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We propose lateral optical trapping of Rayleigh particles using tailored anisotropic and 

hyperbolic metasurfaces illuminated with a linearly polarized Gaussian beam. This platform 

permits to engineer optical traps at the beam axis with a response governed by nonconservative 

and giant lateral recoil force coming from the directional excitation of confined surface plasmons 

during the light scattering process. Compared to optical traps set over uniform metals, either in 

bulk or thin layer configurations, the proposed traps are broadband in the sense that they can be 

set with beams oscillating at any frequency within a wide range in which the metasurface supports 

surface plasmons. Over that range, the metasurface dispersion evolves from an anisotropic elliptic 

to a hyperbolic regime going through a topological transition and enables optical traps with 

distinctive spatially asymmetric potential distribution, local potential barriers arising from the 

momentum imbalance of the excited plasmons, and an enhanced potential depth that permits stable 

trapping of nanoparticles using low-intensity laser beams. To investigate the performance of this 

platform, we develop a rigorous formalism based on Lorentz force within the Rayleigh 

approximation combined with anisotropic Green’s functions and calculate the trapping potential 

of nonconservative lateral forces using the Helmholtz decomposition method. Tailored anisotropic 

and hyperbolic metasurfaces, commonly implemented by nanostructuring thin metallic layers,  
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permit to use low-intensity laser sources operating in the visible or infrared frequencies to trap 

and manipulate particles at the nanoscale, and may enable a wide range of applications in 

bioengineering, physics, and chemistry. 

PACS: 32.10.Dk, 42.25.Fx, 73.20.Mf, 87.80.Cc 

1. Introduction 

Optical trapping of small particles in the micrometer range has triggered numerous applications 

in microbiology [1-3], colloidal dynamics [4], and lab-on-a-chip applications [5], among many 

others [6-9]. In conventional optical tweezers [10-13], an optical trap is set through a tightly 

focused laser beam that confines the particle near the higher electric field intensity. There, the 

gradient of the electric field intensity that surrounds the particle generates the required trapping 

forces. Unfortunately, it is challenging to extend this approach to trap particles whose size lie down 

in the nanometer range as (i) the gradient force significantly lessens with the third power of the 

particle size [14]; and (ii) the thermal fluctuation induced motion of the particles increases [15,16], 

thus favoring them to escape from the trap. As a result, stable trapping demands high-intensity and 

tightly focused laser beams that may damage the nanoparticles due to photoheating.  

These challenges can be alleviated by exploiting the properties of surface plasmon polaritons 

(SPPs) [17-20], which are confined electromagnetic waves that propagate at dielectric-metal 

interfaces [21]. For instance, let us consider an electrically polarizable Rayleigh nanoparticle (with 

radius 𝑎 < λ$/20, where λ$ is the wavelength) located near the surface of a metal is illuminated 

with light. The particle scatters the incoming light as a superposition of propagative plane waves 

and evanescent waves. This linear scattering process can be accurately modelled using the angular 

spectrum representation of a source considering that the particle behaves as a polarized electrical 
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point emitter [21]. When the particle is located in the near field of the plasmonic surface, the 

scattered evanescent waves can couple to the structure and excite guided SPPs [22-27]. 

Remarkably, this evanescent-wave coupling is governed by spin-orbit interactions [28-30]: only 

those surface plasmons that possess identical transverse spin to the one of the incoming waves will 

be excited. In the cases that the particle acquires a linear polarization, the scattered evanescent 

spectrum lacks any spin and excites SPPs propagating along all directions within the surface. The 

situation is different when the particle acquires an out-of-plane polarization spin with respect to 

the surface, which usually occurs when it is illuminated by an obliquely incident circularly 

polarized light [22]. There, the scattered evanescent spectrum acquires a transverse spin and 

excites only SPPs with similar spin thus leading to plasmons travelling towards a specific direction 

along the surface. To compensate the momentum of these directional SPPs, a nonconservative 

recoil force is exerted on the particle acting in the direction opposite to the plasmons wavevector 

[22-27]. The direction and strength of this force mostly depend on the handedness of the particle 

polarization spin and the momentum of the excited plasmons, respectively [23]. Aiming to boost 

the strength of recoil force, anisotropic and hyperbolic metasurfaces (HMTSs) have been proposed 

to substitute bulk plasmonic metals [31]. HMTSs [32-39] are ultrathin surfaces that exhibit a 

metallic or dielectric response as a function of the electric field polarization, possess a very large 

local density of states, and support ultra-confined SPPs over a broadband frequency range. These 

structures can be constructed by appropriately patterning common plasmonic materials, such as 

silver [38], gold [39] or graphene [34,35]. It has been shown that the recoil force acting on 

nanoparticles located over HMTSs can be enhanced up to several orders of magnitude with respect 

to the one appearing over bulk isotropic surfaces [31]. Such giant enhancement is enabled by the 

large momentum of the directional hyperbolic plasmons excited during the scattering process. 
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Furthermore, the enhancement is broadband [31] in the sense that it appears when the particle is 

illuminated with light oscillating at any frequency within a very wide range in which the structure 

exhibits a hyperbolic response. It should be noted that enhanced recoil force can also be obtained 

using bulk hyperbolic metamaterials [25]. However, the strength of such force is weaker than the 

one found above hyperbolic metasurfaces and appears over a short wavelength span [31]. This is 

because the excitation of internally propagating hyperbolic states with sources located outside the 

bulk of the media is challenging, as evanescent fields scattered by the sources would mainly couple 

at the interface between the metamaterial and the surrounding environment [40]. 

In this context, recoil force has recently been exploited to trap nanoparticles near bulk metals 

using a linearly polarized Gaussian beam [41]. This elegant approach takes advantage of the 

peculiar distribution of the electric field within the beam: the components parallel to the surface 

are even-symmetric with respect to the laser beam axis whereas the out-of-plane component is 

odd-symmetric. The interplay between even/odd symmetries of the in-/out-of- plane electric field 

components enforces that the nanoparticle acquires an out-of-plane polarization spin with a 

rotation handedness always pointing away from the beam axis that excites SPPs toward this 

direction. This response holds independently of the particle position within the beam. The 

combination of recoil force coming from the excitation of directional SPPs in the scattering process 

together with gradient force originating from the Gaussian beam generates an optical trap located 

exactly at the beam axis [41]. Unfortunately, this platform might not be suitable for many practical 

applications because it requires specific laser sources operating at wavelengths very close to the 

intrinsic plasmon resonance frequency of metals. As the laser operation frequency is shifted away 

from such resonance, the presence of the metals does not play a significant role on the force acting 

on the particle and the trap performance becomes similar to a common optical tweezer governed 
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by gradient force originating from the Gaussian beam. In addition, the performance of this 

approach in terms of potential distribution, trap depth, and minimum beam intensity required to 

achieve stable optical trapping has not yet been investigated. The calculation of these parameters 

is challenging due to the intrinsic nonconservative nature of the recoil force, which prevents the 

use of common theoretical approaches based on the definition of potential energy in the case of 

conservative force fields [21].  

In this contribution, we propose stable optical trapping of nanoparticles using ultrathin 

anisotropic and hyperbolic metasurfaces illuminated with low-intensity Gaussian beams. This 

platform, as is illustrated in Fig. 1, permits to engineer optical traps in which giant, 

nonconservative recoil force coming from the directional excitation of ultra-confined SPPs 

determines the overall performance of the traps. The incident Gaussian beam enforces that the 

nanoparticle acquires an adequate out-of-plane polarization spin and set the optical trap at its axis. 

Strikingly, and in stark contrast with the case of bulk metals studied in Ref. [41], the properties of 

the traps are directly linked with the anisotropic and broadband features of the supported SPPs, 

and can be modified by tailoring the electromagnetic response of the metasurface. In general, and 

compared to traps set over common isotropic surfaces (bulk metal and uniform thin layers), the 

proposed optical traps exhibit (i) significantly larger trapping forces, associated to the high 

momentum of the supported plasmons; and (ii) a broadband response, in the sense that stable 

trapping can be set with beams oscillating at any frequency within a wide range in which 

anisotropic metasurfaces supports SPPs. To investigate this platform, explore its practical viability, 

and compare its performance with respect to other configurations, we develop below a rigorous 

theoretical formalism based on (i) the Lorentz force within the dipole approximation merged with 

anisotropic Green’s functions [21] to compute the trapping forces; and (ii) the Helmholtz 
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decomposition method [42] to compute the potential energy of nonconservative forces. We 

validate our results using full-wave numerical simulations performed in COMSOL Multiphysics 

[43]. Our approach permits to calculate the spatial potential distribution of the trap, including the 

trap depth, and allows to elucidate the minimum beam intensity required to achieve stable optical 

trapping. We have applied our formulation to explore the trapping response of three realistic 

configurations, namely a bulk silver substrate, a uniform and thin silver layer, and an array of 

densely-packed silver nanostrips [38] that behaves as a HMTS. Numerical results reveal an 

outstanding trap performance of nanostructured silver over an ultra-wide frequency band ranging 

from the visible to the infrared (IR). Compared to the case of a thin silver layer or bulk silver, the 

nanostructured configuration greatly enhances the trap depth over the entire band that in turn 

reduces the beam intensity required to achieve stable optical trapping. It should be noted that at 

the plasmon resonance, the thin silver layer exhibits better performance than the other platform. 

This response appears because the nanostructured configuration does not exhibit a hyperbolic 

response at that wavelength. Then, we explore the asymmetrical potential distribution of the traps 

as the topology of nanostructured silver layer evolves from elliptical to hyperbolic regimes going 

through its topological transition, and we reveal the presence of local potential barriers that might 

appear along precise directions within the surface. Such potential barriers arise over anisotropic 

surfaces thanks to its rotationally asymmetric response, exhibit larger energy than the trap depth, 

and might be useful to predict the direction taken by an energetic particle to escape from the trap. 

This response is in stark contrast with the rotationally symmetrical and smooth potential 

distribution of traps set over thin and bulk metals which are isotropic in nature. Our results position 

anisotropic and hyperbolic metasurfaces as promising candidates to trap and manipulate 

nanoparticles using low-intensity laser sources operating in the visible and near-IR band, and 
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might lead to important applications in a wide variety of fields ranging from physics and chemistry 

to bioengineering.  

2. Theoretical formalism: Trapping forces and potential over anisotropic metasurfaces 

This section details first a theoretical framework able to compute the nonconservative optical 

forces exerted on a dipolar Rayleigh particle located above an anisotropic metasurface that is 

illuminated by a Gaussian beam. Then, the spatial potential distribution of the trap is computed 

using the Helmholtz decomposition method [42]. Our formalism permits to quantitatively 

determine relevant parameters such as the trap depth and stiffness, trapping forces and potential, 

and minimum beam intensity required to achieve stable trapping, among others. The approach is 

general in the sense that no assumptions have been made with respect to the type of metasurface, 

Rayleigh particle, surrounding media, and operation frequency. 

2.1 Optical trapping forces over anisotropic metasurfaces 

Let us consider an isotropic, non-magnetic, and electrically polarizable spherical Rayleigh 

particle located at a position r̅$ = (x$, y$, z$) above an anisotropic metasurface defined by a 

conductivity tensor σ2344 = σ55344x6x6 + σ88344y6y6, as shown in Fig. 1.  The ultrathin metasurface is placed 

in the plane z = 0, lying on the interface between two media with refractive indices n: (top) and 

n; (bottom). The particle is illuminated by a normally incident Gaussian beam, i.e., the beam axis 

is aligned with the z6-axis [44], that has a beam width w$ and is focused at a distance f$. The focus 

position f$	is defined as the vertical distance between the metasurface and the center of the 

Gaussian beam [44], and it is positive (negative) when the beam is focused above (below) the 

metasurface. Assuming an e@ABC time dependence, the total time-averaged optical forces exerted 

on the particle are given by [21] 
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FE = :
;
Re{pE∗ 	 ∙ ∇[ENOP(r̅$) + ENQ(r̅$)]}.                                                (1) 

Here, pE = α$[ENOP(r̅$) + ENQ(r̅$)] = α2 ∙ ENOP(r̅$) is the particle’s electric dipole moment, α$ is the 

dynamic particle polarizability [21], α2 is the effective dipole polarizability tensor taking into 

account the electric field scattered by the particle that is reflected from the surface computed via 

the scattered dyadic Green’s function [21,44], ENU is the electric field scattered by the particle, 

and ENOP is the superposition of the electric field of the standing wave formed due to the 

superposition of incident laser beam and its reflection from the metasurface. Eq. (1) shows that the 

total forces acting on the nanoparticle are composed of two components: (i) the conservative 

gradient force, FEVWXY = 0.5	Re[pE∗ 	 ∙ ∇ENOP(r̅$)], that always acts toward the higher electric field 

intensity of the standing wave [45,46]; and (ii) the nonconservative recoil force, FEW3\ =

0.5	Re[pE∗ 	 ∙ ∇ENQ(r̅$)] that appears to compensate the momentum of the directional SPPs excited 

on the surface [22-25,31]. These two force components have a very different origin: the gradient 

force depends on the gradient of the electric field intensity surrounding the particle, and thus varies 

with the type of beam employed. For instance, in the case of plane waves, this term would lead to 

a radiation pressure pointing toward the direction of the wavefront; whereas in the case of a 

Gaussian beam, this component leads to gradient force pointing towards the beam center, as in 

common optical tweezers [12]. On the other hand, the recoil force mostly depends on the properties 

of the surface plasmons supported by the metasurface [31]. Besides, this force also depends on the 

effective dipole polarization acquired by the particle [31]. For a given distance between the particle 

and the metasurface, the recoil force is maximized (strictly zero) when the particle acquires an out-

of-plane (linear) polarization spin. 
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The electric field of the p-polarized (i.e. transverse magnetic) Gaussian beam employed in the 

proposed platform possesses x and y	components (in-plane) that are even-symmetric with respect 

to the beam axis, whereas the z component (out-of-plane) is odd-symmetric [41]. This field 

distribution ensures that the nanoparticle is polarized with a spin that rotates against the beam axis 

[44], as shown in Fig. 2 (top inset). The resulting non-paraxial electric field components above the 

surface yield [21,47,48] 

E5OP(r̅) =
]^
_
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.                                   (2c) 

Here, k: is the wavenumber in the medium above the surface with a transverse component kEC =

𝑥6k5 + 𝑦6k8 and a vertical component ki: = |k:; − kC;; and Rll and RQl are the Fresnel reflection 

coefficients that characterize the reflection of ‘p’ and ‘s’ (transverse electric, TE)-polarized waves 

from the anisotropic surface when it is illuminated with ‘p’-polarized waves [44]. In addition, a 

phase shift eAdfg4^ is introduced as a measure of tuning the laser focus position f$ along the z6-axis 

[21,41]. Note that the integration limits in Eq. (2) are set to ±k:, because the propagative modes 

dominate the response of the beam and the influence of evanescent spectrum is negligible [41]. In 

most scenarios, the total fields described in Eq. (2) keep a similar symmetry as the incident 

Gaussian beam in free space and polarize the particle with the desired handedness to enable optical 

trapping [44]. It should be noted that the symmetry of these fields may change when the Gaussian 

beam is focused well below the metasurface. In that case, described below, the particle may acquire 
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an out-of-plane polarization spin with rotation handedness pointing toward the beam axis and the 

recoil force becomes an “anti-trapping” force [41]. 

From Eq. (1), the lateral components of the gradient and recoil forces can be simplified as [44] 

FE~XC3WX~,VWXY =
:
;
Re∑ �p�∗

Y
Y5
E�OP(r̅$)x6 + p�∗

Y
Y8
E�OP(r̅$)y6���5,8,i ,                                    (3a)      

FE~XC3WX~,W3\ = −ω;µ$ �Im[p5∗pi]Im � Y
Y5
G5iQ (r̅$)� x6 + Im�p�∗ pi�Im � Y

Y8
G8iQ (r̅$)� y6�.          (3b) 

Eq. (3a) shows that the gradient force always acts toward the maximum electric field intensity (i.e., 

toward the beam axis) of the standing wave formed above the metasurface. In addition to the type 

of beam, this force also depends on the particle’s polarizability [21]. Eq. (3b) shows that the 

direction of the recoil force is determined by the interplay between the particle’s in-plane (p5 and 

p8) and out-of-plane (pi) dipole moment components. Using a properly focused Gaussian beam, 

the particle acquires an out-of-plane polarization spin with rotation handedness against the beam 

axis and the resultant recoil force is directed towards the beam axis. In the case of isotropic 

metasurfaces, this force points exactly towards the beam axis independently of the particle position 

within the beam [41]. However, in the case of anisotropic metasurfaces, the direction of the recoil 

force may not point towards the beam axis due to the broken rotational symmetry of the system 

[i.e., G5iQ (r̅$) ≠ G8iQ (r̅$) in Eq. (3b)]. As discussed below, the recoil force will then push the 

particle towards the beam axis following a parabolic trajectory. In addition, Eq. (3b) unveils that 

the strength of the recoil force depends on the imaginary part of the spatial derivative of scattered 

Green’s functions out-of-plane tensor component, which measures the momentum of the excited 

directional plasmons [23,31].  
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An important parameter that defines the performance of an optical trap is the trap stiffness, 

which measures the restoring force that acts on the nanoparticle to bring it back to a stable position 

within the trap – similar to the spring constant in a common mechanical system. This parameter is 

more significant in Brownian systems, where particles suspended in liquids may acquire random 

motion due to the continuous collision with the moving fluid molecules. The stiffness of a trap set 

over a surface can be approximated as [49] 

κ(𝜙) = − ��(�,�)

�
�
�→$

    ,                                                  (4) 

where F�(ρ, 𝜙) denotes the radial component of the lateral forces evaluated at a position (ρ, 𝜙) 

defined in polar coordinate system. In Eq. (4), we assume that the tangential force component is 

significantly weaker than the radial one, as happens in the plasmonic systems considered here [44]. 

In most cases considered in the literature [12,41], for instance the force generated by Gaussian 

beam in free-space or over common plasmonic materials, the trap stiffness is isotropic in the sense 

that it has polar symmetry and therefore provides an identical response in all directions: κ(𝜙) = κ. 

This is different in the case of traps set over anisotropic metasurfaces: the restoring force that a 

nanoparticle experiences towards the trap depends on the direction through which the particle is 

trying to escape. Traps with anisotropic stiffness are useful to predict the probable direction 

followed by the particle when it acquires enough energy to escape from the trap.  

2.2 Trapping potential over anisotropic metasurfaces 

The trap potential is arguably the most important parameter that defines the performance of an 

optical trap [17,18,50]. Here, we will focus on the trap potential energy and trap depth, which is a 

quantitative measure of how long the particle remains confined within the trap. In the case of 
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conservative forces, such as the gradient force originating from a Gaussian beam [13], the trapping 

potential U of a vector force FE\ can be obtained as U\(r̅) = 	−∫ FE\(r̅′) ∙ dr̅′
WE
@�  [21]. This potential 

represents the energy required to move a particle from a reference location with zero energy 

(considered here to be in the infinite) to the position defined by the vector r̅. Conservative forces 

are free of solenoidal components and thus the path chosen in the integral is not relevant: any 

trajectory from infinite to r̅ provides identical potential energy. This situation is different in the 

case of nonconservative vector forces because they possess a solenoidal component [51]. 

Nonconservative forces may arise in many scenarios, for instance in certain optomechanical 

systems [52], using structured or evanescent fields [53], or when a nanoparticle is illuminated near 

a plasmonic surface [22-26,31]. In such cases, choosing different paths to move the particle from 

a reference location to a position r̅ will lead to different potential energies due to the presence of 

the solenoidal force component. As a result, it is not possible to use direct integration methods to 

compute the potential energy. To avoid this issue, we apply here the Helmholtz decomposition 

method to compute the trapping potential of nonconservative forces [42]. Following this approach, 

we express the force field as [51-53] 

FE(r̅) = −∇U + ∇ × AN,                                     (5) 

where ∇ is the vector gradient, U is the potential energy, AN is the vector potential, and ∇U and 

∇ × AN denote the conservative and nonconservative (solenoidal) force components, respectively. 

Taking the divergence of Eq. (5) and applying the identity ∇ ∙ (∇ × AN) = 0 permit us to find the 

potential energy through the differential equation [51] 

−∇;U = ∇ ∙ FE on Ω,                                                       (6) 
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that is subjected to the Neumann boundary conditions [54] 

∇U ∙ ρ6 = FE ∙ ρ6 on dΩ,                                                       (7) 

where ρ6 is a unit vector pointing outwards with respect to the boundary of the domain Ω. This 

numerical approach is valid when the force field is defined over a bounded region Ω with a smooth 

boundary condition dΩ. We stress that the platform considered here fulfils these conditions: the 

domain is defined by the Gaussian beam impinging over the metasurface and the boundary 

conditions are related to the negligible force acting on the particle when it is located very far away 

from the beam axis. 

   We will explore the potential distribution of optical traps set using Gaussian beams over 

isotropic surfaces, for instance ultrathin and bulk metals, and reveal that they are defined by a 

spatially rotational symmetric function centred at the beam axis. In stark contrast, the trapping 

potential over anisotropic metasurfaces illuminated with a Gaussian beam lacks such rotational 

polar symmetry. In both cases, the trap depth δY is unique and is defined as the potential difference 

between the energy computed at the beam axis and at a position located in infinite with zero energy. 

Strikingly, and as further detailed below, the intrinsic anisotropy of the metasurface gives rise to 

local potential barriers with larger potential difference than the trap depth. As a result, the particle 

might acquire enough energy to escape from the trap but not to overcome such potential barriers 

and thus will follow a special route within the plane to avoid them. Finally, it should be noted that 

stable optical trapping appears when the trap depth is larger than 10k�T, where k� is the 

Boltzmann constant and T is temperature. If this condition is not fulfilled, mechanisms such as 

thermal fluctuation [55,56] and Brownian motion [12,17,53] may provide enough energy to the 

particle to quickly escape from the trap. Thus, the minimum laser beam intensity required to 
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achieve stable trapping is the one required to generate an optical trap with a potential depth ≥

10k�T  [21].  

3. Performance of optical traps engineered over anisotropic and hyperbolic metasurfaces 

In this section, we explore the performance of optical traps engineered over anisotropic and 

hyperbolic metasurfaces illuminated by a p-polarized Gaussian beam. To this purpose, we first 

analyze the recoil and gradient forces acting on a nanoparticle versus its position with respect to 

the beam axis, unveiling the mechanisms that conform the optical trap. Then, we investigate key 

parameters of the trap including trap depth and stiffness, spatial potential distribution, local 

potential barriers, and the laser beam intensity needed to achieve stable trapping versus the 

wavelength of the incoming beam. As the wavelength increases, the metasurface topology evolves 

from an anisotropic elliptical to a hyperbolic regime going through a topological transition, which 

permits to study how the different light-matter interactions enabled by these regimes conform the 

properties of the optical trap. During our study, we compare the performance of the proposed traps 

to the one found using Gaussian beams in free-space [11-12], bulk metals [41], and thin films, 

aiming to highlight the pros and cons of this platform with respect to other configurations and to 

assess its practical viability. 

In the following, we consider a spherical gold nanoparticle of radius 𝑎 = 15nm located at r̅$ =

(x$, y$, 𝑎). The metasurface is constructed using nanostructured and periodic silver rods [38,57] 

with width W= 60nm, height H = 10nm and periodicity L = 180nm (see Fig. 1) patterned over a 

porous polymer with refractive index n; = 1.05 [25]. The subwavelength thickness and 

periodicity of the layer allow us to characterize it using an effective in-plane conductivity tensor 

[58-61] with negligible out-of-plane polarizability [62,63]. Even though the use of different 

substrates might change the particle polarizability and the density of states provided by the 
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structure, the overall response will not be significantly affected [44]. We have carefully verified 

the accuracy of our model using full-wave numerical simulations as well as the dispersive 

hyperbolic response of the surface [44]. For comparison purposes, we employ ultrathin and bulk 

silver with identical properties as the one employed on the nanostructured metasurface [44]. 

3.1 Optical forces arising in anisotropic traps 

Fig. 2 illustrates the response of the proposed optical trap detailing the different forces that act 

on the nanoparticle when it is illuminated with a Gaussian beam at 540nm. At this wavelength, the 

nanostructured silver layer behaves as a hyperbolic metasurface [44]. For the sake of simplicity, 

we begin considering that the nanoparticle is located along the metallic rods (i.e., the x6-axis). In 

this situation, the polarization state acquired by the particle can be computed from dipole moment 

pE(x$)=[p5W(|x$|) + ip5A(|x$|)]x6 + [∓piW(|x$|) ∓ ipiA(|x$|)]z6, where the subscripts ‘r’ and ‘i’ 

denote the real and imaginary components of a complex number, and the upper (lower) sign 

appears when the particle is located in the negative (positive) portion of the x6-axis [44]. We stress 

the symmetry of the electric dipole magnitude with respect to the beam axis, i.e., |pE(x$)| =

|pE(−x$)|. This dipole can be expressed as a linear combination of two fundamental emitters that 

have opposite out-of-plane polarization rotation handedness with respect to the surface. The dipole 

moment of these emitters are pE:(x$)=p5W(|x$|)x6 ∓ ipiA(|x$|)z6 and pE;(x$)=ip5A(|x$|)x6 ∓

piW(|x$|)z6. The excitation of pE: (pE;) depends on the real (imaginary) and imaginary (real) parts of 

the in-plane and out-of-plane electric field components of the standing wave created over the 

surface. Focusing the incident p-polarized Gaussian beam close to the metasurface ensures that the 

real part of the in-plane electric field components is much stronger than the other ones [44]. As a 

result, the dipole pE: is strongly excited and dominates the scattering processes, generating SPPs 
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that propagate in the radial direction against the beam axis. Fig. 2(a) shows the power of the SPPs 

launched on the metasurface for several particle positions. When the particle is located away from 

the beam axis (i.e., x$ ≠ 0), it mostly scatters evanescent waves with a transverse spin that excites 

directional plasmons with wavevectors pointing away from the beam axis, associated with a 

“trapping” recoil force acting toward the beam axis. When the particle is located exactly on the 

axis of the Gaussian beam, it acquires a linear polarization pE(x$ = 0) = p5(x$ = 0)x6 and scatters 

waves without any specific spin that excites SPPs propagating symmetrically through the surface. 

As a result, the recoil force vanishes, and an optical trap is set at x$ = 0. It is important to note the 

role of the dipole	pE;(x$): it excites directional plasmons propagating towards the beam axis that 

result into “anti-trapping” recoil force [41,44]. In the case shown in Fig. 2, the magnitude of this 

emitter is very small [44] and thus it barely contributes to the excitation of SPPs. In a more general 

case, it is possible to engineer trapping or anti-trapping recoil forces by controlling the strength of 

the orthogonal dipoles that characterize the electromagnetic response of the particle. This can be 

done by manipulating the properties (focusing, polarization, etc.) of the incident Gaussian beam. 

The total optical forces exerted on the nanoparticle are determined by the superposition of 

gradient and recoil forces. Fig. m(b) shows the x-component of the total (blue solid line) and recoil 

(red solid line) forces versus the particle position along the x6-axis. For the sake of comparison, it 

also shows these forces arising when the nanostructured layer is replaced by a thin silver layer 

(dashed lines) of similar thickness. Results show that the recoil force strength over nanostructured 

silver is more than an order of magnitude (~op times) larger than the one found over the thin layer. 

This enhancement appears thanks to the large wavenumber (momentum) of the surface plasmons 

excited over the nanostructured surface. As a result, the trapping mechanism is very different in 

both platforms: above the thin silver layer, the trap is dominated by the gradient force generated 
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from the Gaussian beam and its reflection from the surface; above the nanostructured silver layer, 

the trap is primarily determined by the strong recoil force originating from the directional 

excitation of hyperbolic surface plasmons. Overall, the hyperbolic response of nanostructured 

silver enhances the total lateral force strength over six times with respect to the nonpatterned case. 

This example highlights how anisotropic metasurfaces can enable plasmon-assisted optical traps 

at desired wavelengths determined by the surface properties. Fig. m(c) compares the vertical forces 

acting on the particle when it is located over these two configurations. In both cases, the total 

vertical force is dominated by the recoil force, which is always attractive, pushes the particle 

towards the surface, and exhibits a maximum strength near the trapping position. Note that a 

nanoparticle located above a bulk silver substrate experiences a repulsive vertical force due to the 

dominant contribution of the gradient component, whereas the lateral components exhibit a similar 

response as in the case of thin silver [oo]. 

Numerical full-wave simulations performed in COMSOL Multiphysics (markers) are included 

in Fig. m(b). Results are obtained considering realistic nanostructured silver and applying the 

Maxwell’s stress tensor formalism as described in [oo]. Our study shows that the effective medium 

approach can be applied to model the trap response of hyperbolic structures even though the 

particle is in the near field. It should be noted that small ripples appear on the force exerted on the 

particle as it moves along the y6-axis from one metallic rod to another one through the airgap in 

between them [oo]. These ripples are associated to near-field interactions not captured by 

homogeneous models and become stronger as the operation wavelength decreases and the particle 

is electrically closer to the surface. We have verified that these ripples have a limited impact on 

the force amplitude and its spatial profile, and therefore they do not change the performance of the 

proposed optical traps. 
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Although our study above has been focused on nanoparticles located along the metallic rods 

of the nanostructure (x6-axis in the coordinate system of Fig. q), the underlying mechanisms hold 

independently of the particle position within the surface [oo]. Fig. r explores this scenario and 

shows the components of the lateral forces acting on the particle as well as a quiver plot indicating 

the force direction. Results confirm that an optical trap is created exactly at the beam axis. 

Furthermore, this analysis reveals the intrinsic anisotropy of the metasurface: the strength of the 

recoil force exerted on the nanoparticle lacks rotational symmetry. This asymmetry appears 

because SPPs travelling towards different directions within the surface possess different 

momentum and spin, and the resulting force might not be directly directed towards the beam 

centre. Instead, the particle would follow a parabolic trajectory towards the trap, as shown in Fig. 

r(c). Note that the recoil force is significantly larger than gradient force for all particle positions 

and thus determines the trap performance.  

3.2 Performance of anisotropic optical traps versus wavelength 

Fig. o(a) shows the potential depth of the traps engineered over nanostructured silver versus 

the wavelength of the incident Gaussian beam. Results have been normalized with respect to the 

beam intensity available at the focus position. This figure highlights the extreme bandwidth in 

which optical traps with very large potentials can be set, covering the band from around rppnm 

to over m𝜇m, and how the trap depth correlates to the metasurface topology. Theoretically, the 

structure exhibits hyperbolic responses in the near-IR and beyond. However, due to the difficulty 

to appropriately focus the beam at these frequencies and the smaller amount of power scattered by 

the particle there, we will restrict our analysis to the visible portion of the spectrum. It should be 

noted that different type of anisotropic and hyperbolic metasurfaces can be designed to operate in 

the infrared region [so-st]. Fig. o(a) also shows the trap depth obtained with a similar Gaussian 
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beam focused over a thin silver layer (blue dotted line), bulk silver (magenta solid line) and in free 

space in the absence of any structure (black solid line). Results show that a thin layer of silver 

enables optical trapping with a performance comparable to the nanostructured one in the range of 

rmu~omunm wavelength, and exhibits a slightly better trap depth (~q.o times) at the intrinsic 

plasmon resonance frequency of silver (~ropnm). This response appears for two main reasons. 

First, the proposed nanostructured silver behaves as a HMTS only for wavelengths larger than 

omunm. In the range of rop~omunm, it behaves as an anisotropic elliptical surface [oo] that exhibits 

moderate density of states. Therefore, in this frequency range the comparison is between two 

elliptical surfaces, one isotropic and another anisotropic. We note that nanostructured silver can 

be redesigned to exhibit hyperbolic response in this frequency range (rop~omunm), but this might 

be challenging to fabricate in practice. Second, the electrical distance between the dipole and the 

surface is not negligible at ropnm. There is a clear trade-off [mm,mr,rq] between the particle-surface 

distance and the surface modes that can be excited: when the particle is located in the very near 

field of the surface, it can couple to surface plasmons with large wavenumbers that boost the 

overall performance of the optical trap; when the particle is moved away from the surface, scattered 

fields are partially filtered out by free space and cannot efficiently excite surface plasmons. In the 

latter case, evanescent fields with low/moderate wavenumbers are not strongly attenuated and can 

still couple to structures that support them, as happens in the case of thin layer of silver. The 

combination of these two factors explains why a thin layer of silver exhibits a better response over 

nanostructured silver at rop nm. In the case of bulk silver, maximum potential depth is obtained 

near ropnm and is approximately m times weaker than the one obtained above nanostructured 

silver. When the particle is illuminated in free space in the absence of any configurations, the trap 

depth increases as the laser wavelength decreases, a response associated to the higher amount of 
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power scattered by an electrically larger particle. Our results confirm that nanostructured silver 

exhibit very large trap depth over a very wide bandwidth, which is not possible to achieve with 

uniform thin films. Fig. o(b) shows the minimum laser intensity required to achieve stable trapping 

(i.e., a trap depth ~§¨k�T) in these configurations. This study reveals that the nanostructured 

metasurface permits to reduce the required beam intensity by an order of magnitude with respect 

to the other platforms. This has significant implications in practice as it allows to use low-intensity 

laser sources operating in the visible/IR to trap and manipulate nanoparticles while avoiding 

delicate adjustment between the surface response and the laser wavelength. 

To further investigate the performance of these platforms, Fig. u shows their isofrequency 

contours – i.e., slices of the two-dimensional momentum space (k5, k8) at a constant wavelength. 

These contours describe the wavenumber of the supported SPPs versus their direction in space and 

are very useful to engineer  plasmonic optical traps. From the figure, it is evident that HMTSs 

support surface plasmons with larger momentum over a large wavelength range; whereas isotropic 

materials support surface plasmons with moderate momentum near the plasmon resonance 

frequency of the material. The potential distribution of the traps above these structures are shown 

in Fig. s and t. The potential energy is computed varying the particle position (x¨,	y¨) over the 

surface with respect to the beam axis. At the silver plasmon resonance, found at λ¨ ≈ ª«¨nm 

[oo,ut], both bulk and thin film configuration support TM isotropic surface plasmons (Fig. ub) 

that lead to a rotationally symmetric potential distribution around the beam axis (Fig. sb-c). At this 

frequency, the nanostructured silver layer behaves as an elliptical anisotropic surface (Fig. ua) and 

supports rotationally nonsymmetric surface plasmons. Interestingly, the intrinsic metasurface 

anisotropy translates into a nonsymmetric potential distribution that is illustrated in a rD fashion 

in Fig. sa. Fig. t further studies the qD potential distribution above this configuration when the 
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particle is moved along the main axes (i.e., x6 and  y6) of the metasurface. At ropnm wavelength, 

along the silver nanorods (i.e., x6 axis with y¨ = ¨), the potential is spatially smooth, and the trap 

depth (∇U5=δY) corresponds to the difference between the potential energies when the particle is 

located at the beam axis and infinity. Across the strips (i.e.,  y6 axis with x¨ = ¨), the potential 

presents local maxima with energy larger than zero that leads to local barriers with potentials 

greater than the trap depth (∇U8 > δY). Such local potential barriers appear above anisotropic 

surfaces because they support surface plasmons with different wavenumbers (momentum) along 

different polar directions within the surface. As a result, the lateral recoil force exerted on the 

particle strongly depends on its azimuthal position with respect to the beam axis. Remarkably, 

barriers with potential energies even larger than the trap depth can be obtained by leveraging 

extreme anisotropic responses, associated with SPPs possessing drastically dissimilar 

wavenumbers as they travel towards different directions within the plane. This case can be found 

at the metasurface topological transition, which appears at λ¨ = ª¨nm [oo] and exhibits a 

canalization-like response along the y6 direction [sv]. There, plasmons propagating towards the x6 

axis possess significantly larger momentum than those traveling toward the canalized direction, 

enabling local potential barriers along the strips (see Fig. tb) with an energy ∇U5 > 	∇U8 = δY. In 

such configuration, a trapped particle that gains kinetic energy will probably escape in the direction 

perpendicular to the nanorods, which in addition to lower potential also exhibits a reduced trap 

stiffness. It should be noted that the trap depth at this wavelength slightly decreases (Fig. oa) due 

to the overall moderate local density of states exhibited by the metasurface (Fig. ua). However, the 

trap depth is still larger than the one found over uniform silver (Fig. sb) because this material 

provide reduced light-matter interactions when operated off-resonance. As the operation 

wavelength further increases, the nanostructured silver layer behaves as a hyperbolic metasurface 
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and supports highly-confined SPPs. Isofrequency contours of these SPPs and associated trapping 

potentials at λ¨ = ®«¨nm and λ¨ = ¯°®nm are shown in Figs. u-t. Hyperbolic surfaces lead to 

asymmetric potential distribution and very significant trap depths, greatly extending the 

functionality of the proposed anisotropic platform from the visible toward the IR. Local potential 

barriers also arise in the hyperbolic case due to the different features of plasmons propagating 

towards x (see Fig. ma) and y semi-planes. SPPs properties evolve as the wavelength increases and 

the metasurface hyperbolic branches slowly close and tend to behave as in a canalization regime 

along the x6 direction, which in turn leads to local potential barriers across the nanorods (i.e., y6-

axis). For comparison, thin layer and bulk configuration mostly behave as a lossy dielectric 

reflector as the wavelength increases even further. At these frequencies, they do not effectively 

contribute to conform an optical trap rather than enhancing/decreasing the gradient force acting on 

the particle by modifying the standing wave field patterns.  

To complete our study, Fig. v shows the stiffness of the optical traps engineered over the 

considered platforms versus the beam wavelength and the azimuthal angle ϕ within the surface 

defined with respect to the positive x6-axis, i.e., along the strips. In the case of the nanostructured 

silver layer, the trap stiffness dramatically increases when the metasurface topology changes from 

elliptical TE to anisotropic elliptical TM, at around ropnm. As happens with the potential, the 

stiffness exhibits a rotationally nonsymmetric distribution and, starting from the topological 

transition at rwpnm to around tupnm, it presents local maxima in the directions along the metallic 

rods (i.e., ϕ = ¨°	 and §°¨°) and minima in the orthogonal ones (i.e., ϕ = ¨°	 and ³¯¨°). Such 

response is associated to the distribution of the nonconservative force that conforms the trap (as 

the one shown in Fig. ra-b) and consistent with the local potential barriers found along the strips 

shown in Fig. t. Thus, it is probable that energetic particles will escape from these optical traps in 
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the direction across the strips. As wavelength increases further, the metasurface changes its 

polarization profile and tends to canalize waves along the x6 axis. This mechanism swaps the 

direction of maximum (minimum) stiffness, which now appears across (along) the strips. In those 

optical traps, energetic particles will scape in the direction parallel to the strips. For comparison, 

the trap stiffness obtained focusing the beam over a thin silver layer and over bulk silver is shown 

in Figs. vb-c. As expected, optical traps engineered over them only show better stiffness around 

the metal plasmon resonance and always exhibit a rotationally symmetrical profile around the trap. 

Overall, anisotropic metasurfaces significantly boost the stiffness of engineered optical traps over 

a large frequency band.  

4. Conclusions  

We have put forward the concept of anisotropic and hyperbolic optical traps to manipulate 

nanoparticles. These optical traps are created by illuminating a nanoparticle over an anisotropic 

metasurface with a linearly polarized Gaussian beam and their properties strongly depend on the 

surface topology and light-matter interactions. To analyse this platform, we have developed a 

rigorous theoretical formalism able to compute the induced trapping forces based on the 

anisotropic scattered dyadic Green’s function approach merged with the Lorentz force within the 

Rayleigh approximation. This approach, validated with full-wave numerical simulations in 

COMSOL Multiphysics, reveals that giant, nonconservative recoil force pointing towards the 

beam axis dominates the overall trap response. This force appears due to the excitation of ultra-

confined SPPs on the anisotropic metasurface. Then, we have applied the Helmholtz 

decomposition method to calculate the potential energy of the resulting nonconservative force-

field. Our formalism permits to compute fundamental metrics that characterize optical traps 

engineered over plasmonic materials through nonconservative fields, including spatial potential 
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distribution, trap depth and stiffness, local potential barriers, as well as the minimum laser intensity 

that achieve stable optical trapping.  

The performance of the proposed anisotropic optical traps is outstanding: they exhibit large 

trap depths over an extremely broadband frequency range that covers the entire visible spectrum 

extending well into the IR band. As a result, a wide variety of low-intensity laser sources can be 

employed to achieve stable trapping of nanoparticles avoiding precise alignments between the 

surface response and the operation wavelength, and significantly reducing the possibility of 

damaging trapped particles due to photoheating. As a specific example, we studied the 

performance of optical traps engineered over a nanostructured silver layer and analysed how the 

trap response evolves as the metasurface topology changes from anisotropic elliptical to hyperbolic 

going through the topological transition. In addition, we have found that the momentum imbalance 

of the SPPs excited by the particle on anisotropic surfaces gives rise to local potential barriers and 

larger trap stiffness along certain spatial directions, thus breaking the rotational symmetry that 

characterizes common optical traps. The engineered traps exhibit a much larger potential depth 

and stiffness than the one found focusing identical Gaussian beam over uniform thin silver, bulk 

silver or in free-space, and, more importantly, maintain such response over a large bandwidth. We 

note that our formalism is based on semi-classical Maxwellian approach and omits additional 

forces that might originate from other mechanisms, such as Casimir forces [21,69]. Investigating 

the influence of such forces in the proposed platform is the scope of future research.  

Moving forward, ultrathin metasurfaces enable unique possibilities to construct optical traps 

with excellent performance, including the possibility to engineer local potential barriers, at a 

desired wavelength, by tailoring the surface topology, local density of states, and the momentum 

of the supported plasmons. To this purpose, different plasmonic materials – including metals such 
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as gold or silver and semimetals as graphene and WTe;[70]– can be appropriately patterned in 

subwavelength arrangements. In addition, natural anisotropic and hyperbolic materials [71,72] can 

also be employed to trapping purposes, including hexagonal boron nitride [73], hybrid composites 

[74,75], van der Waals crystals [37,76-78] and an increasing family of  2D materials [64-67].  We 

envision that anisotropic and hyperbolic metasurfaces will lead to the next generation of low-

power nano-optical tweezers. 

This work is supported by the National Science Foundation with Grant No. ECCS-1808400 

and a CAREER Grant No. ECCS-1749177. 
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Fig. 1. Hyperbolic optical trap created by illuminating a Rayleigh particle (yellow) located 

above an ultrathin anisotropic metasurface (cyan) with a p-polarized Gaussian beam (red). The 

beam has width w$ and has been focused at a distance f$ normal to the surface. During the light 

scattering process, the particle excites highly confined surface plasmons (grey) on the 

metasurface propagating away from the beam axis where the optical trap is generated. The 

hyperbolic metasurface is constructed using subwavelength metallic rods with width W, height 

H and periodicity L, and is supported by a medium of refractive index n;. 
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Fig. 2. Trapping Rayleigh particles over a nanostructured metasurface with a Gaussian beam. 

(a) Normalized power of the surface plasmons excited on the surface when the particle is 

located in different positions with respect to the beam axis. The top inset illustrates the dipole 

polarization spin that rotates against the beam axis, direction of the plasmon wavevector, and 

the recoil forces acting on the particle. (b) Total lateral forces F5 (blue solid line) and recoil 

forces F5,W3\ (red solid line) exerted on the nanoparticle versus its position with respect to the 

beam axis [44]. Results obtained above actual nanostructured silver using COMSOL 

Multiphysics (markers) are included for validation [43]. Dotted lines correspond to the forces 

acting on the nanoparticle when the metasurface is replaced by a thin silver layer of identical 

thickness as the nanostructured metasurface. (c) Attractive vertical forces Fi acting on the 

nanoparticle as a function of its position x$ with respect to the beam axis. The gold nanoparticle 

has a radius 𝑎 = 15nm and is located in free space at a distance z$ = 𝑎 over the metasurface 

described in Fig. 1 with parameters W = 60nm, L = 180nm, H = 10nm, and n; = 1.05. The 

Gaussian beam width is w$ = 2µm, focus is f$ = 0, and its operating wavelength is 540nm. 
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Fig. 3. Optical trapping of a Rayleigh particle located above a hyperbolic metasurface when it 

is illuminated with a Gaussian beam. (a)-(b) Lateral components of the total force acting on the 

nanoparticle versus its position (x$, y$) with respect to the beam axis. (c) Quiver plot detailing 

the direction of the lateral forces. Other parameters are as in Fig. 2. 
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Fig. 4. Performance of optical traps engineered over anisotropic metasurfaces versus frequency. 

(a) Trap depth normalized with respect to the power density available at the center of the 

incident Gaussian beam. (b) Minimum amount of power density required to achieve stable 

trapping. Results are computed for a nanoparticle that is illuminated by a Gaussian beam and 

is located above an array of silver nanorods (red), above bulk silver (magenta), above a thin 

silver layer (dotted blue), and in free space (black). The background shaded region corresponds 

to different metasurface topologies (yellow: elliptic, green: hyperbolic) going through the 

topological transition (blue) associated with the nanostructured silver layer. Other parameters 

are as in Fig. 2. 
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Fig. 5. Isofrequency contour of (a) a nanostructured silver layer; (b) a thin silver layer; and (c) 

bulk silver at different wavelengths. The physical dimensions of the nanostructure are detailed 

in Fig. 2. 
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Fig. 6. Trap potential versus the position (x$, y$) of the particle when it is illuminated by a 

Gaussian beam oscillating at 340nm, 390nm, 540nm and 785nm operation wavelength. Results 

are computed when the particle is located above (a) a nanostructured silver layer; (b) a thin 

silver layer; and (c) bulk silver. Other parameters are as in Fig. 2. 
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Fig. 7. Trapping potential computed as a function of the particle position (x$,	𝑦$) along (x$ 

with y$ = 0; blue line) and across (y$ with x$ = 0; magenta line) the nanorods of a 

nanostructured silver layer for several operation wavelengths. Local potential barriers along 

and across the nanorods are denoted as ∆U5 and ∆U8, respectively. Other parameters are as in 

Fig. 2. 
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Fig. 8. Trap stiffness induced on a nanoparticle as a function of the wavelength (λ$) of the 

incident Gaussian beam and the polar angle (ϕ) defined with respect to the x6-axis in Fig. 1. 

Results are computed for a nanoparticle that is illuminated by a Gaussian beam and is located 

above (a) a nanostructured silver layer; (b) a thin silver layer; and (c) bulk silver. Other 

parameters are as in Fig. 2. 


