the action can have an extremum. We show that
frequency fluctuations can be strongly reduced by choosing the operation point at this extremum.
We suggest a practical implementation of a nanoresonator that has the appropriate property and
show explicit results for the corresponding model.

I. INTRODUCTION

Self-sustained oscillations underlie the operation of a
wide range of systems, various types of clocks, frequency
generators, and lasers being familiar examples. One of
the most important problems of the physics and appli-
cations of these systems is frequency fluctuations. Many
aspects of this problem are common for different types
of vibrational systems. To be specific, in this paper we
are motivated by and will discuss frequency fluctuations
in the context of nano- and micro-electro-mechanical sys-
tems (NEMS and MEMS), although the results are not
limited to these systems. During the past decades there
have been developed various types of NEMS and MEMS,
which are mechanical resonators with eigenfrequencies ly-
ing in a broad range from 104 to 109 Hz. The vibrational
eigenmodes often have a high quality factor Q, given by
the ratio of the eigenfrequency to the energy decay rate;
even at room temperaturesQ can be as large as 8×108 [1].
These features enable numerous applications of NEMS
and MEMS, including various applications that require
compact frequency sources, cf. [2, 3].

NEMS and MEMS are mesoscopic systems: they are
large on the atomic scale, but at the same time they are
small. Therefore their vibrational modes often exhibit
significant levels of nonlinearity and relatively strong
fluctuations, cf. [4–7]. An important part of these fluc-
tuations comes from the thermal noise that emerges be-
cause of the coupling of the modes to other degrees of
freedom, which form a thermal reservoir. Thermal noise
is an unavoidable source of fluctuations, because it nat-
urally comes along with dissipation and is related to the
decay of the modes by the fluctuation-dissipation the-
orem. This noise directly leads to fluctuations of the
phases (and ultimately the frequencies) of the modes.

Another important source of frequency fluctuations
due to thermal noise comes from the interplay of this
noise with the nonlinearity of the vibrational modes. In-
deed, the nonlinearity leads to the dependence of the vi-

bration frequency on the energy, or equivalently, on the
vibration amplitude. Because of the noise, the amplitude
fluctuates in time, resulting in frequency fluctuations. A
well-known manifestation of this effect is the characteris-
tic broadening of the power spectrum of the vibrational
modes and, consequently, of the spectrum of the response
to an external field [8]. In nanoscale vibrational systems,
such broadening has been studied in detail in several ex-
periments, cf. [9–16] and references therein.

To perform self-sustained vibrations, a resonator has to
be complemented by an amplifying feedback loop. The
amplifier determines the vibration amplitude. It is well
known, cf. [17–19] that, for a linear resonator, the inten-
sity of frequency fluctuations induced by thermal noise
scales as the inverse squared vibration amplitude. Sup-
pressing the fluctuations requires exciting the resonator
to comparatively large amplitudes. However, if the vi-
bration nonlinearity comes into play, fluctuations of the
vibration amplitude make an increasingly important con-
tribution to fluctuations of the vibration frequency. A
conventional strategy for alleviating this effect is to en-
gineer resonators that remain linear in a comparatively
broad amplitude range, cf. [20–22].

A qualitatively different approach aimed at suppress-
ing the noise from the feedback loop was pioneered by
Greywall et al. [23, 24] and was later extended in
Refs. 25–28. This approach exploits the bistability of
the response of the nonlinear resonator to a resonant
drive and the possibility to tune this resonator to a
specific point on the response curve. Yet another ap-
proach is based on using coupled modes [29], including
nonlinear resonance in coupled modes [30, 31]. Besides
frequency sources, suppressing frequency fluctuations is
critically important for many other applications of NEMS
and MEMS, from mass sensing, cf. [32–35], to various
force measurements, including measurements of magnetic
forces, cf. [36–39].

In this paper we show that, if the nonlinearity of a
weakly damped resonator meets certain fairly general
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conditions, it can be used to suppress the amplitude-
to-frequency noise conversion in a well-defined range of
comparatively large vibration amplitudes [40]. The ex-
tent of the suppression and the frequency range can be
controlled, as we show on a simple example. This al-
lows one to operate the resonator in an optimal regime
in terms of reducing both the small-amplitude and the
conventional large-amplitude frequency fluctuations.

FIG. 1. Sketch of the types of noise that lead to frequency
fluctuations and the ways of suppressing them.

The idea of the approach is based on the observation
that the eigenfrequency of a resonator may depend on
the vibration amplitude nonmonotonically. Near the ex-
trema of this dependence small amplitude fluctuations
are not translated into frequency fluctuations. An inter-
esting manifestation of the effect of the nonmonotonicity
in open systems, i.e., in the absence of a feedback loop,
is the noise-induced narrowing of the power spectrum
[41]. Here, the width of the spectrum of a nonlinear vi-
brational mode first increases with the increasing noise
intensity, but then decreases, before it ultimately starts
increasing again. In a micromechanical system this effect
was recently observed by Huang et al. [15].

The analysis below uses the fact that the vibrational
mode is strongly underdamped, i.e., the vibration fre-
quency largely exceeds the decay rate. Respectively, the
amplification is also weak, in the appropriate units, as it
only needs to compensate the weak damping. In contrast
to much of the previous work on NEMS and MEMS, it
is not assumed that the nonlinearity is weak and the vi-
bration frequency as a function of the amplitude remains
close to its zero-amplitude value. The analysis extends
to the case where the frequency at the extremum of its
amplitude dependence may be singificantly different from
its zero-amplitude value. In many systems, such a notice-
able change of the vibration frequency is not accompa-
nied by generating strong overtones, as will be seen in
the example we discuss. Moreover, the amplifier in the
feedback loop can be an efficient frequency filter, which

will suppress overtones at the output of the system.

Technically, the approach is based on separating dy-
namical time scales, in the spirit of the method of averag-
ing [42, 43]. Since the vibration frequency is much higher
than the rate at which the oscillator amplitude changes,
one can calculate the amplitude change by averaging the
equations of motion over the amplitude-dependent vibra-
tion period. A more general and insightful way to do this,
which we follow, is to describe the vibration dynamics in
terms of action-angle variables. Importantly, the separa-
tion of time scales also strongly simplifies the analysis of
fluctuations, as the system is susceptible to the noise in
comparatively narrow frequency intervals centered at the
vibration frequency and, generally, its overtones, includ-
ing zero frequency.

The goal of the paper can be understood from the
schematic of the fluctuation suppression in Fig. 1. We
consider a basic model of an oscillator that consists of
a resonator and a feedback loop. The resonator has a
vibrational mode with a high quality factor Q. The os-
cillations of this mode are the output of the system. A
part of the output is amplified, transformed by the feed-
back loop, and fed back as a resonant force that drives
the vibrational mode. In addition, there is noise that also
drives the mode and leads to fluctuations of the vibration
frequency. This noise includes the internal noise of the
resonator and the noise from the feedback loop.

The relevant types of the noises and the ways to sup-
press them are sketched in Fig. 1. The noises have dis-
tinct sources, and therefore different spectra and statis-
tics. The dissipation-related resonator noise usually has
a broad spectrum with the width exceeding the vibra-
tion frequency. This noise is unavoidable, as mentioned
above. However, there is also a low-frequency noise,
which comes primarily from defects in the system and di-
rectly affects the frequency, cf. [6] and references therein.
Similarly, the noise from the feedback loop can have both
broad-band and low-frequency components, the phase-
shift noise being an example of the latter. Importantly,
both the resonator and the amplifier noises cause fluc-
tuations in the vibration amplitude and thus the action
variable of the vibrational mode, which transform into
frequency fluctuations in a nonlinear resonator. It is
the way of suppressing this transformation, and thus re-
ducing the effect of the broad-band (in particular, the
dissipation-related thermal) noise, that we consider.

In Section II we formulate the problem and describe
the model of the resonator. In Section III we describe
the deterministic dynamics in terms of the action-angle
variables and derive the equations motion for the period-
averaged action and phase. In Sec. IV we discuss the
noise terms in these equations. In Sec. V the equations
for the action and the phase are linearized near the sta-
ble vibrational state and small fluctuations about this
state are considered. In Sec. VI the action (or ampli-
tude) dependence of the fractional frequency fluctuations
is discussed and the proposed means of suppressing these
fluctuations is described. Section VII uses a simple ex-
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ample to illustrate the efficacy of the proposed method
of suppressing frequency fluctuations. Section VIII con-
tains concluding remarks.

II. THE MODEL

The major element of the oscillator is a weakly damped
vibrational mode which we assume to be a mode of a
micro- or nano-mechanical resonator. The mode is to
be operated at amplitudes well beyond its linear dy-
namic range. Various sources of nonlinearity of vibra-
tional modes in NEMS and MEMS have been identified
[44, 45]. The mode dynamics can be described as the
dynamics of a particle with mass M , coordinate q, and
momentum p vibrating in a potential U(q), so that the
Hamiltonian of the system has the form

H =
p2

2M
+ U(q). (1)

If the mode were isolated, it would perform vibra-
tions with constant energy. However, the underlying
NEMS/MEMS mode is coupled to other degrees of free-
dom of the resonator and the surrounding medium, which
serve as a thermal reservoir. Therefore the energy is not
conserved. Energy dissipation can be described by a fric-
tion force L(q, p) that slows down the motion and breaks
time-reversal symmetry. A simple familiar example of
such force is viscous friction, L(q, p) = −2Γp. However,
generally the force is retarded [46, 47]. The form of the
force depends on the underlying microscopic mechanism.
Several such mechanisms have been proposed for differ-
ent MEMS and NEMS modes, see [48–54] and references
therein.

We consider the case where the resonator quality fac-
tor, Q, is large, which implies a small dissipation rate.
Slow dissipation is advantageous in several respects, in-
cluding the reduction of the frequency noise due to ther-
mal fluctuations; MEMS and NEMS used for making os-
cillators usually have a large Q factor. For Q � 1 the
nonlinear mode is sensitive primarily to excitations of the
thermal reservoir in a narrow interval centered at the vi-
bration frequency, and possibly its overtones. Therefore,
on the time scale long compared to the vibration period,
the retardation of the friction force can be disregarded,
as first shown for a harmonic oscillator [55] and later ex-
tended to weakly nonlinear vibrations [56].

Sustaining vibrations of the oscillator requires com-
pensating the energy dissipation. This is achieved by
adding a feedback loop that incorporates an amplifier
and a phase shifter. In the equation of motion, we will
model the force that provides the energy gain due to the
amplified feedback by a gain force G(q, p).

In addition, there are various other perturbations act-
ing on the vibrational mode, which we lump into a force
f(q, p)ξ(t). Here ξ(t) is a random function of time which
models internal and external noises. The vector notation
is used here not for different spatial components, but

rather to indicate that there are different components of
the noise that come from physically distinct sources, cf.
Fig. 1. Generally, these components are statistically in-
dependent. They drive the system directly as a force [the
“additive” noise [57]] and modulate the parameters of the
system, so that the overall random force depends on the
dynamical variables q, p. This dependence is described by
the weighing factor f(q, p). The (q, p)-dependent weights
of the noise components, which are given by the compo-
nents of the vector f , are generally different.

With these three forces, the equation of motion of the
system reads,

q̇ = p/M,

ṗ = −∂qU +G(q, p)− L(q, p) + f(q, p)ξ(t). (2)

Again, we emphasize that the retardation in L(q, p) and
f(q, p) is disregarded conditionally, keeping in mind the
description of the dynamics on the slow time scale, which
is given in Sec. III. Respectively, the forces L and G are
small compared to the characteristic values of the restor-
ing force |∂qU |. Since L is small, only small G is required
to sustain oscillations. The noise ξ(t) is assumed to be
weak. This means that the noise-induced variances of the
vibration amplitude and frequency are small compared to
the squared amplitude and frequency, respectively. We
further assume that the noise ξ(t) is zero-mean and sta-
tionary, 〈ξ(t)ξ(t′)〉 is a function of t−t′ only, and similarly
for higher-order correlators.

III. ACTION-ANGLE VARIABLES

We are interested in the regime where the vibrations
of the mechanical system are nonlinear. They are al-
most periodic, for weak noise, but generally are nonsi-
nusoidal. It is convenient then to describe the dynam-
ics of the system in terms of its action-angle variables,
I = (2π)−1

∮
p dq and φ = (∂/∂I)

∫ q
p dq′. For a Hamil-

tonian system, Eq. (1), the transformation from (q, p)
to (I, φ) is a standard canonical transformation of me-
chanics [58]. If the conservative system has energy E,
its vibration frequency ω(I) is ∂I/∂E = ω−1(I); in such
a system the action variable remains constant, whereas
dφ/dt = ω(I). The coordinate and momentum are func-
tions of I, φ, with q(I, φ) and p(I, φ) being 2π-periodic
in φ.

For a harmonic mode, ω(I) is a constant, ω(I) = ω(0).
For a conservative system, the typical scale Inl of the
action variable I where the vibration nonlinearity is pro-
nounced is given by the condition

|ω(Inl)− ω(0)| ∼ ω(0).

In what follows we choose a constant in φ so that
p(I, nπ) = 0 for integer n. With this choice, since q
and p are, respectively, even and odd functions of time
in a conservative system, q(I, φ) and p(I, φ) are even and
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odd in φ. This means that in the Fourier series

q(I, φ) =
∑
n

qn(I)einφ, p(I, φ) =
∑
n

pn(I)einφ (3)

we have qn = q−n = q∗n and pn = −p−n = −p∗n.
In the variables I, φ the equations of motion (2) be-

come

İ = (∂φq)[G− L+ f(q, p)ξ(t)],

φ̇ = ω(I)− (∂Iq)[G− L+ f(q, p)ξ(t)]. (4)

Equations (4) explicitly show that, if G, L, and f are
small then, over the vibration period 2π/ω(I), the action
I changes only slightly and the increment of the phase
is close to 2π, on average. In fact this is what we mean
by the dissipation, gain, and noise being weak. The ef-
fect of G,L, and f therefore accumulates on times much
larger than the vibration period. To describe the effect
of dissipation and gain, we note that, with q, p expressed
as functions of I and φ, the terms containing G(q, p) and
L(q, p) are periodic in φ. They can be written as sums
of terms ∝ exp(inφ). The terms with n 6= 0 oscillate in
time with period 2π/ω(I). Therefore the effect of these
terms does not accumulate.

To describe the long-term dynamics we can average
over φ the regular terms in Eqs. (4) and rewrite these
equations as

İ ≈ (∂φq)[G(q, p)− L(q, p)] + ξI(I, t),

φ̇ ≈ ω(I)− (∂Iq)[G(q, p)− L(q, p)] + ξφ(I, t), (5)

where the overline means averaging over φ,

V (I, φ) = (2π)−1
∫ 2π

0

dφV (I, φ).

The functions ξI(I, t) = {(∂φq)f(q, p)ξ(t)}φ and
ξφ(I, t) = −{(∂Iq)f(q, p)ξ(t)}φ are the noise terms. The
curly brackets {. . .}φ indicate that the correlators of the
corresponding noise terms are averaged over φ, and there-
fore we write these terms as functions of I and t. This
issue is discussed in more detail below.

Prior to discussing the noise terms we note that, if we
disregard fluctuations, Eq. (5) shows that both I and

φ̇ − ω(I) vary on the time tr, which is determined by
the characteristic reciprocal values of G and L. It is on
the time scale tr that we can disregard both the retar-
dation of the backaction from the thermal reservoir (cf.
Refs. [59, 60] and references therein) and the delay of the
feedback loop; see also Sec. VII C. In addition, it is as-
sumed that the correlation time of the thermal reservoir
is small compared to tr.

In Eq. (5), the terms −(∂φq)L(q, p) and (∂φq)G(q, p)
describe, respectively, the energy loss due to the coupling
to the thermal reservoir and the energy gain due to the
amplifier. The terms −(∂Iq)L(q, p) and (∂Iq)G(q, p), on
the other hand, describe the corresponding shifts of the
vibration frequency. Overall, for underdamped systems,

the formulation in terms of the action-angle variables is
advantageous, as it does not require the knowledge of the
shape of the limit cycle in the phase space of the oscillator
used in other approaches [26, 61].

IV. THE STRUCTURE OF THE NOISE TERMS

The noise terms in Eqs. (4) can be generically written

in the form
∑
n f̃n(I) exp(inφ)ξ(t). The functions f̃n are

the Fourier components of ∂φq f and ∂Iq f in the equa-

tions for İ and φ̇, respectively; here we are interested in
the structure of the noise terms and do not discuss their
specific form. Different components of the noise ξ(t) have
different power spectra and possibly different statistics.
Some of them, like the thermal noise that comes along
with the regular force L, have a broad spectrum, with a
correlation time tcorr � tr. We will denote this broad-
band noise by ξbb(t) and the corresponding weighing fac-

tors by f̃
(bb)
n (these factors are different for İ and φ̇). In

the average values 〈f̃ (bb)n

(
I(t)

)
einφ(t)ξbb(t)〉, the oscillat-

ing terms will be filtered out by the oscillator. Therefore
these averages depend on I(t), but not on φ(t). They can
be included in the noise-independent terms in Eq. (5), so
that the broad-band part of the noise will have zero mean.

The pair correlation functions of the corresponding
noise components are sums over n,m of the terms

〈f̃ (bb)n

(
I(t)

)
einφ(t)ξbb(t)f̃ (bb)m

(
I(t′)

)
eimφ(t

′)ξbb(t′)〉.

In these sums one should keep only smooth terms with
n = −m. Over the noise correlation time tcorr the
value of I(t) changes very little, I(t) ≈ I(t′). There-
fore one can write the pair correlator as a sum of the

terms 〈|f̃ (bb)n

(
I(t∗)

)
|2 cos[nω

(
I(t∗)

)
(t − t′)]ξbb(t)ξbb(t′)〉

with t∗ = (t + t′)/2. These terms do not contain the
phase φ. Higher-order correlators related to the broad-
band noise can be analyzed similarly, they are also inde-
pendent of φ.

We now discuss the low-frequency noise ξlf(t), with
the correlation time tcorr that largely exceeds the vibra-
tion period 2π/ω(I) and can exceed the relaxation time

tr. In the Fourier series
∑
n f̃

(lf)
n exp(inφ), for the weigh-

ing factor f̃ (lf) one should keep only the slowly varying

terms, i.e., the noise can be written as f̃
(lf)
0

(
I(t)

)
ξlf(t).

The Fourier components f̃
(lf)
n exp(inφ) with |n| > 0 are

filtered out. We can again include 〈f̃ (lf)0

(
I(t)

)
ξlf(t)〉 into

the noise-independent terms in Eq. (5) and thus assume
that the low-frequency part of the noise has zero mean.

The above analysis shows that both the broad-band
and the low-frequency components of the noise can be
written as functions of I and t that do not contain the
phase. This justifies writing the noise terms in Eq. (5) as
ξI(I, t) and ξφ(I, t). Since ω(I) � 1/tr, these two types
of noise essentially include all physically relevant noises
that drive the mode.
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In physical systems, an important type of the broad-
band noise is the previously mentioned thermal noise
that comes from the coupling to a thermal reservoir and
is attendant to the dissipative force L(q, p). A broad-
band noise can come also from external sources. Typi-
cally a broadband noise is well approximated by an ad-
ditive force, i.e., the function f (bb) that multiplies ξbb(t)
in Eq. (2) can be assumed to be independent of q, p. The
components of f (bb) can be set equal to unity by rescal-
ing ξbb(t). The terms proportional to the powers of q, p
in f (bb) are often small. If such terms are not important,
we can write the broadband components of the noises in
Eq. (4) as

ξ
(bb)
I (I, t) = ∂φqξbb(t), ξ

(bb)
φ (I, t) = −∂Iqξbb(t). (6)

However, if nonlinear friction in the resonator is signif-
icant, cf. Refs. [54, 62–65], one should take into ac-
count a q-dependent component of the broadband noise
[56]. This can be done by replacing in Eq. (6) ξbb(t) →
ξbb(t) + qξ

(nl)
bb (t). The noise component ξ

(nl)
bb (t) can

be often assumed statistically independent from the q-
independent part of the broad-band noise.

The components of the low-frequency noise that are
not multiplied by q or/and p are filtered out by the os-
cillator. Therefore, in the analysis of the low-frequency
noise one should take into account the dependence of
f (lf) in Eq. (2) on the dynamical variables of the oscilla-
tor. It should be noted that, generally, the power spec-
trum of the broadband noise ξbb(t) may be nonzero at
zero frequency. When the corresponding noise compo-
nent is multiplied by a φ-independent part of ∂Iq(I, φ),
it contributes to the noise ξφ(I, t). We incorporate this
contribution into the low-frequency phase noise.

V. FLUCTUATIONS ABOUT THE STABLE
VIBRATIONAL STATE

A. Noise-free regime

Of primary importance in terms of the operation of
the oscillator are the time-independent solutions Ist and
φ̇ ≡ Ω of Eq. (5) in the absence of fluctuations. These
solutions are given by the equations[

(∂φq)[G(q, p)− L(q, p)]
]
I=Ist

= 0, (7)

Ω ≡ Ω(Ist) = ω(Ist)−
[
(∂Iq)[G(q, p)− L(q, p)

]
I=Ist

.

(8)

The values of Ist and Ω give the operation point of the os-
cillator. They determine the amplitude of the vibrations
and their frequency. In the considered slow decay/weak
amplification case |Ω−ω(Ist)| � Ω. Note that there may
exist multiple steady states but here we focus on one sta-
ble steady state and do not discuss the effects related
to switching between the stable states. Generally, the
vibrations in a stable state are nonsinusoidal, i.e., q(t)
and p(t) have components that oscillate at the overtones
of Ω. However, as mentioned above, in many cases of
interest, including the practically important example we
show below, these components are small and fall off ex-
ponentially with the increasing number of the overtone
[the exponent is determined by the imaginary part of the
time t where q(t), p(t) have singularities as functions of
the complex time for the conservative motion, cf. [58]].

B. The low-frequency power spectra of the
dynamical variables

We assume that the noise is weak. This means that
the root mean square fluctuations of the action about
its stationary value are small compared to Ist, and also
that the variance of the phase that accumulates over the
period 2π/Ω is small compared to 2π. For a weak noise,
one can analyze the oscillator dynamics by expanding the
regular parts of Eq. (5) about Ist,

δİ ≈ −α(Ist) δI + ξI(Ist, t)

φ̇ ≈ Ω(Ist) + β(Ist) δI + ξφ(Ist, t), (9)

where α(I) = d
[
(∂φq)(L−G)

]
/dI and β(I) =

dΩ(I)/dI. The stable operation of the oscillator requires
that α(Ist) > 0. The previously introduced relaxation
time of the oscillator is tr = 1/α(Ist). We note that this
time differs from the relaxation time of small-amplitude
vibrations of the nano- or micromechanical system on
which the oscillator is based. However, at least for a
not too large amplitude, these parameters have the same
order of magnitude.

Conventional characteristics of fluctuations in the os-
cillator are the power spectrum of the intensity fluctu-
ations SI(ω) and the power spectrum of the fractional
frequency fluctuations Sy(ω), where the fractional fre-
quency is defined in terms of the time derivative of the
vibration phase as [66]

y(t) = [φ̇− Ω(Ist)]/Ω(Ist). (10)

From Eq. (9) we see that these power spectra are simply expressed in terms of the power spectra of the noise
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components,

SI(ω) =

∫ ∞
−∞

dteiωt〈δI(t)δI(0)〉 =
1

α2(Ist) + ω2
ΞII(Ist, ω),

Sy(ω) =

∫ ∞
−∞

dteiωt〈y(t)y(0)〉 = Ω−2(Ist)
[
Ξφφ(Ist, ω) + β2(Ist)SI(ω) + 2β(Ist)Re

{
ΞIφ(Ist, ω)/[α(Ist) + iω]

}]
, (11)

where

Ξµν(I, ω) =

∫ ∞
−∞

dteiωt〈ξµ(I, t)ξν(I, 0)〉 (12)

with µ, ν standing for I and φ.
Of interest for understanding the frequency stability

are the power spectra at low frequencies ω � Ω. They
characterize the slow fluctuations of the amplitude and
frequency of the self-sustained vibrations. The variances
of the action and the fractional frequency, respectively,
are

〈δI2〉 =
1

2π

∫
SI(ω)dω, 〈y2〉 =

1

2π

∫
Sy(ω)dω. (13)

It follows from Eqs. (4) and (6) that the dominant
contribution to the noise spectrum ΞII(ω) that deter-
mines SI comes from the broadband noise. If the ran-
dom force ξbb(t) has a smooth power spectrum around
the frequency Ω(Ist) and its overtones, as is usually the
case, the function ΞII(ω) depends very weakly on ω for
ω � Ω(Ist), t

−1
corr. Therefore

〈δI2〉 ≈ [2α(Ist)]
−1ΞII(Ist, 0). (14)

In many cases of interest for NEMS and MEMS, includ-
ing the example below, the decay rate of the action α(I)
is a smooth function that does not vary much with I in
the range of interest. The major dependence of the ac-
tion fluctuations on I is then determined by the factor
ΞII(I, 0). As seen from Eq. (6), the broadband contri-

bution Ξ
(bb)
II (I, ω), which is the leading contribution to

ΞII(I, ω), in the range of small I scales as

Ξ
(bb)
II (I, ω) ∝ (∂φq)2 ∝ I ∝ A2, I � Inl, (15)

where A is the vibration amplitude. This expression is
familiar for thermal noise in a damped harmonic oscilla-
tor and is, ultimately, a consequence of the equipartition
theorem for such an oscillator. The analysis of the de-
pendence on I of the power spectrum of the fractional
frequency fluctuations is more complicated and will be
described in the next section.

VI. FRACTIONAL FREQUENCY
FLUCTUATIONS

It is seen from Eq. (11) that there are three contribu-
tions to the power spectrum of the fractional frequency

fluctuations. One comes from the phase noise, Ξφφ(I, ω),
the other comes from the action (and thus vibration am-
plitude) fluctuations, SI(ω), and the third one from the
interference of the first two. In turn, the phase noise
spectrum has a contribution from both the broad-band
and the low-frequency noise. The former contribution,

Ξ
(bb)
φφ (I, ω), which includes that from the thermal noise

related to the dissipation, is often considered as the ulti-
mate lower (“fundamental”) limit on the frequency noise
intensity [4, 6, 32, 67]. As seen from Eq. (6), this inten-
sity is ∝ (∂Iq)

2. For a linear oscillator, this parameter
falls off with the increasing vibration amplitude A ∝ I1/2
as

Ξ
(bb)
φφ (I, ω) ∝ (∂Iq)

2 ∝ I−1 ∝ A−2, I � Inl. (16)

It is this relation that imposes a restriction on the vibra-
tion amplitude from below in order to have an apprecia-
ble frequency stability. The relation ∂Iq ∝ I−1/2 does
not apply for large amplitudes where the vibrations are
significantly nonlinear. However, quite generally |∂Iq|
falls off with increasing amplitude, as will be seen in the
example below.

In contrast, the contribution to Ξφφ(I, ω) from the low-
frequency noise does not necessarily fall off with increas-
ing amplitude. This is clear already from the simplest
example of the low-frequency noise which corresponds to
fluctuations of the mode eigenfrequency ω0. Here the
force component in Eq. (2) is f (lf)(q, p) ∝ q. Then the

phase noise is ξ
(lf)
φ ∝ q∂Iq. The intensity of this noise is

independent of the vibration amplitude for a linear os-
cillator and in many models becomes weakly amplitude-
dependent for a moderately strong nonlinearity. The way
of decreasing this noise depends on its source. For exam-
ple, one component of this noise comes from scattering of
thermal excitations off the considered vibrational mode,
the mechanism known for impurity vibrations in solids
[68, 69]. We note that the coupling to a thermal reser-
voir that leads to the nonlinear friction discussed below
also leads to this noise [54]. The intensity of this noise
depends on the geometry of the resonator and decreases
with decreasing temperature. Another important source
are two-level systems [6, 70–73]. The noise from two-level
systems can be reduced by using single-crystal resonators
and improving the surface quality.

Yet another source of the frequency fluctuations is the
amplifier noise. Generally both the phase and the am-
plitude of the signal from the amplifier are fluctuating.
Greywall et al. [23] showed that the effect of the fluctua-
tions of the amplifier phase can be eliminated by tuning
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the weakly nonlinear and weakly damped resonator to the
cusp (codimension two) bifurcation point of the nonlin-
ear resonator response to a sinusoidal drive. Later Kenig
et al. [26] considered the reduction of the effect of the
feedback-loop noise where both the amplification and the
phase lag are fluctuating. The success of this approach
is highly sensitive to how the amplifier operates.

In contrast, here we are interested in reducing the un-
avoidable noise that comes along with dissipation because
of the coupling to a thermal reservoir. Respectively, of
central interest is the contribution to the frequency noise
given by the term β2(Ist)SI(ω) in Eq. (11). This con-
tribution comes from the fluctuations of the action, or
equivalently, of the vibration amplitude. From Eqs. (6)
and (14), where there is no nonlinear friction, the de-
pendence of the noise intensity ΞII(0) on the action I is
given by the factor (∂φq)

2. For I � Inl, where the oscil-
lator is weakly nonlinear, this factor is ∝ I. It usually
also increases with increasing I where the nonlinearity
is not small. It is this increase that does not allow one
to suppress the contribution of the broadband noise to
Ξφφ by just increasing the vibration amplitude. It there-
fore imposes a fundamental limitation on the frequency
stability.

The contribution of the last term in Eq. (11) to the
fluctuation spectrum Sy(ω) comes from the interference
of the action and phase noises. For the broad-band
noise, this interference is suppressed for ω → 0 because
∂φq∂Iq = 0 by parity. On the other hand, noises from
different sources are uncorrelated. Therefore, this term
is small for small frequency and we will not discuss it.

A. Reducing the effect of the amplitude
fluctuations

The effect of the action noise SI(ω) on the frequency
fluctuations is determined by the parameter β(Ist). This
parameter characterizes the oscillator nonlinearity. In
the usually considered limit of weak nonlinearity, β(Ist)
is a constant. This is the case for the weak Duffing nonlin-
earity, which is often used to describe MEMS and NEMS
[23, 26, 44]. In the Duffing model, the potential in Eq. (1)
is U(q) = 1

2Mω2
0q

2 + 1
4Mγq4, where γ is the nonlinearity

parameter, and then

dω/dI ≈ 3γ/4Mω2
0 (I � Inl). (17)

In the model (17) the contribution of the action noise to
the frequency fluctuations spectrum is seen from Eq. (15)
to be ∝ I, i.e., it linearly increases with the action.

One may infer from Eqs. (15) - (17) that, generally,
for very small Ist the power spectrum of the frequency
fluctuations Sy(ω) will be decreasing with the increasing
Ist because of the Ist → 0 divergent term in Ξφφ(Ist, ω).
However, with a further increase in Ist, Sy(ω) may start
increasing because of the oscillator nonlinearity and the
conversion of the amplitude noise into frequency fluctu-
ations. Therefore Sy(ω) should have a minimum as a

function of Ist, as is indeed demonstrated for the mi-
cromechanical system studied by Huang et al. [15].

One can reduce the lower bound on the frequency fluc-
tuations imposed by the coupling to a thermal reservoir,
if the parameter β(Ist) is made small in a range of the vi-

bration amplitudes where the term Ξ
(bb)
φφ is already small.

Moreover, there may be an optimal value of the action
I∗, the “sweet spot,” where β(I∗) ≡ dΩ/dI = 0. If one
thinks of the dependence of the vibration frequency ω(I)
on I as dispersion, such sweet spot may be called a “zero-
dispersion” point. We remind that Ω(I) is close to ω(I),
and therefore quite generally if Ω(I) has an extremum
at I = I∗, the function ω(I) has an extremum, too, and
for I ≈ I∗. When discussing the model of a nonlinear
system where the zero-dispersion point arises, we will be
referring to the extremum of ω(I), since this is the func-
tion that describes the dynamics in the absence of a weak
coupling to a thermal reservoir. This is advantageous as
different models of the coupling that lead to the same
character of the decay can give a somewhat different fre-
quency renormalization.

Where I∗ is sufficiently large, operating the oscilla-
tor near this I∗ may be optimal in terms of suppress-

ing frequency fluctuations. On the one hand, Ξ
(bb)
φφ is

suppressed by a comparatively large I∗, as seen from
Eq. (16), while on the other hand, the amplitude noise is
not converted into frequency fluctuations.

One can then expect a complicated behavior, where
Sy(ω) first decreases with increasing Ist, then starts in-
creasing because of the increasing β2SI(ω), but then it
may start decreasing again where β(Ist) starts decreas-
ing. Ultimately, Sy will reach an absolute minimum and
after that will increase again [40]. Such double-minimum
behavior is indeed observed in the simple model we dis-
cuss below and can be seen in [15]. It raises the question
of the optimization of the operation point of the oscilla-
tor.

The dependence of Sy(ω) on Ist is somewhat similar to
the dependence of the width of the power spectrum on
the noise intensity (temperature) in passive (no feedback
loop) resonators in which the vibration frequency ω(I)
is nonmonotonic. As mentioned earlier, in such systems
the power spectrum first broadens with the increasing
temperature due to the increasing range of the vibration
energies and, consequently, of the vibration frequencies
ω(I). However, as the energy range further increases ex-
tending to the range of small |dω/dI|, the width of the
spectrum decreases[41]. This is because the vibration
amplitude increases with the increasing I, and therefore
vibrations with large I make a dominating contribution
to the spectrum whereas, at the same time, the frequen-
cies of vibrations with different I are close to each other
where |dω/dI| is small, that is, near I∗. The spectral
narrowing associated with the vanishing of dω/dI is an
example of a group of the “zero-dispersion” phenomena
[74].
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VII. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the above general the-
ory using a simple model of the feedback loop and the
resonator. In particular, we consider a prototypical res-
onator described by a biased Duffing model. As men-
tioned earlier, the Duffing model applies to a large num-
ber of micro- and nanomechanical resonators. Imple-
menting a static bias in these systems is fairly straightfor-
ward and can be accomplished by applying a gate voltage,
for example. The model of a biased Duffing oscillator has
the desired property, namely a tunable operating point
where the frequency is independent of the amplitude, the
zero-dispersion point. The occurrence of such an oper-
ating point and the possibility to appropriately tune the
system has been demonstrated in several types of MEMS,
cf. [15, 21], including systems designed for time-keeping
[64].

We first discuss the deterministic (noise-free) dynamics
and show that the system can be made to operate at the
sweet spot. Then we investigate the noise properties of
the oscillator and demonstrate the benefits of operating
at a zero-dispersion point.

A. Dissipation and feedback

The analysis of self-sustained vibrations of a strongly
underdamped resonator should include a discussion of
the mechanisms of the energy loss and gain and of the
conservative motion of an isolated mode. We begin with
the loss and gain mechanisms.

The most frequently considered mechanism of losses
in MEMS and NEMS is viscous friction, where the fric-
tion force is proportional to the velocity (or equivalently,
the momentum) of the mode. The function L(q, p) that
describes this force has the form

L = 2Γp. (18)

We note that, even for weakly nonlinear vibrational
modes, the friction coefficient Γ generally depends on
the mode frequency. This dependence is smooth and is
different for different mechanisms of damping, cf. [44,
73, 75]. It may be weak for some important mecha-
nisms, like thermoelastic relaxation or scattering by two-
level systems, provided the temperature diffusion rate
or the decay rate of the two-level systems exceed the
NEMS/MEMS frequency. We will be interested in the
value of Γ for the mode frequency close to ω(I∗), but
strictly speaking, when determining the working point of
the resonator, one may have to take into account the fact
that Γ can depend on ω. This dependence does not affect
the qualitative results we consider, and therefore we will
disregard it.

For the viscous friction (18), the phase-averaged loss

terms in Eqs. (5) have the form

(∂φq)L =
Γ

π

∫ 2π

0

p
∂q

∂φ
dφ = 2ΓI,

(∂Iq)L = 0. (19)

We used here that q and ∂Iq are even in φ, whereas p is
odd.

The gain can be modeled in a variety of ways, cf. [23,
26]. It incorporates amplification of the output signal, a
phase shift between this signal and the signal that is fed
back into the resonator, and saturation that limits the
energy put into the resonator. Here we are interested in
the regime of comparatively large amplitudes and use a
saturated phase-shifted harmonic feedback,

G = g cos(φ+ ∆), (20)

where g is the gain saturated amplitude and ∆ is the
phase shift added to the phase φ of the output signal. The
saturated amplitude is independent of the signal at the
output of the resonator, but the signal from the amplifier
is sinusoidal at the frequency of the output signal.

For this form of the gain, the corresponding phase-
averaged gain terms in Eq. (5) are given by

(∂φq)G = gq1(I) sin ∆,

(∂Iq)G = g(dq1/dI) cos ∆ (21)

[the Fourier coefficient q1(I) is defined in Eq. (3)].
From Eq. (7), the stable steady-state value of the ac-

tion Ist is given by the root of the equation

g sin ∆ = 2ΓIst/q1(Ist) (22)

for which the coefficient α(Ist) in the linearized equation
of motion (9) is positive. With the account taken of
Eq. (22),

α(Ist) = 2Γ[1− (d ln q1/d ln I)Ist ]. (23)

The stability condition α(Ist) > 0 imposes a constraint
on the feedback parameters g and ∆. The other im-
portant constraint comes from the analysis of fluctua-
tions, which are inevitably present in the amplifier. We
will consider the most important case where the fluctua-
tions of g and ∆ have long correlation times compared to
1/α(Ist), i.e., to the order of magnitude, compared to the
relaxation time of the resonator. It follows from Eqs. (5)
and (21) that these fluctuations produce fluctuations in
both the action I and the phase φ. The phase noise
from small fluctuations in ∆ is minimal when ∆ = 0, π.
However, these conditions correspond to zero amplifica-
tion; the stationary value of Ist is seen from Eq. (22)
to be equal to zero. On the other hand, phase fluctu-
ations due to small fluctuations in g are minimized for
∆ = π/2, 3π/2; however the effect of fluctuations in ∆
on the phase fluctuations is maximal in this case. Gener-
ally, the mean values of the feedback coefficients can be
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optimized depending on the relative strengths of the fluc-
tuations of g and ∆. Often ∆ is set equal to π/2, in which
case the value of g required to achieve self-oscillation with
a given amplitude is minimal, as seen from Eq. (22).

It follows from Eqs. (8) and (21), the parameter β that
determines the effect of the action fluctuations on the
frequency fluctuations has the form

β(Ist) ≡ (dΩ/dI)Ist

= (dω/dI)Ist − g(d2q1/dI
2)Ist cos ∆. (24)

For cos ∆ = 0 the feedback loop does not shift the vibra-
tion frequency compared to the resonator frequency, and
then β(Ist) = (dω/dI)Ist , i.e., the parameter β depends
on the dispersion of the resonator frequency only.

As mentioned earlier, for large vibration amplitudes
it may be necessary to take into account nonlinear fric-
tion. At the phenomenological level, in the simplest case
this friction is described by the van der Pol force, Lnl =
4Γ(nl)(q/q0)2p [we use the notations of Refs. [54, 56];
q0 = (~/2Mω0)1/2; the parameter Γ(nl) is ∝ ~, so that
~ drops out from the expression for the classical nonlin-
ear friction force]. Incorporating this force is straightfor-
ward. Equations (22) and (23) for the stationary value of
the action Ist and the decay rate α(Ist) will be modified
to

K(Ist) = 0, K(I) = gq1(I) sin ∆− 2ΓI

− 2Γ(nl)(πq20)−1
∮
q2p dq, α(Ist) = [dK(I)/dI]Ist .

(25)

As expected, the nonlinear-friction induced term ∝ Γ(nl)

in K(I) increases with the action variable I faster than I
(as I2, for small I), and therefore stronger amplification
is required to maintain a large value of Ist when nonlinear
friction is significant. However, this friction is usually not
strong in MEMS and NEMS.

B. Conservative dynamics of a biased Duffing
oscillator

We now turn to the conservative dynamics of a biased
Duffing mode. This model has the desired nonmonotonic
dependence of the vibration frequency on the action. The
potential of the mode has the form,

U(q) = Aq +
1

2
Mω2

eq
2 +

1

4
Mγq4. (26)

Here A is the bias field, and we assume γ > 0, the con-
dition met in many NEMS and MEMS.

The Hamiltonian equations of motion q̇ = p/M, ṗ =
−dU/dq in the potential (26) can be solved explicitly in
terms of the Jacobi elliptic functions [41]. The scaled
coordinate (γ/ω2

e)1/2q as a function of the scaled time
ωet depends on the single scaled bias parameter λ and
the scaled action variable Ĩ,

λ = (γ1/2/Mω3
e)A, Ĩ = Iγ/Mω3

e . (27)

The vibration frequency as a function of Ĩ is shown
in Fig. 2. The eigenfrequency ω0 ≡ ω(I = 0) of the
vibrations at the minimum of U(q) (where I = 0) differs
from ωe; it monotonically increases with increasing |λ|.
From [41], one finds, after some algebra, that ω(0) ≈
ωe(1 + 3λ2/2) for |λ| � 1 and ω(0) ≈

√
3ωe|λ|1/3 for

|λ| � 1. The slope dω(I)/dI ≈ 3(1− 13λ2)/4 for I → 0
and |λ| � 1 is positive, but it becomes negative for |λ| >
8/73/2. On the other hand, ω(I) increases with I at large
I irrespective of λ,

ω(I) ≈ Γ(3/4)ωeĨ
1/3[π2Γ(7/4)]1/3/[2Γ(5/4)]4/3

≈ 1.16ωeĨ
1/3, Ĩ � 1.

Therefore ω has a minimum as a function of I for
|λ| > 8/73/2.The position of this minimum is marked
in Fig. 2. For the considered case of weak damping of
the resonator and, respectively, weak amplification by
the feedback loop, the value of I at the minimum of ω(I)
is very close to the sweet spot I∗ given by the equations
β(I∗) = 0 that takes into account the renormalization
ω(I)→ Ω(I).

The amplitude 2|q1(I)| of the main tone of the conser-

vative vibrations scales as I1/2 for small Ĩ and as I1/3

for large Ĩ. For large Ĩ the ratio of 2q1(I) to the total
vibration amplitude is ≈ 0.825. For such I, the ampli-
tude of the (2n+ 1) overtone is ∝ exp[−(2n+ 1)π/2] and
thus quickly falls off with increasing n (the fall-off is even

faster for smaller Ĩ; even overtones have parametrically
small amplitudes for large Ĩ).

It follows from the scaling that, if nonlinear friction can
be disregarded, the decay rate of the fluctuations of the
action is α(Ist) ≈ Γ for small Ĩst and α(Ist) ≈ 4Γ/3 for

large Ĩst Since the ratio Ist/q1(Ist) in Eq. (22) monotoni-
cally increases with increasing Ist, the stationary value of
the action is uniquely determined by the feedback loop
parameters g and ∆.

C. Frequency fluctuations in a biased oscillator

We will now apply the general results to the analysis
of the fractional frequency fluctuations in the oscillator
described by the model (26). As indicated in Sec. VI, of
primary interest in terms of the fundamental limit on Sy
are the fluctuations that invariably come along with dis-
sipation. They are induced by the corresponding thermal
noise. In the case of linear friction, this is a broadband
noise with the correlator

〈ξbb(t)ξbb(t′)〉 = 2Dδ(t− t′), D = 2ΓMkBT. (28)

If there is an extra source of broadband noise, the noise
intensity D is appropriately increased.

As indicated earlier, the major Fourier component of
the vibrations for the model (26) is the main tone. There
are higher-frequency overtones, which are small, and also
a zero-frequency component q(I, φ). The static shift
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FIG. 2. Frequency dispersion ω(I) for the biased Duffing
resonator with the potential energy (26) as a function of the

scaled action Ĩ = γI/Mω3
e for several values of the scaled bias

parameter λ, Eq. (27). From top to bottom λ = 2.5 (brown),
2 (purple), 1.5 (orange), 1 (green), 0.5 (yellow) and 0 (blue).
The black dashed line is the locus of zero dispersion points,
dω/dI = 0.

q(I, φ) does not lead to dissipation and thus is not of
interest in the present context; its effect in NEMS has
been studied in Ref. [76]. In what follows we take into
account only the main tone, i.e., we approximate

q(I, φ)− q(I, φ) ≈ 2q1(I) cosφ (29)

Disregarding small-amplitude high overtones does not
change the qualitative results. Moreover, we will study
the range of I where the frequency shift |ω(I) − ω(0)|
is not necessarily small, but remains smaller than ω(0).
In this case, in the main-tone approximation (29) both
the friction coefficient and the noise intensity are deter-
mined by the power spectrum of the thermal reservoir
near ω(0) (more precisely, we are talking here about the
power spectrum of the operator hb that determines the
energy qhb of the coupling of the resonator to the ther-
mal reservoir). On the other hand, if higher overtones
of q(I, φ) were substantial, it would be necessary to keep
track of the power spectrum of the thermal reservoir at
the frequencies ∼ nω(I) with n > 1. If the properly
weighed power spectrum is not flat, this would limit the
applicability of the approximation (28) and also of the
linear friction approximation (18).

In the main-tone approximation, the nonlinear fric-
tion is determined by the power spectrum of the thermal
reservoir at frequencies ∼ 2ω(0) (the relevant term in the

coupling Hamiltonian in this case is q2h
(nl)
b /2). For the

corresponding broad-band noise we write

〈ξ(nl)bb (t)ξ
(nl)
bb (t′)〉 = 2D(nl)δ(t− t′), (30)

implying that the power spectrum of ξ
(nl)
bb (t) is flat in a

sufficiently broad range around 2ω(0). For thermal fluc-
tuations D(nl) = 4Γ(nl)q−20 MkBT . In fact, the applica-
bility of the model to the analysis of fluctuations about

the stable state requires only that the spectrum of ξ
(nl)
bb (t)

be flat in the region of the width ∝ α(Ist) around ω(Ist),
for linear friction, and 2ω(Ist) for nonlinear friction.

Equations (6) and (28) - (30) allow us to find the corre-
lators Ξφφ(I, ω) and ΞII(I, ω) in Eqs. (11) and (12) and
thus the power spectra of the intensity fluctuations and
the fractional frequency fluctuations. For linear friction

ΞII(I, ω) = 4D|q1(I)|2, Ξφφ(I, ω) = 4D|∂Iq1(I)|2,
(31)

whereas for nonlinear friction

Ξ
(nl)
II (I, ω) = 4D(nl)|q1(I)|4,

Ξ
(nl)
φφ (I, ω) = D(nl)|∂Iq1(I)2|2. (32)

Given that q1(I) ≈ [I/2Mω(0)]1/2 for I → 0, we see
that, for small I, the fractional frequency fluctuations for
ω � α(I) scale with I as

Sy(ω) ≈ D

2Mω(0)3
[
I−1 + 4I(∂Iω/Γ)2

]
+

D(nl)

4M2ω(0)4
[
1 + 4I2(∂Iω/Γ)2

]
(33)

where ∂Iω is calculated for I → 0; the right-hand side
should be calculated at the stationary value of the action
variable I = Ist. Note that we consider Sy(ω) rather
than the variance Sy(0) to take into account the situation
where there is a weak 1/f -type noise in the system; in
this case ω plays the role of the reciprocal observation
time during which the contribution of such fluctuations
is small, whereas formally the variance of the fractional
frequency diverges for ω → 0.

It is seen from Eq. (33) that the fractional frequency
fluctuations fall off with the increasing action I in the
small-I range: Sy ∝ I−1 for very small I. If the res-
onator is linear, ∂Iω = 0, as the vibration amplitude is
increased the phase noise decreases towards the limit set
by the nonlinear friction D(nl) (and the low-frequency
noise). Increasing the amplitude up to the maximal pos-
sible level is the common approach employed for reducing
phase noise. This maximal level is set by the nonlinear-
ity. Where ∂Iω(I) is nonzero and ω(I) monotonically
depends on I, function Sy has a minimum and increases
with I for larger I. This means that there is an optimal
operating amplitude determined by the balance of the
term ∝ I−1 and the terms ∝ I and ∝ I2 in Eq. (33).

In both the unbiased and biased Duffing models, for
very large I(� Inl), Sy decreases with increasing I, if
we use the approximation (29). However, describing this
range using the Duffing model is impractical, as higher-
order nonlinearities usually come into play, cf. Refs. 15,
21, and 64 and papers cited therein.

An important feature of the model (26), which makes
it distinct from the standard Duffing model, is that ω(I)
is nonmonotonic. Function ω(I) displays a minimum,
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as seen from Fig. 2, and this minimum lies in the range
where the nonlinearity is still moderately small, that is,
where |ωmin(I)−ω(0)| is significantly smaller than ω(0).
For weak damping and amplification, the corresponding
value of I determines the sweet spot I∗, i.e.,

ωmin(I) ≡ ω(I∗).

Operating the resonator at Ist = I∗ is advantageous, as
it minimizes the effect of the amplitude fluctuations and
simultaneously strongly reduces the effect of the phase
fluctuations. We note that, for weak nonlinearity and a
strong signal from the amplifier, the condition dΩ/dI = 0
may hold even where the eigenfrequency ω(I) is mono-
tonic; the analysis of noise suppression has to be done
differently in this case [27].

To find the power spectrum of the fractional frequency
fluctuations Sy for the model (26) beyond the small-I ap-
proximation, one can calculate ω(I) and q1(I) from the
Hamiltonian equations of motion in the potential (26)
and also, independently, use the explicit expressions in
terms of the elliptic integrals and Jacobi elliptic func-
tions. For linear friction, the value of Ist is determined
by the amplifier through Eq. (22). In the dimensionless

variables Ĩ, which is defined in Eq. (27), ω̃(Ĩ) = ω(I)/ωe,

and q̃1(Ĩ) = (γ1/2/ωe)q1(I), we can write

Sy(0) =
4Dγ

M2ω6
e

S̃y, S̃y = ω̃−2(Ĩst)
[
(∂Ĩ q̃1)2

+|q̃1|2(∂Ĩ ω̃)2
ω2
e

4Γ2

(
1− d ln q̃1/d ln Ĩ)

)−2]
Ĩst

. (34)

The dimensionless function S̃y is shown in Fig. 3. The
dependence of Ist on the amplification factor g is mono-
tonic, and therefore, qualitatively, the plot would have
the same form if Sy were plotted vs g.
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FIG. 3. Scaled fractional frequency fluctuations S̃y ver-
sus the scaled action Ĩ calculated at the operating point
Ĩst = Iγ/Mω3

e given by Eq. (22) for the biased Duffing os-
cillator; Γ/ωe = 0.01. The curve with a single minimum at

relatively small Ĩst corresponds to λ = 0, whereas the curves
that display the increasingly smaller minimal S̃y correspond
to λ = 0.5, 1.0, 1.5, 2.0, 2.5. The color coding is the same as
in Fig. 2.

A remarkable feature of the fractional frequency fluc-
tuations seen from Fig. 3 is the double-minimum struc-
ture. The necessary condition for its occurrence is that
ω(I) is nonmonotonic, i.e., the scaled bias parameter is
λ > 8/73/2. The first minimum occurs for Ist < I∗ and is
due to the competition of the decrease of the phase fluc-
tuations with the increasing I and the increase of the con-
tribution from the amplitude fluctuations, cf. [77]. For
linear friction it is located at Ist ∼ Γ/2|∂Iω|I=0 in the
limit of small Γ/|∂Iω|. This is the “conventional” opti-
mal operation point of the resonator. However, for the
considered nonmonotonic ω(I), Sy has another minimum
located at I∗.

It is critically important that Sy is significantly smaller
at the sweet spot I∗ than at the first minimum. Figure 3
shows that, even for the Q factor much smaller than the
Q factors of typical MEMS and NEMS, the minimal Sy
can be readily made smaller by a factor ∼ 102 than for
a monotonic ω(I). This demonstrates the advantage of
using the sweet spot to reduce frequency fluctuations. It
suggests numerous applications in NEMS/MEMS based
time-keeping devices and also in sensing devices, which
often utilize phase-locked loops.

VIII. CONCLUSIONS

This paper describes a means for suppressing frequency
fluctuations due to the fundamentally unavoidable ther-
mal noise that comes along with the dissipation of a vi-
brational mode in a nonlinear resonator. The idea is
to use large-amplitude vibrations to suppress phase fluc-
tuations induced by this noise while at the same time
eliminate the nonlinearity-induced conversion of the am-
plitude fluctuations into frequency fluctuations. This
is accomplished by making the frequency a nonmono-
tonic function of the vibration amplitude and operating
the system at the extremum of this function, the zero-
dispersion point. Along with the thermal noise, this also
eliminates the amplitude-to-frequency conversion of fluc-
tuations caused by a nonequilibrium noise, including the
broad-band noise from the feedback loop.

The distinctive feature of the approach is that it con-
siders the regime of comparatively large vibration ampli-
tudes. The analysis in terms of the action-angle variables
allows one to study not only a broad range of parameters
of the conservative motion, but also different dissipation
mechanisms, such as linear and nonlinear friction. It also
applies for various models of the amplifier, since the key
feature of the dynamics, the nonmonotonic frequency de-
pendence on the amplitude, is a feature of the resonator
itself.

The frequency and amplitude of the vibrations at the
sweet spot can be controlled, which adds tunability to
a resonator. This is illustrated by the simple example,
which considers a conventional bias control of nano- and
micro-mechanical resonators.

The proposed approach does not eliminate the low-
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frequency phase fluctuations, which are caused by the
material problems in the resonator and can also come
from the feedback loop. However, it allows tuning the
feedback loop so as to minimize the effect of its low-
frequency fluctuations. For example, tuning the average
phase shift allows reducing the effect of fluctuations of
this shift.
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